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On normality of meromorphic functions with multiple zeros and
sharing values
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Abstract
In this paper we study the problem of normal families of meromorphic functions concerning shared values.
Let F' be a family of meromorphic functions in the plane domain D C C and n be a positive integer. Let
a,b be two finite complex constants such that a # 0. If n > 3 and f + a(f’)" and g + a(g')" share b in
D for every pair of functions f,g € F', then F' is normal in D. And some examples are provided to show

the result is sharp.
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1. Introduction and main results

In this paper, we denote by C the whole complex plane. Let f be a meromorphic function in a domain
D CC. For ae€C,set Ef(a) ={z€ D: f(z) = a}. We say that two meromorphic functions f and g share
the value a provided that E;(a) = E,(a) in D. When a = oo the zeros of f —a mean the poles of f (see [3]).

Let h be a meromorphic function in a domain D C C. We say h is a normal function if there exists a
|n’

7((2))”2 denotes the spherical derivative

positive number M such that h#(z) < M for all z € D, where h*(z) = THR

of h.

Let F be a family of meromorphic functions in a domain D C C. We say that F' is normal in D if every
sequence {f,} C F contains a subsequence which converges spherically uniformly on the compact subsets of D
(see [10]).

According to Bloch’s principle, every condition which reduces a meromorphic function in the plane C
to a constant, makes a family of meromorphic functions in a domain D normal. Although the principle is false
in general (see [9]), many authors proved normality criteria for families of meromorphic functions by starting
from Picard type theorems (see [6, 13, 14]). It is also more interesting to find normality criteria from the
point of view of shared values. In this area, Schwick [11] first proved an interesting result that a family of
meromorphic functions, in a domain in which every function shares three distinct finite complex numbers with

its first derivative, is normal. And later, Sun [12] proved that a family of meromorphic functions, in a domain in
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which each pair of functions share three fixed distinct values, is normal. This is an improvement of the famous
Montel’s Normal Criterion [7] by the idea of shared values. More results about normality criteria concerning

shared values can be found, for instance, in [4, 8, 16] and so on.
In [15], Ye proved the following.

Theorem A Let f be a transcendental meromorphic function and a be a nonzero finite complex number.

Then f + a(f')™ assumes every finite complex value infinitely often for each positive integer n > 3.

Ye asked whether Theorem A remains valid for n = 2. Fang and Zalcman, in [5], gave an affirmative

answer to this question and obtained the following.

Theorem B Let f be a transcendental meromorphic function and a be a nonzero finite complex number.

Then f + a(f')™ assumes every finite complex value infinitely often for each positive integer n > 2.
Corresponding to Theorem B there are the following theorems about normal families in [5].

Theorem C Let F be a family of meromorphic functions on the plane domain D, let n > 2 be a positive inte-
ger, and let a # 0,b be two complex numbers. If, for each f € F, all zeros of f are multiple and f+a(f')* #b

on D, then F is normal in D.

It is natural to ask whether Theorem C can be improved by the idea of shared values. In this paper, we
study the problem and obtain the following theorem.

Theorem 1 Let F be a family of meromorphic functions in the plane domain D and n be a positive integer.
Let a,b be two finite complex constants such that a # 0. If n > 3 and f+ a(f')" and g+ a(g')"™ share b in
D for every pair of functions f,g € F', then F is normal in D.

Example 1 Let D ={z:|z| <1} and F = {f,(2)}, where
fa(z)=nz?% z€D, n=12,....

Clearly, f+ (f')? = (n+ 4n?)z2. So for each pair m,n, f, + (f,)? and f,, + (f/,)? share the value 0 in D,

however, F' fails to be normal in D since f,’i(\/iﬁ) =/n — 00 as n — oo.

Example 2 Let D ={z:|z| <1} and F = {f,(2)}, where
fu(z) =mz, z€D, n=1,2,....

Clearly, f — (f')® = n(z —n?). So for each pair m,n, f, + (f2)% and f,, + (f},)® share the value 0 in D, but,

F fails to be normal in D since f#(1) =2 — oo as n — oo.

Example 1 shows that Theorem 1 is not valid when n = 2, so the condition n = 3 is best possible for
Theorem 1. And Example 2 shows that Theorem 1 is not valid when f has no multiple zeros, so the condition

that f has only multiple zeros is best possible for Theorem 1.
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2. Some Lemmas

Lemma 1 [1] Let F be a family of meromorphic functions in the unit disk A C C and let k be a positive
integer. Suppose that all zeros of f have multiplicity at least k for every f € F', and suppose that there exists
a number A > 1 such that |f*)(2)] < A whenever f(z) = 0. If F is not normal at zy € /\ , then for any
0 <« <k, there exist

(1) a number r € (0,1);

(2) a sequence of complex numbers z, — zg, |zn| < r;

(3) a sequence of functions f, € F;

(4) a sequence of positive numbers p, — 0

such that g,(&) = p,* fn(zn + pn&) converges locally uniformly (with respect to spherical metric) to a non-

constant meromorphic function g(§) on C, and moreover, the zeros of g(§) are of multiplicity at least k,

g (€) < g*(0) = kA +1.

Remark 1 In Lemma 1, if 0 < o < k, then the hypothesis of f*) can be dropped, and kA+1 can be replaced

by an arbitrary positive number (see [1]).

Lemma [2] A normal function has order at most two. A normal entire function is of exponential type, and

thus has order at most one.

Lemma 3 Let n > 3 be a positive integer and f be a non-constant rational meromorphic function with

multiple zeros, then f + a(f’)™ has at least two distinct zeros.

Proof. Case 1. If f+a(f)™ has no zeros.
Case 1.1. Since n > 3 and f is a non-constant function, it is easily obtained that f is not a polynomial.

Case 1.2. If f is rational but not a polynomial. Set f(z) = % and use deg(g) to denote the degree of a

polynomial g, where p(z),q(z) are polynomials. Put deg(p(z)) = p > 2 and deg(q(z)) =¢. Then

n_ PR)E" () +alp'(2)a(2) — p(2)d' (2)]"
¢°"(2)

f+alf) (2.1)

has no zeros. Recall that deg[p(2)¢*"~!(z)] = 2ng + p — ¢ and deg[(p(2)q(z) — p(2)¢'(2))"] < n(p+q—1).

Case 1.2.1. If ¢ > p—1, s0 2ng+p—q > n(p+q—1) and then deg[p(2)g®"~1(2)] > deg[(p'(2)q(2) —p(2)d' (2))"].
Hence (2.1) means that f + a(f’)™ has zeros, which contradicts that f 4 a(f’)™ has no zeros.

Case 1.2.2. If ¢ < p— 1, a simple calculation implies that deg[p’(z)q(z) — p(2)¢'(2)]* = n(p + ¢ — 1) and
2ng +p—q < n(p+q— 1), therefore, deg[p(2)g®>"~1(2)] < deg[(p'(2)q(z) — p(2)q¢'(2))"]. 1t follows from (2.1)

that f + a(f')™ has zeros. This is a contradiction, again.
Case 2. Suppose that f 4 a(f’)" has exactly one zero zp.

Case 2.1. If f is a non-constant polynomial.
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Set f+a(f )" = A(z — 2)', where A is a non-zero constant, | is a positive integer and | > 2. Then
F[L+an(f)"2f"] = Al(z — 20)"~'. Recall that f has only multiple zeros. But f’ has exactly the same zero
20, so f has the same zero zy and z is the unique zero of f. Thus f(z) = Ag(z — 20)¥, where Ay is non-zero
constant, k is a positive integer and k > 2. Thus f + a(f)" = Ao(z — 20)F[1 + aAj (2 — 20)"* ¥ has at

least two distinct zeros since nk —n — k > 1. This contradicts that our assumptions.

Case 2.2. If f is rational but not a polynomial. Suppose that f + a(f’)™ has exactly one zero zy with
multiplicity . So we deduce that f has has exactly one zero zy and then zy is the unique zero of f. Otherwise

f+a(f)™ has at least two distinct zeros, which contradicts that our assumptions.

We set
Az — 2)F
= 2.2
f(Z) (Z—Zl)ll(Z—ZQ)lQ "'(Z_Zm)l”l, ( )
where A is a non-zero constant and I; > 1(i =1,2,...,m), k > 2.

For simplicity, we denote
h+lb+ - +1ln=q

From (2.2), it follows that

Az — 20)*1g(2)

f'(z) = (z —21)ht1(z — z)latl - (2 = 2 ) I F17 (23)

where g(z) = k(z—2z1)(z—22) - (z—2m)+(z—20)[li(z—22)(z—23) - - - (z—2m )+ +Hlm(z—21)(z—22) - - - (2 —
Zm—l)]'
From (2.2) and (2.3), then

PP (CEP WEE i o L R CEP i

aA"(z _ ZO)"(k_l)g"(Z)

+ (z — 2)n D) (5 — zg)ntD) L (z — 2, )nUmtD) (2.4)
Since n(k —1) > k for n >3 and k > 2, then (2.4) implies that
A _ k
f+a(f )" = (2 —20)"g1(2) o)

(Z _ Zl)n(h-i—l)(z _ Zz)n(l2+1) .. (Z _ Zm)n(lm-i-l) ’

here g1(2) = [(z — 21) " DhHn (5 — zo)(n=Dladn (5 5 NY=Dlmdn g An=1(5 — z)*(k=D=kgn(2)]. By the
assumption that f + a(f’)™ has exactly one zero zg with multiply I, we deduce from (2.5) that

n\n C(Z - ZO)l
f+alf)" = (z — 21)"GFD (5 — op)nlatD) .- (z — 2, )almtD) (2.6)
Then (2.5) and (2.6) mean that
C(z—2) = Az — co)*g1(2), (2.7)
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where C' is a non-zero constant.

Case 2.2.1. If I > k, By (2.7) we conclude that g; has a zero zy and then (z — z)"~Dh+n(y —

zp) (= Dltn (5 )= Dlmdn hag a zero zp, which is impossible.

Case 2.2.2. If | =k, (2.7) implies that
C
hi(z) + ha(2) = L (2.8)

where hy(z) = (z—2) P~ DhHn (5 — gp) (= Dlatn (o YO=Dndn and hy(2) = a A" (2 —20)"FD7kgn (%),

We easily obtain from (2.8) that deg(hi) = deg(hz2). On the other hand, we deduce from Case 1.2 that
degp(2)q*" " (2)] # deg[(p'(2)a(2) — p(2)¢'(2))"].

Then (2.5) and the definitions of g1, k1 and hy yield that deg(hy) # deg(hs). We thus have a contradiction

again. a

The proof is complete.

3. Proof of Theorem

Proof of Theorem 1. Suppose that F' is not normal in D. Then there exists at least one point zg such that
F' is not normal at the point zy. Without loss of generality we assume that zg =0 and D = A. We consider
two cases.

Case 1. b= 0. Since the zeros of f have multiplicity at least 2, then we may apply Lemma 1 with any positive

value of a. Take o = "=, there exist:

(1) a real number r, r < 1;

(2) points 2z — 0, |zx| < 7;

(3) positive numbers py, pr — 0; and
(4) functions fi, fr € F such that

(&) = pp ™ fi ok + pi€) — g(€) (3.1)

locally uniformly with respect to spherical metric on C, where ¢(£) is a non-constant meromorphic function
and all of whose zeros are multiple.

From (3.1) we obtain

1
/ T n—1 g/ /
ge=pr" fe—9,

and

o i+ alf)"] = g+ algh)” — g+ alg)", (32)
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also locally uniformly with respect to the spherical metric.
If g+ a(g’)™ =0, then g clearly has no poles and is not any polynomial with order at least 2, so g is a

transcendental entire function. By Lemma 2, g is of exponential type. Since a(¢’)"~! = —(‘]i,, by Nevanlinna’s

First Fundamental Theorem, it means that
(n=Dm(rig) < (n=Vm(ng) + (= m (12 ) + o)
= m(r ()" ) +{n-1m (r, 5) +0(1) = nm <r, 5) +0(1)
S

— 1 n 1
nN {r,— | +S(r, §—N<r,—>+5’r,
( g> (r,9) < 3 P (r,9)

IN

n

< 1 <r, é) +8(r,.9) = 2T(r,9) + S(r. ).

Then 232T(r,g) < S(r,g) and thus T(r,g) = S(r,g) since n > 3. This is a contradiction.

Since g is a non-constant meromorphic function, by Theorem B and Lemma 3, we deduce that g+a(g')"
has at least two distinct zeros.
We conclude that g+ a(¢g’)™ has just a unique zero.

Suppose that there exist two distinct zeros & and &§ and choose 0(d > 0) small enough such that
D(&,0) N D(&5,0) =0, where D(&o,6) = {§: [§ — &o| < d} and D(&5,0) = {£ : [€ —&| < d}.

From (3.1) and (3.2), by Hurwitz’s theorem, there exist points &, € D(&o,9), & € D(&],9) such that
for sufficiently large k

Jue(zr + prér) + alfr(zr + préi)]™ =0,
Ju(zr + pr&i) + alfr(ze + pr&i)|" = 0.

By the hypothesis that for each pair of functions f and g in F, f + a(f")" and g+ a(g’)™ share 0, we know

that for any positive integer m

S (2 + pr&i) + alfh, (ze + prée)]™ =0,
fm (i + pr€ie) + alfp, (e + pe&g)]" = 0.

Fix m, take k — oo, and note zp + pr&x — 0, 2, + pr&; — 0, then
fm(0) + a(f,)" (0) = 0.
Since the zeros of fp, + a(f),)™ has no accumulation point, so

2k +peék =0, 2z +pré; =0.

Hence
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This contradicts the fact that § € D(&,0), & € D(&5,6) and D(&,0)(D(&5,9) =0. So g+ a(g’)™ has just

a unique zero. This contradicts the fact that g+ a(¢’)™ has at least two distinct zeros.

Case 2. b # 0. By Lemma 1 again, there exist:
(1) a real number r, r < 1;

(2) points zx — 0, |zx] < r;

(3) positive numbers pi, pr — 0; and

(4) functions fx, fr € F' such that

91(&) = pi, e (zr + pr€) — 9(&) (3.3)

locally uniformly with respect to spherical metric on C, where ¢(£) is a non-constant meromorphic function,

all of whose zeros are multiple.
From (3.3) we obtain
g=rf—49,
and
fe+a(fi)" = b= prge + alg)" —b—alg)" = (3.4)

also locally uniformly with respect to the spherical metric.
If g+ a(g’)™ =b. The argument in this case is completely analogous to the proof of g + a(¢’)" =0 and
then we have a contradiction. So we omit its proof.

We conclude that a(g’)™ — b has at most one zero.

Case 2.1. If a(g’)™ — b has no zeros. Suppose then that a(g’)” —b # 0. Let ¢1,ca,...,c, be the (distinct)

solutions of w™ = b/a. By Nevanlinna’s Second Fundamental Theorem,

— — 1 — 1
T(r,g) < N(r,g')—i—N(r, g’—cl> —i—---—l—N(r,g,j) +S(r,g")

1
< N(r,g)+S(r¢) < §N(r, q)+ S(r.g")
1
< §T(r, g)+5S(r.g").
It follows that T'(r,¢’) = S(r,¢'), a contradiction.

Case 2.2. If a(g')"™ — b has zeros, we claim that a(g’)"™ — b has just a unique zero. Suppose that there exist
two distinct zeros & and & and choose 6(6 > 0) small enough such that D(&),d)(\D(&5,0) = 0, where

D(&0,0) = {€: [€ = &l <0} and D(&5,0) = {€: |§ —&5| < o}
From (3.3) and (3.4), by Hurwitz’s theorem, there exist points & € D(§o,0), & € D(&5, ) such that
for sufficiently large k
fi(zr + prée) + alfy (2 + pe&e)]™ — b =0,
Ji(z + pr&i) + alfi(ze + pr&E)]" — b= 0.
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By the hypothesis that for each pair of functions f and g in F', f+ a(f)™ and g+ a(¢’)™ share b, we know

that for any positive integer m

Fn(zi + pie) + alfr (21 + pr&)]™ = b =0,
Jm (2 + pe&l) + alfr (ze + pe&i)]" —b=0.

Fix m, take k — oo, and note zp + pr&x — 0, 2, + pr&;, — 0, then
fm(0) + a(f,)"(0) =b=0.
Since the zeros of fp, + a(f},)™ — b has no accumulation point, so
2k + el =0,z + pr&l = 0.

Hence

Zk Zk
gk = T 5; = -
Pk Pk

This contradicts the fact that & € D(&o,9), & € D(&5,96) and D(&,6)(\D(&5,0) = 0. So a(g’)™ — b has just

a unique zero. Let ¢1,¢a,..., ¢, be the (distinct) solutions of w™ = b/a. Hence ¢’ — ¢; has at most one zeros
and the same zero as a(g’)™ — b for the only one of ¢ € {1,2,...,n}. By Nevanlinna’s Second Fundamental
Theorem,

1
—

_ _ — 1
T(r,g) < N(r,g')—i—N(r,g, >+---+N<r,g,j>+5’(r,g')

< N(r,g)+S(r,g) < sN(r,g")+ S(r,g')

N~

1
< §T043+SWJW

It follows that T'(r,¢’) = S(r,¢’), which is impossible.
This proves the Theorem 1.
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