
Turk J Math
36 (2012) , 305 – 318.
c© TÜBİTAK
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Extended cross product in a 3-dimensional almost contact metric
manifold with applications to curve theory

Çetin Camcı

Abstract

In this work, we define a new cross product in 3-dimensional almost contact metric manifold and we

study the theory of curves using this new cross product in this manifold. Besides, in the works of Baikousis,

Blair [1] and Cho et al. [4], we observe that some theorems are incomplete and excessively generalized are

thus their alternative proofs presented.
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1. Introduction

Let M be a (2n+1)-dimensional differentiable manifold. If there exist a 1-form η , such that ηΛ (dη)n �= 0

on M , then (M, η) is called a contact manifold and η a contact 1-form [2]. A unique vector field ξ is called

Reeb vector field (or characteristic vector field) where η(ξ) = 1 and dη(ξ, .) = 0 [2]. In a contact manifold, the
contact distribution is defined by

D = {X ∈ χ(M) : η(X) = 0} .

A (2n + 1)-dimensional differentiable manifold M is called an almost contact manifold if there is an almost

contact structure (φ, ξ, η) consisting of a tensor field φ type (1, 1), a vector field ξ , and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, and (one of) η(ξ) = 1, φξ = 0, η ◦ φ = 0. (1.1)

If the induced almost complex structure J on the product manifold M2n+1 × R defined by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)

is integrable then the structure (ϕ, ξ, η) is said to be normal, where X is tangent to M , t is the coordinate

of R and f is a smooth function on M2n+1 × R [2]. M becomes an almost contact metric manifold with an

almost contact metric structure (φ, ξ, η, g), if

g(φX, φY ) = g(X, Y ) − η(X)η(Y ),
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or equivalently,

g(X, φY ) = −g(φX, Y ) and g (X, ξ) = η(X)

for all X, Y ∈ TM , where g is a Riemannian metric tensor of M [2]. For a 3-dimensional almost contact metric
manifold, Z. Olszak proved that

(∇Xφ)Y = g(φ(∇Xξ), Y )ξ − η(Y )φ(∇Xξ) (1.2)

for all X, Y ∈ TM [5].

An almost contact metric structure is called a contact metric structure if

g(X, φY ) = dη(X, Y )

holds on M for X, Y ∈ TM. A normal contact metric manifold is a Sasakian manifold. However an almost
contact metric manifold is Sasakian if and only if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, X, Y ∈ TM, (1.3)

where ∇ is Levi-Civita connection [2].

In any 3-dimensional contact metric manifold, the equation

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) (1.4)

is satisfied, where h = 1
2£ξφ and £ denotes the Lie derivative [6].

A well known example of a Sasakian manifold in terms of M = (R3, φ, ξ, η, g) can be given by

φ :=

⎛
⎜⎜⎝

0 1 0
−1 0 0
0 y 0

⎞
⎟⎟⎠ , ξ := 2

∂

∂z
, η :=

1
4
(dz − ydx)

and g := 1
4 (dx2 + dy2) + η

⊗
η . Here,

ϕ = {e = 2
∂

∂y
, φ(e) = 2(

∂

∂x
+ y

∂

∂z
), ξ = 2

∂

∂z
}

is an orthonormal basis. Furthermore, φ -sectional curvature of M is equal to −3. Therefore it appears to be

a space form denoted by R3(−3) [1].

Let (M, η) be a 3-dimensional contact manifold and γ be a regular curve in this manifold. If η(t) = 0

(i.e. t ∈ D), we say that γ is a Legendre curve in M where t = γ′ [1]. Furthermore, in a 3-dimensional contact
metric manifold, if the angle between tangent vector of the curve and the Reeb vector field is constant, then it
is said that the curve is a slant curve [4].

In a 3-dimensional Sasakian manifold, Baikuossis and Blair [1] stated the following proposition and
theorems.

Proposition 1.1 In a 3-dimensional Sasakian manifold, the torsion (k2 ) of a Legendre curve is equal to 1 .
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Theorem 1.1 For a smooth curve γ in a 3-dimensional Sasakian manifold, set σ = η(γ̇) . If k2 = 1 and at
one point σ = σ̇ = 0 , then γ is a Legendre curve.

Theorem 1.2 If on a 3-dimensional contact metric manifold, the torsion (k2 ) of Legendre is equal to 1, then
the manifold is Sasakian.

Cho et al. [4] have investigated slant curves in a Sasakian 3-manifold and stated the following theorem.

Theorem 1.3 A non -geodesic curve in a Sasakian 3-manifold M is slant curve if and only if its ratio of k2±1
and k1 is constant. where k1 , k2 are curvature and torsion of the curve, respectively.

In this theorem, the necessary condition is not correct. We will present a counterexample which violates
necessary condition of Theorem 1.3.

2. Cross product in 3-dimensional almost contact metric manifold

Definition 2.1 Let M3 = (M, φ, ξ, η, g) be a 3-dimensional almost contact metric manifold. We define a cross
product ∧ by

X ∧ Y = −g(X, φY )ξ − η(Y )φX + η(X)φY, (2.5)

where X, Y ∈ TM.

Example 2.1 In a 3-dimensional Euclidean Space R3(x, y, z) , if we define a subspace of R3(x, y, z) by V =

{(x, y, 0) : x, y ∈ R} , there exist natural projection π(x, y, z) = (x, y, 0) , and almost complex map J(x, y, 0) =

(−y, x, 0) on V . If we define a map φ = J ◦ π , then it is seen that (R3(x, y, z), φ, ξ, η, g) is an almost contact

metric manifold where η = dz , ξ = ∂
∂z and g is standard Euclidean metric in 3-dimensional Euclidean space.

As a result, we have
X ∧ Y = −g(X, φY )ξ − η(Y )φX + η(X)φY,

where X, Y ∈ TR3 . In this case we have X ∧ Y = X × Y where X × Y is the usual cross product in R3 .

Theorem 2.1 Let M3 = (M, φ, ξ, η, g) be a 3-dimensional almost contact metric manifold. Then, for all
X, Y, Z ∈ TM the cross product has the following properties:
a) The cross product is bilinear and antisymmetric (i.e. X ∧ Y = −Y ∧ X ).

b) X ∧ Y is perpendicular both of X and Y .

c)

Y ∧ φ(X) = g(X, Y )ξ − η(Y )X, (2.6)

φ(X) = ξ ∧ X. (2.7)

d) Define a mixed product by

(X, Y, Z) = g(X ∧ Y, Z),

then we have
(X, Y, Z) = −(g(X, φ(Y ))η(Z) + g(Y, φ(Z))η(X) + g(Z, φ(X))η(Y )) (2.8)

and
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(X, Y, Z) = (Y, Z, X) = (Z, X, Y ) .

e)

g(X, φ(Y ))Z + g(Y, φ(Z))X + g(Z, φ(X))Y = −det(X, Y, Z) ξ (2.9)

(X ∧ Y ) ∧Z = g(X, Z)Y − g(Y, Z)X, (2.10)

g(X ∧ Y, Z ∧ W ) = g(X, Z)g(Y, W ) − g(Y, Z)g(X, W ), (2.11)

‖X ∧ Y ‖2 = g(X, X)g(Y, Y ) − g(X, Y )2. (2.12)

f)

(X ∧ Y ) ∧ Z + (Y ∧ Z) ∧ X + (Z ∧ X) ∧ Y = 0,

Proof. Proofs of (a), (b) are clear from equation (2.5).

Now we prove the other cases:

c) Replacing X by φX in equation (2.5), we have

φ(X) ∧ Y = −g(φX, φY )ξ − η(Y )φ2X

= − (g(X, Y ) + η(X)η(Y )) ξ − η(Y ) (−X + η(X)ξ)

= −(g(X, Y )ξ − η(Y )X).

Then we get
Y ∧ φ(X) = g(X, Y )ξ − η(Y )X.

Replacing Y by ξ in equation (2.5), we obtain φX = X ∧ ξ .

d) If we calculate g(X ∧ Y, Z), then we find

(X, Y, Z) = g(X ∧ Y, Z)

= −g(X, φY )g(ξ, Z) − η(Y )g(φX, Z) + η(X)g(φY, Z)

= −(g(X, φ(Y ))η(Z) + g(Y, φ(Z))η(X) + g(Z, φ(X))η(Y )).

Then we can easily see that

(X, Y, Z) = (Y, Z, X) = (Z, X, Y ) .

e) We know that the dimension of D =
{
X ∈ χ(M3) : η(X) = 0

}
is 2. If e is a unit vector in D ,

then ϕ = {e, φe, ξ} is an orthonormal basis for χ(M). Then we can write X = X1e + X2φe + X3ξ ,

Y = Y1e + Y2φe + Y3ξ , Z = Z1e + Z2φe + Y3ξ where X, Y, Z ∈ χ(M3). Since φY = −Y2e + Y1φe , we
have

g(X, φY ) = g(X1e + X2φe + X3ξ,−Y2e + Y1φe)

= X2Y1 − X1Y2.

If we calculate g(Y, φ(Z)) and g(Z, φ(X)), we obtain

g(X, φ(Y ))Z + g(Y, φ(Z))X + g(Z, φ(X))Y = −det(X, Y, Z) ξ.
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Using equation (2.5), (2.6) and (2.7) we have

(X ∧ Y ) ∧ Z = − (X2Y1 − X1Y2) (−Z2e + Z1φe)

+ (Z1(Y3X1 − Y1X3) + Z2(Y3X2 − Y2X3)) ξ

−Z3 ((Y3X1 − Y1X3)e + (Y3X2 − Y2X3)φe)

= (X1Z1 + X2Z2 + X3Z3) (Y1e + Y2φe + Y3ξ)

− (Y1Z1 + Y2Z2 + Y3Z3) (X1e + X2φe + X3ξ)

= g(X, Z)Y − g(Y, Z)X.

Then we get

g(X ∧ Y, Z ∧ W ) = (X ∧ Y, Z, W )

= g((X ∧ Y ) ∧ Z, W )

= g(X, Z)g(Y, W ) − g(Y, Z)g(X, W )

and

‖X ∧ Y ‖2 = g(X ∧ Y, X ∧ Y )

= g(X, X)g(Y, Y ) − g(X, Y )2.

f) From equation (2.10), we can easily see that

(X ∧ Y ) ∧ Z + (Y ∧ Z) ∧ X + (Z ∧ X) ∧ Y = 0.

�

Theorem 2.2 Let M3 = (M, φ, ξ, η, g) be a 3-dimensional almost contact metric manifold. Then for all
X, Y, Z ∈ TM we have

∇Z(X ∧ Y ) = (∇ZX) ∧ Y + X ∧ (∇ZY ) (2.13)

where ∇ is Levi-Civita connection on M3 .
Proof. Using equation (2.5), we have

∇Z(X ∧ Y ) = −g(∇ZX, φY )ξ − η(Y )φ(∇ZX) + η(∇ZX)φ(Y )

−g(X, φ(∇ZY ))ξ − η(∇ZY )φX + η(X)φ(∇ZY )

−η(Y ) (∇ZφX − φ(∇ZX)) − g(X,∇ZφY − φ(∇ZY ))ξ

+η(X) (∇ZφY − φ(∇ZY ))

+ (g(∇ZX, ξ) + g(X,∇Zξ))φY + η(X)∇ZφY,

so we get

∇Z(X ∧ Y ) = (∇ZX) ∧ Y + X ∧ (∇ZY )

−g(X, (∇Zφ)Y )ξ − η(Y )(∇Zφ)X + η(X)(∇Zφ)Y (2.14)

−g(X, φY )∇Zξ − g(Y,∇Zξ)φX + g(X,∇Zξ)φY.
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From equation (1.2), we have

−g(X, (∇Zφ)Y )ξ − η(Y )(∇Zφ)X + η(X)(∇Zφ)Y = 0.

In 3-dimensional almost contact metric manifold, {φZ, φ2Z, ξ} is orthogonal basis. Addition, ∇Zξ is orthogonal
ξ . Thus we have

∇Zξ = aφZ + bφ2Z. (2.15)

From equation (2.15) and (2.9), we have

−g(X, φY )∇Zξ − g(Y,∇Zξ)φX + g(X,∇Zξ)φY = 0.

Using the equation (2.14), proof is complete. �

3. A curve theory 3-dimensional almost contact metric nanifold

In 3-dimensional almost-contact metric manifold there exist two types of Frenet frames. Let M3 =

(M, φ, ξ, η, g) be a 3-dimensional almost contact metric manifold and γ be a regular curve in M3 parametrized
by arc length.

First Type Frenet Frame (Usual Type Frenet Frame).

In this space, it is well known t = γ′(s), κ = ‖∇tt‖ , n = ∇tt
κ . Using the new cross product, we have

b = t ∧ n , which is orthogonal to two independent directions. In this way we can define the third vector in the
Frenet frame to be cross product of the first two unit vectors and the torsion to be the component of ∇tn in the
third direction. So we have τ = g(∇tn, b), where {t, n, b} is a usual Frenet frame and κ, τ are the curvature

and the torsion of the curve, respectively, where ∇ is Levi-Civita connection on M3 .

Second Type Frenet Frame.

From Gram-Schmidt procedure, we have

E1 = t

E2 = ∇tt − g(∇tt, V1)V1

E2 = ∇2
t t − g(∇2

t t, V1)V1 − g(∇2
t t, V2)V2,

where t = γ′(s), V1 = E1
‖E1‖ = t , V2 = E2

‖E2‖ and V3 = E3
‖E3‖ . Thus curvatures of the curve are obtained by

k1 = g(∇tV1, V2) and k2 = g(∇tV2, V3).

There are some difference between the usual type Frenet Frame and second type Frenet Frame. In the
second type Frenet Frame, H. Gluck [3] proved that curvatures of the curve are given by

k1 =
‖E2‖
‖E1‖
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and

k2 =
‖E3‖
‖E2‖

.

Thus k1 and k2 are not negative. In the paper by Baikuossis and Blair [1], they use second type Frenet Frame,
in which they assumed that curvatures of the curve are positive. In this paper, we use the usual type Frenet
Frame.

Relations between the usual type Frenet Frame and the second type Frenet Frame are given by

t = V1, n = V2, b = εV3, κ = k1, τ = εk2, (3.16)

where ε = det(V1, V2, V3) = ±1 is the orientation of the curve. Using the equations in (3.16), we state the
following corollaries.

Corollary 3.1 i) τ > 0 if and only if ε = 1

ii) τ < 0 if and only if ε = −1 .

Corollary 3.2 k2 = 1 if and only if one the following condition are satisfied

Case 1: τ = 1 (ε = 1);

Case 2: τ = −1 (ε = −1).

Considering the notations above we state the following equations and propositions.

η(t)t + η(n)n + η(b)b = ξ. (3.17)

Using equation (3.17), we have

η(t)2 + η(n)2 + η(b)2 = 1 (3.18)

and
t ∧ n = b, n∧ b = t, b ∧ t = n. (3.19)

Proposition 3.1 Let M3 = (M, φ, ξ, η, g) be a 3-dimensional almost contact metric manifold and γ a regular

curve in M3 parametrized by arc length. Then the following equations are satisfied:

φt = η(b)n − η(n)b, (3.20)

φn = η(t)b − η(b)t (3.21)

and
φb = η(n)t − η(t)n. (3.22)

Proof. Using equations (3.17) and (3.19), we have

φt = ξ ∧ t

= η(t)t ∧ t + η(n)n ∧ t + η(b)b ∧ t

= η(b)n − η(n)b.

The proofs of the equations (3.21) and (3.22) are similar. This proves the proposition. �
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Proposition 3.2 Let γ be a regular curve in a 3-dimensional contact metric manifold M3 = (M, φ, ξ, η, g)
parameterized by arc length. Then the following equations hold:

σ′
t = κσn − g(t, φht) (3.23)

σ′
n = −κσt + (τ − 1)σb − g(n, φht) (3.24)

σ′
b = −(τ − 1)σn − g(b, φht), (3.25)

where σ(s) = σt(s) = η(t) = g(t, ξ) , σn(s) = η(n) = g(n, ξ) and σb(s) = η(b) = g(b, ξ) .

Proof. It is known that
∇Xξ = −φ(X) − φh(X) (3.26)

in a contact metric manifold [2]. From (3.26), it is easily seen that

σ′
t = g(∇tt, ξ) + g(t,∇tξ) = κn − g(t, φht).

The proofs of the equation (3.24) and (3.25) are similar. So our proposition is proved. �

4. A curve theory in 3-dimensional sasakian manifold

Theorem 4.1 Let γ be a regular curve in a 3-dimensional Sasakian manifold M3 = (M, φ, ξ, η, g) parametrized
by arc length. Then the equations below hold

σ′
t = κσn (4.27)

σ′
n = −κσt + (τ − 1)σb (4.28)

σ′
b = −(τ − 1)σn. (4.29)

Proof. In a 3-dimensional Sasakian manifold, it is known that h = 1
2£ξφ = 0 [1]. Considering equations

(3.23), (3.24) and (3.25), we easily obtain equations (4.27), (4.28) and ( 4.29). �

Remark 4.1 Let M3 = (M, φ, ξ, η, g) be a 3-dimensional Sasakian manifold and γ be a regular Legendre

curve in this manifold parameterized by arc length. In this case, Baikousiss and Blair [1] found that t = γ′(s) ,

n = ±φt , and k2 = 1 . If n = φt , then using equations (2.7), (2.10) and (3.19), we have b = ξ and τ = 1 .

If n = −φt , then by similar method we have b = −ξ and τ = 1(ε = 1) . They assumed that the torsion k2 of
the curve is a positive quantity, while in the current notation we assume that τ can be positive or negative. In
[1], Baikousiss and Blair assumed that the torsion (k2 ) of the curve is equal to 1 , while in the current notation

torsion (τ ) is equal to 1 (ε = 1) or −1 (ε = −1) . Because of the notation in [1], Proposition 1.1 and Theorem

1.2 seems to be incomplete and Theorem 1.1 appears to be (incorrectly) too much generalized (in [1], they used

absolute value of τ ). In order to solve these problems, we present another proof of Proposition 1.1.
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Proof. If the curve is a Legendre curve, then we have σ = σt = 0. Using equations (4.27), (4.28) and (4.29),
we have

σn = 0 and (τ − 1)σb = 0

and using equation (3.18), we obtain σb = ±1 �= 0. Then we have τ = 1 (ε = 1). �

We give an example for Proposition 1.1.

Example 4.1 In R3(−3) Sasakian space, from [1], it is known that

∇eφe = ξ = −∇φee,∇eξ = −φe = ∇ξe

∇φeξ = e = ∇ξφe,∇ee = ∇φeφe = ∇ξξ = 0.

Then we have

∇XY = X [Y1] e + X [Y2]φe + X [Y3] ξ − η(X)φY − η(Y )φX − g(X, φY )ξ,

where X = X1e+X2φe+X3ξ, Y = Y1e+Y2φe+Y3ξ . For all s, let κ > 0 . Suppose that γ(s) = (x(s), y(s), z(s))
is a regular curve with respect to the standard basis defined by

x′(s) = −2 sin
∫

κds

y′(s) = 2 cos
∫

κds

z′(s) = −4
(∫ (

cos
∫

κds

)
ds

)
sin

∫
κds.

Since t = γ′(s) , we have

t =
(

cos
∫

κds

)
e −

(
sin

∫
κds

)
φe,

which gives us η(t) = 0 (i.e. the curve is a Legendre curve). If we calculate t′ = ∇tt and t′′ = ∇tt
′ , then we

have

t′ = −
(

κ sin
∫

κds

)
e −

(
κ cos

∫
κds

)
φe = −κφt.

So we obtain

t =
(

cos
∫

κds

)
e −

(
sin

∫
κds

)
φe

n = −
(

sin
∫

κds

)
e −

(
cos

∫
κds

)
φe.

The result appears to be n = −φt , b = t ∧ n = −ξ and τ = g(∇tn, b) = 1 .

The following example is a counterexample of Theorem 1.1 and necessary condition for Theorem 1.3.
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Example 4.2 In R3(−3) Sasakian space, we define γ(s) = (x(s), y(s), z(s)) by

x
′
(s) = −2

√
1 − σ2 sin θ

y
′
(s) = 2

√
1 − σ2 cos θ

z
′
(s) = 2σ + yx

′
(s),

where

θ
′

= −2σ +
2

1 + σ

σ(s) =
1
2
(1 − cos

(
2
√

2s
)
),

Then the tangent vector becomes

t = (
√

1 − σ2cosθ)e + (−
√

1 − σ2sinθ)φ(e) + σξ

and

t
′

= (
−σσ

′

√
1 − σ2

cosθ − (θ
′
+ 2σ)

√
1 − σ2sinθ)e

+(
σσ

′

√
1 − σ2

sinθ − (θ
′
+ 2σ)

√
1 − σ2cosθ)φ(e) + σ

′
ξ.

Since κ2 =‖ ∇tt ‖2 , we have

κ2 = (
−σσ

′

√
1 − σ2

)2 + ((θ
′
+ 2σ)

√
1 − σ2)2 + (σ

′
)2 = 4.

Thus we have κ = 2 and n = 1
2∇tt . From equation (2.5) and (3.19), we get

σb = −
√

1 − σ2 − (
σ

2

′

)2.

From equations (4.27) and (4.28), we find

(
σ

′

2
)
′
+ 2σ = −(τ − 1)

√
1 − σ2 − (

σ

2

′

)2.

Evaluating (
σ

′

2
)
′
+ 2σ and 1 − σ2 − (

σ

2

′

)2 , we have

(
σ

′

2
)
′
+ 2σ = 1 − sinα

and

1 − σ2 − (
σ

2

′

)2 =
(1 − sinα)2

4
,
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where α = 2
√

2s − π

2
. Thus we obtain

1 − sinα = −(τ − 1)
2

(1 − sinα)

and τ = −1 . We see that absolute value of the torsion is equal to 1 and at one point σ = σ′ = 0 . However,
although the curve γ in a Sasakian space, it is not a Legendre curve. Furthermore, we see that ratio of τ − 1
and κ is equal to −1 but the curve is not a slant curve.

For the curves in a Sasakian 3-manifold with τ = −1, we state the following theorem.

Theorem 4.2 Let γ be a regular curve in 3-dimensional Sasakian manifold parameterized by arc length with
τ−1

κ = c and at one point σ = σ′ = 0 . Then the torsion of the curve is equal to −1 if and only if

σ(s) = ±
(

c

1 + c2
− c

1 + c2
cos

(
2
√

1 + c2

c
s

))
, (4.30)

where ∓cσ + 1 ≥ 0.

Proof. From equation (4.27) and (4.28), we have

σn(s) =
σ′(s)

κ
and

(
σ′(s)

κ

)′
+ κσ(s) = (τ − 1)σb.

Since σ2 + σ2
n + σ2

b = 1, we obtain

σb(s) = ±

√
1 − σ2(s) −

(
σ′(s)

κ

)2

.

Thus we have (
σ′(s)

κ

)′
+ κσ(s) = ±(τ − 1)

√
1 − σ2(s) −

(
σ′(s)

κ

)2

. (4.31)

If we assume that r(s) =
s∫
0

κdh , from equation (4.31) we have

σ̈(r) + σ(r) = ±(τ − 1)
κ

√
1 − σ2(r) − (σ̇(r))2, (4.32)

where σ̇ =
dσ

dr
. Setting λ = 1 − σ2(s) − (σ̇)2 , the equation (4.32) becomes

λ̇√
λ

= ∓τ − 1
κ

σ̇.

If we integrate the equation this equation, we have

√
1 − σ2 − (σ̇)2 = ∓

t∫
0

τ − 1
κ

dσ + C1, (4.33)
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where C1 is a constant. Since r(0) = 0, we see that σ(0) = σ̇(0) = 0. If at one point σ = σ̇ = 0, then we have
C1 = 1 and √

1 − σ2 − (σ̇)2 = ∓
t∫

0

τ − 1
κ

dσ + 1. (4.34)

Considering the fact τ−1
κ

= c and from equation (4.33), we get

√
1 − σ2 − (σ̇)2 = ∓cσ + 1,

where ∓cσ + 1 ≥ 0. From the above equation, we have

(σ̇)2 + (1 + c2)σ2 ∓ 2cσ = 0.

Integration of this equation gives

σ(t) = ±
(

c

1 + c2
− c

1 + c2
sin

(√
1 + c2t + C2

))

and

σ(t) = ±
(

c

1 + c2
+

c

1 + c2
sin

(√
1 + c2t + C3

))
,

or it can be written in terms of s as follows

σ(s) = ±
(

c
1+c2 − c

1+c2 sin
(√

1 + c2
s∫
0

κdh + C2

))

σ(s) = ±
(

c
1+c2 + c

1+c2 sin
(√

1 + c2
s∫
0

κdh + C3

))
.

(4.35)

Since σ(0) = σ′(0) = 0, we have C2 = π
2

and C3 = −π
2

. If σb ≥ 0, then we have

σ(s) =

⎛
⎝ c

1 + c2
− c

1 + c2
cos

⎛
⎝√

1 + c2

s∫
0

κdh

⎞
⎠

⎞
⎠ . (4.36)

If σb ≤ 0, then we have

σ(s) = −

⎛
⎝ c

1 + c2
− c

1 + c2
cos

⎛
⎝√

1 + c2

s∫
0

κdh

⎞
⎠

⎞
⎠ .

If torsion of the curve is equal to −1, we have κ = −2
c and

s∫
0

κdh = −2
c s . Then we obtain the equation

(4.30).

Conversely, suppose that we have one of the two condition as

σb =

√
1 − σ2(s) −

(
σ′(s)

κ

)2

≥ 0
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and

σ(s) =

(
c

1 + c2
− c

1 + c2
cos

(
2
√

1 + c2

c
s

))
, (4.37)

where −cσ + 1 ≥ 0. So from equation (4.36) and (4.37), we obtain

√
1 + c2

s∫
0

κdh = (2k + 1)π − 2
√

1 + c2

c
s,

which gives us κ = −2
c and τ = −1. �

A new proof of Theorem 1.1:

If τ = 1, from equation (4.33) we have
σ̈ + σ = 0.

Integrating the above equation, we have

σ(s) = A cos(

s∫
a

κdh) + B sin(

s∫
a

κdh).

If at one point σ(0) = σ′(0) = 0, then we find

A cos(

0∫
a

κdh) + B sin(

0∫
a

κdh) = 0,

−A sin(

0∫
a

κdh) + B cos(

0∫
a

κdh) = 0.

So we have A = B = 0 and σ = 0. Thus the curve is a Legendre curve.

A new proof of Theorem 1.2:

Let γ be a Legendre curve in a 3-dimensional contact metric manifold parametrized by arc length.
Since h(ξ) = 0, Then λ1 = 0 is eigenvalue and ξ is an eigenvector. Since h is a self-adjoint operator, its

eigenvalues are real and the eigenvectors (corresponding to the nonzero eigenvalues) are perpendicular to ξ [2].
Thus an eigencurve of h in a contact metric manifold is a Legendre curve. If γ is an eigencurve of h , we have
σt(s) = σ′

t(s) = 0, where h(t) = λt . From (3.23) , (3.24) and (3.25), we see that

σn(s) = 0 and (τ − 1 − λ)σb = 0.

If we assume that τ = 1, we have
−λσb = 0.

317



CAMCI

By equation (3.21), we have σb = ±1 �= 0. From the above equation since σb is not equal to zero, λ must be

zero. It is well known that if λ is eigenvalue of h , then −λ is eigenvalue of h [2]. Thus we have h = 0. Using

equation (1.4) and (1.3), as a result, we see that the manifold is a Sasakian manifold.

Acknowledgements

The author would like to thank referee for useful suggestions and valuable comments.

References

[1] Baikoussis, C. and Blair, D. E.: On Legendre curves in contact 3-manifolds, Geom. Dedicata, 49, 135-142, (1994).

[2] Blair, D. E.: Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer, Berlin, Hiedelberg,

New York, (1976).

[3] Gluck, H.: Higher curvatures of curves in Euclidean space, Am. Math. Month.,73, 699-704, (1966).

[4] Jong Taek Cho, Jun-Ichi Inoguchi and Ji-Eun Lee: On slant curves in Sasakian 3-manifolds, Bull. Austral. Math.

soc., 74, 359-367, (2006).

[5] Olszak, Z.: Normal almost contact metric manifolds of dimension three, Ann. Pol. Math. 47, 41-50, (1986).

[6] Tanno, S.: Variational problems on contact metric manifolds, Trans. Amer. Math. Soc. 314, 349-379, (1989).
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