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Approximate groups III: the unitary case

Emmanuel Breuillard, Ben Green

Abstract

By adapting the classical proof of Jordan’s theorem on finite subgroups of linear groups, we show that

every approximate subgroup of the unitary group Un(� ) is almost abelian.
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1. Introduction

This paper is the third in a series concerning approximate groups, the first two papers in the series being
[5, 6]. Let us begin by repeating the definition of “K -approximate group” due to T. Tao (see [30]).

Definition 1.1 (Approximate groups) Let G be some group and let K � 1 . A finite subset A ⊆ G is called a

K -approximate group1 if

(i) It is symmetric, i.e. if a ∈ A then a−1 ∈ A , and the identity lies in A ;

(ii) There is a symmetric subset X ⊆ G with |X| � K such that A2 ⊆ XA .

Here, as usual, A2 denotes the product set {a1a2|a1, a2 ∈ A} and XA denotes {xa|x ∈ X, a ∈ A} .
One of the main reasons for introducing approximate groups was to understand finite subsets A in a group

G satisfying a doubling or tripling condition, that is |A2| or |A3| is not much larger that |A| . To a large
extent, the classification of sets of small doubling reduces to the classification of approximate groups. For the
relation between the two concepts, we refer the reader to Tao’s original paper [30]. We have chosen to work with

approximate groups here, rather than directly with sets of small tripling (say), so as to be compatible with our
previous papers and other work of the authors and Tao. Approximate groups also have one or two advantages
over sets with small tripling — for example, they behave rather better under homomorphisms.

Working with approximate groups, it is convenient to introduce the following notion, defined by Tao in
[31].

Definition 1.2 (Control) Suppose that A and B are two subsets of a group G , and that K � 1 is a parameter.

We say that A is K -controlled by B , or that B K -controls A , if |B| � K|A| and there is some set X ⊆ G

with |X| � K and such that A ⊆ XB ∩ BX .
1We make here a slight abuse of terminology, because our definition is not intrinsic and makes use of the ambient group G , so

stricto sensu we define here approximate subgroups of G .
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Let n � 1 be an integer, and write Un(C) for the group of unitary matrices. The main result of this
note is the following.

Theorem 1.3 Suppose that A ⊆ Un(C) is a K -approximate group and that K � 2 . Then A is nCn3
KCn -

controlled by B , a KC -approximate subgroup of Un(C) , which consists of simultaneously diagonalisable matri-
ces.

Here C is an absolute constant which could be specified explicitly if desired. As a corollary of Theorem
1.3 we can deduce a more precise result along similar lines, albeit with somewhat worse bounds.

Corollary 1.4 Suppose that A ⊆ Un(C) is a K -approximate group, K � 2 . Then there is a connected abelian

subgroup S ⊆ Un(C) such that A lies in the normaliser N(S) , and such that the image of A under the quotient

homomorphism π : N(S) → N(S)/S has cardinality at most nCn4
KCn2

.

From basic results on approximate groups, derived from the fundamental work of Ruzsa and developed

in [17, 30], we can also describe the subsets A ⊂ Un(C) such that |A3| � K|A| . They satisfy exactly the same

conclusion as in the above corollary. The sets A with |A2| � K|A| , on the other hand, do not have such a nice

structure, although it is a direct consequence of the above that such sets are contained in at most nCn3
KCn

cosets of some connected abelian subgroup S ⊆ Un(C) (see the remark after the proof of Corollary 1.4).

In the case n = 2, Bourgain and Gamburd [2] proved a much stronger local version of Theorem 1.3 in

which they considered covering numbers N (A, δ) for every resolution δ > 0, instead of merely counting the

number of points in A as we do. However, their approach was based on the sum-product theorem (as used

for example in the work of Helfgott [17]) and does not seem to extend easily to the higher rank case. See

nevertheless the recent announcement [3].

From the qualitative point of view, a much more general result than Theorem 1.3 is contained in the

work of Hrushovski [19] and in later joint work of the authors2 and Tao [7, 8, 9]: in particular, the rough

structure of approximate subgroups of GLn(C) is now understood, with the bounds in [8] being polynomial
in K for fixed n just as in Theorem 1.3. We have decided however that it is nonetheless worth having the
present argument in the literature, since it is completely different to these other arguments and considerably
more elementary in that nothing is required by way of algebraic group theory, quantitative algebraic geometry
or model theory. Apropos the last point, our bounds are completely explicit, whereas those in [8] are not on

account of the use of ultrafilters there. As they stand, we believe that the methods of [8] would give a bound

of the form On(KCn2

) in Theorem 1.3, with the On(1) being ineffective. In principle3, all uses of ultrafilters
in our papers with Tao could be replaced by effective algebraic geometry arguments, thereby giving an explicit
dependence on n ; however it is extremely unlikely that in so doing one would beat the exponential dependence
in n that we have attained in Theorem 1.3. Moreover, the power of K appearing in Theorem 1.3 is merely
linear in n rather than exponential. We do not make any claim that this dependence is sharp — indeed we

believe it possible that a bound of the form On(KC) is the truth in Theorem 1.3, where C is independent of

2Added during revision: Pyber and Szabó have recently extended their approach in [25], which appeared simultaneously with
[7], to cover fields of characteristic zero as well as finite characteristic as in their original work.

3In the most recent version of their preprint [25], Pyber and Szabó record effective versions of all the algebro-geometric arguments
used in their work. It is not immediately clear to us exactly what explicit bound this could possibly give in our main theorem.
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n . The implied constant certainly cannot be independent of n and most grow faster than exponentially even
in the case K = 1. This can be seen by taking A ∼= Sym(n), the symmetric group on n letters.

The proof in this paper can be viewed as an approximate version of the standard proof of Jordan’s
theorem on finite subgroups of Un(C), which states that such subgroups G have an abelian subgroup H with

[G : H ] = On(1).

In addition to these remarks we note that Theorem 1.3 can be used as a substitute for the so-called
Solovay-Kitaev argument (see the appendix to [24]) which features in the variant of Kleiner’s proof of Gromov’s

theorem on groups of polynomial growth due to Shalom and Tao [27]. In fact, the arguments of our paper
offer a new elementary proof of the fact, traditionally derived from the Tits alternative, that finitely generated
subgroups of Un(C) with polynomial growth are virtually abelian. While the Tits alternative implies the

exponential growth of non-virtually abelian subgroup of Un(C), our arguments fall short of this. They do

however give a super-polynomial lower bound on the size of a word ball or radius r of the type exp(rα) for

some α = α(n) > 0. We will remark further on this connection in §5.

Notation. The letters c, C stand for absolute constants; different instances of the notation may refer to
different constants. All constants in this paper could be specified explicitly if desired.

2. On Jordan’s Theorem

In a sense, the main idea of our paper is to take a proof of Jordan’s theorem on finite subgroups of Un(C)

and then modify it so that it works in the context of approximate groups too (note that a subgroup is precisely

the same thing as a 1-approximate group).

Theorem 2.1 (Jordan [20]) Suppose that A is a finite subgroup of Un(C) . Then there is an abelian subgroup

A′ ⊆ A with [A : A′] � F (n) . We can take4 F (n) = nCn3
for some absolute constant C .

Jordan’s original proof was a very ingenious variation on the theme of the celebrated classification of
Plato’s solids, and was mainly algebraic. The proof we give here however is mainly geometric. It is a slight
variant, which we learned from the weblog of T. Tao [32], on the classical proof of Jordan’s theorem given for

instance in [12], itself based on arguments of Bieberbach and Frobenius (see [1, 13]). The argument relies on
the basic fact that the commutator of two elements close to the identity in a Lie group is itself much closer to
the identity. This idea has been used repeatedly ever since (it is nowadays also sometimes referred to as the

Zassenhaus-Kazhdan-Margulis trick, see [29, chap. 8]) and is also the main tool in the Solovay-Kitaev algorithm

[24] mentioned above.

We remark that Jordan’s theorem actually applies to finite subgroups of GLn(C), but the first step of
the proof is to apply Weyl’s unitary trick to reduce to the unitary case. No analogue of this trick appears to be
possible in the context of approximate groups.

Suppose then that A is a finite subgroup of Un(C). The key observation is the following very well-known

fact. The reader may also find a nice explanation of cognate ideas in the proof of [14, Lemma 4.7].

4That is to say, our proof gives a bound of this form. Completely optimal values of F (n) are known by more sophisticated
arguments, the latest of which, due to M. Collins [11], give the sharp bound F (n) � (n + 1)! for n large enough and make use
of the classification of finite simple groups. The slightly strange use of the letter A in this statement is so that it may easily be
compared with results in later sections.
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Lemma 2.2 (Element with large centraliser) Suppose that A ⊆ Un(C) is a finite group. Then at least one of
the following holds:

(i) There is a subgroup A′ � A consisting of scalar multiples of the identity with [A : A′] � nCn2
;

(ii) there is an element γ ∈ A , not a scalar multiple of the identity, whose centraliser CA(γ) := {x ∈ A :

xγ = γx} has cardinality at least n−Cn2 |A| .

Proof. Equip Matn(C) with the Hilbert-Schmidt norm: take some orthonormal basis e1, . . . , en for Cn

and define ‖M‖ := (
∑

i,j |mij|2)1/2 , where the mij are the matrix entries of M with respect to this basis.

It is well-known that this is an algebra norm, that is to say ‖M1M2‖ � ‖M1‖‖M2‖ , and we shall use this

fact several times. Every unitary matrix has norm
√

n , and the Hilbert-Schmidt norm is invariant under left
and right multiplication by unitary matrices. Let d be the distance induced by this norm, that is to say
d(x, y) := ‖x − y‖ .

We claim that A′ , the subset of A consisting of all elements with distance at most 1/4
√

n from the

identity, has cardinality at least n−Cn2 |A| . To see this, observe that a simple volume-packing argument implies

that Un(C) may be covered by nCn2
balls of the form {g ∈ Un(C) : d(g, g0) � 1/4

√
n} . At least one of these

balls contains at least n−Cn2 |A| elements of A . However for all of these elements g we have

‖gg−1
0 − In‖ = ‖g − g0‖ � 1/4

√
n.

This is establishes the claim. We now distinguish two cases.

Case 1. Every element of A′ is a scalar multiple of the identity. Then we clearly have alternative (i) in the
statement of the lemma.

Case 2. At least one element of A′ is not a multiple of the identity. Let γ ∈ A′ be that amongst the elements
of A′ which are not scalar multiples of the identity for which d(γ, In) is minimal. Then if x ∈ A′ is arbitrary
we have

d([γ, x], In) = d(γxγ−1x−1, In)

= ‖(γ − In)(x − In) − (x − In)(γ − In)‖

� 2‖γ − In‖‖x− In‖

� d(γ, In)/2.

Since A is a group, the commutator [γ, x] is an element of A . If it is a scalar multiple of the identity then,

since det[γ, x] = 1, we must have [γ, x] = e2πir/nIn for some r ∈ N .

Note that if r 
= 0 we have

d(e2πir/nIn, In) = |e2πir/n − 1|n1/2 � | sin(π/n)|n1/2 � 2/
√

n. (2.1)

Since d([γ, x], In) � 1/4
√

n this implies that [γ, x] = In . If [γ, x] is not a scalar multiple of the identity then,

by the asserted minimality of d(γ, In), we are also forced to conclude that [γ, x] = In . In either case we have

established that x commutes with γ , and hence the whole of A′ lies in the centraliser CA(γ). This is option

(ii) in the statement of the lemma.
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Let us recall now the following standard fact.

Lemma 2.3 (Centralizers) Let γ ∈ Un(C) is not a multiple of the identity. Then the centraliser CUn(C)(γ) is

isomorphic to a direct product Un1(C) × · · · × Unk(C) , where n1 + · · ·+ nk = n and ni < n for all i.

Proof. The matrix γ , being unitary, is diagonalisable. Its centraliser in GLn(C) may therefore be identified

with GLn1(C) × · · · × GLnk(C), where n1 + · · · + nk = n and ni < n ; the integers ni are of course the

multiplicities of the eigenvalues of γ . It is clear that the intersection of such a block subgroup with Un(C) is

precisely Un1(C) × · · · × Unk(C), and this completes the proof.

We may now complete a proof of Jordan’s theorem, proceeding by induction on the rank n . Supposing
that A is a finite subgroup of Un(C), we apply Lemma 2.2. If option (i) holds then we are done; otherwise,

option (ii) holds and we have a subgroup Z (the centraliser in A of some γ , not a scalar multiple of the

identity) of size at least n−Cn2|A| and which is isomorphic to a subgroup of Un1(C) × · · · × Unk(C) where

k � n and ni < n for all i . Writing πi : Z → Uni(C) for projection onto the ith factor, it follows from the

induction hypothesis that there is an abelian subgroup Zi ⊆ πi(Z) with [πi(Z) : Zi] � F (ni). The subgroup

B = ∩iπ
−1
i (Zi) ⊂ Z satisfies

|B| � |Z|
F (n1) . . . F (nk)

� n−Cn2

F (n1) . . . F (nk)
|A|,

and is abelian. So Jordan’s theorem follows provided that

F (n) � F (n1) . . . F (nk)n−Cn2
.

That a function of the form F (n) = nCn3
satisfies this inequality is an immediate consequence of the following

elementary lemma. �

Lemma 2.4 Suppose that n � 2 and that n1, . . . , nk are positive integers with ni < n for all i and n1 + · · ·+
nk = n . Then

n3 > n3
1 + · · ·+ n3

k + n2.

Proof. It is immediate by convexity or direct verification that (x − 1)3 + (y + 1)3 > x3 + y3 whenever x, y

are positive integers. Thus the maximum value of n3
1 + · · · + n3

k subject to the constraint n1 + · · · + nk = n

occurs when k = 2 and n1 = n − 1, n2 = 1. The result then follows immediately from the inequality

n3 = (n − 1)3 + 1 + n2(3 − 3
n

) > (n − 1)3 + 1 + n2.

3. Approximate subgroups of the unitary group

We turn now to the proof of Theorem 1.3. We do this by modelling the proof of Jordan’s theorem given
in §2, starting with Lemma 2.2, the lemma which located an element with large centraliser. We saw in Lemma
2.2 that multiples of the identity were slightly troublesome. To ease these issues we work for now with the
special unitary group SUn(C) := {g ∈ Un(C) : det g = 1} .
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Lemma 3.1 (Element with large centraliser) Suppose that A ⊆ SUn(C) is a K -approximate group with

|A| > n . Then there is an element γ ∈ A2 which is not a multiple of the identity and commutes with at

least n−Cn2
K−6|A| elements of A2 .

Proof. Since we are working in SUn(C), the only multiples of the identity are e2πir/nIn with r ∈ N . Since

|A| > n , there certainly is some γ ∈ A2 which is not a multiple of the identity. Since γ commutes with In ,

which is an element of A2 , the lemma is trivial whenever |A| � nCn2
. Assume henceforth that

|A| > nCn2
. (3.2)

This is a variant of an argument pioneered by Solymosi [28] in the context of sum-product estimates for C .

For each a ∈ A select an element a∗ ∈ A \ {a} which is nearest, or joint-nearest, to a in the sense that

d(a, a∗) � d(a, a′) for all a′ ∈ A (where d is, as in the previous section, the distance induced by the Hilbert-

Schmidt norm). Write ra := d(a, a∗). Consider the map ψ : A × A × A → A2 × A2 × A2 × A2 defined
by

ψ(a, a1, a2) := (a1a, a1a
∗, aa2, a

∗a2).

It is certainly the case that a1a is “near” a1a
∗ , and that aa2 is “near” a∗a2 . If it was in fact the case that

a1a
∗ was the nearest point in A2 to a1a , and a∗a2 the nearest point in A2 to aa2 , we would clearly have

| imψ| � |A2|2 . Since |A2| � K2|A| , it would follow that some fibre of ψ has size at least |A|/K . But if

ψ(a, a1, a2) = ψ(b, b1, b2) then we have, of course, a1a = b1b , a1a
∗ = b1b

∗ , aa2 = bb2 and a∗a2 = b∗b2 . Writing

γ := a−1a∗ = b−1b∗ we would have

aγa−1 = a∗a−1 = (a∗a2)(aa2)−1 = (b∗b2)(bb2)−1 = b∗b−1 = bγb−1

and hence b−1a ∈ CG(γ). As a consequence, |CG(γ) ∩ A2| � K−2|A| .
To turn this into a proof of the lemma we must resolve two issues. First, we need to ensure that γ is

not a multiple of the identity. Secondly and more seriously it will not, in general, be the case that a1a
∗ is the

nearest point in A2 to a1a . Regarding this second point it turns out that something a little weaker is true:

for many triples (a, a1, a2) there are not many points of A2 closer to a1a than a1a
∗ , and not many points

of A2 closer to aa2 than a∗a2 . In what follows, write Bn for the weak Besicovitch constant of Matn(C); see

Appendix A for a full discussion, and a proof that Bn � Cn2
. We will examine well-behaved triples (a, a1, a2)

for which a1a is “almost” the nearest neighbour of a1a
∗ in A2 in the sense that

Ua,a1 := |{u ∈ A2 : d(a1a, u) � ra}| � 10BnK, (3.3)

for which aa2 is “almost” the nearest neighbour of a∗a2 in the sense that

Va,a2 := |{v ∈ A2 : d(aa2, v) � ra}| � 10BnK, (3.4)

and for which
a−1a∗ is not a multiple of the identity. (3.5)

It is not obvious that there are any well-behaved triples, but we claim that this good behaviour is quite generic

in the sense that there are at least |A|3/2 well-behaved triples.
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Let us first count the triples (a, a1, a2) ∈ A × A × A for which (3.5) is violated. Since we are working in

SUn(C), the only multiples of the identity are e2πir/nIn with r ∈ N , and so by the same computation we used

in (2.1) we get d(a−1a∗, In) � 2/
√

n and so ra = d(a, a∗) � 2/
√

n . By a simple volume-packing argument the

number of a with this property is at most nCn2
, and so (3.5) is violated for at most nCn2|A|2 < |A|3/10 triples

(a, a1, a2), this last inequality being a consequence of (3.2).

Turning now to the examination of (3.3), fix a1 . Then the open balls Bra (aa1), a ∈ A , have the property

that no centre aa1 of one of these balls lies inside any other ball Bra′ (a′a1). Indeed, if this were the case then

we would have d(a, a′) < ra′ , contrary to the assumption that a′∗ is the closest point of A to a′ . It follows

from the definition of the weak Besicovitch constant Bn that no point u ∈ Matn(C) can lie in more than Bn

of these balls. It follows that ∑

a

Ua,a1 � Bn|A2| � BnK|A|.

An essentially identical argument using (3.4) implies that

∑

a

Va,a2 � Bn |A2| � BnK|A|.

The number of pairs (a, a1) for which Ua,a1 � 10BnK is thus at most |A|2/10, as is the number of pairs (a, a2)

for which Va,a2 � 10BnK . It follows from this that there are at least |A|3/2 well-behaved triples, as claimed.

Let us now consider the map ψ defined above,

ψ(a, a1, a2) = (a1a, a1a
∗, aa2, a

∗a2),

restricted to this set S of at least |A|3/2 well-behaved triples. We claim that im(ψ|S) is reasonably small; this
implies that ψ has a large fibre, and we may then conclude as in the simplified sketch above.

Suppose, then, that (x, y, z, w) ∈ im(ψ|S). There are at most |A2| choices for x , and the same for z .
Once these have been specified, consider the possible choices for y . Single out one of these, y , corresponding
to the well-behaved triple (a, a1, a2) with d(x, y) = d(a, a∗) maximal. Then for all permissible y we have

d(a1a, y) = d(x, y) � d(x, y) = d(a1a, a1a
∗) = d(a, a∗) = ra.

Since (a, a1, a2) is a well-behaved triple, it follows from (3.3) that there are at most 10BnK choices for y .
Similarly, there are at most 10BnK choices for w . It follows that

| im(ψ|S)| � (10BnK)2|A2|2,

and so ψ has a fibre of size at least C−n2
K−6|A| . By precisely the same argument used in the informal

discussion at the start of the proof, this implies the result.

Added in revision. Upon seeing our paper, and in particular noting our idea of mimicing the proof of Jordan’s
theorem in the approximate group setting, the referee came up with an elegant and simpler argument for proving
(a very slight variant of) this pivotal lemma which he or she was generous enough to share with us. We sketch

this now. First of all look at A′ , the elements of A2 at distance at most 1/4
√

n from the identity. As remarked
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above, none of these are multiples of the identity. By a simple volume-packing argument, |A′| � n−Cn2 |A| . Let

ρ be the minimum value of d(γ, In) over all γ ∈ A′ . Suppose that there are L elements γ′ ∈ A′4 with

d(γ′, In) < 1
2ρ. (3.6)

Then, multiplying by the elements of A′ and using the minimality of ρ , we obtain the inequality |A′6| � L|A′| .
Since A is a K -approximate group we have |A6| � K5|A| , and therefore L � nCn2

K5 .

However, by the inequalities noted in Case 2 of the proof of Lemma 2.2, any commutator γ′ = [γ, x] ,

x ∈ A′ , will satisfy (3.6). It follows that there are merely nCn2
K5 different values taken by this commutator, and

hence there is some further set A′′ ⊆ A′ , |A′′| � n−Cn2
K−5|A| , such that [γ, x] = [γ, y] whenever x, y ∈ A′′ . A

very short computation confirms that x−1y centralises γ for any such pair x, y , and this concludes the proof.

Remark. We note that this argument of the referee uses slightly less than our original one, in that only
the bounded doubling of balls in the Hilbert-Schmidt norm is required, as opposed to the rather more subtle
Besicovitch property.

A consequence of Lemma 3.1, proven below, is the following.

Corollary 3.2 Suppose that A ⊆ Un(C) is a K -approximate group. Then either there is a coset xZ of the

centre Z ∼= U1(C) ⊂ Un(C) such that |A∩xZ| � n−1|A| , or there is an element γ ∈ A2 which is not a multiple

of the identity and commutes with at least n−Cn2
K−11|A| elements of A2 .

In the proof of this corollary and elsewhere we require two lemmas concerning the behaviour of approxi-
mate groups under intersections and homomorphisms. Related results appear in work of Helfgott [18] and later

papers such as [5, 6, 31].

Lemma 3.3 Let K � 2 be a parameter and let A be a K -approximate subgroup of G . Let H � G be a

subgroup. Then A2 ∩ H is a 2K3 -approximate group and |Ak ∩ H | � Kk−1|A2 ∩ H | for every k � 1 .

Proof. Let X , |X| � K , be as in the definition of approximate group. Then, for any positive integer k , we
have

Ak ⊆ Xk−1A. (3.7)

Now if g ∈ G and y1, y2 ∈ gA ∩ H then y−1
1 y2 ∈ A2 ∩ H . It follows that

gA ∩ H ⊆ y(A2 ∩ H)

for any y ∈ gA ∩ H (or, if gA ∩ H happens to be empty, for any y at all). Let Y be a set consisting of one

such value of y for each choice of g ∈ Xk−1 . It follows from the preceding discussion and (3.7) that

Ak ∩ H ⊆ Y (A2 ∩ H).

This confirms the second statement of the lemma. Taking k = 4 and noting that (A2 ∩ H)2 ⊆ A4 ∩ H gives

(A2 ∩ H)2 ⊆ Y (A2 ∩ H).
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Since A2 ∩ H is symmetric, this implies that

(A2 ∩ H)2 ⊆ (A2 ∩ H)Y −1.

This confirms that A2 ∩ H is a 2K3 -approximate group, with covering set Y ∪ Y −1 .

Lemma 3.4 Suppose that A is a symmetric set in some group G , and that π : G → G′ is a homomorphism
from G into some other group G′ . Suppose that X � G′ is a set and that |π(A) ∩ X| = δ|π(A)| . Then

|A3 ∩ π−1(X)| � δ|A| .

Proof. Let M be the size of the largest fibre of A above G′ , that is to say maxx |A ∩ π−1(x)| . Then A2

has a fibre of size at least M over idG′ , and thus A3 has a fibre of size at least M over each point of π(A). In
particular,

|A3 ∩ π−1(X)| � M |π(A) ∩ X| � Mδ|π(A)|.

On the other hand it is clear that |A| � M |π(A)| . Combining these two inequalities leads to the stated
bound.

Proof of Corollary 3.2. Let π be the projection Un(C) → PUn(C) whose kernal ker(π) = Z is the centre of

Un(C). Let A′ := π−1(π(A)) ∩ SUn(C) = AZ ∩ SUn(C). Note that |A′| � |π(A)| . If |π(A)| � n , then there is

a coset xZ such that |A ∩ xZ| � n−1|A| . If not then |A′| > n and so Lemma 3.1 applies (with A′ in place of

A) and we obtain an element γ in A′2 , not a multiple of the identity, such that

|CUn(C)(γ) ∩ A′2| � n−Cn2
K−6|A′|.

Pushing this forward under π and noting that fibres of π in SUn(C) have size at most n , we obtain

|π(A2) ∩ π(CUn(C)(γ))| � n−C′n2
K−6|π(A)|.

It follows from Lemma 3.4 that

|A6 ∩ CUn(C)(γ)| � n−C′n2
K−6|A|,

and hence from Lemma 3.3 that

|A2 ∩ CUn(C)(γ)| � n−C′n2
K−11|A|.

This concludes the proof.

We have established an “approximate” analogue of Lemma 2.2. It remains to complete the proof of
Theorem 1.3, and we do this by proceeding in a manner rather analogous to that at the end of §2, that is to
say by induction on n .

To make this work efficiently, we prove the following statement.

Lemma 3.5 Suppose that A is a K -approximate subgroup of some group G group (which, in applications, will

be a unitary group). Let H � G be a subgroup isomorphic to Un(C)×H0 for some group H0 and some n � 2 ,

and suppose that |A ∩ Hx| � δ|A| for some δ > 0 and some coset Hx . Then there is a further subgroup H ′ ,

isomorphic to Un1(C) × · · · × Unk(C) × U1(C) × H0 where ni < n for all i and n1 + · · ·+ nk = n , together

with an x′ such that |A ∩ H ′x′| � n−Cn2
δK−C |A| .
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Proof of Lemma 3.5. The hypothesis |A∩Hx| � δ|A| immediately implies that |A2∩H | � δ|H | . By Lemma

3.3 we see that S := A2 ∩ H is a K3 -approximate group. By assumption we have

H ∼= Un(C) × H0.

The projection π(S) onto the first factor Un(C) is another K3 -approximate group and we may apply Corollary

3.2 to it. If we are in the first case of that corollary, the lemma follows immediately with H ′ = Z × H0 , where
Z ∼= U1(C) is the centre of Un(C).

If we are in the second case, then there is an element γ in S2 such that |π(S)2 ∩ CUn(C)(γ)| �

n−Cn2
K−C |π(S)| . By Lemma 2.3 this centraliser CUn(C)(γ) is isomorphic to a subgroup of some product

Un1(C) × · · · × Unk(C) with n1 + · · ·+ nk = n and ni < n for all i . Write

H ′ := Un1(C) × · · · × Unk(C) × U1(C) × H0.

By Lemma 3.4 we have |S6 ∩ H ′| � n−Cn2
K−C |S| and hence, by Lemma 3.3, that

K11|A2 ∩H ′| � |A12 ∩ H ′| � n−Cn2
K−C |S| � δK−C |A|.

Since A is a K -approximate group, A2 is covered by K translates Ax of A . The result follows immedia-
tely.

Proof of Theorem 1.3. Simply apply Lemma 3.5 repeatedly, starting with H = Un(C). After at most n

steps we end up with some x such that |A∩H ′x| � n−Cn3
K−Cn|A| , where H ′ is isomorphic to a product of at

most 2n copies of U1(C) and in particular is abelian. It follows that |A2 ∩ H ′| � n−Cn3
K−Cn|A| , and hence

by Lemma 3.3 that B := A2 ∩H ′ satisfies the conclusions of Theorem 1.3.

4. A more precise result

Our aim in this section is to establish Corollary 1.4, a somewhat more precise structural conclusion about
approximate subgroups of the unitary group. Let us begin by recalling the statement.

Corollary 4.1 Suppose that A ⊆ Un(C) is a K -approximate group. Then there is a torus S ⊆ Un(C)

such that A lies in the normaliser N(S) , and such that the image of A under the quotient homomorphism

π : N(S) → N(S)/S has cardinality at most nCn4
KCn2

.

Recall that by a torus we mean a connected abelian subgroup. We will find it convenient to introduce the
notion of root torus: a root torus is by definition the intersection of conjugates of the full diagonal subgroup T

of Un(C). A root torus is a priori a closed abelian subgroup of Un(C). It is in fact connected, as the following
lemma shows.

Lemma 4.1 Every root torus in Un(C) is connected and hence is a torus. Moreover it is the intersection of
at most n conjugates of the full diagonal subgroup T .
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Proof. Let Ti = giTg−1
i be a collection of conjugates of the full diagonal subgroup T (say with T1 = T ).

Pick an element γ ∈ T with distinct eigenvalues. An element of Un(C) lies in T (resp. Ti ) iff it commutes

with γ (resp. giγg−1
i ). On the other hand a diagonal matrix diag(λ1, ..., λn) commutes with a matrix (aij) if

and only λi = λj whenever aij 
= 0. From these remarks it follows that the intersection
⋂

i Ti is the subset of

T defined by the equality of certain eigenvalues. It is thus isomorphic to a direct product of at most n copies
of the group of complex numbers of modulus one, and in particular it is connected. The second assertion of the
lemma also follows immediately.

Proof of Corollary 1.4. By our main theorem, there is a conjugate T of the full diagonal subgroup of Un(C)

and a KC -approximate group B ⊆ T which nCn3
KCn -controls A . In particular, |A2 ∩ T | � δ|A| , where

δ := n−Cn3
K−Cn . Let S :=

⋂
a∈〈A〉 aTa−1 . Clearly S is a root torus and A lies in N(S). Moreover, since

g -tori are connected and the dimension of S is at most n , there must exist ai ∈ An , i = 1, ..., n , a1 = In , such

that S =
⋂n

i=1 aiTa−1
i .

Set Si =
⋂

j<i aiTa−1
i . We will establish by induction that |A2 ∩Si| � δi|A| , where δi = (δK−2n−6)i−1 .

This statement in the case i = n + 1 implies that |A2 ∩ S| � δn+1|A| . This establishes the corollary since

|π(A)‖A2 ∩ S| � |A3| � K2|A| , and so |π(A)| � δ−1
n+1K

2 � nCn4
KCn2

.

The base of the induction i = 2 has already been checked, so we will focus on the induction step, assuming

i � 2. Set B1 = A2 ∩ Si and B2 = ai(A2 ∩ T )a−1
i ⊆ A2n+2 . We have |B2| = |A2 ∩ T | � δ|A| . On the other

hand B1B2 ⊆ A2n+4 and |B1| � δi|A| by the induction hypothesis. It follows that if F is the largest fibre of

the map φ : B1 × B2 → B1B2 defined by φ(b1, b2) = b1b2 , then

|B1‖B2| � |F ‖B1B2 | � |F ‖|A2n+4| � K2n+3|A|

and therefore
|F | � δδiK

−2n−3|A|.

Since F is a fibre of φ , there is x ∈ B1B2 with at least |F | representations as b1b2 with b1 ∈ B1 and b2 ∈ B2 .

Fix one of these representations and let x = b′1b
′
2 be any other. Then we clearly have

b′−1
1 b1 = b′2b

−1
2 ,

and so b′−1
1 b1 ∈ B2

2 . Since different values of b′1 give different values of b′−1
1 b1 , it follows that |B2

1 ∩B2
2 | � |F | .

Note, however, that

B2
1 = (A2 ∩ Si)2 ⊆ A4 ∩ Si,

whilst
B2

2 = ai(A2 ∩ T )2a−1
i ⊆ aiTa−1

i ,

whence
B2

1 ∩ B2
2 ⊆ A4 ∩ Si ∩ aiTa−1

i = A4 ∩ Si+1 .

Therefore |A4 ∩ Si+1| � |F | . Since A is a K -approximate group, A4 is covered by K3 -translates of A . In

particular there is some x such that |A ∩ Si+1x| � K−3|F | , and this immediately implies that |A2 ∩ Si+1| �
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K−3|F | � δi+1|A| , the desire to have this last inequality hold being the reason for our particular choice of δi+1 .
This ends the proof of the induction step and hence the proof of the corollary.

Remarks. Suppose that A ⊆ Un(C) is a symmetric set satisfying the small tripling condition |A3| � K|A| .
Then the conclusion of Corollary 1.4 still holds, since then A3 is a KC -approximate group containing A . This
follows from standard multiplicative combinatorics (see, for example, Proposition 3.1 in [5]). As a consequence
we obtain the following corollary.

Corollary 4.2 Suppose that A ⊆ Un(C) is a symmetric subset with |A3| � K|A| and that the closure

of the subgroup 〈A〉 is a connected subgroup of Un(C) with no connected abelian normal subgroup. Then

|A| � nCn4
KCn2

.

Proof. The set A3 is a KC -approximate group, and so by Corollary 1.4 it must be contained in N(S), where

S is a connected abelian subgroup of Un(C). By our assumption, G := 〈A〉 is a connected semisimple compact

group with dimension � n2 . It is well-known (e.g. see [10]) that the centre of a connected semisimple compact
Lie group of dimension d is finite and in fact of size at most d . Since S ∩ G is a finite normal subgroup of

G , it is central (this follows by connectedness of G , since the map G → G, g �→ gxg−1 is continuous and takes

only finitely many values if x belongs to a finite normal subgroup) and thus of size at most n2 . By Corollary

1.4, |A2 ∩ S| � n−Cn4
K−Cn2|A| , and so the result follows immediately.

If A is only assumed to have small doubling, i.e. |A2| � K|A| , then it follows from the non-commutative

Balog-Szemerédi-Gowers lemma (see [30]) that A is KC -controlled by a KC -approximate subgroup. In

particular, applying Theorem 1.3, we conclude that A is contained in nCn3
KCn cosets of a connected abelian

subgroup of Un(C).

5. On Gromov’s theorem

In this section we show how our main result gives a new elementary proof of the fact that non-virtually
abelian subgroups of Un(C) cannot have polynomial growth, and in fact have growth at least exp(rα).

Recall that a group G has polynomial growth with exponent d if there is a finite symmetric set Σ of
generators such that one has the bound

|Σr| � Brd (5.8)

for all r � 1, where B = BΣ does not depend on r . If one set Σ of generators has this property then it is easy
to see that any other set Σ′ does too, although BΣ′ may be different. Thus polynomial growth is a well-defined
property of the group.

Proposition 5.1 Suppose that G ⊆ Un(C) is a finitely generated group with polynomial growth. Then G is
virtually abelian.

Proof. Let S be a generating set. There are clearly arbitrarily large r for which

|Σ7r| � 8d|Σr|, (5.9)
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since if not the polynomial growth hypothesis would be violated. Call these values good, and suppose in what
follows that r is good. By standard multiplicative combinatorics (see in particular Proposition 3.1 (v) in Part I

of this series) it follows that A := Σ3r is a K -approximate group for some K = O(1)d . By Theorem 1.3, there

is some abelian group H � Un(C) and a coset Hx such that |A∩Hx| � cn,d|A| , where cn,d > 0 depends only

on n and d . We therefore have

|Σ6r ∩ H | = |A2 ∩ H | � cn,d|A| � cn,d|Σr|. (5.10)

Replacing H by the subgroup generated by A2 ∩ H (if necessary) we may assume without loss of generality

that H � G . Assume that [G : H ] = ∞ . Then, since Σ generates G , it is easy to see that Σk meets at least

k different right cosets of H , for every integer k � 1. It follows from this observation and (5.10) that

|Σ6r+k| � kcn,d|Σr|.

Choosing k > 8d/cn,d and some good value of r with r > k , we obtain a contradiction to (5.9). Thus we were

wrong to assume that [G : H ] = ∞ , and this concludes the proof.

One could run the above argument more carefully to get an explicit upper bound on [G : H ] . However
this observation is redundant here since it is known by rather easier arguments that any virtually abelian group
G � Un(C) has an abelian subgroup H with [G : H ] � F (n), where F (n) = O(n!(n + 1)!). We offer a brief
sketch proof of this fact in Appendix B.

Using Corollary 4.2, one can also prove the following quantitative form of the above proposition.

Proposition 5.2 Let Σ be a finite symmetric subset of Un(C) and that 〈Σ〉 is not virtually abelian. Then

|Σr| � 2crα

for all r � 1 , where α > 0 depends only on n and c = cΣ > 0 .

Proof. Let G be the closure of the subgroup 〈Σ〉 generated by Σ, let G0 its connected component of the

identity, and i := [G : G0] . There is no loss of generality in passing to subgroup 〈Σ〉 ∩ G0 . Indeed Σ2i−1

contains a generating set for 〈Σ〉 ∩ G0 (see e.g. [8, Lemma C.1]) and we may replace Σ by this subset. As

a result, we may assume that G is connected. Let Z be its centre and write π : G → G/Z for the quotient.

Then, for every r � 1, π(Σr) generates a dense subgroup of the non-trivial connected centre-free compact Lie

group G/Z . The contrapositive of Corollary 4.2 therefore applies and we obtain an ε = ε(n) > 0 for which

|π(Σ3k)| � |π(Σk)|1+ε for every k � 1. Iterating this clearly leads to a bound of the form |π(Σr)| � 2crα

, which
certainly implies the proposition.

Of course, much stronger results in this context are known. In fact from the Tits alternative [33], the

theorem of Milnor [22] and Wolf [35], and the fact that every nilpotent subgroup of Un(C) is virtually abelian

it follows that a finitely-generated subgroup G � Un(C) which is not virtually abelian has exponential growth.

Moreover, in view of the uniform Tits alternative [4], the exponential growth rate is even independent of Σ.

We remark that non polynomial growth for certain subgroups of GLn(C) was used as a key ingredient by

Gromov in his original work [15] and also, subsequently, by Kleiner [21], who needed this fact only for subgroups

of Un(C). Our arguments here may be inserted into Kleiner’s work, thereby avoiding any appeal to the Tits

alternative. It should be noted that Shalom and Tao [27] also avoid the Tits alternative in the relevant step of
their variant of Kleiner’s proof, appealing instead to the Solovay-Kitaev argument.
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A. Simple facts from metric geometry

We need some facts concerning covering by balls in certain metric spaces. If (X, d) is a metric space then

we write B(x, r) = {y ∈ X : d(x, y) < r} for the open ball of radius r centred on x and B(x, r) := {y ∈ X :

d(x, y) � r} for the corresponding closed ball.

Definition A.1 Let (X, d) be a metric space. We say that X has the weak Besicovitch property with constant

k if the following is true. If x1, . . . , xk ∈ X and if r1, . . . , rk ∈ R�0 are such that the closed balls B(xi, ri)

have nonempty intersection then there are distinct indices i and j such that xi lies in the open ball B(xj , rj)

We call this the weak Besicovitch property since it follows easily from the usual Besicovitch covering
property as detailed, for example, in Theorem 1.1 of [16]. It seems to be somewhat weaker and easier to prove

than that property, however. We shall write kbes(X) for the smallest constant k which works in the above
definition.

Example. We have kbes(R2) = 8, where R2 is endowed with the Euclidean metric and identified with the

complex plane. To see that kbes(R2) � 8, suppose that x1, . . . , x8 ∈ R2 and that r1, . . . , r8 ∈ R�0 . Let z lie in

the intersection of all eight of the closed balls B(xi, ri). Perhaps one of the xi coincides with z ; if so, suppose
it is x8 . By the pigeonhole principle there is some choice of i, j , 1 � i < j � 7, such that the angle ∠xizxj is

less than π/3; this means that |xi − xj| is less than either ri � |xi − z| or rj � |xj − z| , and hence that either

xi ∈ B(xj , rj) or xj ∈ B(xi, ri). On the other hand it is clear by considering xj = e2πij/6 , j = 1, 2, . . . , 6,

x7 = 0 and rj = 1 that kbes(R2) is not less than 8.

It is not particularly difficult to adapt the preceding argument to establish the following.

Lemma A.2 Suppose that Rn is endowed with the Euclidean metric. Then kbes(Rn) � 3n + 1 .

Proof. By the argument just outlined for R
2 = C , it suffices to show that if 3n distinct points y1, . . . , ym are

taken on the unit sphere in Rn then there are distinct indices i, j such that the angle ∠yi0yj is less than π/3.

But if there is no such pair of indices then the open spherical caps centred on yi and with radius π/6 are disjoint.

We conclude by a volume-packing argument, considering the balls of radius 1
2 centred on the points yi together

with the one centred at the origin. There are at least 3n + 1 of these balls, which are disjoint, have radius 1
2 ,

and are all contained in the ball of radius 3
2

about the origin. This is impossible since (3n + 1)/2n > (3/2)n .

This has the following simple corollary, which we used in the proof of our main theorem.

Corollary A.3 Let (X, d) be the metric space consisting of the matrices X = Matn(C) together with the

distance induced from the Hilbert-Schmidt norm. Then the weak Besicovitch constant kbes(X) is bounded by

32n2
+ 1 .
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B. Virtually abelian subgroups of Un(C).

Our aim in this appendix is to outline a proof of the following statement.

Proposition B.1 Suppose that G � Un(C) be a virtually abelian group. Then there is a normal abelian

subgroup H � G with [G : H ] � O(n!(n + 1)!) .

Remark. The rather strong bound we obtain relies heavily on Collins’ s bound for Jordan’s theorem [11],
which in turn depends on the Classification of Finite Simple Groups. Inputting softer proofs of Jordan’s
theorem (such as the one we gave in §2 of this paper) would give a vastly more elementary argument, but would

lead to correspondingly cruder bounds of the form exp(CnC).

Proof. Passing to the Zariski closure, we may assume without loss of generality that G is an algebraic
subgroup. Its connected component of the identity is a torus S ⊂ Un(C). The centraliser Z(S) of this torus

is a direct product of unitary groups Um(C) which are permuted by the normaliser N(S). In particular,

[G : Z(S)] � [N(S) : Z(S)] � n! . According to a lemma of Platonov, for any algebraic subgroup H � GLn(C)

there exists a finite subgroup F such that H = FH0 , where H0 is the Zariski connected component of the
identity (see [34, 10.10]). Applying this to H = G ∩ Z(S), we get a finite subgroup F ⊂ Z(S) such that

G ∩ Z(S) = FS . By Jordan’s theorem and Collins’s bound [11], there is a normal abelian subgroup F0 ⊆ F of

index O((n + 1)!). Now F0S is abelian and normal in G and of index O(n!(n + 1)!).

We conclude by remarking that simple examples show that no analogue of Proposition B.1 holds in
GLn(C). Indeed the group G � GL2(C) consisting of all upper triangular matrices whose diagonal entries are
1 and an mth root of unity is virtually abelian yet has no abelian subgroup of index less than m .
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Paris-Sud 11, 91405 Orsay cedex-FRANCE
e-mail: emmanuel.breuillard@math.u-psud.fr

Ben GREEN
Centre for Mathematical Sciences, Wilberforce Road
Cambridge CB3 0WA-ENGLAND
e-mail: b.j.green@dpmms.cam.ac.uk

Received: 26.06.2010

215


