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On CISE -normal subgroups of finite groups∗

Yong Xu, Tao Zhao and Xianhua Li

Abstract

A generalized normality CISE of subgroups of a finite group is introduced. Let F be a saturated

formation containing the class of all supersolvable groups. We give a characterization of F by using CISE -

normality of subgroups.
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1. Introduction

In this paper, all groups considered are finite and G stands for a finite group. We write N Char G to
mean that N is a characteristic subgroup of G . Let π(G) stand for the set of all prime divisors of |G| . Let F
denote a saturated formation and U the class of supersolvable groups. Let GF = ∩{N � G | G/N ∈ F} , say

the F -residual of G . Write ZF (G) for the F -hypercentre of G(see[9]). The other notations and terminologies

are standard (see[10]).

It is always a question of particular interest in the theory of groups to study the structure of a group
G by using a certain generalized normality of some subgroups of G . Kegel in [12] introduced the concept
of s-quasinormal subgroups. A subgroup H of a group G is said to be s-permutable, s-quasinormal, or π -
quasinormal in G if PH = HP for all Sylow subgroups P of G . Ballester-Bolinches and Pedraza-Aguilera in [4]
introduced the notion of s-quasinormal embedding. A subgroup H of a group G is said to be S -quasinormally
embedded or π -quasinormally embedded in G if for each prime number p in π(H), A Sylow p-subgroup of

H is also a Sylow p-subgroup of a certain s-quasinormal subgroup of G . In [23], Wang Yanming introduced
the concept of c-normal subgroups. A subgroup H of a group G is said to be c-normal in G if G has a
normal subgroup T such that HT = G and H ∩ T ≤ HG , where HG = ∩x∈GHx is the core of H in G . In
[25], Wei and Wang integrated these terminologies into the concept of c∗ -normal subgroups. A subgroup H

of a group G is said to be c∗ -normal in G if G has a normal subgroup T such that HT = G and H ∩ T

is π -quasinormally embedded in G . In [21], Skiba introduced that: a subgroup H of G is said to be weakly
s-permutable in G if G has a subnormal subgroup T such that G = HT and H ∩T ≤ HsG , where HsG is the
maximal s-permutable subgroup of G contained in H . Many authors have investigated the structure of a finite
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group G under the assumption that some subgroups of prime power order of G or some maximal subgroups
of Sylow subgroups of G have those generalized normality in G and have obtained many results (see [3], [5],

[6], [15], [17], [18], [21], [23], [24] and [25]). Now, we introduce another generalized normality of subgroups of
a finite group and generalize further the concept of c∗ -normal. The aim is to improve and extend these works
mentioned before.

Definition 1.1 Let H be a subgroup of a group G .

(1) If there exists a subnormal subgroup K of G such that G = HK and H ∩ K is π -quasinormally
embedded in G , H is called an ISE -normal subgroup of G .

(2) If H has a supersolvable supplement in G or H is ISE -normal in G , H is called a CISE -normal
subgroup of G .

It is clear that the concept of ISE -normal is obtained by replacing the word “normal subgroup” by
“subnormal subgroup” in the definition of c∗ -normal and the concept of CISE -normal is a generalization of
ISE -normal. The following example shows that the generalization is proper.

Let N = L2(8), G = Aut(N), then G ∼= N : 3 . We identify G with N : 3 . Let P ∈ Syl2(N) and

Q ∈ Syl3(N). Let H = NG(P ) and K = NG(Q). By [7], NN (P ) ∼= 23 : 7 , H ∼= 23 : 7 : 3 and K ∼= 9 : 6. So K

is supersolvable and G = HK , which shows that H is CISE -normal in G . But it is clear that the subnormal
subgroup containing the Sylow 3-subgroup of H must be G . Hence H is not an ISE -normal subgroup. This
shows that H is not ISE -normal in G .

2. Preliminary results

Lemma 2.1 ([4, Lemma 1]) Suppose that U is π -quasinormally embedded in a group G , H ≤ G and K a
normal subgroup of G .

(a) If U ≤ H , then U is π -quasinormally embedded in H .

(b) UK is π -quasinormally embedded in G and UK/K is π -quasinormally embedded in G/K .

(c) Let K ≤ H such that H/K is π -quasinormally embedded in G/K , then H is π -quasinormally embedded
in G .

Lemma 2.2 Let H be a subgroup of a group G .

(1) If H is ISE -normal (CISE -normal) in G and H ≤ M ≤ G , then H is ISE -normal (respectively,

CISE -normal) in M .

(2) Let N � G and N ≤ H . Then H is ISE -normal in G if and only if H/N is ISE -normal in G/N ; if

H is CISE -normal in G , then H/N is CISE -normal in G/N .

(3) Let π be a set of primes, H a π -subgroup of G , and N a normal π
′
-subgroup of G . If H is ISE -normal

(respectively, CISE -normal) in G , then HN/N is ISE -normal (respectively, CISE -normal) in G/N .
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(4) Suppose that H is a p-subgroup for some prime p and H is not π -quasinormally embedded in G but

ISE -normal in G , then G has a normal subgroup M such that |G : M | = p and G = HM .

Proof. (1) Suppose that H is ISE -normal in G . By the hypothesis, there exists a subnormal subgroup T

of G such that G = HT and H ∩ T is π -quasinormally embedded in G . Then M = M ∩ HT = H(M ∩ T ),

M ∩ T � �M by [8, Chap A, Lemma 14.1(a)], and H ∩ (M ∩ T ) = H ∩ T is π -quasinormally embedded

in M by Lemma 2.1(a). So H is ISE -normal in M . If H has a supersolvable supplement L in G , then

G = HL , M = M ∩ HL = H(M ∩ L). Obviously, M ∩ L is also a supersolvable subgroup of M . Hence if H

is CISE -normal in G , then H is CISE -normal in M . �

(2) Suppose that H is ISE -normal in G . Then there exists a subnormal subgroup T of G such

that G = HT and H ∩ T is π -quasinormally embedded in G . Thus G/N = HT/N = (H/N) · (TN/N),

TN/N � �G/N by [8, Chap A, Lemma 14.1(b)], and (H/N) ∩ (TN/N) = (H ∩ TN)/N = (H ∩ T )N/N is

π -quasinormally embedded in G/N by Lemma 2.1(b). So H/N is ISE -normal in G/N . Conversely, if H/N is

ISE -normal in G/N , then there exists a subnormal subgroup T/N of G/N such that G/N = (H/N) · (T/N)

and (H/N)∩ (T/N) = (H ∩ T )/N is π -quasinormally embedded in G/N . Then G = HT , T is subnormal G ,

and H ∩ T is π -quasinormally embedded in G by Lemma 2.1(c). So H is ISE -normal in G . The second part
is clear. �

(3) Suppose that H is ISE -normal in G , then there exists a subnormal subgroup T of G such that

G = HT and H ∩ T is π -quasinormally embedded in G . Then G/N = HT/N = (HN/N) · (TN/N) and

HN/N ∩ TN/N = (HN ∩ TN)/N . By [8, Chap A, Lemma 14.1(b)], TN/N is subnormal in G/N . Since H

is a π -subgroup of G and G = HT , π
′
(G) ⊆ π(T ). Since T is subnormal in G , we have Oπ′ (G) ≤ T , so

N ≤ Oπ′ (G) ≤ T , thus by Lemma 2.1(b), (HN ∩ TN)/N = (HN ∩ T )/N = (H ∩ T )N/N is π -quasinormally

embedded in G/N , hence HN/N is ISE -normal in G/N . If H has a supersolvable supplement L in G , then

G = HL , so G/N = HL/N = (HN/N) · (LN/N). Obviously LN/N ∼= L/(L ∩ N) is supersolvable. Thus

HN/N also has a supersolvable supplement LN/N in G/N . Hence we have claim (3).

(4) Since H is ISE -normal in G , there exists a subnormal subgroup K of G such that G = HK and
H ∩ K is π -quasinormally embedded in G . Since H is not π -quasinormally embedded in G , H ∩ K �= H .
Hence K is a proper subnormal subgroup of G , then there exists a proper normal subgroup T of G such that

K ≤ T , so |G/T | = |H : T ∩ H | = pi , where i is a natural number, thus G has a normal maximal subgroup

M such that G = HM and |G : M | = p . �

Lemma 2.3 ([25, Lemma 2.5]) Let G be a group, K a π -quasinormally embedded subgroup of G and P a

Sylow p-subgroup of K , where p is a prime. If either P ≤ Op(G) or KG = 1 , then P is π -quasinormal in G .

Lemma 2.4 Let N be an elementary abelian normal p-subgroup of G . Assume that N has a subgroup U with
1 < |U | < |N | such that every subgroup H of N of order |U | is ISE -normal in G . Then N is not a minimal
normal subgroup of G .

Proof. Suppose that this lemma is false, then N is a minimal normal subgroup of G . If some sub-
group H of N satisfying |H | = |U | is not π -quasinormally embedded in G , then by Lemma 2.2 (4), there

exists a normal subgroup of G , M such that |G : M | = p and G = HM . It follows that NM = G ,

p = |NM : M | = |N : N ∩M | . So M ∩N is a maximal subgroup of N and N ∩M � G . By the minimality of
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N , we get N ∩M = 1. By HM = NM , we get |N | = |H | < |N | , a contradiction. Hence every subgroup H of

N satisfying |H | = |U | is π -quasinormally embedded in G , and H ≤ N ≤ Op(G). By Lemma 2.3, these sub-

groups H are π -quasinormal in G . By [16, Lemma 2.2], we have Op(G) ≤ NG(H), hence |G : NG(H)| = pjH ,

where jH ≥ 0. Since |H | < |N | and N is a minimal normal subgroup of G , we have NG(H) �= G . So

jH > 0 and jH are natural numbers. Let Ω be the set of all subgroups with order |U | of N . Then G acts
on Ω by conjugation and we can obtain a partition of Ω into orbits. For K ∈ Ω, let the G -orbit of K be

{K1, K2, · · · , Ks} , then s = |G : NG(K)| = pjK . Hence p divides |Ω| . On the other hand, by ([10, III 8.5(d)]),

we know |Ω| ≡ 1(mod p), a contradiction. �

Lemma 2.5 Let F be a saturated formation containing the class of all nilpotent groups N , G be a group.

Suppose that GF is soluble and every maximal subgroup of G not containing GF belongs to F . If every cyclic

subgroup of GF with prime order or order 4 (if GF is a non-abelian 2-group) is CISE -normal in G , then

|GF/Φ(GF )| = p .

Proof. Let R = GF . By [19, VI Theorem 24.2], R is a p-subgroup, expR = p or 4 (if R is a

non-abelian 2-group) and R/Φ(R) is a minimal normal subgroup of G/Φ(R). Suppose that there ex-

ists x ∈ R such that 〈x〉 has a supersolvable supplement M in G . If G = M , then G ∈ F and

GF = 1, a contradiction. So we may assume that M �= G , then MΦ(R) �= G by Φ(R) ≤ Φ(G). And

G = 〈x〉M = RM , so (MΦ(R)/Φ(R))(〈x〉Φ(R)/Φ(R)) = G/Φ(R). Hence |G/Φ(R) : MΦ(R)/Φ(R)| =

p and G/Φ(R) = (MΦ(R)/Φ(R))(R/Φ(R)). Since R/Φ(R) is a minimal normal subgroup of G/Φ(R),

R/Φ(R) ∩ MΦ(R)/Φ(R) = 1, so |(G/Φ(R)) : (MΦ(R)/Φ(R))| = |R/Φ(R)| = p . If there exists y ∈ R

with y �∈ Φ(R) such that y ∈ MG , since R/Φ(R) is a minimal normal subgroup of G/Φ(R), we have R ≤ MG ,

contrary to G = RM . So for any y ∈ R with y �∈ Φ(R), there exists g ∈ G such that y �∈ Mg . Thus

G = 〈y〉Mg and 〈y〉 has a supersoluble supplement. Hence |R/Φ(R)| = p and the result is true. If for any

y ∈ R with y �∈ Φ(R), 〈y〉 has no supersoluble supplement, then 〈y〉 is ISE -normal in G by the hypothesis.

By Lemma 2.2 (2), every cyclic subgroup of R/Φ(R) of order prime is ISE -normal in G/Φ(R). Since R/Φ(R)

is a minimal normal subgroup of G/Φ(R), by Lemma 2.4, R/Φ(R) has no a proper cyclic subgroup of prime

order, hence we conclude that |R/Φ(R)| = p . Thus we have Lemma 2.5. �

Lemma 2.6 ([22, Lemma 1.6]) Let P be a nilpotent normal subgroup of a group G . If P ∩Φ(G) = 1 , then P

is the direct product of some minimal normal subgroups of G .

Lemma 2.7 Let G be a group and let P be a Sylow 2-subgroup of G . Suppose that there exists a maximal
subgroup P1 of P such that P1 is CISE -normal in G . Then G is not a nonabelian simple group.

Proof. Suppose that G is a nonabelian simple group. By the hypothesis, P1 has a supersolvable supplement
M in G or it is ISE -normal in G . If the former case is true, then P1M = G and M �= G where M is

supersolvable. So |G : M | = 2r and 2r < |P | . By [1, Theorem 5.8], we get either M is a Hall r
′
-subgroup of

G or G is isomorphic to An with 5 ≤ n = 2r , r ≥ 2 and M ∼= An−1 . Since 2r < |P | and M is supersolvable,
we have G is not a nonabelian simple group. If the later case holds, then there exists a subnormal subgroup T

such that G = P1T and P1 ∩ T is π -quasinormally embedded in G . Since G is simple, we have T = G , then
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P1 ∩ T = P1 is π -quasinormally embedded in G . So there exists a π -quasinormal subgroup K of G such that
P1 ∈ Syl2(K). Since G is simple, we get K = G . So P1 = P , a contradiction. Then G is not a nonabelian
simple group. �

Lemma 2.8 Let G be a group and M a subgroup of G . Then we have:

(1) If M is normal in G , then F ∗(M) ≤ F ∗(G) .

(2) F ∗(G) �= 1 if G �= 1 ; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G)) .

(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G) ; if F ∗(G) is soluble, then F ∗(G) = F (G) .

(4) CG(F ∗(G)) ≤ F (G) .

Proof. (1) ∼ (4) can be found in [11, Chap. X, §13]. �

3. Main results

Theorem 3.1 Let F be a saturated formation containing U and G a group with a normal subgroup N such
that G/N ∈ F . Assume that every Sylow subgroup of F ∗(N) is cyclic, then G ∈ F .

Proof. Assume that the result is false and let G be a counterexample with |G|+ |N | minimal. Suppose that

all Sylow subgroups of F ∗(N) are cyclic. Clearly, F ∗(N) is supersolvable, then F ∗(N) = F (N) by Lemma 2.8

(3). Since F (N)/Φ(N) = F (N/Φ(N)), all Sylow subgroups of F (N/Φ(N)) are cyclic. So (G/Φ(N), N/Φ(N))

satisfies the hypothesis of Theorem 3.1. Thus if Φ(N) �= 1, then G ∈ F . Hence we may assume that

Φ(N) = 1. Since Φ(F (N)) ⊆ Φ(N), Φ(F (N)) = 1. Let π(F (N)) = {pi | 1 ≤ i ≤ t} and Ki ∈ Sylpi (F (N)),

where p1 < p2 < · · · < pt , then Ki � G and |Ki| = pi . Then |Aut(Ki)| = pi − 1 and G/CG(Ki) is isomorphic

to a subgroup of Aut(Ki). From Aut(Ki) cyclic, we get that G/CG(Ki) is cyclic. Let U = ∩t
i=1CG(Ki), then

G/U ∈ U and so G/U ∩ N ∈ F . It is easy to see that F ∗(U ∩ N) = F ∗(N). Hence if U ∩ N < N , then

G ∈ F , a contradiction. So we may assume that N ≤ U . It is clear that U = CG(F (N)). So N ≤ CG(F (N)),

F (N) ≤ Z(N). By Lemma 2.8 (4), N = CN(F (N)) = CN(F ∗(N)) ≤ F (N), so N = F (N) and N is cyclic.

Since (G/K1)/(N/K1) ∼= G/N ∈ F , and F (N/K1) = N/K1 is cyclic, by the minimality of |G| + |N | , we get

G/K1 ∈ F . So we may assume that N = K1 and K1 � Φ(G). Let M be a maximal subgroup of G such

that G = K1M , then M ∩ K1 = 1. Since K1 centralizes CG(K1) ∩ M and M normalizes CG(K1) ∩ M , we

get CG(K1) ∩ M � G . Let T = CG(K1) ∩ M . Then K1 � T and so K1 ∩ T = 1. By G = CG(K1)M , we

have that M/T ∼= CG(K1)M/CG(K1) = G/CG(K1). Since G/CG(K1) is cyclic and G/T = K1T/T � M/T ,

we have G/T ∈ U . Because F is a formation, we have obtained that G ∼= G/K1 ∩ T ∈ F , a contradiction.
This contradiction completes the proof of Theorem 3.1. �

Theorem 3.2 Let F be a saturated formation containing U and G a group with a normal subgroup N such
that G/N ∈ F . Assume that every non-cyclic Sylow subgroup P of N has a subgroup U with 1 < |U | < |P |
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such that every subgroup H of P of order |U | and every cyclic subgroup of P of order 4 (if |U | = 2 and P is

a non-abelian 2-group) is CISE -normal in G , then G ∈ F .

Proof. Assume that the result is false and let (G, N) be a counterexample with |G|+ |N | minimal.

If all Sylow subgroups of N are cyclic, then all Sylow subgroups of F (N) are cyclic. By Theorem 3.1,

G ∈ F . Hence when we want to prove G ∈ F in the following arguments, we assume always that N has a

non-cyclic Sylow subgroup if (G, N) satisfy the hypothesis of (G, N) in Theorem 3.2.

Step 1. If T is a Hall subgroup of N , the hypothesis is true for (T, T ). In addition, if T � N , then the

hypothesis is also true for (G/T, N/T ). Especially, if T is a non-identity normal Hall subgroup of N , we may
assume that N = T .

Let T be a Hall subgroup of N , P be a non-cyclic Sylow subgroup of T , of course, P is also a non-cyclic
Sylow subgroup of N . By the hypothesis, P has a subgroup U with 1 < |U | < |P | such that every subgroup

H of P of order |U | and every cyclic subgroup of P of order 4 (if |U | = 2 and P is a non-abelian 2-group) is

CISE -normal in G . By Lemma 2.2 (1), the hypothesis is true for (T, T ). In addition, if T � N , then by T is

a characteristic subgroup of N and N � G , we get that T � G . Let P ∗/T be a non-cyclic Sylow subgroup of

N/T , then by Shur-Zassenhaus Theorem, it is easy to prove that P ∗ = T �P , where P ∈ Sylp (P ∗). Obviously,

P is also a non-cyclic Sylow subgroup of N . By the hypothesis, P has a subgroup U such that 1 < |U | < |P |
and every subgroup H of P of order |U | and every cyclic subgroup of P of order 4 (if |U | = 2 and P is a

non-abelian 2-group) is CISE -normal in G . By Lemma 2.2 (3), H∗/T is CISE -normal in G/T . Especially,

if T is a non-identity normal Hall subgroup of N , then the hypothesis is true for (G/T, N/T ), so G/T ∈ F .

Thus the hypothesis is still true for (G, T ). By the minimality of |G|+ |N | , we may assume that T = N .

Step 2. Let p = minπ(N), then Sylow p-subgroups P of N are not cyclic. Thus by the hypothesis, P

has a subgroup U such that 1 < |U | < |P | and every subgroup H of P of order |U | and every cyclic subgroup

of P of order 4 (if |U | = 2 and P is a non-abelian 2-group) is CISE -normal in G .

If P is cyclic, then N is p-nilpotent by [10, V, 2.8], so N has a normal p
′
-Hall subgroup Np′ . If

Np′ �= 1, by Step 1, (G/Np′ , N/Np′ ) satisfies the hypothesis, then G ∈ F by the minimality of |G| + |N | ,
a contradiction. So Np

′ = 1, N = P . Since G/N ∈ F and P is cyclic, we get G ∈ F by Theorem 3.1, a

contradiction.
Step 3. If either N = G or N = P , then |U | > p .

Suppose that N = G , by the hypothesis, G is not a nilpotent group and so it has a p-closed Schmidt
subgroup E [10, IV, 5.4]. If |U | = p , then E satisfies the condition of Lemma 2.5, so E is p-nilpotent, a

contradiction. Hence |U | > p . Suppose that N = P , then G/P ∈ F . Assume that |U | = p and R = GF .

Let T be an arbitrary maximal subgroup of G not containing P , then G/P = TP/P ∼= T/T ∩ P , so the

hypothesis is still true for (T, T ∩ P ), thus T ∈ F by the choice of G . So every maximal subgroup of G

not containing P belongs to F . Since R ≤ P , every maximal subgroup of G not containing R dose not
contain P , thus every maximal subgroup of G not containing R belongs to F , so |R/Φ(R)| = p by Lemma

2.5. Since (G/Φ(R))/(R/Φ(R)) ∼= G/R ∈ F , we have G/Φ(R) ∈ F by Theorem 3.1, which implies G ∈ F , a

contradiction. Hence |U | > p .

Step 4. If |P : U | > p , then every subgroup H of P of order |U | not having a supersoluble supplement

in G is π -quasinormally embedded in G . If P is a non-abelian 2-group and |U | = 2, then every subgroup H

of P of order 4 not having a supersoluble supplement in G is also π -quasinormally embedded in G .
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Assume that P has a subgroup H of order |U | and H neither has a supersoluble supplement in G nor

is π -quasinormally embedded in G . Then G has a normal subgroup M such that G = HM and |G : M | = p

by Lemma 2.2 (4), so G/N ∩ M ∈ F . Hence the hypothesis is still true for (G, N ∩ M) by |P : U | > p and

Lemma 2.2. If M ∩ N = N , then N ≤ M , so G = HM = NM = M , a contradiction. Thus |N ∩ M | < |N | ,
so |G| + |N ∩ M | < |G| + |N | , contrary to the minimality of |G| + |N | . Similarly, we can prove the second
statement of Step 4.

Step 5. If L is a minimal normal subgroup of G and L ≤ P , then |L| ≤ |U | .

Suppose that |L| > |U | , then every subgroup H of L of order |U | is CISE -normal in G . If H has

a supersoluble supplement M in G , then MH = G . Since L = L ∩ HM = H(L ∩ M) and |L| > |U | ,
L ∩ M �= 1. Obviously, L ∩ M � ML = MH = G . By the minimality of L , we get L ∩ M = L , then L ≤ M .
So G = MH = ML = M is supersoluble, a contradiction. Thus every subgroup H of L of order |U | is
ISE -normal in G . But by Lemma 2.4, L is not a minimal normal subgroup of G , a contradiction.

Step 6. If either N = G or N = P and L is an abelian minimal normal subgroup of G contained in
N , then the hypothesis is still true for (G/L, N/L) and so G/L ∈ F .

Assume that |P : U | = p . By the hypothesis, every maximal subgroup of P is CISE -normal in G . Let

T/L be a maximal subgroup of PL/L , then p = |(PL/L) : (T/L)| , and T = PL∩T = (P∩T )L . Let P1 = P∩T ,

then P1∩L = P ∩T ∩L = P ∩L , so p = |PL : T | = |PL : (P ∩T )L| = |P : P ∩T | = |P : P1| , thus P1 is CISE -

normal in G . If P1 has a supersoluble supplement M in G , then G = P1M , and G/L = P1M/L = TM/L =

(T/L)(ML/L). Since ML/L ∼= M/M ∩L is supersoluble, T/L has a supersoluble supplement ML/L in G/L .
Suppose that P1 is ISE -normal in G , then there is a subnormal subgroup B of G such that G = P1B and
P1∩B is π -quasinormally embedded in G . We have P1L∩BL = (P1L∩B)L . Now let π(G) = {p1, p2, · · · , pn}
where p1 = p , and Bpi denotes a Sylow pi -subgroup of B (i = 2, · · · , n). Then Bpi is a Sylow pi -subgroup of

G , hence Bpi ∩N is a Sylow pi -subgroup of N (i = 2, · · · , n). Write V = 〈L∩Bp2 , · · · , L∩Bpn〉 , then V ≤ B

and L = (P1 ∩ L)V , thus P1L ∩BL = (P1L ∩B)L = (P1V ∩B)L = (P1 ∩ B)V L = (P1 ∩B)L . It follows from

Lemma 2.1(b) that (P1L/L) ∩ (BL/L) = (P1 ∩ B)L/L is π -quasinormally embedded in G/L . Therefore T/L

is CISE -normal in G/L , then the hypothesis is true for (G/L, N/L).

Assume that |L| < |U | . If N = G , then L is a p-subgroup, then for L < H with |H | = |U | , we have

H/L is CISE -normal in G/L by Lemma 2.2 (2) and 1 < |H/L| < |P/L| . If N = P , then by Lemma 2.2 (2),

we have H/L is CISE -normal in G/L . Hence the hypothesis is still true for (G/L, N/L).

So let |L| = |U | and |P : U | > p . Then by Step 4 every subgroup H of P with order |H | = |U | not
having a supersoluble supplement in G is π -quasinormally embedded in G , and if P is a non-abelian 2-group
and |U | = 2, then every cyclic subgroup H of P with order 4 not having a supersoluble supplement in G is
also π -quasinormally embedded in G . By Step 3, L is non-cyclic, hence every subgroup of G containing L is
not cyclic. Let L < K ≤ P , where |K : L| = p . Since K is non-cyclic, it has a maximal subgroup M �= L . If
M has a supersoluble supplement in G , then K has a supersoluble supplement in G . If M is π -quasinormally
embedded in G , so K = LM does by Lemma 2.1(b). Thus if P/L is p-group(p > 2) or an abelian 2-group

or a non-abelian 2-group with |U | > 2, the hypothesis is true for (G/L, N/L) by Lemma 2.2 (2) and Step 4.

If P/L is a non-abelian 2-group and |U | = 2, then P is a non-abelian 2-group and so every cyclic subgroup of
P with order 4 not having a supersoluble supplement in G is π -quasinormally embedded in G . In this case,
using the same method as above, one can show that every subgroup X of P containing L such that X/L is
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a cyclic subgroup of order 4 either has a supersoluble supplement in G or is π -quasinormally embedded in G .
Thus again the hypothesis is still true for (G/L, N/L).

Step 7. N is solvable.

By Step 1 and the choice of G we only need consider the case N = G . Let 2 = minπ(N). Then the

Sylow 2-subgroup P of N are not cyclic by Step 2. Assume that |P : U | = 2. Let G be a counterexample of
minimal order. By Step 6 and Lemma 2.7, we get G has the unique minimal normal subgroup L of G such
that G/L is solvable and L �= 1. Suppose that L ∩ P ≤ Φ(P ), then L is 2-nilpotent by J. Tate Theorem([10,

Theorem 4.4.7]), so G is solvable, a contradiction. Then L∩P � Φ(P ), so there exists a maximal subgroup P1

of P such that (L∩P )P1 = P . By the hypothesis, P1 is CISE -normal in G . If P1 is ISE -normal in G , then
there exists a subnormal subgroup T of G such that G = P1T and P1∩T is π -quasinormally embedded in G .
So there exists a π -quasinormal subgroup K of G such that P1 ∩ T ∈ Syl2(K). Assume that KG �= 1, then

L ≤ KG ≤ K , so P1 ∩ T ∩L ∈ Syl2(L) and P1 ∩ T ∩L ≤ P1 ∩L ≤ P ∩L . Thus P1 ∩ T ∩L = P ∩L = P1 ∩L ,

hence P = (P ∩ L)P1 = P1 , a contradiction. So KG = 1. By Lemma 2.3, P1 ∩ T is π -quasinormal in G . If

P1∩T �= 1, then P1∩T ≤ O2(G), O2(G) �= 1, so L ≤ O2(G), thus G is solvable, a contradiction. If P1∩T = 1,

then 2 | |T | , but 4 � |T | , so T is solvable, thus G is solvable by the subnormality of T , a contradiction. Thus

every maximal of P has a supersolvable supplement in G , then G is q -closed by [21, Lemma 2.2] and Step 2,

where q = maxπ(G), so G is solvable, a contradiction.

Assume that |P : U | > 2. By Step 4, every subgroup H of P of order |U | not having a supersoluble

supplement in G is π -quasinormally embedded in G . If P is a non-abelian 2-group and |U | = 2, then every
subgroup H of P of order 4 not having a supersoluble supplement in G is also π -quasinormally embedded in G .
By Step 1 and Step 6, we may assume that O2′ (G) = 1 and O2(G) = 1. Suppose that H is π -quasinormally

embedded in G , then there exists a π -quasinormal subgroup K such that H ∈ Syl2(K). If KG = 1, then H

is π -quasinormal subgroup of G by Lemma 2.3, so H ≤ O2(G), thus O2(G) �= 1, a contradiction. If KG �= 1,
we choose H �H1 ≤ P , then H1KG satisfies the hypothesis. By the first paragraph discussion, we have H1KG

is solvable, so is KG . Thus O2(KG) �= 1 or O2′ (KG) �= 1, hence O2(G) �= 1 or O2′ (G) �= 1, a contradiction.

Therefore, every subgroup H of P of order |U | has a supersoluble supplement in G , that is, every maximal

subgroup of P has a supersoluble supplement in G , then G is q -closed by [21, Lemma 2.2] and Step 2, where

q = maxπ(G), so G is solvable, the final contradiction. This contradiction implies that G is solvable.

Step 8. Let q = max π(N), then N is q -closed.

Assume that Nq is not normal in N and let N be a counterexample with |N | + |G| of minimal order
for q -closed.

By Step 7, we can assume that {Nr | r ∈ π(N)} is a Sylow system of N . Let K = NqNr for any

r ∈ π(N) with r �= q . By Step 1, the hypothesis is still true for (K, K). If |π(N)| > 3 or G �= N , then Nq �K ,

which implies that Nq � N , a contradiction. Thus we may assume that G = N and |G| = paqb .

Let L be a minimal normal subgroup of G , then G/L is q -closed by Step 6. Since q -closed groups are

a saturated formation, we may assume that L � Φ(G) and L is the only minimal normal subgroup of G . If

L is a q -group, then Gq � G , where Gq denotes a Sylow q -subgroup of G , a contradiction. Thus L ≤ P and

so L ≤ Op(G). Now we show that L = Op(G). Let W be a maximal subgroup of G such that L �≤ W , then

G = LW and L ∩ W = 1. Since W ∼= G/L , W is q -closed. By L ≤ Op(G), G = LW = Op(G)W . From

Op(G) ≤ F (G) ≤ CG(L), it is easy to see that L and W normalize Op(G) ∩ W , thus Op(G) ∩ W � G . So
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Op(G) ∩ W = 1 or L ≤ Op(G) ∩ W . If the later case happened, then L ≤ W , that is, G = L � W = W , a

contradiction. So Op(G) ∩ W = 1, thus |Op(G)| = |G : W | = |L| , hence L = Op(G).

Assume that |P : U | = p . For every maximal subgroup A of P containing L we have G = AW ,
hence A has a supplement W in G such that W is q -closed. If every maximal subgroup of P not containing
L has a supersolvable supplement M in G , then M is q -closed. Thus every maximal subgroup of P has a
supplement M such that M is q -closed. By [21, Lemma 2.2], G is q -closed, a contradiction. Thus there
exists one maximal subgroup S of P neither containing L nor having a supersoluble supplement in G . By
the hypothesis, S is ISE -normal in G . It follows that there exists a subnormal subgroup K of G such that
G = SK and S ∩ K is π -quasinormally embedded in G . It is easy to prove that all Sylow q -subgroups of
G are in every subnormal subgroup of G containing a Sylow q -subgroup of G . Since for any g ∈ G , Kg is
subnormal in G , all Sylow q -subgroups of G are in Kg , so KG �= 1 and Gq ≤ KG . By the uniqueness of L ,

L ≤ KG ≤ K . If S ∩ K = 1, then |K| = pqb . Since q > p , Kq � K , which implies that G is q -closed, a

contradiction. If S∩K �= 1, then S∩K is a Sylow p-subgroup of some π -quasinormal subgroup K1 of G . Now
we claim that (K1)G = 1. If (K1)G �= 1, by the uniqueness of L , we have L ≤ (K1)G , Op((K1)G) �= 1. Thus

L ≤ Op((K1)G) ≤ (K1)p = S ∩ K ≤ S , where (K1)p ∈ Sylp(K1), which contradicts the choice of S . Hence

S∩K is π -quasinormal in G by Lemma 2.3, so S∩K is a subnormal subgroup of G , thus S∩K ≤ Op(G) = L ,

then S∩K ≤ S∩L ≤ S∩K , so S∩K = S∩L . It is clear that S∩K = S∩L is normalized by P . Since S∩K

is also a subnormal Sylow subgroup of (S ∩ K)Gq , S ∩ K is normalized by Gq . By G = PGq , S ∩ K � G ,

then L ≤ S ∩ K ≤ S , which contradicts the choice of S .

Therefore we may assume that |P : U | > p , then by Step 4, every subgroup H of P satisfying |H | = |U |
and not having a supersoluble supplement in G is a π -quasinormally embedded subgroup. If H has not
supersoluble supplement in G , then H is a π -quasinormally embedded subgroup of G , so there exists a π -
quasinormal subgroup K of G such that Kp = H , where Kp ∈ Sylp(K). If KG = 1, then H is a π -quasinormal

subgroup of G by Lemma 2.3, so H is subnormal in G . Since every subnormal p-subgroup is contained in
Op(G) and Op(G) = L by the previous argument, H ≤ L . On the other hand, by Step 5, |H | ≥ |L| , so
L = H . If KG �= 1, then L ≤ KG and L ≤ Kp = H . Summing up, we have L ≤ H , so G = WL = WH

and W ∩ L = 1, H has a q -closed supplement W in G . If H has a supersolvable supplement M in G , then
M is also q -closed. We have obtained that every subgroup H of order |U | in P has a q -closed supplement in

G . Since every maximal subgroup of P contains at least one subgroup H such that |H | = |U | , we get that

every maximal subgroup of P has a q -closed supplement in G . By [21, Lemma 2.2], G is q -closed, a final
contradiction.

Step 9. Final contradiction.

Let q = maxπ(N) and Q be a Sylow q -subgroup of N . Then by Step 8, Q is normal in N and so we
may assume that Q = N = P by Step 1. Let L be a minimal normal subgroup of G contained in P . Then by
Step 6, L is the only minimal normal subgroup of G contained in P and so L = Op(G) = P . But by Lemma

2.4, L is not a minimal normal subgroup of G , a contradiction. This contradiction completes the proof of this
theorem. �

Proposition 3.3 (a) Let H be a p-subgroup of F (G) . If H is an ISE -normal subgroup of G , then it is
also a weakly s-permutable subgroup of G .
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(b) If every ISE -normal subgroup of G is also weakly s-permutable in G , then G/Op(G) is p-nilpotent for

arbitrary p ∈ π(G) .

Proof. (a) Let H be an ISE -normal subgroup of G , then there exists a subnormal subgroup K of G such

that G = HK and H ∩ K is π -quasinormally embedded in G . Since H ≤ F (G), we have H ≤ Op(G), so

H ∩ K ≤ Op(G), thus H ∩ K is π -quasinormal in G by Lemma 2.3, so H ∩ K ≤ HsG , consequently, H is

weakly s-permutable in G , as desired.

(b) Because every Sylow subgroup of G is always normally embedded in G , it is of course, ISE -normal,

it follows that Gp is weakly s-permutable in G . By definition in [21], there exists a subnormal subgroup T

such that G = GpT and Gp ∩ T ≤ (Gp)sG . Since (Gp)sG ≤ Op(G), we have Gp ∩ T = T ∩ Op(G), so

|(G/Op(G)) : (TOp(G)/Op(G))| = |G : TOp(G)| = |GpT : TOp(G)| = |Gp : Op(G)|.

Hence TOp(G)/Op(G) is a Hall p
′
-subgroup of G/Op(G). Since TOp(G) is subnormal in G , we get

TOp(G)/Op(G) is a normal p-complement of G/Op(G), so G/Op(G) is p-nilpotent. �

Theorem 3.4 Let F be a saturated formation containing U and G a group with a normal subgroup N such
that G/N ∈ F . Assume that every non-cyclic Sylow subgroup P of F ∗(N) has a subgroup U with 1 < |U | < |P |
such that every subgroup H of P of order |U | and every cyclic subgroup of P of order 4 (if |U | = 2 and P is

a non-abelian 2-group) is CISE -normal in G , then G ∈ F .

Proof. Assume that the result is false and consider a counterexample (G, N) with minimal |G|+ |N | . If all

Sylow subgroups of F ∗(N) are cyclic, then by Theorem 3.1, G ∈ F . Next, we assume always that F ∗(N) has

a non-cyclic Sylow subgroup. We claim that F ∗(N) = F (N) �= 1. In fact, F ∗(N) is supersolvable by Theorem

3.2. So F ∗(N) = F (N) �= 1 by Lemma 2.8 (2), (3). By the hypothesis, every non-cyclic Sylow subgroup P

of F ∗(N) = F (N) has a subgroup U with 1 < |U | < |P | such that every subgroup H of P of order |U | and

every cyclic subgroup of P of order 4 (if |U | = 2 and P is a non-abelian 2-group) is CISE -normal in G . If

H has supersolvable supplement M in G , then G = HM = PM , so G/P ∼= M/P ∩M ∈ U ⊆ F , thus (G, P )
satisfy the condition of Theorem 3.2, hence G ∈ F , a contradiction. Thus every subgroup H of P of order
|U | and every cyclic subgroup of P of order 4 (if |U | = 2 and P is a non-abelian 2-group) is ISE -normal in

G , by Proposition 3.3 (a), every subgroup H of P of order |U | and every cyclic subgroup of P of order 4 (if

|U | = 2 and P is a non-abelian 2-group) is weakly s-permutable in G . Applying [20, Corollary 5.4], G ∈ F , a
contradiction. This contradiction completes the proof of this theorem. �

It is well known that if a subgroup H of G is c-normal, c∗ -normal, S -permutable, S -quasinormally
embedded in G respectively and has a supersolvable supplement in G , then H is CISE -normal in G . Hence
[21, Corollary 5.1∼2.24] are corollaries of our Theorem 3.2 and Theorem 3.4. Moreover, we have the following
corollaries.

Corollary 3.5 (See [2, Theorem 3.3]) Let F be a saturated formation containing U , and let G be a group.

Then G ∈ F if and only if there exists a normal subgroup H such that G/H ∈ F and all maximal subgroups
of any Sylow subgroup of H are S -quasinormally embedded in G .
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Corollary 3.6 (See [2, Corollary 3.4]) Let F be a saturated formation containing U and G a solvable group.

Then G ∈ F if and only if there exists a normal subgroup H such that G/H ∈ F and all maximal subgroups

of the Sylow subgroups of F (H) are S -quasinormally embedded in G .

Corollary 3.7 (See [15, Theorem 3.2]) Let F be a saturated formation containing U and G be a group with

a soluble normal subgroup H such that G/H ∈ F . If all minimal subgroups and all cyclic subgroups with order

4 of F (H) are π -quasinormally embedded in G , then G ∈ F .

Corollary 3.8 (See [15, Theorem 1.1]) Let F be a saturated formation containing U , and let G be a group.

Then G ∈ F if and only if there exists a normal subgroup H such that G/H ∈ F and all maximal subgroups

of any Sylow subgroup of F ∗(H) are π -quasinormally embedded in G .

Corollary 3.9 (See [15, Theorem 1.2]) Let F be a saturated formation containing U , and let G be a group.

Then G ∈ F if and only if there exists a normal subgroup H such that G/H ∈ F and the cyclic subgroups of

prime order or order 4 of F ∗(H) are π -quasinormally embedded in G .

Corollary 3.10 (See [25, Theorem 4.1]) Let F be a saturated formation containing U , and let G be a group.

Then G ∈ F if and only if there exists a normal subgroup H such that G/H ∈ F and all maximal subgroups

of any Sylow subgroup of F ∗(H) are c∗ -normal in G.

Corollary 3.11 (See [13, Theorem 3.5]) Let G be a group and F be a saturated formation containing U . Then

G ∈ F if and only if there is a solvable normal subgroup H such that G/H ∈ F and every maximal subgroup

of all Sylow subgroups of F (H) , the Fitting subgroup of H , is either c-normal or S -quasinormally embedded
in G .

Corollary 3.12 (See [13, Theorem 3.2]) Let F be a saturated formation containing U and let G be a group.

Then G is in F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup
of all Sylow subgroups of H is either c-normal or S -quasinormally embedded in G.

In [14], the following concept was introduced: Let G be a group. A subgroup H of G is said to be

an SS -quasinormal subgroup (Supplement-Sylow-quasinormal subgroup) of G if there is a supplement B to
H in G such that H permutes with every Sylow subgroup of B . Let H be a nilpotent subgroup of G and
H ≤ F (G). We know that H is SS -quasinormal in G if and only if H is S -quasinormally embedded in G .
our final corollary:

Corollary 3.13 Let F be a saturated formation containing U and G a group with a soluble normal subgroup
H such that G/H ∈ F . If all maximal subgroups of the Sylow subgroups of F (H) (all minimal subgroups and

all cyclic subgroups with order 4 of F (E)) are SS -quasinormal in G , then G ∈ F .
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