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On a-skew McCoy modules®

Jian Cui and Jianlong Chen

Abstract

Let a be a ring endomorphism. Extending the notions of McCoy modules and a-skew McCoy rings, we
introduce the notion of a-skew McCoy modules, which can also be regarded as a generalization of «-skew
Armendariz modules. A number of illustrative examples are given. Various properties of these modules are
developed, and equivalent conditions for a-skew McCoy modules are established. Furthermore, we study

the relationship between a module and its polynomial module.
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1. Introduction

Throughout this paper all rings considered are associative with unity and all modules are unitary right
modules. R[z] denotes the polynomial ring over a ring R and M|[z] denotes the polynomial module over a
module M. Let Z,, be the ring of integers modulo n. The symbol I,, stands for the n x n identity matrix. For
aset X C M, rr(X) stands for the right annihilator of X in R.

Rege and Chhawchharia [23] and Nielsen [22] independently called a ring R right McCoy if whenever
f(x)g(x) = 0 for f(z) € R[z] and g(x) € R[z]\{0}, there exists a nonzero r € R with f(z)r = 0. Left
McCoy rings are defined similarly. A ring is said to be McCoy if it is both right and left McCoy. The term
“McCoy ring” was coined because McCoy [21] had shown that every commutative ring satisfies the above
mentioned condition. The class of McCoy rings properly contains the class of Armendariz rings. (These rings
are defined through the condition: whenever polynomials f(z) = 7" a:x’, g(x) = Y7 o bja’ € R[z] satisfy
f(x)g(x) = 0, then a;b; = 0 for every ¢ and j. See [23] for basic results on Armendariz rings). Recall
that a ring R is semicommutative provided ab = 0 implies aRb = 0 for a,b € R. In [13] it was claimed
that all semicommutative rings were McCoy. However, Hirano’s claim assumed that R[z] is semicommutative
if R is semicommutative, and this was shown to be false in [16]. In 2006, Nielsen [22] gave an example of
semicommutative ring which is not right McCoy. Some other properties on McCoy rings have appeared in
[5], [11], [18], [20], [23, 24, 25], etc. As a generalization of McCoy rings (resp., Armendariz rings), McCoy

2000 AMS Mathematics Subject Classification: 16U80; 16S99; 16 W20.

*This research is supported by the National Natural Science Foundation of China (10871042, 10971024), the Specialized Research
Fund for the Doctoral Program of Higher Education (200802860024), and the Natural Science Foundation of Jiangsu Province
(BK2010393).

217



CUI, CHEN

modules [7] (resp., Armendariz modules [4]) were introduced (Maybe the first result, without a naming, McCoy
module, obtained in [2]). A module Mg is said to be McCoy (resp., Armendariz) if whenever polynomials
m(x) = >7_gmiat € Mlx] and g(x) = >9_gbja? € R[z]\{0} satisfy m(z)g(x) = 0, there exists r € R\{0}
such that m(z)r =0 (resp., m;b; =0 for every ¢ and j). Armendariz modules are clearly McCoy.

Given an endomorphism « of a ring R, the skew polynomial ring R[x; @] consists of the polynomials in
x with coefficients in R written on the left, subject to the relation zr = a(r)z for all » € R. Recently, Bager,
Kwak and Lee [3] called a ring R «-skew McCoy with respect to an endomorphism « of R if for any nonzero
polynomials f(z) and g(z) € R[z;¢], f(x)g(x) = 0 implies f(z)r = 0 for some nonzero r € R. This notion
generalized both concepts of McCoy rings and «-skew Armendariz rings (see [14]).

In this paper, we introduce the notion of a-skew McCoy modules as a straightforward extensions to
modules. Many examples of a-skew McCoy modules are given, and properties of this class of modules are
investigated. Various results of a-skew McCoy rings are extended to a-skew McCoy modules. We also study

the relationship between a module and its polynomial module.

2. «a-skew McCoy modules

Let a be an endomorphism of a ring R and M be a right R-module. M[z;a] = {>;_ mzt;s >
0,m; € M} is an abelian group under an obvious addition operation. Moreover, M|[xz;a] becomes a module
over R[z;a] under the following scalar product operation: For m(z) = >0 m;a? € M[z;a] and f(z) =
Yi—oaa’ € Rlz;al, m(x) f(x) = 2 (i —k m;a’(a;))z¥. According to Zhang and Chen [27], M is «-skew
Armendariz if m(z)f(z) = 0 where m(z) = >.0_,mz* € M[z;a] and f(z) = i o a;7? € R[r;a] implies

m;ai(a;) =0 for all i and j.

Definition 2.1 Let o be an endomorphism of a ring R and M be an R-module. M is called o-skew McCoy
if whenever m(x)g(z) = 0 where m(z) = Y.0_ m;a* € M[z;a] and g(z) = o bjz? € R[x;a]\{0}, there

exists a nonzero element r € R such that m(z)r =0 (i.e., m;ai(r) =0 for all ).

Remark 2.2 (1) M is a McCoy R-module if and only if M is 1g-skew McCoy, where 1g is the identity
endomorphism of R.

(2) A ring R is a-skew McCoy if and only if Rr is an a-skew McCoy module.

(3) An R-module M is o-skew McCoy if and only if, for all m(x) € M[x;a], 7Rma)(m(z)) # 0 implies that
T'Rlz;a] (m(z)) R #0.

Any a-skew Armendariz module is obviously a-skew McCoy, the falsity of the converse can be inferred
from [17, Example 3] or [23, Remark 4.3].

Example 2.3 (1) Let R =72 ® Zs, and a: R — R be defined by a((a,b)) = (b,a). Then Rp is McCoy but
not a-skew McCoy by [3, Example 4] and Remark 2.2(2).

(2) For any given ring S, let R = T2(S) be the ring of all 2 x 2 upper triangular matrices over S. Then
Rp is not McCoy by [5, Proposition 10.2]. Define o: R — R by a((2%)) = (&9). We conclude that Rp is

C
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a-skew McCoy. Indeed, suppose that F(x)G(x) =0 for F(x) = Y7_, Aiz’ € Rlz;a] and G(z) = Y 1_, Bja’ €
Rlz; a]\{0}. We may assume that By # 0 and write By = (bo1 Zg ). If by = 0 then let C = () Zg ), otherwise,
let C = (8 bol ) . It easily checks that A;a'(C) =0 for both cases, where i =0,...,p.

An ideal I of aring R is an a-ideal if a(I) C I, where « is an endomorphism of R.

Proposition 2.4 (1) Every submodule of an a-skew McCoy module is a-skew McCoy. In particular, if I is
a right ideal of an a-skew McCoy ring R, then I is a-skew McCoy.

(2) M is an a-skew McCoy module if and only if every finitely generated submodule of M is a-skew McCoy.
(3) For any index set T, if M; is an «;-skew McCoy R;-module for each i € T, then []
McCoy ]

(4) Let I be any nonzero a-ideal of a ring R, then R/I is an a-skew McCoy R-module.

ier M is an o -skew

ser Ri-module, where o = (av;)ier -

Proof. (1) - (3) are obvious. (4) For each f(z) € (R/I)[x; ], take any nonzero r € I (C R). Since «(I) C I,

fx)r € Ilz; al, ie., f(x)r=0.

Remark 2.5 The condition “I is an a-ideal” in Proposition 2.4(4) is necessary. Take the ring and the ring
endomorphism in Example 2.3(1). Let I = 00Zs C R. Then I is an ideal but o(I) C I. Note that R/I = Zs®O0.
We show that R/I is not a-skew McCoy as a right R-module. For f(x) = (1,0)+ (1,0)x € (Z2 ®0)[x;a] and
g(x) =(0,1)+ (1,0)z € R[z;¢], f(z)g(x) =0. However, f(x)r =0 implies r =0 for r € R.

A module Mg is semicommutative [4] if for any m € M and a € R, ma = 0 implies mRa = 0. In [27],
a module Mg with a ring endomorphism « of R is called a-semicommutative if whenever ma = 0 for m € M
and a € R, mRa(a) = 0; aring R is a-semicommutative if Rpr is a-semicommutative. We can infer that

1g-semicommutative modules need not be 1z-McCoy from Section 3 of [22].

Proposition 2.6 Let a be an endomorphism of a ring R. Then a semicommutative module Mr with ma(a) =

0 whenever ma(a)a =0 for m € M and a € R is a-skew Armendariz.

Proof. Firstly, we show that Mg is a-semicommutative. Let ma = 0 for m € M and a € R. Then

mRa = 0. Clearly, ma(a)a = 0. Thus ma(a) =0 and mRa(a) =0 by the hypotheses.

Let m(x) = Y7 ymiz’ € Mlz;a] and f(x) = Y1 a;27 € R[z;a]\{0} with m(z)f(z) = 0. Then
Ziﬂ:k m;at(a;) = 0 for k = 0,...,p+q. So mgag = 0 and mpas + mia(ag) = 0, and then mgajag +
mia(ag)ag = 0. Since Mp is semicommutative, moajag = 0. So we have mia(ag)ap = 0, and mia(ag) = 0 by
the hypothesis. Hence mga; = mia(ag) = 0. Assume that s > 1 and m;a’(a;) =0 for all 4,5 with i +j < s.
Note that

moasi1 +mia(as) + -+ mea®(a1) + mepra®(ag) = 0, (2.1)

where m; and a; are 0 if ¢ > p and j > ¢. Multiplying (2.1) by a®(ap) on the right yields
moasy10°(ao) +mialas)a®(ag) + - - - +mga’(ar)a’ (ag) + ms1a(ag)a’ (ag) = 0. (2.2)
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Since Mp is a-semicommutative and m;a’(ag) = 0 for i < s, it follows that m;Ra®(ag) = 0. Thus
(2.2) becomes mgi1a*T(ag)a®(ag) = msyi1a(a®(ag))a’(ap) = 0, which implies msy1a®t(ag) = 0 by the

assumption. So (2.1) becomes
moas+1 +mialas) + -+ ms_las_l(ag) + msa®(ar) =0. (2.3)
Analogously, multiplying (2.3) by a® !(a1) on the right, one obtains
moast1a® ar) + mia(as)a® Hay) + -+ ms_10 Hag)a®Hay) + msat(ar)a®Hay) = 0.

The similar argument as the above reveals that msa®(a1)a®"(a;) = 0. Thus msa®(a;) = 0. Continuing this
process, we have msa®(a1) = -+ - = mia(as) = moast1 = 0. So we prove that m;a’(a;) = 0 for all i, with

i+ j < s+ 1. By the induction principle, m;a‘(a;) =0 for every i and j. O
The converse of Proposition 2.6 is not true. We use the ring given in [14].

Example 2.7 Let R ={(4?)|a € Z,b € Zs}. Clearly, R is commutative. Let o: R — R be an endomorphism
defined by

o((s2)=(27).
Then Rpg is a-skew Armendariz by [14, Ezample 7. However, I,a((35)) (92) =0, but La((92)) # 0 in
case b# 0.

Let a be an endomorphism of a ring R and M be an R-module. According to Lee and Zhou [19],
M is called «a-reduced if the following conditions hold: For any m € M and a € R, (1) ma = 0 implies
mRa = mRa(a) = 0; (2) maa(a) =0 implies ma = 0; (3) ma? = 0 implies ma = 0. A ring is reduced if Rg

is 1r-reduced.

Remark 2.8 Assume that M is an a-reduced R-module. For some m € M and a € R with ma(a)a =0, by
(1) we have ma(a)a(a) = mla(a)]?> =0, and so ma(a) =0 by applying condition (3). In view of Proposition

2.6, it is clear that any o -reduced module is «-skew Armendariz and is therefore o -skew McCoy.

Proposition 2.9 Let a be an endomorphism of a reduced ring R. Then every «-semicommutative module
Mpg is a-skew McCoy.

Proof. Since Mpg is a-semicommutative, it is easy to obtain that for m € M and a € R,
ma =0 = mRa®(a') =0 for any s,t > 1. (2.4)

Suppose that m(z) = mo + mix + - - + mpa? € Mz;a], f(z) = ap+ a1z + - -+ + agz? € Rlz; o]\{0} satisfy
m(z)f(z) =0. We may assume that m(z) # 0 and k is minimal such that my # 0, and let [ be minimal such

that a; # 0. Since m(x)f(z) = 0, we have the following equations:
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(0) mia®(a) =0,
(1) M0 (@) + mpa®(ai) =0,

(p+g—k—=1) mpar(ag) =0.
If a®(a;) = 0 then m(x)a; = 0, and we are done. Next assume that o”(a;) # 0. Multiplying Eq. (1) by
a**1(a;) from the right, we obtain my.410**1(a;)a**(a;) +mra®(a;11)a* 1 (a;) = 0. Combining Eq. (0) with
(2.4), one has mya¥(a;41)a*T1(a;) = 0. Thus mi10¥T(a))a* 1 (a;) = my4108T1(a?) = 0. Continuing this
procedure, multiplying Eq. (i) on the right by a**(a}) yields mk+iak+i(af+1) =0, where i = 1,2,...,p — k.
Let r = al. Then r # 0 since R is reduced. So, by (2.4) we get m;a’(r) = 0 for each i, proving that Mg is
a-skew McCoy. O

In view of [7, Example 2.5], the converse of Proposition 2.9 does not hold generally.

Following [12], an endomorphism « of a ring R is called compatible if for each a, b € R, ab =0 <
aa(b) = 0. A ring R is said to be a-compatible if there exists a compatible endomorphism « of R. We define

the following:

Definition 2.10 (1) An endomorphism « of a ring R is called weakly compatible (or W-compatible for short)
if whenever ab=0 for a, b € R, aa(b) = 0.

(2) An endomorphism « of a ring R is called weakly finitely compatible (or WF-compatible for short) if for a
finite number of elements a;,b; € R, Y . a;b; =0 implies Y, a;a(b;) = 0.

The following examples reveal the relationships among the above endomorphisms (for a given ring).

Example 2.11 (1) Both compatible and WF-compatible endomorphisms of given rings are W-compatible, but
the converse is not true. Let R = Zslx], and o : R — R be defined by a(f(x)) = f(0) for f(z) € R.
Since R is an integral domain, g(x)h(z) = 0 implies that either g(x) =0 or h(z) = 0, so g(z)a(h(x)) = 0.
Hence « is W-compatible. But « is neither compatible nor WF-compatible. Indeed, let fi(z) = z, ¢1(z) =
1, fa(z) =1 and gao(x) = x. Then fo(z)a(gz(x)) =0 and fi(z)g1(z) + fo(x)ga(x) = 0, but both fo(x)ga(x)
and fi(z)o(gi(x)) + fa(x)a(g2(x)) do not equal 0.

(2) WF-compatible endomorphisms need not be compatible. Given the ring and the ring endomorphism in Exam-
ple 2.3(2), it is easy to check that o is WF-compatible. However, since (§9)a((33)) =0 and (§3)(35) #0,
a 1s not compatible.

(3) Let R = Zs|x1,x2,...] be a ring of polynomials in infinitely countably many indeterminates. Define
a: R — R by z; — x;41 for i = 1,2,.... Notice that R is an integral domain and o« is monic. So «
is compatible. Nevertheless, since xows + w319 = 0 and xea(x3) + r30(12) = Tox4 + (23)% # 0, a is not
WF-compatible.

For an endomorphism « of a ring R, write a(h(z)) = Y1, a(c;)z?, where h(z) = > I ¢;z’ € Rlx;al.

Lemma 2.12 Let « be a WF-compatible endomorphism of a ring R. If f(x)g(z) = 0 in R[z;a], then
f(x)a(g(z)) =0.
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Proof.  Suppose that f(z) = >i"jax’ and g(x) = Y7_(bja’ are elements of R[z;a] with f(z)g(x) = 0.
Then looking at the degree k part of the equation f(x)g(xz) = 0 we have )
WF-compatible, 0 =

7: _ .
ivj=r @i’ (bj) = 0. Because « is

itj=k a;at(b;) = Ditjmk a;a’(a(bj)) for each k. Thus f(z)a(g(z)) = 0. O

Lemma 2.13 Let R be a semicommutative ring and o be a W-compatible endomorphism of R. Suppose that
f(x)g(x) =0 for nonzero f(x) = 31" awx’ and g(x) = 37 bjx? of Rlx;al. If aig(x) #0 for some minimal
index 1 then a}t'al(g(z)) = 0.

Proof. A direct check shows that R is a-semicommutative. By hypothesis, arg(z) =0 for every k < I. So
apb; = 0 for j = 0,...,n. Since a is W-compatible, we have axa®(b;) = 0. It follows that 0 = f(z)g(z) =
o a0 =0 bjT ) One easily obtains the following system of equations:

(1) ajal(bo) =
(+1)  aal(b)+ az+1al+1(bo) =0,
(1+2) al(bg) + a0t (by) 4+ apreal2(by) = 0,

(m+n) amam(bn) =0.
Since R is a-semicommutative, by Eq. (I) one has aja; 110! (bg) = 0. Now multiplying Eq. (I 4+ 1) by a
on the left yields a?a!(b1) = 0. Similarly, multiplying Eq. (I +2) by a? from the left, we have ajal(by) =0
by using the a-semicommutativity of R. Repeating this process finite times, we obtain ] 1 l(b i) =0 for

j=0,...,n. Thus a]™al(b;) =0, and so a]a!(g(x)) = 0. O

A ring is said to be right duo (resp., left duo) if all its right (resp., left) ideals are two-sided ideals. Tt is

not difficult to show that one-sided duo rings are semicommutative.

Lemma 2.14 Suppose that R is a right duo ring and « is a WF-compatible automorphism of R. If f(x)g(x) =
0 for nonzero f(z) =Y1",a;z", g(z) = > =0 bjz? of R[z;a] and arg(z) # 0 for minimal k > 0, then there
exists h(z) € R[x; a]\{0} such that f(x)h(z) =0 and a;h(xz) =0 for all i <k.
Proof. Since apg(z) # 0, there exists a minimal index [ such that axb; # 0. If aza®(b;) = 0 then let
hi(r) = o*(g(x)). As a is monic, hi(z) # 0. Next assume that arpa®(h;) # 0. Note that %k is minimal
such that arpg(x) # 0. By Lemma 2.13, there exists an integer p > 1 such that ap+1 Fo) = 0 # alak ().
Since R is right duo, there exists s € R with ala*(b)) = o®(b)s. As a is an automorphism, we may let
s = al(r) for some r € R. Write hi(x) = o*(g(z))r. Then hi(x) # 0 since a¥(b)al(r) = aF(b)s # 0.
By Lemma 2.12, f(z)hi(z) = 0 for both cases. In addition, since a;b; = 0 for all j and ¢ < k, it follows
that aphi(z) = a1hi(xz) = ag—1h1(z) = 0 by using the W-compatibility of «, and aj, annihilates the first [
coefficients of hq(z).

If aj annihilates all coefficients of hi(x) then we are done by letting h(z) = hi(x). Otherwise, repeating

the above procedure, and after finite times we can construct h(z) € R[z;a]\{0} satisfying f(z)h(z) = 0 and
for each i <k, a;h(z) =0. O
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Theorem 2.15 Let R be a right duo ring and o« be a WF-compatible automorphism of R. Then R is an
a-skew McCoy ring.

Proof. Let f(z) =Y " ga:ix’, g(z) = Y 7_objz’ € Rlx; a]\{0} satisfy f(x)g(z) = 0. It suffices to show the
following.

There exists ¢'(z) € R[z; @]\{0} such that f(z)¢'(z) =0 and for all 4, a;¢'(x) = 0.

Note that a is WF-compatible. If a;g(z) = 0 for all i then let ¢’(z) = g(z). So a;a’(b;) = 0, which
implies that f(x)b; = 0 for each j, and we are done. Next we assume that a;g(z) # 0 for some ¢. Let k be min-
imal such that axg(z) # 0. Then by Lemma 2.14, there exists a nonzero h(x) € R[z; a] such that f(z)h(z) =0
and aoh(xz) = arh(z) = --- = axh(z) = 0. Now, if a;h(z) = 0 for all 4, then the proof is finished by letting
¢'(z) = h(z). If not, there must exist an integer ig (> k) satisfying a;,h(z) # 0, and apply Lemma 2.14 again.
So after finite times check, we can produce a nonzero polynomial ¢'(z) € R[z; «] such that f(z)¢'(z) =0 and

a;g'(xz) =0 for all i. The proof is complete. O

Remark 2.16 Notice that in Example 2.3(1), the ring R = Zo ® Za is commutative, and thus duo. But R
is not a-skew McCoy. So we conclude that the condition “a is a WF-compatible automorphism” in Theorem

2.15 is not superfluous.

Corollary 2.17 [5, Theorem 8.2] Right duo rings are necessarily right McCoy.

Let a be an endomorphism of a ring R and M be an R-module. M is said to be «-compatible if for
any m € M and r € R, mr = 0 & ma(r) = 0 (see [1]). Based on this, we call M weakly «-compatible
(or W-a-compatible for short) if ma(r) = 0 whenever mr = 0; and call M weakly finitely «-compatible (or

WEF-a-compatible for short) if for a finite number of elements m; € M and r; € R, >, myr; = 0 implies

> imia(ry) = 0.

Proposition 2.18 Let R be a right duo ring and « be an automorphism of R. Then every WF-a-compatible
cyclic R-module is «-skew McCoy.

Proof. In view of Theorem 2.15, Ry is a-skew McCoy. Let N be a cyclic R-module. Then N = R/I with
I = rr(n) for some n € N. By hypothesis, N is WF-a-compatible. Then for any s € I, we have ns = 0,
implying na(s) = 0. Thus a(l) C I. Therefore, the result follows from Proposition 2.4(4). O

Recall that a module is called a Bezout module if each of its finitely generated submodules is cyclic.

Corollary 2.19 Let R be a right duo ring with an automorphism «. Then WF-a-compatible Bezout R-

modules are o -skew McCoy.

Proof. By Proposition 2.18, every WF-a-compatible cyclic R-module is a-skew McCoy. Hence Bezout
R-modules are a-skew McCoy by Proposition 2.4(2). O

In what follows R,, denotes (for a positive integer n) the following subring of the upper triangular matrix

ring T,,(R) over a ring R:

Rn = {(aij) S Tn(R) DA S R, a1 = Qg = -+ = a,m};
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we also consider the following subgroup of the additive group of all formal upper triangular matrices over M,
namely,

M, = {(m;) € To,(M) : my; € M, my1 = maoa =+ = Mpp .
Then M, is an R,-module under the usual matrix addition operation and the following scalar product
operation. For W = (w;;) € M, and A = (a;;) € R,, WA = (my;) with m;; = Y ;_; wixay;, for
i,7 = 1,2,...,n. An endomorphism « of R can be extended to an endomorphism @ of R, defined by

a((aiz)) = (a(aij))-

Proposition 2.20 A module Mg is a-skew McCoy if and only if M, is @-skew McCoy as an R, -module.

Proof. The result for modules can be proved in exactly the same manner as that results for rings in [3,
Theorem 14]. O

For a commutative domain R and a module Mg, the torsion submodule of M is defined by T (M) =
{z € M|rgr(z) # 0}; M is called torsion free if T(M) = 0.

Proposition 2.21 Let o be a monomorphism of a commutative domain D and M be a D-module. Then M

is a-skew McCoy if and only if its torsion submodule T'(M) is a-skew McCoy.
Proof. Let m(z) = Y_7_ymiz’ € Mz;a] and d(z) = Y 1_dja7 € D[z;a]\{0} satisfy m(z)d(x) = 0. We

have
(0) modg = 0,
(1) mody + mia(dp) =0,
(2) moda + mia(dy) + maea?(do) = 0,

(p+4q) mpaP(dyg) =0.
We may assume that dy # 0. Then by Eq. (0), mg € T(M). Multiplying Eq. (1) by dy on the right, one
obtains mya(dg)dp = 0. Since « is monic and D is a domain, mq € T(M). Multiplying Eq. (2) by a(do)do
from the right yields maa®(do)a(do)do = 0, so ma € T(M). Repeating this process, we have m(z) € T(M)|z].
Since T(M) is a-skew McCoy, there exists r € R\{0} satisfying m;a®(r) = 0. This proves that M is an

a-skew McCoy module. The other implication is trivial. O

By a similar proof as above, we have the following result.

Proposition 2.22 Let a be an endomorphism of a commutative domain D and M be a torsion free D -module.

Then M is an «-skew McCoy module.

A module is uniform [8] if any two nonzero submodules have a nonzero intersection.

Lemma 2.23 Let {M;};cn be a family of a-skew McCoy R-modules with A an index set. If Rg is uniform,
then a direct sum M = [],c.\ M; is a-skew McCoy.

Proof.  Let m(z) = Y ¥ _o(mik)ieaz® € Mlx;a], g(z) € Rlz;a]\{0} satisfy m(z)g(xz) = 0. Let m;(z) =
S _omia® € M;x]. Since m;(z)g(x) = 0 and M; is a-skew McCoy, there exists r; € R\{0} such that
m;(x)r; = 0. Note that the set A" = {i € A | m;(x) # 0} is finite. Put U = (,c,, 7 R. Then U # 0 since Rr
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is uniform. Take any 7 € U\{0}. Then m;(z)r = 0 for each i, whence m(z)r = 0. Thus, M = [],., M; is
a-skew McCoy. O

Theorem 2.24 Let o be an endomorphism of a ring R and Rgr be uniform. Then R is a-skew McCoy if and
only if every flat R-module is «-skew McCoy.

Proof. Let M be a flat module. Let 0 — K — F — M — 0 be an exact sequence with F free.
(In what follows, for any y € F, we denote § = y + K in M). Let m(z) = >0 y;2" € M[x;a] and
g(x) = >2_obja’ € Rlz; a]\{0} satisfy m(x)g(z) = 0, then we have

Z mai(bj) =0fork=0,...,p+gq.
i+j=k

Therefore yobo, yob1 + y1c(bo), - . ., ypoP(by) all belong to K. Since M is a flat R-module, there exists an R-
homomorphism v : F' — K such that v(yobo) = yobo, v(yob1 + y1a(bo)) = yob1 + y1ce(bo), ..., v(ypaP(by)) =
ypaP(bg). Write w; := v(y;) —y; for i = 0,...,p. Each w; is an element of F' and therefore the polynomial
n(z) =Y "_jwiz’ € Flz;a] and n(z)g(z) = 0. Since R is a-skew McCoy and Fp is free, by Lemma 2.23 F is
a-skew McCoy. Thus, there exists a nonzero 7 € R such that w;a’(r) = 0 for all 4. It follows that y;a’(r) € K,
and so 7;a'(r) = 0 in M, proving that M is a-skew McCoy. The other implication is obvious. O

Question: Can the words “Rpg is uniform” be removed in Theorem 2.247

Recall that if a is an endomorphism of a ring R, then the map R[z] — R[z| defined by Y '" a;z* —
> a(a;)zt is an endomorphism of the polynomial ring R[z]. We also denote the extended map by a. In [27,

Theorem 3.3], Zhang and Chen proved that, if the endomorphism « of a ring R satisfies o! = 15 for some
integer [ > 1, then a module My is a-skew Armendariz iff M[z] is a-skew Armendariz over R[z]. We have a

similar result.

Theorem 2.25 Let o be an endomorphism of a ring R and of = 1 for some integer | > 1. Then a module
Mpg is a-skew McCoy if and only if M|x] is «a-skew McCoy over R[z].

Proof.  Assume that M is a-skew McCoy. Let n(y) = >-0_ ni(z)y’ € M[z][y; o] and g(y) = > =09 (z)y’ €
R[z][y; o] with n(y)g(y) = 0, where n;(z) = Y ¥ nixx® € M[z] and g;j(z) = Y2, byx' € R[z]. Take an
integer u such that u > deg(no(z)) +deg(ni(z))+- - -+ deg(ny(x)) +deg(go(x)) +deg(gi(x)) + - - -+ deg(gq(x)),
where the degree of n;(z) is as polynomial in M|z], the degree of g;(z) is as polynomial in R[z] and the degree

of the zero polynomial is taken to be 0. Put
m(x) _ no(xl) + n1($l)$lu+1 +n2(xl)x21u+2 S np(xl)xplu—i-p e M[LL', a],

h(z) = go(x') + g1 (x")a" T + go(xh) 2?2 4 .. 4 g (229" ¥ € R[z;a].

Then h(z) # 0, and the set of coefficients of n;(x)’s (resp., g;(z)’s) equals the set of coefficients of m(x)

l l

(resp., h(z)). Since o' = 1g, z' commutes with elements of R in R[z;a]. By n(y)g(y) = 0, we have
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m(z)h(x) =0 € M[x;a]. Since M is a-skew McCoy, there exists » € R\{0} such that m(z)r =0 € M|z; «].
That is, n;(x!)z?+r =0 for i = 0,1,...,p. Again, since o/ = 1, we have nya’(r) = 0 for all i and k.
Hence n(y)r =0 in M|z][y; @]. Thus, M[z] is a-skew McCoy over R|x].

Conversely, assume that M|z] is a-skew McCoy. Let m(z)g(z) = 0 with m(z) = Y.7_, m;z’ € M[z; o]
and g(z) = Y 9_ybja’ € Rlz;a]\{0}. Set n(y) = >7_ymiy" and h(y) = >27_b;y7. Then h(y) # 0 and
n(y)h(y) = 0 € M[z][y; a]. By hypothesis, there exists a nonzero element c(z) = Y./ ¢;z’* € R[z] satisfying
n(y)e(z) = 0. It follows that m;a’(c(x)) = 0, and so m;a’(c;) = 0, implying m(z)c; = 0 in M[z; o], where
0<i<pand 0<j<m. Thus Mg is a-skew McCoy. O

Corollary 2.26 [3, Theorem 20] Let o be an endomorphism of a ring R and ol = 1g for some positive integer
I. Then R is a-skew McCoy if and only if R[x] is a-skew McCoy.

We write M, (R) for the n x n matrix ring over R. For a module Mr and A = (a;;) € M,(R), let
MA = {(ma;;) :m € M}. For n> 2, let V = Z?;ll Ej(i+1) where {E;; : 1 <1i,j < n} are the matrix units,
and set V,,(R) = RL,+RV +---+RV" ! and V,,(M) = MI,+ MV +---+MV"! Then V,(R) is a ring and
V(M) becomes a right module over V,,(R) under usual addition and multiplication of matrices. There is a ring
isomorphism 6 : V,,(R) — R[z]/(2™) given by 0(rol, +71V 4+ 41,1V ) = ro+riz+- +r,_12" 1+ (a"),
and an abelian group isomorphism ¢ : V,,(M) — M |x]/(M[z](z")) given by ¢(mol,+miV+---+m, V" 1) =
mo +miz + -+ my_12" "t + Mz](2™) such that ¢(WA) = ¢(W)O(A) for all W € V,,(M) and A € V,,(R).

Let a be an endomorphism of a ring R, the map V,,(R) — V,(R) defined by aol, + a1V + --- +
an-1V" ' — alag)l, + ala)V + - + ala,—1)V"! is an endomorphism of V,,(R). Similarly the map
R[z]/(z") — R[z]/(z™) defined by ap+ar1x+- - +an,_12" 1+ (2") — alag) +a(a)r+- - +a(an_1)z" 1+ (2")

is an endomorphism of R[x]/(z™). We shall denote the two maps above by @.

Proposition 2.27 Let a be an endomorphism of a ring R. Then a module Mg is a-skew McCoy if and only
if M|x]/M[x](x™) is a-skew McCoy over R[x]/R[x](z™) for any n > 2.
Proof. By the remark above, it suffices to show that Mg is a-skew McCoy iff V;,(M)v, (r) is @-skew McCoy.
“=7. Suppose that W(z)A(z) = 0 where W(z) = >0 Wiz’ € Vo (M)[z;@] and A(z) = Y9_, A2/ €
Vo (R)[z;@)\{0}. Let W; = mol, + munV +---+ mi(n_l)V"_l and A; = ajol, +aV +---+ aj(n_l)V"_l
for 0 <i <pand 0<j<gq. It follows that [mo(x)I, +mi(z)V + -+ mu_1(2)V"*" [ao(x) I, + a1(x)V +
st ap1(2)VH = 0 in V,(M)[x;@], where my(z) = mok + migx + - - + mppa? € Mx;a] and a)(z) =
aor + aux + - +agr? € Rlr;a] for 0 < k,1 < n—1, and hence >, ., , mp(z)ai(z) = 0 in M[z;a] for
t=0,1,...,n — 1. In particular, we have

mo(z)a, (z) =0

with a minimal index Iy (lp exists since A(z) # 0) such that a;,(z) # 0. Since Mg is a-skew McCoy, there
exists a nonzero r € R such that mg(x)r = 0. Let A = rEy,. Then A € V,(R)\{0} and W(z)A = 0. So
Va(M)y, (r) is @-skew McCoy.
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“«<”. Assume that m(z)g(x) = 0, where m(x) € Mz; o] and g(z) € R[z; a]\{0}. Let a(z) = m(z)I,
and f(z) = g(x)L,. Then a(z) € V,(M)[z;@], B(z) € Vo(R)[z;@)\{0} and «a(z)B(z) = 0. As V,(M) is an
@-skew McCoy V;,(R)-module, there exists a nonzero A € R,, such that a(z)A = 0. Obviously, there is an
element r € R\{0} such that m(z)r = 0. Therefore, Mg is a-skew McCoy. O

The following definition is due to Zhang and Chen [28]. A module Mg is a zip module if for any subset X
of M, rr(X) =0 implies rg(Y) = 0 for some finite subset Y of X. By [6, Proposition 1] and [15, Example 10],
(in general) the class of a-skew McCoy modules neither contains nor is contained in the class of zip modules.
According to [6, Example 2], Rp is a zip module does not imply that R[z;1g|r[1,) is zip (Some notable
results on zip rings have appeared in [9], [10], [26], etc).

Theorem 2.28 Let a be an endomorphism of a ring R with o = 1g for some positive integer | and Mg
be a W-a-compatible a-skew McCoy module. Then M is a zip R-module if and only if Mx;«] is a zip
R[z; o -module.

Proof.  Suppose that M([z; a]gsqa) is zip. Let Y € M with rg(Y) = 0. If f(z) = ap + a1+ -+ ana™ €
TRlz;a)(Y), then mf(z) = 0 for each m € Y. Thus ma; = 0, and so a; € rr(Y) = 0 for i = 1,2,...,n.
Therefore f(x) = 0, i.e., TRza)(Y) = 0. Since M|[z;a] is zip, there exists a finite subset Yy C Y such that
TRzl (Yo) = 0. Hence, rr(Y0) = 7R[z:a)(Yo) VR = 0.

Conversely, assume that M is zip. Let X C Mlx;a] with 7g[;0(X) = 0. Now let Y be the set
of all coefficients of elements in X. Then ¥ C M. If a € rg(Y), then wa = 0 for each w € Y. Since
Mp is W-a-compatible, wa(a) = 0 for all 4 > 0. Thus we have m(z)a = 0 for every m(z) € X, and so
@ € TRz;a)(X) = 0. That is rp(Y) = 0. Since M is zip, there exists a finite subset Yy = {w1,ws,...,w;} CY
such that rr(Yp) = 0. For each w; € Yy and i = 1,2,...,t, let my,(r) € X be such that some coef-
ficient of my,, () is w;. Let Xog = {my, (), M, (z),...,my, ()} € X and Y7 be the set of all coeffi-
cients of elements in X, where my, (z) = Ziiio aw;qr?. Then Yy C Y and so rr(Y1) C rr(Yy) = 0. If
fla) =30, b;jz? € rRia)(X0)\{0}, then my, (z)f(x) =0 for i =1,2,...,t. Write u = 22:1 Pw,, + n. Let
() = Mgy (T) + My ()2 + -+ + My, ()2 € M[z;a], by of = 1g we have n(x)f(x) = 0. Since
Mp is a-skew McCoy, there exists r € R\{0} such that n(z)r = 0. So my, (z)r =0 in M[xz;a] for each i,
ie., Gu;qa?(r) = 0. The condition Mp is W-a-compatible implies that there exists an integer z such that
Ay, q@”(r) = 0 for all w; and g. Then o*(r) € rr(Y1) =0, and so r = 0, a contradiction. Therefore f(z) =0,
that is, 7g[z;a)(Xo) = 0. O

Corollary 2.29 [7, Theorem 3.6] Let M be a McCoy R-module. Then M is a zip R-module if and only if
M](z] is a zip R[x]-module.
Corollary 2.30 Let R be a right McCoy ring. Then R is right zip if and only if R[x] is right zip.

Remark 2.31 Notice that all R-modules are W-1g-compatible. We conclude that there exists an «o-skew
McCoy module which is not W-a-compatible. Consider the ring R = {(&%)]a,b € Zs}. Let o : R — R be
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an endomorphism defined by o((gt)) = (& 7). By [3, Ezxample 7], Rg is o-skew McCoy. Let Ry be a

ring and the endomorphism @ : Ry — Ro both as defined in Proposition 2.20. Write M = Ry. Then M is
a-skew McCoy as an Ro-module also by Proposition 2.20. Nevertheless, M is not W-@-compatible. Indeed,

0 -1 10
o a= (DAY ear. m- (<(08§)> (<8o_;3)) € By, AB =0 but Aa(E) £0.
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