

Turk J Math 36 (2012) , 231 – 243. © TÜBİTAK doi:10.3906/mat-1010-411

On *CISE*-normal subgroups of finite groups*

Yong Xu, Tao Zhao and Xianhua Li

Abstract

A generalized normality CISE of subgroups of a finite group is introduced. Let \mathcal{F} be a saturated formation containing the class of all supersolvable groups. We give a characterization of \mathcal{F} by using CISE-normality of subgroups.

Key Words: Formation, supersolvable subgroup, CISE-normal subgroup

1. Introduction

In this paper, all groups considered are finite and G stands for a finite group. We write N Char G to mean that N is a characteristic subgroup of G. Let $\pi(G)$ stand for the set of all prime divisors of |G|. Let \mathcal{F} denote a saturated formation and \mathcal{U} the class of supersolvable groups. Let $G^{\mathcal{F}} = \bigcap\{N \leq G \mid G/N \in \mathcal{F}\}$, say the \mathcal{F} -residual of G. Write $Z_{\mathcal{F}}(G)$ for the \mathcal{F} -hypercentre of G(see[9]). The other notations and terminologies are standard (see[10]).

It is always a question of particular interest in the theory of groups to study the structure of a group G by using a certain generalized normality of some subgroups of G. Kegel in [12] introduced the concept of s-quasinormal subgroups. A subgroup H of a group G is said to be s-permutable, s-quasinormal, or π -quasinormal in G if PH = HP for all Sylow subgroups P of G. Ballester-Bolinches and Pedraza-Aguilera in [4] introduced the notion of s-quasinormal embedding. A subgroup H of a group G is said to be S-quasinormally embedded or π -quasinormally embedded in G if for each prime number p in $\pi(H)$, A Sylow p-subgroup of H is also a Sylow p-subgroup of a certain s-quasinormal subgroup of G. In [23], Wang Yanming introduced the concept of c-normal subgroups. A subgroup H of a group G is said to be c-normal in G if G has a normal subgroup T such that HT = G and $H \cap T \leq H_G$, where $H_G = \bigcap_{x \in G} H^x$ is the core of H in G. In [25], Wei and Wang integrated these terminologies into the concept of c^* -normal subgroups. A subgroup H of a group T such that HT = G and $H \cap T \leq H_G$ has a normal subgroup T such that HT = G and $H \cap T \leq H_G$, where $H_G = \bigcap_{x \in G} H^x$ is the core of H in G. In [25], Wei and Wang integrated these terminologies into the concept of c^* -normal subgroups. A subgroup H of a group G is said to be c^* -normal in G if G has a normal subgroup T such that HT = G and $H \cap T \leq H_G$, where $H_G = HT$ and $H \cap T \leq G$ and $H \cap T$ is π -quasinormally embedded in G. In [21], Skiba introduced that: a subgroup H of G is said to be weakly s-permutable in G if G has a subnormal subgroup T such that G = HT and $H \cap T \leq H_{sG}$, where H_{sG} is the maximal s-permutable subgroup of G contained in H. Many authors have investigated the structure of a finite

²⁰⁰⁰ AMS Mathematics Subject Classification: 20D10, 20D15.

^{*}This work was supported by the National Natural Science Foundation of China (Grant N. 10871032), the Natural Science Foundation of Jiangsu Province (N. BK2008156)

group G under the assumption that some subgroups of prime power order of G or some maximal subgroups of Sylow subgroups of G have those generalized normality in G and have obtained many results (see [3], [5], [6], [15], [17], [18], [21], [23], [24] and [25]). Now, we introduce another generalized normality of subgroups of a finite group and generalize further the concept of c^* -normal. The aim is to improve and extend these works mentioned before.

Definition 1.1 Let H be a subgroup of a group G.

(1) If there exists a subnormal subgroup K of G such that G = HK and $H \cap K$ is π -quasinormally embedded in G, H is called an ISE-normal subgroup of G.

(2) If H has a supersolvable supplement in G or H is ISE-normal in G, H is called a CISE-normal subgroup of G.

It is clear that the concept of ISE-normal is obtained by replacing the word "normal subgroup" by "subnormal subgroup" in the definition of c^* -normal and the concept of CISE-normal is a generalization of ISE-normal. The following example shows that the generalization is proper.

Let $N = L_2(8)$, G = Aut(N), then $G \cong N : 3$. We identify G with N : 3. Let $P \in Syl_2(N)$ and $Q \in Syl_3(N)$. Let $H = N_G(P)$ and $K = N_G(Q)$. By [7], $N_N(P) \cong 2^3 : 7$, $H \cong 2^3 : 7 : 3$ and $K \cong 9 : 6$. So K is supersolvable and G = HK, which shows that H is CISE-normal in G. But it is clear that the subnormal subgroup containing the Sylow 3-subgroup of H must be G. Hence H is not an ISE-normal subgroup. This shows that H is not ISE-normal in G.

2. Preliminary results

Lemma 2.1 ([4, Lemma 1]) Suppose that U is π -quasinormally embedded in a group G, $H \leq G$ and K a normal subgroup of G.

- (a) If $U \leq H$, then U is π -quasinormally embedded in H.
- (b) UK is π -quasinormally embedded in G and UK/K is π -quasinormally embedded in G/K.
- (c) Let $K \leq H$ such that H/K is π -quasinormally embedded in G/K, then H is π -quasinormally embedded in G.

Lemma 2.2 Let H be a subgroup of a group G.

- (1) If H is ISE-normal (CISE-normal) in G and $H \le M \le G$, then H is ISE-normal (respectively, CISE-normal) in M.
- (2) Let $N \triangleleft G$ and $N \leq H$. Then H is ISE-normal in G if and only if H/N is ISE-normal in G/N; if H is CISE-normal in G, then H/N is CISE-normal in G/N.
- (3) Let π be a set of primes, H a π -subgroup of G, and N a normal π' -subgroup of G. If H is ISE-normal (respectively, CISE-normal) in G, then HN/N is ISE-normal (respectively, CISE-normal) in G/N.

232

(4) Suppose that H is a p-subgroup for some prime p and H is not π -quasinormally embedded in G but ISE-normal in G, then G has a normal subgroup M such that |G:M| = p and G = HM.

Proof. (1) Suppose that H is ISE-normal in G. By the hypothesis, there exists a subnormal subgroup T of G such that G = HT and $H \cap T$ is π -quasinormally embedded in G. Then $M = M \cap HT = H(M \cap T)$, $M \cap T \triangleleft \triangleleft M$ by [8, Chap A, Lemma 14.1(a)], and $H \cap (M \cap T) = H \cap T$ is π -quasinormally embedded in M by Lemma 2.1(a). So H is ISE-normal in M. If H has a supersolvable supplement L in G, then G = HL, $M = M \cap HL = H(M \cap L)$. Obviously, $M \cap L$ is also a supersolvable subgroup of M. Hence if H is CISE-normal in G, then H is CISE-normal in M.

(2) Suppose that H is ISE-normal in G. Then there exists a subnormal subgroup T of G such that G = HT and $H \cap T$ is π -quasinormally embedded in G. Thus $G/N = HT/N = (H/N) \cdot (TN/N)$, $TN/N \triangleleft \triangleleft G/N$ by [8, Chap A, Lemma 14.1(b)], and $(H/N) \cap (TN/N) = (H \cap TN)/N = (H \cap T)N/N$ is π -quasinormally embedded in G/N by Lemma 2.1(b). So H/N is ISE-normal in G/N. Conversely, if H/N is ISE-normal in G/N, then there exists a subnormal subgroup T/N of G/N such that $G/N = (H/N) \cdot (T/N)$ and $(H/N) \cap (T/N) = (H \cap T)/N$ is π -quasinormally embedded in G/N. Then G = HT, T is subnormal G, and $H \cap T$ is π -quasinormally embedded in G by Lemma 2.1(c). So H is ISE-normal in G. The second part is clear.

(3) Suppose that H is ISE-normal in G, then there exists a subnormal subgroup T of G such that G = HT and $H \cap T$ is π -quasinormally embedded in G. Then $G/N = HT/N = (HN/N) \cdot (TN/N)$ and $HN/N \cap TN/N = (HN \cap TN)/N$. By [8, Chap A, Lemma 14.1(b)], TN/N is subnormal in G/N. Since H is a π -subgroup of G and G = HT, $\pi'(G) \subseteq \pi(T)$. Since T is subnormal in G, we have $O_{\pi'}(G) \leq T$, so $N \leq O_{\pi'}(G) \leq T$, thus by Lemma 2.1(b), $(HN \cap TN)/N = (HN \cap T)/N = (H \cap T)N/N$ is π -quasinormally embedded in G/N, hence HN/N is ISE-normal in G/N. If H has a supersolvable supplement L in G, then G = HL, so $G/N = HL/N = (HN/N) \cdot (LN/N)$. Obviously $LN/N \cong L/(L \cap N)$ is supersolvable. Thus HN/N also has a supersolvable supplement LN/N in G/N. Hence we have claim (3).

(4) Since H is ISE-normal in G, there exists a subnormal subgroup K of G such that G = HK and $H \cap K$ is π -quasinormally embedded in G. Since H is not π -quasinormally embedded in G, $H \cap K \neq H$. Hence K is a proper subnormal subgroup of G, then there exists a proper normal subgroup T of G such that $K \leq T$, so $|G/T| = |H : T \cap H| = p^i$, where i is a natural number, thus G has a normal maximal subgroup M such that G = HM and |G : M| = p.

Lemma 2.3 ([25, Lemma 2.5]) Let G be a group, K a π -quasinormally embedded subgroup of G and P a Sylow p-subgroup of K, where p is a prime. If either $P \leq O_p(G)$ or $K_G = 1$, then P is π -quasinormal in G.

Lemma 2.4 Let N be an elementary abelian normal p-subgroup of G. Assume that N has a subgroup U with 1 < |U| < |N| such that every subgroup H of N of order |U| is ISE-normal in G. Then N is not a minimal normal subgroup of G.

Proof. Suppose that this lemma is false, then N is a minimal normal subgroup of G. If some subgroup H of N satisfying |H| = |U| is not π -quasinormally embedded in G, then by Lemma 2.2 (4), there exists a normal subgroup of G, M such that |G: M| = p and G = HM. It follows that NM = G, $p = |NM: M| = |N: N \cap M|$. So $M \cap N$ is a maximal subgroup of N and $N \cap M \triangleleft G$. By the minimality of

N, we get $N \cap M = 1$. By HM = NM, we get |N| = |H| < |N|, a contradiction. Hence every subgroup H of N satisfying |H| = |U| is π -quasinormally embedded in G, and $H \le N \le O_p(G)$. By Lemma 2.3, these subgroups H are π -quasinormal in G. By [16, Lemma 2.2], we have $O^p(G) \le N_G(H)$, hence $|G : N_G(H)| = p^{j_H}$, where $j_H \ge 0$. Since |H| < |N| and N is a minimal normal subgroup of G, we have $N_G(H) \ne G$. So $j_H > 0$ and j_H are natural numbers. Let Ω be the set of all subgroups with order |U| of N. Then G acts on Ω by conjugation and we can obtain a partition of Ω into orbits. For $K \in \Omega$, let the G-orbit of K be $\{K_1, K_2, \dots, K_s\}$, then $s = |G : N_G(K)| = p^{j_K}$. Hence p divides $|\Omega|$. On the other hand, by ([10, III 8.5(d)]), we know $|\Omega| \equiv 1 \pmod{p}$, a contradiction.

Lemma 2.5 Let \mathcal{F} be a saturated formation containing the class of all nilpotent groups \mathcal{N} , G be a group. Suppose that $G^{\mathcal{F}}$ is soluble and every maximal subgroup of G not containing $G^{\mathcal{F}}$ belongs to \mathcal{F} . If every cyclic subgroup of $G^{\mathcal{F}}$ with prime order or order 4 (if $G^{\mathcal{F}}$ is a non-abelian 2-group) is CISE-normal in G, then $|G^{\mathcal{F}}/\Phi(G^{\mathcal{F}})| = p$.

Proof. Let $R = G^{\mathcal{F}}$. By [19, VI Theorem 24.2], R is a p-subgroup, expR = p or 4 (if R is a non-abelian 2-group) and $R/\Phi(R)$ is a minimal normal subgroup of $G/\Phi(R)$. Suppose that there exists $x \in R$ such that $\langle x \rangle$ has a supersolvable supplement M in G. If G = M, then $G \in \mathcal{F}$ and $G^{\mathcal{F}} = 1$, a contradiction. So we may assume that $M \neq G$, then $M\Phi(R) \neq G$ by $\Phi(R) \leq \Phi(G)$. And $G = \langle x \rangle M = RM$, so $(M\Phi(R)/\Phi(R))(\langle x \rangle \Phi(R)/\Phi(R)) = G/\Phi(R)$. Hence $|G/\Phi(R) : M\Phi(R)/\Phi(R)| =$ p and $G/\Phi(R) = (M\Phi(R)/\Phi(R))(R/\Phi(R))$. Since $R/\Phi(R)$ is a minimal normal subgroup of $G/\Phi(R)$, $R/\Phi(R) \cap M\Phi(R)/\Phi(R) = \overline{1}$, so $|(G/\Phi(R)) : (M\Phi(R)/\Phi(R))| = |R/\Phi(R)| = p$. If there exists $y \in R$ with $y \notin \Phi(R)$ such that $y \in M_G$, since $R/\Phi(R)$ is a minimal normal subgroup of $G/\Phi(R)$, we have $R \leq M_G$, contrary to G = RM. So for any $y \in R$ with $y \notin \Phi(R)$, there exists $g \in G$ such that $y \notin M^g$. Thus $G = \langle y \rangle M^g$ and $\langle y \rangle$ has a supersoluble supplement. Hence $|R/\Phi(R)| = p$ and the result is true. If for any $y \in R$ with $y \notin \Phi(R)$, $\langle y \rangle$ has no supersoluble supplement, then $\langle y \rangle$ is *ISE*-normal in G by the hypothesis. By Lemma 2.2 (2), every cyclic subgroup of $R/\Phi(R)$ of order prime is *ISE*-normal in $G/\Phi(R)$. Since $R/\Phi(R)$ is a minimal normal subgroup of $G/\Phi(R)$, by Lemma 2.4, $R/\Phi(R)$ has no a proper cyclic subgroup of prime order, hence we conclude that $|R/\Phi(R)| = p$. Thus we have Lemma 2.5.

Lemma 2.6 ([22, Lemma 1.6]) Let P be a nilpotent normal subgroup of a group G. If $P \cap \Phi(G) = 1$, then P is the direct product of some minimal normal subgroups of G.

Lemma 2.7 Let G be a group and let P be a Sylow 2-subgroup of G. Suppose that there exists a maximal subgroup P_1 of P such that P_1 is CISE-normal in G. Then G is not a nonabelian simple group.

Proof. Suppose that G is a nonabelian simple group. By the hypothesis, P_1 has a supersolvable supplement M in G or it is ISE-normal in G. If the former case is true, then $P_1M = G$ and $M \neq G$ where M is supersolvable. So $|G:M| = 2^r$ and $2^r < |P|$. By [1, Theorem 5.8], we get either M is a Hall r'-subgroup of G or G is isomorphic to A_n with $5 \le n = 2^r$, $r \ge 2$ and $M \cong A_{n-1}$. Since $2^r < |P|$ and M is supersolvable, we have G is not a nonabelian simple group. If the later case holds, then there exists a subnormal subgroup T such that $G = P_1T$ and $P_1 \cap T$ is π -quasinormally embedded in G. Since G is simple, we have T = G, then

 $P_1 \cap T = P_1$ is π -quasinormally embedded in G. So there exists a π -quasinormal subgroup K of G such that $P_1 \in Syl_2(K)$. Since G is simple, we get K = G. So $P_1 = P$, a contradiction. Then G is not a nonabelian simple group.

Lemma 2.8 Let G be a group and M a subgroup of G. Then we have:

- (1) If M is normal in G, then $F^*(M) \leq F^*(G)$.
- (2) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = Soc(F(G)C_G(F(G))/F(G))$.
- (3) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is soluble, then $F^*(G) = F(G)$.
- (4) $C_G(F^*(G)) \le F(G)$.

Proof. (1) ~ (4) can be found in [11, Chap. X, $\S13$].

3. Main results

Theorem 3.1 Let \mathcal{F} be a saturated formation containing \mathcal{U} and G a group with a normal subgroup N such that $G/N \in \mathcal{F}$. Assume that every Sylow subgroup of $F^*(N)$ is cyclic, then $G \in \mathcal{F}$.

Assume that the result is false and let G be a counterexample with |G| + |N| minimal. Suppose that Proof. all Sylow subgroups of $F^*(N)$ are cyclic. Clearly, $F^*(N)$ is supersolvable, then $F^*(N) = F(N)$ by Lemma 2.8 (3). Since $F(N)/\Phi(N) = F(N/\Phi(N))$, all Sylow subgroups of $F(N/\Phi(N))$ are cyclic. So $(G/\Phi(N), N/\Phi(N))$ satisfies the hypothesis of Theorem 3.1. Thus if $\Phi(N) \neq 1$, then $G \in \mathcal{F}$. Hence we may assume that $\Phi(N) = 1$. Since $\Phi(F(N)) \subseteq \Phi(N)$, $\Phi(F(N)) = 1$. Let $\pi(F(N)) = \{p_i \mid 1 \le i \le t\}$ and $K_i \in Syl_{p_i}(F(N))$, where $p_1 < p_2 < \cdots < p_t$, then $K_i \triangleleft G$ and $|K_i| = p_i$. Then $|Aut(K_i)| = p_i - 1$ and $G/C_G(K_i)$ is isomorphic to a subgroup of $Aut(K_i)$. From $Aut(K_i)$ cyclic, we get that $G/C_G(K_i)$ is cyclic. Let $U = \bigcap_{i=1}^{t} C_G(K_i)$, then $G/U \in \mathcal{U}$ and so $G/U \cap N \in \mathcal{F}$. It is easy to see that $F^*(U \cap N) = F^*(N)$. Hence if $U \cap N < N$, then $G \in \mathcal{F}$, a contradiction. So we may assume that $N \leq U$. It is clear that $U = C_G(F(N))$. So $N \leq C_G(F(N))$, $F(N) \leq Z(N)$. By Lemma 2.8 (4), $N = C_N(F(N)) = C_N(F^*(N)) \leq F(N)$, so N = F(N) and N is cyclic. Since $(G/K_1)/(N/K_1) \cong G/N \in \mathcal{F}$, and $F(N/K_1) = N/K_1$ is cyclic, by the minimality of |G| + |N|, we get $G/K_1 \in \mathcal{F}$. So we may assume that $N = K_1$ and $K_1 \leq \Phi(G)$. Let M be a maximal subgroup of G such that $G = K_1M$, then $M \cap K_1 = 1$. Since K_1 centralizes $C_G(K_1) \cap M$ and M normalizes $C_G(K_1) \cap M$, we get $C_G(K_1) \cap M \triangleleft G$. Let $T = C_G(K_1) \cap M$. Then $K_1 \not\leq T$ and so $K_1 \cap T = 1$. By $G = C_G(K_1)M$, we have that $M/T \cong C_G(K_1)M/C_G(K_1) = G/C_G(K_1)$. Since $G/C_G(K_1)$ is cyclic and $G/T = K_1T/T \rtimes M/T$, we have $G/T \in \mathcal{U}$. Because \mathcal{F} is a formation, we have obtained that $G \cong G/K_1 \cap T \in \mathcal{F}$, a contradiction. This contradiction completes the proof of Theorem 3.1.

Theorem 3.2 Let \mathcal{F} be a saturated formation containing \mathcal{U} and G a group with a normal subgroup N such that $G/N \in \mathcal{F}$. Assume that every non-cyclic Sylow subgroup P of N has a subgroup U with 1 < |U| < |P|

235

such that every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is CISE-normal in G, then $G \in \mathcal{F}$.

Proof. Assume that the result is false and let (G, N) be a counterexample with |G| + |N| minimal.

If all Sylow subgroups of N are cyclic, then all Sylow subgroups of F(N) are cyclic. By Theorem 3.1, $G \in \mathcal{F}$. Hence when we want to prove $\overline{G} \in \mathcal{F}$ in the following arguments, we assume always that \overline{N} has a non-cyclic Sylow subgroup if $(\overline{G}, \overline{N})$ satisfy the hypothesis of (G, N) in Theorem 3.2.

Step 1. If T is a Hall subgroup of N, the hypothesis is true for (T, T). In addition, if $T \triangleleft N$, then the hypothesis is also true for (G/T, N/T). Especially, if T is a non-identity normal Hall subgroup of N, we may assume that N = T.

Let T be a Hall subgroup of N, P be a non-cyclic Sylow subgroup of T, of course, P is also a non-cyclic Sylow subgroup of N. By the hypothesis, P has a subgroup U with 1 < |U| < |P| such that every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is CISE-normal in G. By Lemma 2.2 (1), the hypothesis is true for (T,T). In addition, if $T \triangleleft N$, then by T is a characteristic subgroup of N and $N \triangleleft G$, we get that $T \triangleleft G$. Let P^*/T be a non-cyclic Sylow subgroup of N/T, then by Shur-Zassenhaus Theorem, it is easy to prove that $P^* = T \rtimes P$, where $P \in Syl_p(P^*)$. Obviously, P is also a non-cyclic Sylow subgroup of N. By the hypothesis, P has a subgroup U such that 1 < |U| < |P|and every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is CISE-normal in G. By Lemma 2.2 (3), H^*/T is CISE-normal in G/T. Especially, if T is a non-identity normal Hall subgroup of N, then the hypothesis is true for (G/T, N/T), so $G/T \in \mathcal{F}$. Thus the hypothesis is still true for (G,T). By the minimality of |G| + |N|, we may assume that T = N.

Step 2. Let $p = min\pi(N)$, then Sylow *p*-subgroups *P* of *N* are not cyclic. Thus by the hypothesis, *P* has a subgroup *U* such that 1 < |U| < |P| and every subgroup *H* of *P* of order |U| and every cyclic subgroup of *P* of order 4 (if |U| = 2 and *P* is a non-abelian 2-group) is *CISE*-normal in *G*.

If P is cyclic, then N is p-nilpotent by [10, V, 2.8], so N has a normal p'-Hall subgroup $N_{p'}$. If $N_{p'} \neq 1$, by **Step** 1, $(G/N_{p'}, N/N_{p'})$ satisfies the hypothesis, then $G \in \mathcal{F}$ by the minimality of |G| + |N|, a contradiction. So $N_{p'} = 1$, N = P. Since $G/N \in \mathcal{F}$ and P is cyclic, we get $G \in \mathcal{F}$ by Theorem 3.1, a contradiction.

Step 3. If either N = G or N = P, then |U| > p.

Suppose that N = G, by the hypothesis, G is not a nilpotent group and so it has a p-closed Schmidt subgroup E [10, IV, 5.4]. If |U| = p, then E satisfies the condition of Lemma 2.5, so E is p-nilpotent, a contradiction. Hence |U| > p. Suppose that N = P, then $G/P \in \mathcal{F}$. Assume that |U| = p and $R = G^{\mathcal{F}}$. Let T be an arbitrary maximal subgroup of G not containing P, then $G/P = TP/P \cong T/T \cap P$, so the hypothesis is still true for $(T, T \cap P)$, thus $T \in \mathcal{F}$ by the choice of G. So every maximal subgroup of Gnot containing P belongs to \mathcal{F} . Since $R \leq P$, every maximal subgroup of G not containing R dose not contain P, thus every maximal subgroup of G not containing R belongs to \mathcal{F} , so $|R/\Phi(R)| = p$ by Lemma 2.5. Since $(G/\Phi(R))/(R/\Phi(R)) \cong G/R \in \mathcal{F}$, we have $G/\Phi(R) \in \mathcal{F}$ by Theorem 3.1, which implies $G \in \mathcal{F}$, a contradiction. Hence |U| > p.

Step 4. If |P:U| > p, then every subgroup H of P of order |U| not having a supersoluble supplement in G is π -quasinormally embedded in G. If P is a non-abelian 2-group and |U| = 2, then every subgroup Hof P of order 4 not having a supersoluble supplement in G is also π -quasinormally embedded in G.

Assume that P has a subgroup H of order |U| and H neither has a supersoluble supplement in G nor is π -quasinormally embedded in G. Then G has a normal subgroup M such that G = HM and |G:M| = pby Lemma 2.2 (4), so $G/N \cap M \in \mathcal{F}$. Hence the hypothesis is still true for $(G, N \cap M)$ by |P:U| > p and Lemma 2.2. If $M \cap N = N$, then $N \leq M$, so G = HM = NM = M, a contradiction. Thus $|N \cap M| < |N|$, so $|G| + |N \cap M| < |G| + |N|$, contrary to the minimality of |G| + |N|. Similarly, we can prove the second statement of **Step** 4.

Step 5. If L is a minimal normal subgroup of G and $L \leq P$, then $|L| \leq |U|$.

Suppose that |L| > |U|, then every subgroup H of L of order |U| is CISE-normal in G. If H has a supersoluble supplement M in G, then MH = G. Since $L = L \cap HM = H(L \cap M)$ and |L| > |U|, $L \cap M \neq 1$. Obviously, $L \cap M \triangleleft ML = MH = G$. By the minimality of L, we get $L \cap M = L$, then $L \leq M$. So G = MH = ML = M is supersoluble, a contradiction. Thus every subgroup H of L of order |U| is ISE-normal in G. But by Lemma 2.4, L is not a minimal normal subgroup of G, a contradiction.

Step 6. If either N = G or N = P and L is an abelian minimal normal subgroup of G contained in N, then the hypothesis is still true for (G/L, N/L) and so $G/L \in \mathcal{F}$.

Assume that |P:U| = p. By the hypothesis, every maximal subgroup of P is CISE-normal in G. Let T/L be a maximal subgroup of PL/L, then p = |(PL/L): (T/L)|, and $T = PL \cap T = (P \cap T)L$. Let $P_1 = P \cap T$, then $P_1 \cap L = P \cap T \cap L = P \cap L$, so $p = |PL:T| = |PL: (P \cap T)L| = |P:P \cap T| = |P:P_1|$, thus P_1 is CISE-normal in G. If P_1 has a supersoluble supplement M in G, then $G = P_1M$, and $G/L = P_1M/L = TM/L = (T/L)(ML/L)$. Since $ML/L \cong M/M \cap L$ is supersoluble, T/L has a supersoluble supplement ML/L in G/L. Suppose that P_1 is ISE-normal in G, then there is a subnormal subgroup B of G such that $G = P_1B$ and $P_1 \cap B$ is π -quasinormally embedded in G. We have $P_1L \cap BL = (P_1L \cap B)L$. Now let $\pi(G) = \{p_1, p_2, \cdots, p_n\}$ where $p_1 = p$, and B_{p_i} denotes a Sylow p_i -subgroup of B $(i = 2, \cdots, n)$. Then B_{p_i} is a Sylow p_i -subgroup of G, hence $B_{p_i} \cap N$ is a Sylow p_i -subgroup of N $(i = 2, \cdots, n)$. Write $V = \langle L \cap B_{p_2}, \cdots, L \cap B_{p_n} \rangle$, then $V \leq B$ and $L = (P_1 \cap L)V$, thus $P_1L \cap BL = (P_1 \cap B)L = (P_1 \cap B)L = (P_1 \cap B)VL = (P_1 \cap B)L$. It follows from Lemma 2.1(b) that $(P_1L/L) \cap (BL/L) = (P_1 \cap B)L/L$ is π -quasinormally embedded in G/L. Therefore T/L is CISE-normal in G/L, then the hypothesis is true for (G/L, N/L).

Assume that |L| < |U|. If N = G, then L is a p-subgroup, then for L < H with |H| = |U|, we have H/L is CISE-normal in G/L by Lemma 2.2 (2) and 1 < |H/L| < |P/L|. If N = P, then by Lemma 2.2 (2), we have H/L is CISE-normal in G/L. Hence the hypothesis is still true for (G/L, N/L).

So let |L| = |U| and |P: U| > p. Then by **Step** 4 every subgroup H of P with order |H| = |U| not having a supersoluble supplement in G is π -quasinormally embedded in G, and if P is a non-abelian 2-group and |U| = 2, then every cyclic subgroup H of P with order 4 not having a supersoluble supplement in G is also π -quasinormally embedded in G. By **Step** 3, L is non-cyclic, hence every subgroup of G containing L is not cyclic. Let $L < K \leq P$, where |K:L| = p. Since K is non-cyclic, it has a maximal subgroup $M \neq L$. If M has a supersoluble supplement in G, then K has a supersoluble supplement in G. If M is π -quasinormally embedded in G, so K = LM does by Lemma 2.1(b). Thus if P/L is p-group (p > 2) or an abelian 2-group or a non-abelian 2-group with |U| > 2, the hypothesis is true for (G/L, N/L) by Lemma 2.2 (2) and **Step** 4. If P/L is a non-abelian 2-group and |U| = 2, then P is a non-abelian 2-group and so every cyclic subgroup of P with order 4 not having a supersoluble supplement in G is π -quasinormally embedded in G. In this case, using the same method as above, one can show that every subgroup X of P containing L such that X/L is a cyclic subgroup of order 4 either has a supersoluble supplement in G or is π -quasinormally embedded in G. Thus again the hypothesis is still true for (G/L, N/L).

Step 7. N is solvable.

By **Step** 1 and the choice of G we only need consider the case N = G. Let $2 = \min \pi(N)$. Then the Sylow 2-subgroup P of N are not cyclic by **Step** 2. Assume that |P:U| = 2. Let G be a counterexample of minimal order. By **Step** 6 and Lemma 2.7, we get G has the unique minimal normal subgroup L of G such that G/L is solvable and $L \neq 1$. Suppose that $L \cap P \leq \Phi(P)$, then L is 2-nilpotent by J. Tate Theorem([10, Theorem 4.4.7]), so G is solvable, a contradiction. Then $L \cap P \nleq \Phi(P)$, so there exists a maximal subgroup P_1 of P such that $(L \cap P)P_1 = P$. By the hypothesis, P_1 is CISE-normal in G. If P_1 is ISE-normal in G, then there exists a subnormal subgroup T of G such that $G = P_1T$ and $P_1 \cap T$ is π -quasinormally embedded in G. So there exists a π -quasinormal subgroup K of G such that $P_1 \cap T \in Syl_2(K)$. Assume that $K_G \neq 1$, then $L \leq K_G \leq K$, so $P_1 \cap T \cap L \in Syl_2(L)$ and $P_1 \cap T \cap L \leq P_1 \cap L \leq P \cap L$. Thus $P_1 \cap T \cap L = P \cap L = P_1 \cap L$, hence $P = (P \cap L)P_1 = P_1$, a contradiction. So $K_G = 1$. By Lemma 2.3, $P_1 \cap T$ is π -quasinormal in G. If $P_1 \cap T \neq 1$, then $P_1 \cap T \leq O_2(G)$, $O_2(G) \neq 1$, so $L \leq O_2(G)$, thus G is solvable, a contradiction. If $P_1 \cap T = 1$, then $2 \mid |T|$, but $4 \nmid |T|$, so T is solvable, thus G is solvable by the subnormality of T, a contradiction. Thus every maximal of P has a supersolvable supplement in G, then G is q-closed by [21, Lemma 2.2] and **Step** 2, where $q = \max \pi(G)$, so G is solvable, a contradiction.

Assume that |P:U| > 2. By **Step** 4, every subgroup H of P of order |U| not having a supersoluble supplement in G is π -quasinormally embedded in G. If P is a non-abelian 2-group and |U| = 2, then every subgroup H of P of order 4 not having a supersoluble supplement in G is also π -quasinormally embedded in G. By **Step** 1 and **Step** 6, we may assume that $O_{2'}(G) = 1$ and $O_2(G) = 1$. Suppose that H is π -quasinormally embedded in G, then there exists a π -quasinormal subgroup K such that $H \in \text{Syl}_2(K)$. If $K_G = 1$, then His π -quasinormal subgroup of G by Lemma 2.3, so $H \leq O_2(G)$, thus $O_2(G) \neq 1$, a contradiction. If $K_G \neq 1$, we choose $H < H_1 \leq P$, then H_1K_G satisfies the hypothesis. By the first paragraph discussion, we have H_1K_G is solvable, so is K_G . Thus $O_2(K_G) \neq 1$ or $O_{2'}(K_G) \neq 1$, hence $O_2(G) \neq 1$ or $O_{2'}(G) \neq 1$, a contradiction. Therefore, every subgroup H of P of order |U| has a supersoluble supplement in G, that is, every maximal subgroup of P has a supersoluble supplement in G, then G is q-closed by [21, Lemma 2.2] and **Step** 2, where $q = \max \pi(G)$, so G is solvable, the final contradiction. This contradiction implies that G is solvable.

Step 8. Let $q = \max \pi(N)$, then N is q-closed.

Assume that N_q is not normal in N and let N be a counterexample with |N| + |G| of minimal order for q-closed.

By Step 7, we can assume that $\{N_r \mid r \in \pi(N)\}$ is a Sylow system of N. Let $K = N_q N_r$ for any $r \in \pi(N)$ with $r \neq q$. By Step 1, the hypothesis is still true for (K, K). If $|\pi(N)| > 3$ or $G \neq N$, then $N_q \triangleleft K$, which implies that $N_q \triangleleft N$, a contradiction. Thus we may assume that G = N and $|G| = p^a q^b$.

Let L be a minimal normal subgroup of G, then G/L is q-closed by **Step** 6. Since q-closed groups are a saturated formation, we may assume that $L \nleq \Phi(G)$ and L is the only minimal normal subgroup of G. If L is a q-group, then $G_q \triangleleft G$, where G_q denotes a Sylow q-subgroup of G, a contradiction. Thus $L \leq P$ and so $L \leq O_p(G)$. Now we show that $L = O_p(G)$. Let W be a maximal subgroup of G such that $L \nleq W$, then G = LW and $L \cap W = 1$. Since $W \cong G/L$, W is q-closed. By $L \leq O_p(G)$, $G = LW = O_p(G)W$. From $O_p(G) \leq F(G) \leq C_G(L)$, it is easy to see that L and W normalize $O_p(G) \cap W$, thus $O_p(G) \cap W \triangleleft G$. So $O_p(G) \cap W = 1$ or $L \leq O_p(G) \cap W$. If the later case happened, then $L \leq W$, that is, $G = L \rtimes W = W$, a contradiction. So $O_p(G) \cap W = 1$, thus $|O_p(G)| = |G:W| = |L|$, hence $L = O_p(G)$.

Assume that |P:U| = p. For every maximal subgroup A of P containing L we have G = AW, hence A has a supplement W in G such that W is q-closed. If every maximal subgroup of P not containing L has a supersolvable supplement M in G, then M is q-closed. Thus every maximal subgroup of P has a supplement M such that M is q-closed. By [21, Lemma 2.2], G is q-closed, a contradiction. Thus there exists one maximal subgroup S of P neither containing L nor having a supersoluble supplement in G. By the hypothesis, S is ISE-normal in G. It follows that there exists a subnormal subgroup K of G such that G = SK and $S \cap K$ is π -quasinormally embedded in G. It is easy to prove that all Sylow q-subgroups of G are in every subnormal subgroup of G containing a Sylow q-subgroup of G. Since for any $g \in G$, K^{g} is subnormal in G, all Sylow q-subgroups of G are in K^{g} , so $K_{G} \neq 1$ and $G_{q} \leq K_{G}$. By the uniqueness of L, $L \leq K_G \leq K$. If $S \cap K = 1$, then $|K| = pq^b$. Since q > p, $K_q \triangleleft K$, which implies that G is q-closed, a contradiction. If $S \cap K \neq 1$, then $S \cap K$ is a Sylow *p*-subgroup of some π -quasinormal subgroup K_1 of *G*. Now we claim that $(K_1)_G = 1$. If $(K_1)_G \neq 1$, by the uniqueness of L, we have $L \leq (K_1)_G$, $O_p((K_1)_G) \neq 1$. Thus $L \leq O_p((K_1)_G) \leq (K_1)_p = S \cap K \leq S$, where $(K_1)_p \in Syl_p(K_1)$, which contradicts the choice of S. Hence $S \cap K$ is π -quasinormal in G by Lemma 2.3, so $S \cap K$ is a subnormal subgroup of G, thus $S \cap K \leq O_p(G) = L$, then $S \cap K \leq S \cap L \leq S \cap K$, so $S \cap K = S \cap L$. It is clear that $S \cap K = S \cap L$ is normalized by P. Since $S \cap K$ is also a subnormal Sylow subgroup of $(S \cap K)G_q$, $S \cap K$ is normalized by G_q . By $G = PG_q$, $S \cap K \triangleleft G$, then $L \leq S \cap K \leq S$, which contradicts the choice of S.

Therefore we may assume that |P:U| > p, then by **Step** 4, every subgroup H of P satisfying |H| = |U|and not having a supersoluble supplement in G is a π -quasinormally embedded subgroup. If H has not supersoluble supplement in G, then H is a π -quasinormally embedded subgroup of G, so there exists a π quasinormal subgroup K of G such that $K_p = H$, where $K_p \in \operatorname{Syl}_p(K)$. If $K_G = 1$, then H is a π -quasinormal subgroup of G by Lemma 2.3, so H is subnormal in G. Since every subnormal p-subgroup is contained in $O_p(G)$ and $O_p(G) = L$ by the previous argument, $H \leq L$. On the other hand, by **Step** 5, $|H| \geq |L|$, so L = H. If $K_G \neq 1$, then $L \leq K_G$ and $L \leq K_p = H$. Summing up, we have $L \leq H$, so G = WL = WHand $W \cap L = 1$, H has a q-closed supplement W in G. If H has a supersolvable supplement M in G, then M is also q-closed. We have obtained that every subgroup H of order |U| in P has a q-closed supplement in G. Since every maximal subgroup of P contains at least one subgroup H such that |H| = |U|, we get that every maximal subgroup of P has a q-closed supplement in G. By [21, Lemma 2.2], G is q-closed, a final contradiction.

Step 9. Final contradiction.

Let $q = \max \pi(N)$ and Q be a Sylow q-subgroup of N. Then by **Step** 8, Q is normal in N and so we may assume that Q = N = P by **Step** 1. Let L be a minimal normal subgroup of G contained in P. Then by **Step** 6, L is the only minimal normal subgroup of G contained in P and so $L = O_p(G) = P$. But by Lemma 2.4, L is not a minimal normal subgroup of G, a contradiction. This contradiction completes the proof of this theorem.

Proposition 3.3 (a) Let H be a p-subgroup of F(G). If H is an ISE-normal subgroup of G, then it is also a weakly s-permutable subgroup of G.

(b) If every ISE-normal subgroup of G is also weakly s-permutable in G, then $G/O_p(G)$ is p-nilpotent for arbitrary $p \in \pi(G)$.

Proof. (a) Let H be an *ISE*-normal subgroup of G, then there exists a subnormal subgroup K of G such that G = HK and $H \cap K$ is π -quasinormally embedded in G. Since $H \leq F(G)$, we have $H \leq O_p(G)$, so $H \cap K \leq O_p(G)$, thus $H \cap K$ is π -quasinormal in G by Lemma 2.3, so $H \cap K \leq H_{sG}$, consequently, H is weakly s-permutable in G, as desired.

(b) Because every Sylow subgroup of G is always normally embedded in G, it is of course, *ISE*-normal, it follows that G_p is weakly s-permutable in G. By definition in [21], there exists a subnormal subgroup T such that $G = G_p T$ and $G_p \cap T \leq (G_p)_{sG}$. Since $(G_p)_{sG} \leq O_p(G)$, we have $G_p \cap T = T \cap O_p(G)$, so

 $|(G/O_p(G)) : (TO_p(G)/O_p(G))| = |G : TO_p(G)| = |G_pT : TO_p(G)| = |G_p : O_p(G)|.$

Hence $TO_p(G)/O_p(G)$ is a Hall p'-subgroup of $G/O_p(G)$. Since $TO_p(G)$ is subnormal in G, we get $TO_p(G)/O_p(G)$ is a normal *p*-complement of $G/O_p(G)$, so $G/O_p(G)$ is *p*-nilpotent.

Theorem 3.4 Let \mathcal{F} be a saturated formation containing \mathcal{U} and G a group with a normal subgroup N such that $G/N \in \mathcal{F}$. Assume that every non-cyclic Sylow subgroup P of $F^*(N)$ has a subgroup U with 1 < |U| < |P| such that every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is CISE-normal in G, then $G \in \mathcal{F}$.

Proof. Assume that the result is false and consider a counterexample (G, N) with minimal |G| + |N|. If all Sylow subgroups of $F^*(N)$ are cyclic, then by Theorem 3.1, $G \in \mathcal{F}$. Next, we assume always that $F^*(N)$ has a non-cyclic Sylow subgroup. We claim that $F^*(N) = F(N) \neq 1$. In fact, $F^*(N)$ is supersolvable by Theorem 3.2. So $F^*(N) = F(N) \neq 1$ by Lemma 2.8 (2), (3). By the hypothesis, every non-cyclic Sylow subgroup P of $F^*(N) = F(N) \neq 1$ by Lemma 2.8 (2), (3). By the hypothesis, every non-cyclic Sylow subgroup P of $F^*(N) = F(N)$ has a subgroup U with 1 < |U| < |P| such that every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is CISE-normal in G. If H has supersolvable supplement M in G, then G = HM = PM, so $G/P \cong M/P \cap M \in U \subseteq \mathcal{F}$, thus (G, P) satisfy the condition of Theorem 3.2, hence $G \in \mathcal{F}$, a contradiction. Thus every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is ISE-normal in G, by Proposition 3.3 (a), every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is ISE-normal in G, by Proposition 3.3 (a), every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is ISE-normal in G, by Proposition 3.3 (a), every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is ISE-normal in G, by Proposition 3.3 (a), every subgroup H of P of order |U| and every cyclic subgroup of P of order 4 (if |U| = 2 and P is a non-abelian 2-group) is weakly s-permutable in G. Applying [20, Corollary 5.4], $G \in \mathcal{F}$, a contradiction. This contradiction completes the proof of this theorem.

It is well known that if a subgroup H of G is c-normal, c^* -normal, S-permutable, S-quasinormally embedded in G respectively and has a supersolvable supplement in G, then H is CISE-normal in G. Hence [21, Corollary 5.1~2.24] are corollaries of our Theorem 3.2 and Theorem 3.4. Moreover, we have the following corollaries.

Corollary 3.5 (See [2, Theorem 3.3]) Let \mathcal{F} be a saturated formation containing \mathcal{U} , and let G be a group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and all maximal subgroups of any Sylow subgroup of H are S-quasinormally embedded in G.

Corollary 3.6 (See [2, Corollary 3.4]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and G a solvable group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and all maximal subgroups of the Sylow subgroups of F(H) are S-quasinormally embedded in G.

Corollary 3.7 (See [15, Theorem 3.2]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and G be a group with a soluble normal subgroup H such that $G/H \in \mathcal{F}$. If all minimal subgroups and all cyclic subgroups with order 4 of F(H) are π -quasinormally embedded in G, then $G \in \mathcal{F}$.

Corollary 3.8 (See [15, Theorem 1.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U} , and let G be a group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and all maximal subgroups of any Sylow subgroup of $F^*(H)$ are π -quasinormally embedded in G.

Corollary 3.9 (See [15, Theorem 1.2]) Let \mathcal{F} be a saturated formation containing \mathcal{U} , and let G be a group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and the cyclic subgroups of prime order or order 4 of $F^*(H)$ are π -quasinormally embedded in G.

Corollary 3.10 (See [25, Theorem 4.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U} , and let G be a group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and all maximal subgroups of any Sylow subgroup of $F^*(H)$ are c^* -normal in G.

Corollary 3.11 (See [13, Theorem 3.5]) Let G be a group and \mathcal{F} be a saturated formation containing \mathcal{U} . Then $G \in \mathcal{F}$ if and only if there is a solvable normal subgroup H such that $G/H \in \mathcal{F}$ and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either c-normal or S-quasinormally embedded in G.

Corollary 3.12 (See [13, Theorem 3.2]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group. Then G is in \mathcal{F} if and only if there is a normal subgroup H such that $G/H \in \mathcal{F}$ and every maximal subgroup of all Sylow subgroups of H is either c-normal or S-quasinormally embedded in G.

In [14], the following concept was introduced: Let G be a group. A subgroup H of G is said to be an SS-quasinormal subgroup (Supplement-Sylow-quasinormal subgroup) of G if there is a supplement B to H in G such that H permutes with every Sylow subgroup of B. Let H be a nilpotent subgroup of G and $H \leq F(G)$. We know that H is SS-quasinormal in G if and only if H is S-quasinormally embedded in G. our final corollary:

Corollary 3.13 Let \mathcal{F} be a saturated formation containing \mathcal{U} and G a group with a soluble normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of the Sylow subgroups of F(H) (all minimal subgroups and all cyclic subgroups with order 4 of F(E)) are SS-quasinormal in G, then $G \in \mathcal{F}$.

Acknowledgement

The authors are grateful to the referee who read the manuscript carefully and provided many useful comments.

References

- [1] Arad, Z., Fisman, E.: On finite factorizable groups, J. Algebra, 86, 522–548 (1984).
- [2] Asaad, M., Heliel, A.A.: On S-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 181, 129–135 (2001).
- [3] Asaad, M., Ramadan, M., Shaalan, A.: Influence of π-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroups of a finite group, Arch. Math., 56, 521–527 (1991).
- [4] Ballester-Bolinches, A., Pedraza-Aguilera, M.C.: Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127, 113–118 (1998).
- [5] Ballester-Bolinches, A., Pedraza-Aguilera, M.C.: On minimal subgroups of finite groups, Acta Math. Hungar, 73, 335–342 (1996).
- [6] Buckley, J.: Finite groups whose minimal subgroups are normal, Math. Z., 15, 15–17 (1970).
- [7] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups, Clarendon Press, Oxford, 1985.
- [8] Doerk, K., Hawkes, T.: Finite Solvable Groups, Walter de Gruyter, Berlin, New York, 1992.
- [9] Guo, W.: The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing, New York, Dordrecht, Boston, London, 2000.
- [10] Huppert, B.: Endliche Gruppen I, Springer, New York, Berlin, 1967.
- [11] Huppert, B., Blackburn, N.: Finite Groups III, Springer-Verlag, Berlin-New York, 1982.
- [12] Kegel, O.: Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78, 205–211 (1962).
- [13] Li, S.: On S-quasinormal and c-normal subgroups of a finite group, Acta Math. Sinica (English Series), 24, 647–654 (2008).
- [14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319, 4275–4287 (2008).
- [15] Li, Y., Wang, Y.: On π -quasinormally embedded subgroups of finite groups, J. Algebra, 281, 109–123 (2004).
- [16] Li, Y., Wang, Y., Wei, H.: Influence of π -quasinormality of some subgroups of a finite group, Arch. Math., 81, 245–252 (2003).
- [17] Miao, L., Guo, W.: Finite groups with some primary subgroups U-s-supplemented, Comm. Algebra, 33, 2789–2800 (2005).
- [18] Ramadan, M.: Influence of normality on maximal subgroups of Sylow subgroups of a finite group, Acta Math. Hungar, 59, 107–110 (1992).
- [19] Shemetkov, L.A.: Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.
- [20] Shemetkov, L.A., Skiba, A.N.: On the $\mathcal{X}\Phi$ -hypercentre of finite groups, J. Algebra, 322, 2106–2117 (2009).
- [21] Skiba, A.N.: On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (1), 192–209 (2007).
- [22] Skiba, A.N.: A note on *c*-normal subgroups of finite groups, Algebra Discrete Math., 3, 85–95 (2005).
- [23] Wang, Y.: c-normality of groups and its properties, J. Algebra, 180, 954–965 (1996).

242

- [24] Wei, H.: On *c*-normal maximal and minimal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 29, 2193–2200 (2001).
- [25] Wei, H., Wang, Y.: On c^{*}-normality and its properties, J. Group Theory, 10, 211–223 (2007).

Yong XU, Tao ZHAO and Xianhua LI School of Mathematical Science, Soochow University Suzhou, Jiangsu 215006, People's Republic of China e-mail: xhli@suda.edu.cn Received: 18.10.2010