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On α-skew McCoy modules∗

Jian Cui and Jianlong Chen

Abstract

Let α be a ring endomorphism. Extending the notions of McCoy modules and α -skew McCoy rings, we

introduce the notion of α -skew McCoy modules, which can also be regarded as a generalization of α -skew

Armendariz modules. A number of illustrative examples are given. Various properties of these modules are

developed, and equivalent conditions for α -skew McCoy modules are established. Furthermore, we study

the relationship between a module and its polynomial module.
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1. Introduction

Throughout this paper all rings considered are associative with unity and all modules are unitary right
modules. R[x] denotes the polynomial ring over a ring R and M [x] denotes the polynomial module over a
module M . Let Zn be the ring of integers modulo n. The symbol In stands for the n×n identity matrix. For
a set X ⊆ M , rR(X) stands for the right annihilator of X in R .

Rege and Chhawchharia [23] and Nielsen [22] independently called a ring R right McCoy if whenever

f(x)g(x) = 0 for f(x) ∈ R[x] and g(x) ∈ R[x]\{0} , there exists a nonzero r ∈ R with f(x)r = 0. Left
McCoy rings are defined similarly. A ring is said to be McCoy if it is both right and left McCoy. The term
“McCoy ring” was coined because McCoy [21] had shown that every commutative ring satisfies the above

mentioned condition. The class of McCoy rings properly contains the class of Armendariz rings. (These rings

are defined through the condition: whenever polynomials f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x] satisfy

f(x)g(x) = 0, then aibj = 0 for every i and j . See [23] for basic results on Armendariz rings). Recall

that a ring R is semicommutative provided ab = 0 implies aRb = 0 for a, b ∈ R. In [13] it was claimed

that all semicommutative rings were McCoy. However, Hirano’s claim assumed that R[x] is semicommutative

if R is semicommutative, and this was shown to be false in [16]. In 2006, Nielsen [22] gave an example of
semicommutative ring which is not right McCoy. Some other properties on McCoy rings have appeared in
[5], [11], [18], [20], [23, 24, 25], etc. As a generalization of McCoy rings (resp., Armendariz rings), McCoy
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modules [7] (resp., Armendariz modules [4]) were introduced (Maybe the first result, without a naming, McCoy

module, obtained in [2]). A module MR is said to be McCoy (resp., Armendariz ) if whenever polynomials

m(x) =
∑p

i=0 mix
i ∈ M [x] and g(x) =

∑q
j=0 bjx

j ∈ R[x]\{0} satisfy m(x)g(x) = 0, there exists r ∈ R\{0}
such that m(x)r = 0 (resp., mibj = 0 for every i and j ). Armendariz modules are clearly McCoy.

Given an endomorphism α of a ring R , the skew polynomial ring R[x; α] consists of the polynomials in

x with coefficients in R written on the left, subject to the relation xr = α(r)x for all r ∈ R. Recently, Başer,

Kwak and Lee [3] called a ring R α-skew McCoy with respect to an endomorphism α of R if for any nonzero

polynomials f(x) and g(x) ∈ R[x; α] , f(x)g(x) = 0 implies f(x)r = 0 for some nonzero r ∈ R. This notion

generalized both concepts of McCoy rings and α -skew Armendariz rings (see [14]).

In this paper, we introduce the notion of α -skew McCoy modules as a straightforward extensions to
modules. Many examples of α -skew McCoy modules are given, and properties of this class of modules are
investigated. Various results of α -skew McCoy rings are extended to α -skew McCoy modules. We also study
the relationship between a module and its polynomial module.

2. α-skew McCoy modules

Let α be an endomorphism of a ring R and M be a right R -module. M [x; α] = {
∑s

i=0 mix
i; s ≥

0, mi ∈ M} is an abelian group under an obvious addition operation. Moreover, M [x; α] becomes a module

over R[x; α] under the following scalar product operation: For m(x) =
∑p

i=0 mix
i ∈ M [x; α] and f(x) =∑q

j=0 ajx
j ∈ R[x; α], m(x)f(x) =

∑
k(

∑
i+j=k miα

i(aj))xk . According to Zhang and Chen [27], M is α-skew

Armendariz if m(x)f(x) = 0 where m(x) =
∑p

i=0 mix
i ∈ M [x; α] and f(x) =

∑q
j=0 ajx

j ∈ R[x; α] implies

miα
i(aj) = 0 for all i and j .

Definition 2.1 Let α be an endomorphism of a ring R and M be an R -module. M is called α-skew McCoy

if whenever m(x)g(x) = 0 where m(x) =
∑p

i=0 mix
i ∈ M [x; α] and g(x) =

∑q
j=0 bjx

j ∈ R[x; α]\{0} , there

exists a nonzero element r ∈ R such that m(x)r = 0 ( i.e., miα
i(r) = 0 for all i) .

Remark 2.2 (1) M is a McCoy R -module if and only if M is 1R -skew McCoy, where 1R is the identity
endomorphism of R .
(2) A ring R is α-skew McCoy if and only if RR is an α-skew McCoy module.

(3) An R -module M is α-skew McCoy if and only if, for all m(x) ∈ M [x; α] , rR[x;α](m(x)) �= 0 implies that

rR[x;α](m(x))
⋂

R �= 0.

Any α -skew Armendariz module is obviously α -skew McCoy, the falsity of the converse can be inferred
from [17, Example 3] or [23, Remark 4.3].

Example 2.3 (1) Let R = Z2 ⊕ Z2, and α : R → R be defined by α((a, b)) = (b, a) . Then RR is McCoy but

not α-skew McCoy by [3, Example 4] and Remark 2.2(2).

(2) For any given ring S , let R = T2(S) be the ring of all 2 × 2 upper triangular matrices over S . Then

RR is not McCoy by [5, Proposition 10.2]. Define α : R → R by α(( a b
0 c )) = ( a 0

0 0 ) . We conclude that RR is
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α-skew McCoy. Indeed, suppose that F (x)G(x) = 0 for F (x) =
∑p

i=0 Aix
i ∈ R[x; α] and G(x) =

∑q
j=0 Bjx

j ∈

R[x; α]\{0} . We may assume that B0 �= 0 and write B0 =
(

b1 b2
0 b3

)
. If b1 = 0 then let C =

(
0 b2
0 b3

)
, otherwise,

let C =
(

0 b1
0 0

)
. It easily checks that Aiα

i(C) = 0 for both cases, where i = 0, . . . , p.

An ideal I of a ring R is an α-ideal if α(I) ⊆ I, where α is an endomorphism of R.

Proposition 2.4 (1) Every submodule of an α-skew McCoy module is α-skew McCoy. In particular, if I is
a right ideal of an α-skew McCoy ring R , then I is α-skew McCoy.
(2) M is an α-skew McCoy module if and only if every finitely generated submodule of M is α-skew McCoy.

(3) For any index set Γ , if Mi is an αi -skew McCoy Ri -module for each i ∈ Γ , then
∏

i∈Γ Mi is an α-skew

McCoy
∏

i∈Γ Ri -module, where α = (αi)i∈Γ .

(4) Let I be any nonzero α-ideal of a ring R , then R/I is an α-skew McCoy R -module.

Proof. (1) - (3) are obvious. (4) For each f(x) ∈ (R/I)[x; α] , take any nonzero r ∈ I (⊆ R). Since α(I) ⊆ I ,

f(x)r ∈ I[x; α], i.e., f(x)r = 0. �

Remark 2.5 The condition “I is an α-ideal” in Proposition 2.4(4) is necessary. Take the ring and the ring

endomorphism in Example 2.3(1). Let I = 0⊕Z2 ⊆ R. Then I is an ideal but α(I) � I. Note that R/I ∼= Z2⊕0.

We show that R/I is not α-skew McCoy as a right R -module. For f(x) = (1, 0)+ (1, 0)x ∈ (Z2 ⊕ 0)[x; α] and

g(x) = (0, 1) + (1, 0)x ∈ R[x; α], f(x)g(x) = 0. However, f(x)r = 0 implies r = 0 for r ∈ R.

A module MR is semicommutative [4] if for any m ∈ M and a ∈ R, ma = 0 implies mRa = 0. In [27],
a module MR with a ring endomorphism α of R is called α-semicommutative if whenever ma = 0 for m ∈ M

and a ∈ R , mRα(a) = 0; a ring R is α-semicommutative if RR is α -semicommutative. We can infer that

1R -semicommutative modules need not be 1R -McCoy from Section 3 of [22].

Proposition 2.6 Let α be an endomorphism of a ring R . Then a semicommutative module MR with mα(a) =

0 whenever mα(a)a = 0 for m ∈ M and a ∈ R is α-skew Armendariz.

Proof. Firstly, we show that MR is α -semicommutative. Let ma = 0 for m ∈ M and a ∈ R. Then
mRa = 0. Clearly, mα(a)a = 0. Thus mα(a) = 0 and mRα(a) = 0 by the hypotheses.

Let m(x) =
∑p

i=0 mix
i ∈ M [x; α] and f(x) =

∑q
j=0 ajx

j ∈ R[x; α]\{0} with m(x)f(x) = 0. Then∑
i+j=k miα

i(aj) = 0 for k = 0, . . . , p + q. So m0a0 = 0 and m0a1 + m1α(a0) = 0, and then m0a1a0 +

m1α(a0)a0 = 0. Since MR is semicommutative, m0a1a0 = 0. So we have m1α(a0)a0 = 0, and m1α(a0) = 0 by

the hypothesis. Hence m0a1 = m1α(a0) = 0. Assume that s ≥ 1 and miα
i(aj) = 0 for all i, j with i + j ≤ s.

Note that

m0as+1 + m1α(as) + · · ·+ msα
s(a1) + ms+1α

s+1(a0) = 0, (2.1)

where mi and aj are 0 if i > p and j > q. Multiplying (2.1) by αs(a0) on the right yields

m0as+1α
s(a0) + m1α(as)αs(a0) + · · ·+ msα

s(a1)αs(a0) + ms+1α
s+1(a0)αs(a0) = 0. (2.2)
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Since MR is α -semicommutative and miα
i(a0) = 0 for i ≤ s, it follows that miRαs(a0) = 0. Thus

(2.2) becomes ms+1α
s+1(a0)αs(a0) = ms+1α(αs(a0))αs(a0) = 0, which implies ms+1α

s+1(a0) = 0 by the

assumption. So (2.1) becomes

m0as+1 + m1α(as) + · · ·+ ms−1α
s−1(a2) + msα

s(a1) = 0. (2.3)

Analogously, multiplying (2.3) by αs−1(a1) on the right, one obtains

m0as+1α
s−1(a1) + m1α(as)αs−1(a1) + · · ·+ ms−1α

s−1(a2)αs−1(a1) + msα
s(a1)αs−1(a1) = 0.

The similar argument as the above reveals that msα
s(a1)αs−1(a1) = 0. Thus msα

s(a1) = 0. Continuing this

process, we have msα
s(a1) = · · · = m1α(as) = m0as+1 = 0. So we prove that miα

i(aj) = 0 for all i, j with

i + j ≤ s + 1. By the induction principle, miα
i(aj) = 0 for every i and j . �

The converse of Proposition 2.6 is not true. We use the ring given in [14].

Example 2.7 Let R = {
(

a b
0 a

)
|a ∈ Z, b ∈ Z4}. Clearly, R is commutative. Let α : R → R be an endomorphism

defined by

α(
(

a b
0 a

)
) =

(
a −b
0 a

)
.

Then RR is α-skew Armendariz by [14, Example 7]. However, I2α(
(

0 b
0 0

)
)
(

0 b
0 0

)
= 0 , but I2α(

(
0 b
0 0

)
) �= 0 in

case b �= 0.

Let α be an endomorphism of a ring R and M be an R -module. According to Lee and Zhou [19],

M is called α-reduced if the following conditions hold: For any m ∈ M and a ∈ R, (1) ma = 0 implies

mRa = mRα(a) = 0; (2) maα(a) = 0 implies ma = 0; (3) ma2 = 0 implies ma = 0. A ring is reduced if RR

is 1R -reduced.

Remark 2.8 Assume that M is an α-reduced R -module. For some m ∈ M and a ∈ R with mα(a)a = 0, by

(1) we have mα(a)α(a) = m[α(a)]2 = 0 , and so mα(a) = 0 by applying condition (3). In view of Proposition
2.6, it is clear that any α-reduced module is α-skew Armendariz and is therefore α-skew McCoy.

Proposition 2.9 Let α be an endomorphism of a reduced ring R . Then every α-semicommutative module
MR is α-skew McCoy.

Proof. Since MR is α -semicommutative, it is easy to obtain that for m ∈ M and a ∈ R ,

ma = 0 ⇒ mRαs(at) = 0 for any s, t ≥ 1. (2.4)

Suppose that m(x) = m0 + m1x + · · · + mpxp ∈ M [x; α], f(x) = a0 + a1x + · · ·+ aqx
q ∈ R[x; α]\{0} satisfy

m(x)f(x) = 0. We may assume that m(x) �= 0 and k is minimal such that mk �= 0, and let l be minimal such

that al �= 0. Since m(x)f(x) = 0, we have the following equations:
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(0) mkαk(al) = 0,

(1) mk+1α
k+1(al) + mkαk(al+1) = 0,

· · ·
(p + q − k − l) mpαp(aq) = 0.

If αk(al) = 0 then m(x)al = 0, and we are done. Next assume that αk(al) �= 0. Multiplying Eq. (1) by

αk+1(al) from the right, we obtain mk+1α
k+1(al)αk+1(al)+mkαk(al+1)αk+1(al) = 0. Combining Eq. (0) with

(2.4), one has mkαk(al+1)αk+1(al) = 0. Thus mk+1α
k+1(al)αk+1(al) = mk+1α

k+1(a2
l ) = 0. Continuing this

procedure, multiplying Eq. (i) on the right by αk+i(ai
l) yields mk+iα

k+i(ai+1
l ) = 0, where i = 1, 2, . . . , p − k.

Let r = ap
l . Then r �= 0 since R is reduced. So, by (2.4) we get miα

i(r) = 0 for each i , proving that MR is

α -skew McCoy. �

In view of [7, Example 2.5], the converse of Proposition 2.9 does not hold generally.

Following [12], an endomorphism α of a ring R is called compatible if for each a, b ∈ R, ab = 0 ⇔
aα(b) = 0. A ring R is said to be α-compatible if there exists a compatible endomorphism α of R. We define
the following:

Definition 2.10 (1) An endomorphism α of a ring R is called weakly compatible (or W-compatible for short)

if whenever ab = 0 for a, b ∈ R , aα(b) = 0.

(2) An endomorphism α of a ring R is called weakly finitely compatible (or WF-compatible for short) if for a

finite number of elements ai, bi ∈ R ,
∑

i aibi = 0 implies
∑

i aiα(bi) = 0 .

The following examples reveal the relationships among the above endomorphisms (for a given ring).

Example 2.11 (1) Both compatible and WF-compatible endomorphisms of given rings are W-compatible, but

the converse is not true. Let R = Z2[x], and α : R → R be defined by α(f(x)) = f(0) for f(x) ∈ R.

Since R is an integral domain, g(x)h(x) = 0 implies that either g(x) = 0 or h(x) = 0, so g(x)α(h(x)) = 0.

Hence α is W-compatible. But α is neither compatible nor WF-compatible. Indeed, let f1(x) = x, g1(x) =

1, f2(x) = 1 and g2(x) = x. Then f2(x)α(g2(x)) = 0 and f1(x)g1(x) + f2(x)g2(x) = 0, but both f2(x)g2(x)

and f1(x)α(g1(x)) + f2(x)α(g2(x)) do not equal 0.

(2) WF-compatible endomorphisms need not be compatible. Given the ring and the ring endomorphism in Exam-

ple 2.3(2), it is easy to check that α is WF-compatible. However, since ( 1 0
0 0 )α(( 0 1

0 0 )) = 0 and ( 1 0
0 0 ) ( 0 1

0 0 ) �= 0 ,

α is not compatible.
(3) Let R = Z2[x1, x2, . . .] be a ring of polynomials in infinitely countably many indeterminates. Define
α : R → R by xi → xi+1 for i = 1, 2, . . . . Notice that R is an integral domain and α is monic. So α

is compatible. Nevertheless, since x2x3 + x3x2 = 0 and x2α(x3) + x3α(x2) = x2x4 + (x3)2 �= 0 , α is not
WF-compatible.

For an endomorphism α of a ring R , write α(h(x)) =
∑n

i=0 α(ci)xi, where h(x) =
∑n

i=0 cix
i ∈ R[x; α].

Lemma 2.12 Let α be a WF-compatible endomorphism of a ring R . If f(x)g(x) = 0 in R[x; α] , then

f(x)α(g(x)) = 0 .
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Proof. Suppose that f(x) =
∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j are elements of R[x; α] with f(x)g(x) = 0.

Then looking at the degree k part of the equation f(x)g(x) = 0 we have
∑

i+j=k aiα
i(bj) = 0. Because α is

WF-compatible, 0 =
∑

i+j=k aiα
i+1(bj) =

∑
i+j=k aiα

i(α(bj)) for each k. Thus f(x)α(g(x)) = 0. �

Lemma 2.13 Let R be a semicommutative ring and α be a W-compatible endomorphism of R. Suppose that

f(x)g(x) = 0 for nonzero f(x) =
∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j of R[x; α]. If alg(x) �= 0 for some minimal

index l then an+1
l αl(g(x)) = 0.

Proof. A direct check shows that R is α -semicommutative. By hypothesis, akg(x) = 0 for every k < l. So

akbj = 0 for j = 0, . . . , n. Since α is W-compatible, we have akαk(bj) = 0. It follows that 0 = f(x)g(x) =

(
∑m

i=l aix
i)(

∑n
j=0 bjx

j). One easily obtains the following system of equations:

(l) alα
l(b0) = 0,

(l + 1) alα
l(b1) + al+1α

l+1(b0) = 0,

(l + 2) alα
l(b2) + al+1α

l+1(b1) + al+2α
l+2(b0) = 0,

· · ·
(m + n) amαm(bn) = 0.

Since R is α -semicommutative, by Eq. (l) one has alal+1α
l+1(b0) = 0. Now multiplying Eq. (l + 1) by al

on the left yields a2
l α

l(b1) = 0. Similarly, multiplying Eq. (l + 2) by a2
l from the left, we have a3

l α
l(b2) = 0

by using the α -semicommutativity of R . Repeating this process finite times, we obtain aj+1
l αl(bj) = 0 for

j = 0, . . . , n . Thus an+1
l αl(bj) = 0, and so an+1

l αl(g(x)) = 0. �

A ring is said to be right duo (resp., left duo) if all its right (resp., left) ideals are two-sided ideals. It is
not difficult to show that one-sided duo rings are semicommutative.

Lemma 2.14 Suppose that R is a right duo ring and α is a WF-compatible automorphism of R . If f(x)g(x) =

0 for nonzero f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j of R[x; α] and akg(x) �= 0 for minimal k ≥ 0, then there

exists h(x) ∈ R[x; α]\{0} such that f(x)h(x) = 0 and aih(x) = 0 for all i ≤ k.

Proof. Since akg(x) �= 0, there exists a minimal index l such that akbl �= 0. If akαk(bl) = 0 then let

h1(x) = αk(g(x)). As α is monic, h1(x) �= 0. Next assume that akαk(bl) �= 0. Note that k is minimal

such that akg(x) �= 0. By Lemma 2.13, there exists an integer p ≥ 1 such that ap+1
k αk(bl) = 0 �= ap

kαk(bl).

Since R is right duo, there exists s ∈ R with ap
kαk(bl) = αk(bl)s . As α is an automorphism, we may let

s = αl(r) for some r ∈ R . Write h1(x) = αk(g(x))r . Then h1(x) �= 0 since αk(bl)αl(r) = αk(bl)s �= 0.

By Lemma 2.12, f(x)h1(x) = 0 for both cases. In addition, since aibj = 0 for all j and i < k , it follows

that a0h1(x) = a1h1(x) = ak−1h1(x) = 0 by using the W-compatibility of α , and ak annihilates the first l

coefficients of h1(x).

If ak annihilates all coefficients of h1(x) then we are done by letting h(x) = h1(x). Otherwise, repeating

the above procedure, and after finite times we can construct h(x) ∈ R[x; α]\{0} satisfying f(x)h(x) = 0 and

for each i ≤ k , aih(x) = 0. �
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Theorem 2.15 Let R be a right duo ring and α be a WF-compatible automorphism of R. Then R is an
α-skew McCoy ring.

Proof. Let f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x; α]\{0} satisfy f(x)g(x) = 0. It suffices to show the

following.

There exists g′(x) ∈ R[x; α]\{0} such that f(x)g′(x) = 0 and for all i, aig
′(x) = 0.

Note that α is WF-compatible. If aig(x) = 0 for all i then let g′(x) = g(x). So aiα
i(bj) = 0, which

implies that f(x)bj = 0 for each j , and we are done. Next we assume that aig(x) �= 0 for some i. Let k be min-

imal such that akg(x) �= 0. Then by Lemma 2.14, there exists a nonzero h(x) ∈ R[x; α] such that f(x)h(x) = 0

and a0h(x) = a1h(x) = · · · = akh(x) = 0. Now, if aih(x) = 0 for all i , then the proof is finished by letting

g′(x) = h(x). If not, there must exist an integer i0 (> k) satisfying ai0h(x) �= 0, and apply Lemma 2.14 again.

So after finite times check, we can produce a nonzero polynomial g′(x) ∈ R[x; α] such that f(x)g′(x) = 0 and

aig
′(x) = 0 for all i . The proof is complete. �

Remark 2.16 Notice that in Example 2.3(1), the ring R = Z2 ⊕ Z2 is commutative, and thus duo. But R

is not α-skew McCoy. So we conclude that the condition “α is a WF-compatible automorphism” in Theorem
2.15 is not superfluous.

Corollary 2.17 [5, Theorem 8.2] Right duo rings are necessarily right McCoy.

Let α be an endomorphism of a ring R and M be an R -module. M is said to be α-compatible if for
any m ∈ M and r ∈ R , mr = 0 ⇔ mα(r) = 0 (see [1]). Based on this, we call M weakly α-compatible

(or W-α-compatible for short) if mα(r) = 0 whenever mr = 0; and call M weakly finitely α-compatible (or

WF-α-compatible for short) if for a finite number of elements mi ∈ M and ri ∈ R,
∑

i miri = 0 implies∑
i miα(ri) = 0.

Proposition 2.18 Let R be a right duo ring and α be an automorphism of R . Then every WF-α-compatible
cyclic R -module is α-skew McCoy.

Proof. In view of Theorem 2.15, RR is α -skew McCoy. Let N be a cyclic R -module. Then N ∼= R/I with

I = rR(n) for some n ∈ N . By hypothesis, N is WF-α -compatible. Then for any s ∈ I , we have ns = 0,

implying nα(s) = 0. Thus α(I) ⊆ I. Therefore, the result follows from Proposition 2.4(4). �

Recall that a module is called a Bezout module if each of its finitely generated submodules is cyclic.

Corollary 2.19 Let R be a right duo ring with an automorphism α . Then WF-α-compatible Bezout R -
modules are α-skew McCoy.

Proof. By Proposition 2.18, every WF-α -compatible cyclic R -module is α -skew McCoy. Hence Bezout
R -modules are α -skew McCoy by Proposition 2.4(2). �

In what follows Rn denotes (for a positive integer n) the following subring of the upper triangular matrix

ring Tn(R) over a ring R :

Rn = {(aij) ∈ Tn(R) : aij ∈ R, a11 = a22 = · · · = ann};
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we also consider the following subgroup of the additive group of all formal upper triangular matrices over M,

namely,
Mn = {(mij) ∈ Tn(M) : mij ∈ M, m11 = m22 = · · · = mnn}.

Then Mn is an Rn -module under the usual matrix addition operation and the following scalar product

operation. For W = (wij) ∈ Mn and A = (aij) ∈ Rn, WA = (mij) with mij =
∑n

k=1 wikakj , for

i, j = 1, 2, . . . , n. An endomorphism α of R can be extended to an endomorphism α of Rn defined by
α((aij)) = (α(aij)).

Proposition 2.20 A module MR is α-skew McCoy if and only if Mn is α-skew McCoy as an Rn -module.

Proof. The result for modules can be proved in exactly the same manner as that results for rings in [3,

Theorem 14]. �

For a commutative domain R and a module MR , the torsion submodule of M is defined by T (M) =

{x ∈ M |rR(x) �= 0} ; M is called torsion free if T (M) = 0.

Proposition 2.21 Let α be a monomorphism of a commutative domain D and M be a D -module. Then M

is α-skew McCoy if and only if its torsion submodule T (M) is α-skew McCoy.

Proof. Let m(x) =
∑p

i=0 mix
i ∈ M [x; α] and d(x) =

∑q
j=0 djx

j ∈ D[x; α]\{0} satisfy m(x)d(x) = 0. We

have
(0) m0d0 = 0,
(1) m0d1 + m1α(d0) = 0,
(2) m0d2 + m1α(d1) + m2α

2(d0) = 0,
· · ·

(p + q) mpα
p(dq) = 0.

We may assume that d0 �= 0. Then by Eq. (0), m0 ∈ T (M). Multiplying Eq. (1) by d0 on the right, one

obtains m1α(d0)d0 = 0. Since α is monic and D is a domain, m1 ∈ T (M). Multiplying Eq. (2) by α(d0)d0

from the right yields m2α
2(d0)α(d0)d0 = 0, so m2 ∈ T (M). Repeating this process, we have m(x) ∈ T (M)[x].

Since T (M) is α -skew McCoy, there exists r ∈ R\{0} satisfying miα
i(r) = 0. This proves that M is an

α -skew McCoy module. The other implication is trivial. �

By a similar proof as above, we have the following result.

Proposition 2.22 Let α be an endomorphism of a commutative domain D and M be a torsion free D -module.
Then M is an α-skew McCoy module.

A module is uniform [8] if any two nonzero submodules have a nonzero intersection.

Lemma 2.23 Let {Mi}i∈Λ be a family of α-skew McCoy R -modules with Λ an index set. If RR is uniform,

then a direct sum M =
∐

i∈Λ Mi is α-skew McCoy.

Proof. Let m(x) =
∑p

k=0(mik)i∈Λxk ∈ M [x; α], g(x) ∈ R[x; α]\{0} satisfy m(x)g(x) = 0. Let mi(x) =∑p
k=0 mikxk ∈ Mi[x] . Since mi(x)g(x) = 0 and Mi is α -skew McCoy, there exists ri ∈ R\{0} such that

mi(x)ri = 0. Note that the set Λ′ = {i ∈ Λ | mi(x) �= 0} is finite. Put U =
⋂

i∈Λ′ riR . Then U �= 0 since RR
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is uniform. Take any r ∈ U\{0} . Then mi(x)r = 0 for each i , whence m(x)r = 0. Thus, M =
∐

i∈Λ Mi is

α -skew McCoy. �

Theorem 2.24 Let α be an endomorphism of a ring R and RR be uniform. Then R is α-skew McCoy if and
only if every flat R -module is α-skew McCoy.

Proof. Let M be a flat module. Let 0 → K → F → M → 0 be an exact sequence with F free.

(In what follows, for any y ∈ F , we denote y = y + K in M ). Let m(x) =
∑p

i=0 yix
i ∈ M [x; α] and

g(x) =
∑q

j=0 bjx
j ∈ R[x; α]\{0} satisfy m(x)g(x) = 0, then we have

∑
i+j=k

yiα
i(bj) = 0 for k = 0, . . . , p + q.

Therefore y0b0, y0b1 + y1α(b0), . . . , ypα
p(bq) all belong to K. Since M is a flat R -module, there exists an R -

homomorphism ν : F → K such that ν(y0b0) = y0b0, ν(y0b1 + y1α(b0)) = y0b1 + y1α(b0), . . . , ν(ypα
p(bq)) =

ypαp(bq). Write wi := ν(yi) − yi for i = 0, . . . , p. Each wi is an element of F and therefore the polynomial

n(x) =
∑p

i=0 wix
i ∈ F [x; α] and n(x)g(x) = 0. Since R is α -skew McCoy and FR is free, by Lemma 2.23 F is

α -skew McCoy. Thus, there exists a nonzero r ∈ R such that wiα
i(r) = 0 for all i. It follows that yiα

i(r) ∈ K,

and so yiα
i(r) = 0 in M , proving that M is α -skew McCoy. The other implication is obvious. �

Question: Can the words “RR is uniform” be removed in Theorem 2.24?

Recall that if α is an endomorphism of a ring R, then the map R[x] → R[x] defined by
∑m

i=0 aix
i →∑m

i=0 α(ai)xi is an endomorphism of the polynomial ring R[x]. We also denote the extended map by α. In [27,

Theorem 3.3], Zhang and Chen proved that, if the endomorphism α of a ring R satisfies αl = 1R for some

integer l ≥ 1, then a module MR is α -skew Armendariz iff M [x] is α -skew Armendariz over R[x]. We have a
similar result.

Theorem 2.25 Let α be an endomorphism of a ring R and αl = 1R for some integer l ≥ 1 . Then a module
MR is α-skew McCoy if and only if M [x] is α-skew McCoy over R[x].

Proof. Assume that M is α -skew McCoy. Let n(y) =
∑p

i=0 ni(x)yi ∈ M [x][y; α] and g(y) =
∑q

j=0 gj(x)yj ∈

R[x][y; α] with n(y)g(y) = 0, where ni(x) =
∑pi

k=0 nikxk ∈ M [x] and gj(x) =
∑qj

l=0 bjlx
l ∈ R[x]. Take an

integer u such that u ≥ deg(n0(x))+deg(n1(x))+ · · ·+deg(np(x))+deg(g0(x))+deg(g1(x))+ · · ·+deg(gq(x)),

where the degree of ni(x) is as polynomial in M [x] , the degree of gj(x) is as polynomial in R[x] and the degree

of the zero polynomial is taken to be 0. Put

m(x) = n0(xl) + n1(xl)xlu+1 + n2(xl)x2lu+2 + · · ·+ np(xl)xplu+p ∈ M [x; α],

h(x) = g0(xl) + g1(xl)xlu+1 + g2(xl)x2lu+2 + · · ·+ gq(xl)xqlu+q ∈ R[x; α].

Then h(x) �= 0, and the set of coefficients of ni(x)’s (resp., gj(x)’s) equals the set of coefficients of m(x)

(resp., h(x)). Since αl = 1R , xl commutes with elements of R in R[x; α] . By n(y)g(y) = 0, we have
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m(x)h(x) = 0 ∈ M [x; α] . Since M is α -skew McCoy, there exists r ∈ R\{0} such that m(x)r = 0 ∈ M [x; α].

That is, ni(xl)xilu+ir = 0 for i = 0, 1, . . . , p . Again, since αl = 1R, we have nikαi(r) = 0 for all i and k.

Hence n(y)r = 0 in M [x][y; α]. Thus, M [x] is α -skew McCoy over R[x] .

Conversely, assume that M [x] is α -skew McCoy. Let m(x)g(x) = 0 with m(x) =
∑p

i=0 mix
i ∈ M [x; α]

and g(x) =
∑q

j=0 bjx
j ∈ R[x; α]\{0} . Set n(y) =

∑p
i=0 miy

i and h(y) =
∑q

j=0 bjy
j . Then h(y) �= 0 and

n(y)h(y) = 0 ∈ M [x][y; α]. By hypothesis, there exists a nonzero element c(x) =
∑m

i=0 cix
i ∈ R[x] satisfying

n(y)c(x) = 0. It follows that miα
i(c(x)) = 0, and so miα

i(cj) = 0, implying m(x)cj = 0 in M [x; α] , where

0 ≤ i ≤ p and 0 ≤ j ≤ m. Thus MR is α -skew McCoy. �

Corollary 2.26 [3, Theorem 20] Let α be an endomorphism of a ring R and αl = 1R for some positive integer

l . Then R is α-skew McCoy if and only if R[x] is α-skew McCoy.

We write Mn(R) for the n × n matrix ring over R . For a module MR and A = (aij) ∈ Mn(R), let

MA = {(maij) : m ∈ M}. For n ≥ 2, let V =
∑n−1

i=1 Ei(i+1) where {Eij : 1 ≤ i, j ≤ n} are the matrix units,

and set Vn(R) = RIn +RV + · · ·+RV n−1 and Vn(M) = MIn +MV + · · ·+MV n−1. Then Vn(R) is a ring and

Vn(M) becomes a right module over Vn(R) under usual addition and multiplication of matrices. There is a ring

isomorphism θ : Vn(R) → R[x]/(xn) given by θ(r0In +r1V + · · ·+rn−1V
n−1) = r0+r1x+ · · ·+rn−1x

n−1+(xn),

and an abelian group isomorphism φ : Vn(M) → M [x]/(M [x](xn)) given by φ(m0In+m1V +· · ·+mn−1V
n−1) =

m0 + m1x + · · ·+ mn−1x
n−1 + M [x](xn) such that φ(WA) = φ(W )θ(A) for all W ∈ Vn(M) and A ∈ Vn(R).

Let α be an endomorphism of a ring R , the map Vn(R) → Vn(R) defined by a0In + a1V + · · · +

an−1V
n−1 → α(a0)In + α(a1)V + · · · + α(an−1)V n−1 is an endomorphism of Vn(R). Similarly the map

R[x]/(xn) → R[x]/(xn) defined by a0+a1x+ · · ·+an−1x
n−1+(xn) → α(a0)+α(a1)x+ · · ·+α(an−1)xn−1+(xn)

is an endomorphism of R[x]/(xn). We shall denote the two maps above by α.

Proposition 2.27 Let α be an endomorphism of a ring R. Then a module MR is α-skew McCoy if and only
if M [x]/M [x](xn) is α-skew McCoy over R[x]/R[x](xn) for any n ≥ 2.

Proof. By the remark above, it suffices to show that MR is α -skew McCoy iff Vn(M)Vn(R) is α -skew McCoy.

“⇒”. Suppose that W (x)A(x) = 0 where W (x) =
∑p

i=0 Wix
i ∈ Vn(M)[x; α] and A(x) =

∑q
j=0 Ajx

j ∈

Vn(R)[x; α]\{0}. Let Wi = mi0In + mi1V + · · · + mi(n−1)V
n−1 and Aj = aj0In + aj1V + · · · + aj(n−1)V

n−1

for 0 ≤ i ≤ p and 0 ≤ j ≤ q. It follows that [m0(x)In + m1(x)V + · · · + mn−1(x)V n−1][a0(x)In + a1(x)V +

· · · + an−1(x)V n−1] = 0 in Vn(M)[x; α], where mk(x) = m0k + m1kx + · · · + mpkxp ∈ M [x; α] and al(x) =

a0l + a1lx + · · · + aqlx
q ∈ R[x; α] for 0 ≤ k, l ≤ n − 1, and hence

∑
k+l=t mk(x)al(x) = 0 in M [x; α] for

t = 0, 1, . . . , n − 1. In particular, we have

m0(x)al0 (x) = 0

with a minimal index l0 ( l0 exists since A(x) �= 0) such that al0 (x) �= 0. Since MR is α -skew McCoy, there

exists a nonzero r ∈ R such that m0(x)r = 0. Let A = rE1n. Then A ∈ Vn(R)\{0} and W (x)A = 0. So

Vn(M)Vn(R) is α -skew McCoy.
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“⇐”. Assume that m(x)g(x) = 0, where m(x) ∈ M [x; α] and g(x) ∈ R[x; α]\{0} . Let α(x) = m(x)In

and β(x) = g(x)In . Then α(x) ∈ Vn(M)[x; α] , β(x) ∈ Vn(R)[x; α]\{0} and α(x)β(x) = 0. As Vn(M) is an

α -skew McCoy Vn(R)-module, there exists a nonzero A ∈ Rn such that α(x)A = 0. Obviously, there is an

element r ∈ R\{0} such that m(x)r = 0. Therefore, MR is α -skew McCoy. �

The following definition is due to Zhang and Chen [28]. A module MR is a zip module if for any subset X

of M , rR(X) = 0 implies rR(Y ) = 0 for some finite subset Y of X . By [6, Proposition 1] and [15, Example 10],

(in general) the class of α -skew McCoy modules neither contains nor is contained in the class of zip modules.

According to [6, Example 2], RR is a zip module does not imply that R[x; 1R]R[x;1R] is zip (Some notable

results on zip rings have appeared in [9], [10], [26], etc).

Theorem 2.28 Let α be an endomorphism of a ring R with αl = 1R for some positive integer l and MR

be a W-α-compatible α-skew McCoy module. Then M is a zip R -module if and only if M [x; α] is a zip

R[x; α]-module.

Proof. Suppose that M [x; α]R[x;α] is zip. Let Y ⊆ M with rR(Y ) = 0. If f(x) = a0 + a1x + · · ·+ anxn ∈
rR[x;α](Y ), then mf(x) = 0 for each m ∈ Y. Thus mai = 0, and so ai ∈ rR(Y ) = 0 for i = 1, 2, . . . , n.

Therefore f(x) = 0, i.e., rR[x;α](Y ) = 0. Since M [x; α] is zip, there exists a finite subset Y0 ⊆ Y such that

rR[x;α](Y0) = 0. Hence, rR(Y0) = rR[x;α](Y0)
⋂

R = 0.

Conversely, assume that M is zip. Let X ⊆ M [x; α] with rR[x;α](X) = 0. Now let Y be the set

of all coefficients of elements in X . Then Y ⊆ M . If a ∈ rR(Y ), then wa = 0 for each w ∈ Y. Since

MR is W-α -compatible, wαi(a) = 0 for all i ≥ 0. Thus we have m(x)a = 0 for every m(x) ∈ X, and so

a ∈ rR[x;α](X) = 0. That is rR(Y ) = 0. Since M is zip, there exists a finite subset Y0 = {w1, w2, . . . , wt} ⊆ Y

such that rR(Y0) = 0. For each wi ∈ Y0 and i = 1, 2, . . . , t, let mwi(x) ∈ X be such that some coef-

ficient of mwi (x) is wi. Let X0 = {mw1(x), mw2 (x), . . . , mwt(x)} ⊆ X and Y1 be the set of all coeffi-

cients of elements in X0, where mwi (x) =
∑pwi

q=0 awiqx
q . Then Y0 ⊆ Y1 and so rR(Y1) ⊆ rR(Y0) = 0. If

f(x) =
∑n

j=0 bjx
j ∈ rR[x;α](X0)\{0} , then mwi (x)f(x) = 0 for i = 1, 2, . . . , t. Write u =

∑t
k=1 pwk + n. Let

n(x) = mw1(x) + mw2(x)xlu + · · · + mwt(x)xlu(t−1) ∈ M [x; α] , by αl = 1R we have n(x)f(x) = 0. Since

MR is α -skew McCoy, there exists r ∈ R\{0} such that n(x)r = 0. So mwi (x)r = 0 in M [x; α] for each i,

i.e., awiqα
q(r) = 0. The condition MR is W-α -compatible implies that there exists an integer z such that

awiqα
z(r) = 0 for all wi and q. Then αz(r) ∈ rR(Y1) = 0, and so r = 0, a contradiction. Therefore f(x) = 0,

that is, rR[x;α](X0) = 0. �

Corollary 2.29 [7, Theorem 3.6] Let M be a McCoy R -module. Then M is a zip R -module if and only if

M [x] is a zip R[x]-module.

Corollary 2.30 Let R be a right McCoy ring. Then R is right zip if and only if R[x] is right zip.

Remark 2.31 Notice that all R -modules are W-1R -compatible. We conclude that there exists an α-skew

McCoy module which is not W-α-compatible. Consider the ring R = {( a b
0 a ) |a, b ∈ Z4}. Let α : R → R be
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an endomorphism defined by α(( a b
0 a )) =

(
a −b
0 a

)
. By [3, Example 7], RR is α-skew McCoy. Let R2 be a

ring and the endomorphism α : R2 → R2 both as defined in Proposition 2.20. Write M = R2 . Then M is
α-skew McCoy as an R2 -module also by Proposition 2.20. Nevertheless, M is not W-α-compatible. Indeed,

for A =
(

( 0 1
0 0 ) ( 1 0

0 1 )
( 0 0
0 0 ) ( 0 1

0 0 )

)
∈ M , B =

( �
0 −1
0 0

�
( 1 0
0 1 )

( 0 0
0 0 )

�
0 −1
0 0

�

)
∈ R2, AB = 0 but Aα(B) �= 0.
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