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Geodesicity and isoclinity properties for the tangent bundle of the
Heisenberg manifold with Sasaki metric

Simona-Luiza Druţă, Paola Piu

Abstract

We prove that the horizontal and vertical distributions of the tangent bundle with the Sasaki metric are

isocline, the distributions given by the kernels of the horizontal and vertical lifts of the contact form ω on the

Heisenberg manifold (H3, g) to (TH3, g
S) are not totally geodesic, and the distributions F H = L(EH

1 , EH
2 )

and F V = L(EV
1 , EV

2 ) are totally geodesic, but they are not isocline. We obtain that the horizontal and

natural lifts of the curves from the Heisenberg manifold (H3, g) , are geodesics on the tangent bundle endowed

with the Sasaki metric (TH3, g
s) , if and only if the curves considered on the base manifold are geodesics.

Then, we get two particular examples of geodesics on (TH3, g
s) , which are not horizontal or natural lifts of

geodesics from the base manifold (H3, g) .
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1. Introduction

The tangent bundle TM of a Riemannian manifold splits into the vertical and horizontal distributions,
defined by the Levi Civita connection of the metric g from the base manifold (see [33]).

In the study of the differential geometry of the tangent bundle of a Riemannian manifold, one uses several
(pseudo) Riemannian metrics, induced by the Riemannian metric from the base manifold, and constructed on
the horizontal and vertical distributions.

Maybe the best known Riemannian metric on the tangent bundle is that introduced by Sasaki in 1958,
in the paper [30]. The results from [13]–[15], concerning the natural lifts, allowed the extension of the Sasaki

metric, to the metrics of natural diagonal lift type (see [24]) and general natural lifted metrics (see [23], [31]),

leading to interesting geometric structures studied in the last years years (see [1], [19] – [25]), and to interesting

relations with some problems in Lagrangian and Hamiltonian mechanics (see [2], [17], [18]).

The aim of the first section from this paper is to find some geometric properties of the horizontal and
vertical distributions of the tangent bundle TM of a Riemannian manifold (M, g), endowed with the Sasaki

metric gs . More precisely, we shall study the property of the the two distributions of being isocline (and

implicitly totally geodesic), with respect to the Sasaki metric.

Work partially supported by GNSAGA(Italy); the first author was supported by the Program POSDRU/89/1.5/S/49944, ”Al.
I. Cuza” University of Iaşi, (Romania).
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The notion of isocline distribution was introduced by Lutz, which conducted in [16] a metric study of
the contact structures, measuring, with the help of a metric g , the evolution of a contact structure F along
the geodesics of g . One of the metric characters of a totally geodesic field F , considered by Lutz in [16], is the
evolution of its angle along an arbitrary geodesic γ . When the angle between a totally geodesic distribution F

and γ̇ is constant along the geodesic γ , the totally geodesic distribution is called isocline.

The second author studied in her Ph.D. thesis [26], the property of being isocline for the contact structures

on hyper-surfaces of R
2n+2 . In the third section of the present paper we shall prove that the horizontal and

the vertical distribution of the tangent bundle of a Riemannian manifold are always isocline with respect to
the Sasaki metric gs , and we shall construct some examples of distributions on the tangent bundle of the
Heisenberg manifold, which have or have not the properties of being totally geodesic or isocline. To this aim,
we shall consider the horizontal and vertical lifts of the contact form ω from the Heisenberg manifold (H3, g)

to the tangent bundle (TH3, g
s), and we shall prove that the distributions given by F = Ker(ωH) (or by

F = Ker(ωV )) are not totally geodesic, but the distributions F H = L(EH
1 , EH

2 ) and F V = L(EV
1 , EV

2 ) are
totally geodesic and not isocline.

An important geometric problem is to find the geodesics on the smooth manifolds with respect to the
Riemannian metrics (see [4]–[10], [22], [27]–[29], [33]). In [33], Yano and Ishihara proved that the curves on the
tangent bundles of Riemannian manifolds are geodesics with respect to certain lifts of the metric from the base
manifold, if and only if the curves are obtained as certain types of lifts of the geodesics from the base manifold.
In two very recent papers, Salimov and his collaborators studied the analogous problem for the geodesics on
the tangent bundles endowed with Cheeger-Gromoll metrics (see [29]), and on the tensor bundles with Sasakian

metrics (see [28]) .

In the last section of the present paper, we are interested in finding some concrete examples of geodesics
on the tangent bundle (TH3, g

s), of the Heisenberg manifold (H3, g) with respect to the Sasaki metric gs .

We prove that if C is a curve in the Heisenberg manifold (H3, g), then its horizontal and natural lifts,

C̃ and Ĉ , passing through the origin, such that ˙̃
C(0) = ˙̂

C(0) = (u, v, w, 0, 0, 0), are geodesics on (TH3, g
s), if

and only if the curve considered on the base manifold is a geodesic.

Working in a more general context, we look for some classes of geodesics on (TH3, g
s), which are not

obtained as horizontal or natural lifts of the geodesics from the base manifold.

2. Preliminary results.

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tangent bundle by τ :
TM −→ M . Just to fix the notation, recall some basic things about TM . It has a structure of 2n-dimensional
smooth manifold, induced from the smooth manifold structure of M . This structure is obtained by using local

charts on TM induced from usual local charts on M . If (U, ϕ) = (U, x1, . . . , xn) is a local chart on M , then

the corresponding induced local chart on TM is (τ−1(U), Φ) = (τ−1(U), x1, . . . , xn, y1, . . . , yn) (see [33] for

further details).

Denote by ∇ the Levi Civita connection of the Riemannian metric g on M . Then we have the direct
sum decomposition

TTM = V TM ⊕ HTM

332
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of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗ and the horizontal distribution
HTM defined by ∇ .

The set set of vector fields
{

∂
∂yi ,

δ
δxj

}
i,j=1,n

defines a local frame on TM , adapted to the direct sum

decomposition (2). Notice that

∂

∂yi
=

(
∂

∂xi

)V

,
δ

δxj
=

(
∂

∂xj

)H

=
∂

∂xj
− Γh

j

∂

∂yh
, Γh

j = ykΓh
kj,

where XV ∈ V TM and XH ∈ HTM denote the vertical and horizontal lift of the vector field X on M ,

respectively, and Γh
kj(x) are the Christoffel symbols of g .

The Sasaki metric gs on the tangent bundle TM is defined by the relations{
gS(XH , Y H) = gS(XV , Y V ) = g(X, Y ) ◦ τ

gS(XH , Y V ) = gS(XV , Y H) = 0
∀X, Y ∈ T 1

0 (M).

If the metric g from the base manifold M has the components gij in a coordinate neighborhood, then

the Sasaki metric gs on the tangent bundle may be defined as the Riemannian metric which has the expression

gs = gijdxidxj + gijDyiDyj , ∀i, j = 1, n

where
{
Dyi, dxj

}
i,j=1,n

is the dual frame of
{

∂
∂yi ,

δ
δxj

}
i,j=1,n

. The covariant derivative of yi with respect to

the Levi-Civita connection of the metric g is given by

Dyi = dyi + Γi
jdxj, Γi

j = Γi
hjy

h.

In particular, if the base manifold is the Heisenberg manifold (H3, g), where

g = (dx1)2 + (dx2)2 + (dx3 + x2dx1 − x1dx2)2, (1)

then the Sasaki metric on TH3 is

gs = (dx1)2 + (dx2)2 + (dx3 + x2dx1 − x1dx2)2 (2)

+ (Dy1)2 + (Dy2)2 + (Dy3 + x2Dy1 − x1Dy2)2.

3. Totally geodesic and isocline distributions on the tangent bundle of a Riemannian manifold

It is well known that the horizontal distribution HTM of the tangent bundle of an n-dimensional
Riemannian manifold (M, g), is integrable if and only if the manifold M is flat. In this section we shall prove
that the horizontal and the vertical distributions of TM are always isocline with respect to the Sasaki metric
gs .

A regular distribution F defined on a connected Riemannian manifold (M, g) is called totally geodesic
if every geodesic tangent to F in one point is tangent to the distribution in all the points.

A distribution F is totally geodesic ([32]) if and only if the distribution D normal to F is Riemannian

(i.e. if ∇XY + ∇Y X ∈ C∞(F ) for every X, Y ∈ C∞(F )).
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A totally geodesic distribution forms a constant angle with the integral geodesic curve. More over, if the
field of planes makes a constant angle with the tangent vector field γ̇ along an arbitrary geodesic curve γ , we
say that the structure is isocline.

Let F be a totally geodesic distribution and N a unitary vector field, normal to F .

Definition 3.1 The totally geodesic contact structure F is called isocline if for every geodesic curve parame-
terized by the arc length, the angle between F and the tangent vector field γ̇(s) is constant along the geodesic.

Proposition 3.2 [16] If ∇ is the Levi-Civita connection associated to the metric g on M , a totally geodesic
distribution F is isocline if and only if for every vector field N normal to F , the vector field ∇NN is normal
to F .

If {Xi, Nα} , i, = 1, p, α = 1, q, p + q = n, is an orthonormal frame of (M, g) adapted to the distribution F

(Xi ∈ C∞(F ) and Nα ∈ C∞(F⊥)) then F is isocline if and only if

g
(
∇XiXj + ∇Xj Xi, Nα

)
= 0 geodesicity (3)

g
(
∇NαNβ + ∇Nβ Nα, Xi

)
= 0 (4)

where i, j = 1, p; α, β = 1, q .

Proposition 3.3 The distributions HTM and V TM are isocline.

Proof. Let us consider the connection ∇̄ of (TM, gs) and the Levi-Civita connection ∇ of (M, g), which

are related by the formulas (see [3])

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∇̄XH Y H)Z = (∇XY )H

Z − 1
2(RXY Z)V

(∇̄XH Y V )Z = (∇XY )V
Z − 1

2 (RY ZX)H

(∇̄XV Y H)Z = −1
2
(RXY Z)V

(∇̄XV Y V ) = 0,

where X, Y are tangent to M .

Now, we may easily verify the conditions (3) and (4) for HTM and V TM to be totally geodesic and
isocline:

gs(∇̄XH Y H + ∇̄Y H XH , XV ) = 0

gs(∇̄XV Y V + ∇̄Y V XV , Y H) = 0.

�

In the sequel, we shall focus our attention on the geometry of the Heisenberg manifold, usually known as
Heisenberg group H3 . A first remark is that its contact distribution furnishes an example of totally geodesic
and isocline distribution (see [12], [16]).

We are interested in finding examples of distributions on the tangent bundle of the Heisenberg manifold,
TH3 , endowed with the Sasaki metric expressed by (2), which are isocline, or which are only totally geodesic,
without being isocline.
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The metric g on H3 , given by (1), is invariant with respect to the left translations and with respect to
the rotations around the z axis. We shall use the invariant orthonormal coframe

θ1 = dx1, θ2 = dx2, θ3 = dx3 + x2dx1 − x1dx2

and the dual basis

E1 =
∂

∂x1
− x2 ∂

∂x3
, E2 =

∂

∂x2
+ x1 ∂

∂x3
, E3 =

∂

∂x3
.

The Levi-Civita connection of the metric g is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇E1E1 = 0, ∇E1E2 = E3, ∇E1E3 = −E2

∇E2E1 = −E3, ∇E2E2 = 0, ∇E2E3 = E1

∇E3E1 = −E2, ∇E3E2 = E1, ∇E3E3 = 0.

The non vanishing components of the curvature tensor field

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

and of the Riemann-Christoffel curvature

R(X, Y, Z, W ) = g(R(X, Y )W, Z)

are, respectively, ⎧⎨⎩
R2

112 = 3, R3
113 = −1, R1

212 = −3

R1
313 = 1, R3

223 = −1, R2
323 = 1,

and
R1212 = −3, R1313 = R2323 = 1,

where we used the notations

R(Ea, Eb)Ec = Ri
cabEi, R(Ea, Eb, Ec, Ed) = Rabcd.

We may ask what happens with the distributions determined by the kernels of the horizontal and vertical

lift of the contact form ω = dx3 + x2dx1 − x1dx2 . In this sense, we may prove the following proposition.

Proposition 3.4 If ωH (ωV ) is the horizontal (vertical) lift of the contact form ω from the Heisenberg manifold

H3 , then the distribution F of codimension 1 , defined by F = Ker(ωH) (F = Ker(ωV )) is not totally geodesic.

Proof. If the distribution F is given by Ker(ωH), then one can choose a basis given by the vector fields

{EH
1 , EH

2 , EV
1 , EV

2 , EV
3 } , and we may easily verify that

gs
(p,y)

(
∇̃EH

1
EV

1 + ∇̃EV
1

EH
1 , EH

3

)
= −1

2
gs
(p,y)

(
(R(E1, y)E1)H , EH

3

)
= −1

2
gτ(y)(R(E1, y)E1, E3) �= 0,
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where ∇̃ is the Levi-Civita connection of the Sasaki metric on TH3 , and y represents a tangent vector from
TH3 .

Analogously, if the distribution is defined by F = Ker(ωV ), then a basis for F is given by the vector

fields {EH
1 , EH

2 , EH
3 , EV

1 , EV
2 } , and it may be verified that

gs
(p,y)

(
∇̃EH

1
EV

2 + ∇̃EV
2

EH
1 , EV

3

)
= gs

(p,y)

(
(∇E1E2)V , EV

3

)
−

−1
2
gs
(p,y)

(
(R(E2, y)E1)H − (R(E2, E1)y)V , EV

3

)
= gτ(y)(∇E1E2, E3) = 1 �= 0.

Thus the proposition is proved. �

Now we give an example of totally geodesic distributions on TH3 , which are not isocline.

Proposition 3.5 The distributions F H = L(EH
1 , EH

2 ) and F V = L(EV
1 , EV

2 ) are totally geodesic and they are
not isocline.
Proof. Since the Levi-Civita connection of the Sasaki metric gs from the tangent bundle of a Riemannian
manifold (M, g) has the expressions (5), and the Levi-Civita connection from (H3, g) satisfies the relation (3),

we may easily prove that the Levi-Civita connection ∇̃ from TH3 verify the relations

∇̃EH
1

EH
2 + ∇̃EH

2
EH

1 = 0

∇̃EV
1

EV
2 + ∇̃EV

2
EV

1 = 0

and thus both distributions F H , F V are totally geodesic.

We may easily prove that ∇̃ fulfills also the relations

gs
(p,y)

(
∇̃EH

3
EV

1 + ∇̃EV
1

EH
3 , EH

1

)
= −1

2
gs
(p,y)

((
R(E1, y)E3

)H
, EH

1

)
�= 0

gs
(p,y)

(
∇̃EV

3
EH

1 + ∇̃EH
1

EV
3 , EV

1

)
= −1

2
gs
(p,y)

((
R(E3, E1)y

)V
, EV

1

)
�= 0

which prove that the distributions F H and F V are not isocline. �

4. Geodesics in the tangent bundle (TH3, gs) .

Let M be an n-dimensional Riemannian manifold and C : I → M a curve parametrized on it, expressed
locally by

C(t) = {x1(t), · · · , xn(t)},

and let X be a vector field along a curve C . Then, in the tangent bundle TM , a curve C̃ may be defined by

C̃(t) = {x1(t), · · · , xn(t), X1(t), · · · , Xn(t)}.
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where Xj(t) denotes the components of X in a natural basis. The curve C̃ is called horizontal lift of the curve

C in M , if X is parallel along C . When X is the vector field dC
dt (tangent to C ), the curve C̃ in the tangent

bundle is called the natural lift of C .

Let us consider a curve C in H3 expressed locally by xh = xh(t) and Y = yj (t) ∂
∂xj a vector field along

C . Then, in the tangent bundle TH3 , we define a curve C̃ by

xh = xh(t), yh = yh(t), h = 1, 2, 3.

A curve γ(t) = (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) on (TH3, g
s) is a geodesic if and only if

∇̃γ̇ γ̇ = 0,

where ∇̃ is the Levi-Civita connection of the Sasaki metric on TH3, and

γ̇ =
3∑

i=1

dxi

dt

δ

δxi
+

Dyi

dt

∂

∂yi
.

Combining the relations above, taking into account the expressions of Levi-Civita connection for the
Sasaki metric, and then identifying the horizontal and vertical components, we obtain that γ is a geodesic on
(TH3, g

s) if and only if

⎧⎪⎨⎪⎩
D2xh

dt2 + Rh
kjiy

k Dyj

dt
dxi

dt = 0

D2yh

dt2 = 0,

k, i, j, h = 1, 2, 3

where Rh
kji is the curvature of the Heisenberg manifold. We have denoted

Dyi

dt
=

dyi

dt
+ Γi

kjy
k dxj

dt
, i, j, k = 1, 2, 3.

The Lagrangian of the Sasaki metric gs given by (2) has the expression

L =
(dx1

dt

)2

+
(dx2

dt

)2

+
(dx3

dt
+ x2 dx1

dt
− x1 dx2

dt

)2

+
(Dy1

dt

)2

+
(Dy2

dt

)2

+
(Dy3

dt
+ x2 Dy1

dt
− x1 Dy2

dt

)2

and the corresponding Euler-Lagrange equations

d

dt

( δL

δẋi

)
=

δL

δxi
,

d

dt

( ∂L

∂ỳi

)
=

∂L

∂yi

where we used the notations ẋi = dxi

dt
and ỳi = Dyi

dt
, are

d

dt

[dx1

dt
+ x2

(dx3

dt
+ x2 dx1

dt
− x1 dx2

dt

)]
= −dx2

dt

(dx3

dt
+ x2 dx1

dt
− x1 dx2

dt

)
(5)
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d

dt

[dx2

dt
− x1(

dx3

dt
+ x2 dx1

dt
− x1 dx2

dt

)]
=

dx1

dt

(dx3

dt
+ x2 dx1

dt
− x1 dx2

dt

)
(6)

d

dt

(dx3

dt
+ x2 dx1

dt
− x1 dx2

dt

)
= 0 (7)

d

dt

[Dy1

dt
+ x2

(Dy3

dt
+ x2 Dy1

dt
− x1 Dy2

dt

)]
= 0 (8)

d

dt

[Dy2

dt
− x1

(Dy3

dt
+ x2 Dy1

dt
− x1 Dy2

dt

)]
= 0 (9)

d

dt

(Dy3

dt
+ x2 Dy1

dt
− x1 Dy2

dt

)
= 0. (10)

For a geodesic γ : I → TH3, γ(t) = (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) which at the instant zero passes

through the origin, with the velocity γ̇(0) = (u, v, w, l, m, n), the Euler-Lagrange equations become

dx3

dt
+ x2 dx1

dt
− x1 dx2

dt
= w (11)

d

dt

(dx1

dt
+ x2w

)
= −dx2

dt
w (12)

d

dt

(dx2

dt
− x1w

)
=

dx1

dt
w (13)

Dy3

dt
+ x2 Dy1

dt
− x1 Dy2

dt
= n (14)

Dy1

dt
+ x2n = l (15)

Dy2

dt
− x1n = m. (16)

Remark 4.1 The first three Euler-Lagrange equations above are satisfied if and only if the curve (x1(t), x2(t), x3(t))

is a geodesic on the base (H3, g) , which at the moment zero passes through the point (0, 0, 0) with the velocity

(u, v, w) .

Taking into account that γ̇(0) = (u, v, w, l, m, n), from the equation (13) we obtain that

dx2

dt
= 2x1w + v,

which substituted into (12) yields the equation

d2x1

dt2
+ 4x1w2 = 0,

with the solution

x1(t) =
v

2w
cos(2wt) +

u

2w
sin(2wt) − v

2w
. (17)
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Analogously, from (12) and (13) we obtain

x2(t) = − u

2w
cos(2wt) +

v

2w
sin(2wt) +

v

2w
. (18)

Replacing the solutions (17) and (18) into (11), we obtain that x3 has the expression

x3(t) = wt +
u2 + v2

2w
t − u2 + v2

2w
sin(2wt).

In the case when w = 0, the solutions of the system obtained from the equations (11), (12), and (13)
have simpler expressions

x1(t) = ut, x2(t) = vt, x3(t) = 0. (19)

We may state now the following result.

Theorem 4.2 The horizontal lift C̃ and the natural lift Ĉ of a curve C from the Heisenberg manifold H3

are geodesic in the tangent bundle endowed with the Sasaki metric (TH3, g
s) , if and only if the curve C is a

geodesic in (H3, g), and C̃ , Ĉ pass through the point (0, 0, 0, 0, 0, 0), such that ˙̃
C(0) = ˙̂

C(0) = (u, v, w, 0, 0, 0) .

Proof. If the curve C̃(t) = (C(t), Y (t)) is the horizontal lift to TH3 of the curve C(t) = (x1(t), x2(t), x3(t))
from H3 , then Y is a parallel vector field along C , i.e.

Dy1

dt
=

Dy2

dt
=

Dy3

dt
= 0,

and in this case the last three Euler-Lagrange equations, (14), (15), and (16) reduce to l = m = n = 0.

If the curve Ĉ(t) = (C(t), Y (t)) on TH3 is the natural lift of the curve C(t) = (x1(t), x2(t), x3(t)) from
H3 , then Y is the tangent vector field to C , i.e.

yh =
dxh

dt
, h = 1, 2, 3

from which we obtain that the covariant derivative of Y has the expression

Dyh

dt
=

d2xh

dt2
+ Γh

ij

dxi

dt

dxj

dt
, ∀i, j, h = 1, 3. (20)

Taking into account Remark 4.1, it follows that the curve C(t) = (x1(t), x2(t), x3(t)) is a geodesic on

the Heisenberg manifold (H3, g), and then Dyh

dt expressed by (20) vanishes, and the equations (14), (15), (16)

reduce again to l = m = n = 0. Thus the theorem is proved. �

In a more general context, when we search some examples of geodesics on (TH3, g
s), which are not

horizontal or natural lifts of the curves from the base manifold (H3, g), we obtain, by taking into account the
expressions of the Christoffel symbols constructed with the Heisenberg metric, that the last three Euler-Lagrange
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equations, (14), (15), (16) get the forms

dy1

dt
+ x2y2 dx1

dt
+ (x2y1 − 2x1y2 + y3)

dx2

dt
+ y2 dx3

dt
= l − vnt

dy2

dt
+ (−2x2y1 + x1y2 − y3)

dx1

dt
+ x1y1 dx2

dt
− y1 dx3

dt
= m + unt

dy3

dt
+ [−2x1x2y1 + (1 + (x1)2 − (x2)2)y2 − x1y3]

dx1

dt

+ [(1 + (x1)2 − (x2)2)y1 + 2x1x2y2 − x2y3]
dx2

dt

− (x1y1 + x2y2)
dx3

dt
+ x2(l − x2n) − x1(m + x1n) = n.

In the case when the curve on the base manifold is a geodesic given by (19), then the above equations
become

dy1

dt
+ tvy2u + (tvy1 − 2tuy2 + y3)v = l − vnt

dy2

dt
+ (−2tvy1 + tuy2 − y3)u + tuy1v = m + unt

dy3

dt
+ [−2t2uvy1 + (1 + t2u2 − t2v2)y2 − tuy3 ]u

+ [(1 + t2u2 − t2v2)y1 + 2t2uvy2 − tvy3 ]v

+ tv(l − vnt) − tu(m + unt) = n,

i.e. we have the system

(∗)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dy1
dt + tv2y1 − tuvy2 + vy3 = l − vnt

dy2
dt − tuvy1 + tu2y2 − uy3 = m + unt

dy3
dt + v(1 − t2u2 − t2v2)y1 + u(1 + t2u2 + t2v2)y2 − t(u2 + v2)y3+

+tv(l − vnt) − tu(m + unt) = n.

Remark 4.3 If u = v = 0, we obtain the following particular solution of the above system:

y1 = lt, y2 = mt, y3 = nt.

Taking this remark into account, we may prove the next theorem.

Theorem 4.4 If the curve from the Heisenberg manifold reduces to the origin point (0, 0, 0), then the geodesics

from the tangent bundle with the Sasaki metric (TH3, g
s) are the curves γ passing through the origin (0, 0, 0, 0, 0, 0)

with velocity γ̇(0) = (0, 0, 0, l, m, n) , namely γ(t) = (0, 0, 0, lt, mt, nt).

Yanno and Ishihara proved that if a geodesic lies in a fiber of the tangent bundle (TM, gs) of an n-

dimensional Riemannian manifold (M, g), given by xh = ch, ∀h = 1, n , where ch is a real constant, then the

geodesic is expressed by linear equations xh = ch, yh = aht + bh, with respect to the induced coordinates
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{xh, yh}h=1,n, where ah, bh, ch are constants. In the case of the tangent bundle (TH3, g
s) this result reduces

to Theorem 4.4, since when xi are constants, the expressions (4) of Dyi

dt become Dyi

dt = dyi

dt , i = 1, 3, and the

Euler-Lagrange equations (14) - (16) with the initial conditions dy1

dt (0) = l, dy2

dt (0) = m, dy3

dt (0) = n lead to

xi = 0, i = 1, 3.

Remark 4.5 If m = n = 0 , a particular solution of the system (∗) is of the form

y1 = lt, y2 = 0, y3 = −lvt2 .

Taking into account Remark 4.5 and the solution (19) of the system obtained from the equations (5), (6),

(7), we may formulate our final theorem.

Theorem 4.6 One of the geodesics from the tangent bundle with the Sasaki metric (TH3, g
s) , is a curve

γ̃ : I → TH3, which at the moment zero passes through the point γ̃(0) = (0, 0, 0, 0, 0, 0), with the property
˙̃γ(0) = (u, v, 0, l, 0, 0) , namely the curve γ̃(t) = (ut, vt, 0, lt, 0,−lvt2) .

Acknowledgements. The authors would like to express their gratitude to professors R. Caddeo, V.
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