On normality of meromorphic functions with multiple zeros and sharing values

You-Ming Wang

Abstract

In this paper we study the problem of normal families of meromorphic functions concerning shared values. Let F be a family of meromorphic functions in the plane domain $D \subseteq \mathbb{C}$ and n be a positive integer. Let a, b be two finite complex constants such that $a \neq 0$. If $n \geq 3$ and $f+a\left(f^{\prime}\right)^{n}$ and $g+a\left(g^{\prime}\right)^{n}$ share b in D for every pair of functions $f, g \in F$, then F is normal in D. And some examples are provided to show the result is sharp.

Key words and phrases: Meromorphic functions, shared value, normal family.

1. Introduction and main results

In this paper, we denote by \mathbb{C} the whole complex plane. Let f be a meromorphic function in a domain $D \subset \mathbb{C}$. For $a \in \mathbb{C}$, set $\bar{E}_{f}(a)=\{z \in D: f(z)=a\}$. We say that two meromorphic functions f and g share the value a provided that $\bar{E}_{f}(a)=\bar{E}_{g}(a)$ in D. When $a=\infty$ the zeros of $f-a$ mean the poles of f (see [3]).

Let h be a meromorphic function in a domain $D \subset \mathbb{C}$. We say h is a normal function if there exists a positive number M such that $h^{\sharp}(z) \leq M$ for all $z \in D$, where $h^{\sharp}(z)=\frac{\left|h^{\prime}(z)\right|}{1+|h(z)|^{2}}$ denotes the spherical derivative of h.

Let F be a family of meromorphic functions in a domain $D \subseteq \mathbb{C}$. We say that F is normal in D if every sequence $\left\{f_{n}\right\} \subseteq F$ contains a subsequence which converges spherically uniformly on the compact subsets of D (see [10]).

According to Bloch's principle, every condition which reduces a meromorphic function in the plane \mathbb{C} to a constant, makes a family of meromorphic functions in a domain D normal. Although the principle is false in general (see [9]), many authors proved normality criteria for families of meromorphic functions by starting from Picard type theorems (see $[6,13,14]$). It is also more interesting to find normality criteria from the point of view of shared values. In this area, Schwick [11] first proved an interesting result that a family of meromorphic functions, in a domain in which every function shares three distinct finite complex numbers with its first derivative, is normal. And later, Sun [12] proved that a family of meromorphic functions, in a domain in

[^0]
WANG

which each pair of functions share three fixed distinct values, is normal. This is an improvement of the famous Montel's Normal Criterion [7] by the idea of shared values. More results about normality criteria concerning shared values can be found, for instance, in $[4,8,16]$ and so on.

In [15], Ye proved the following.
Theorem A Let f be a transcendental meromorphic function and a be a nonzero finite complex number. Then $f+a\left(f^{\prime}\right)^{n}$ assumes every finite complex value infinitely often for each positive integer $n \geq 3$.

Ye asked whether Theorem A remains valid for $n=2$. Fang and Zalcman, in [5], gave an affirmative answer to this question and obtained the following.

Theorem B Let f be a transcendental meromorphic function and a be a nonzero finite complex number. Then $f+a\left(f^{\prime}\right)^{n}$ assumes every finite complex value infinitely often for each positive integer $n \geq 2$.

Corresponding to Theorem B there are the following theorems about normal families in [5].
Theorem C Let F be a family of meromorphic functions on the plane domain D, let $n \geq 2$ be a positive integer, and let $a \neq 0, b$ be two complex numbers. If, for each $f \in F$, all zeros of f are multiple and $f+a\left(f^{\prime}\right)^{n} \neq b$ on D, then F is normal in D.

It is natural to ask whether Theorem C can be improved by the idea of shared values. In this paper, we study the problem and obtain the following theorem.

Theorem 1 Let F be a family of meromorphic functions in the plane domain D and n be a positive integer. Let a, b be two finite complex constants such that $a \neq 0$. If $n \geq 3$ and $f+a\left(f^{\prime}\right)^{n}$ and $g+a\left(g^{\prime}\right)^{n}$ share b in D for every pair of functions $f, g \in F$, then F is normal in D.

Example 1 Let $D=\{z:|z|<1\}$ and $F=\left\{f_{n}(z)\right\}$, where

$$
f_{n}(z)=n z^{2}, \quad z \in D, \quad n=1,2, \ldots
$$

Clearly, $f+\left(f^{\prime}\right)^{2}=\left(n+4 n^{2}\right) z^{2}$. So for each pair $m, n, f_{n}+\left(f_{n}^{\prime}\right)^{2}$ and $f_{m}+\left(f_{m}^{\prime}\right)^{2}$ share the value 0 in D, however, F fails to be normal in D since $f_{n}^{\sharp}\left(\frac{1}{\sqrt{n}}\right)=\sqrt{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Example 2 Let $D=\{z:|z|<1\}$ and $F=\left\{f_{n}(z)\right\}$, where

$$
f_{n}(z)=n z, \quad z \in D, \quad n=1,2, \ldots
$$

Clearly, $f-\left(f^{\prime}\right)^{3}=n\left(z-n^{2}\right)$. So for each pair $m, n, f_{n}+\left(f_{n}^{\prime}\right)^{3}$ and $f_{m}+\left(f_{m}^{\prime}\right)^{3}$ share the value 0 in D, but, F fails to be normal in D since $f_{n}^{\sharp}\left(\frac{1}{n}\right)=\frac{n}{2} \rightarrow \infty$ as $n \rightarrow \infty$.

Example 1 shows that Theorem 1 is not valid when $n=2$, so the condition $n=3$ is best possible for Theorem 1. And Example 2 shows that Theorem 1 is not valid when f has no multiple zeros, so the condition that f has only multiple zeros is best possible for Theorem 1.

WANG

2. Some Lemmas

Lemma 1 [1] Let F be a family of meromorphic functions in the unit disk $\triangle \subseteq \mathbb{C}$ and let k be a positive integer. Suppose that all zeros of f have multiplicity at least k for every $f \in F$, and suppose that there exists a number $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. If F is not normal at $z_{0} \in \triangle$, then for any $0 \leq \alpha \leq k$, there exist
(1) a number $r \in(0,1)$;
(2) a sequence of complex numbers $z_{n} \rightarrow z_{0},\left|z_{n}\right| \leq r$;
(3) a sequence of functions $f_{n} \in F$;
(4) a sequence of positive numbers $\rho_{n} \rightarrow 0$
such that $g_{n}(\xi)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right)$ converges locally uniformly (with respect to spherical metric) to a nonconstant meromorphic function $g(\xi)$ on \mathbb{C}, and moreover, the zeros of $g(\xi)$ are of multiplicity at least k, $g^{\sharp}(\xi) \leq g^{\sharp}(0)=k A+1$.

Remark 1 In Lemma 1, if $0 \leq \alpha<k$, then the hypothesis of $f^{(k)}$ can be dropped, and $k A+1$ can be replaced by an arbitrary positive number (see [1]).

Lemma [2] A normal function has order at most two. A normal entire function is of exponential type, and thus has order at most one.

Lemma 3 Let $n \geq 3$ be a positive integer and f be a non-constant rational meromorphic function with multiple zeros, then $f+a\left(f^{\prime}\right)^{n}$ has at least two distinct zeros.

Proof. Case 1. If $f+a\left(f^{\prime}\right)^{n}$ has no zeros.
Case 1.1. Since $n \geq 3$ and f is a non-constant function, it is easily obtained that f is not a polynomial.
Case 1.2. If f is rational but not a polynomial. Set $f(z)=\frac{p(z)}{q(z)}$ and use $\operatorname{deg}(g)$ to denote the degree of a polynomial g, where $p(z), q(z)$ are polynomials. Put $\operatorname{deg}(p(z))=p \geq 2$ and $\operatorname{deg}(q(z))=q$. Then

$$
\begin{equation*}
f+a\left(f^{\prime}\right)^{n}=\frac{p(z) q^{2 n-1}(z)+a\left[p^{\prime}(z) q(z)-p(z) q^{\prime}(z)\right]^{n}}{q^{2 n}(z)} \tag{2.1}
\end{equation*}
$$

has no zeros. Recall that $\operatorname{deg}\left[p(z) q^{2 n-1}(z)\right]=2 n q+p-q$ and $\operatorname{deg}\left[\left(p^{\prime}(z) q(z)-p(z) q^{\prime}(z)\right)^{n}\right] \leq n(p+q-1)$.
Case 1.2.1. If $q \geq p-1$, so $2 n q+p-q>n(p+q-1)$ and then $\operatorname{deg}\left[p(z) q^{2 n-1}(z)\right]>\operatorname{deg}\left[\left(p^{\prime}(z) q(z)-p(z) q^{\prime}(z)\right)^{n}\right]$. Hence (2.1) means that $f+a\left(f^{\prime}\right)^{n}$ has zeros, which contradicts that $f+a\left(f^{\prime}\right)^{n}$ has no zeros.

Case 1.2.2. If $q<p-1$, a simple calculation implies that $\operatorname{deg}\left[p^{\prime}(z) q(z)-p(z) q^{\prime}(z)\right]^{n}=n(p+q-1)$ and $2 n q+p-q<n(p+q-1)$, therefore, $\operatorname{deg}\left[p(z) q^{2 n-1}(z)\right]<\operatorname{deg}\left[\left(p^{\prime}(z) q(z)-p(z) q^{\prime}(z)\right)^{n}\right]$. It follows from (2.1) that $f+a\left(f^{\prime}\right)^{n}$ has zeros. This is a contradiction, again.

Case 2. Suppose that $f+a\left(f^{\prime}\right)^{n}$ has exactly one zero z_{0}.
Case 2.1. If f is a non-constant polynomial.

WANG

Set $f+a\left(f^{\prime}\right)^{n}=A\left(z-z_{0}\right)^{l}$, where A is a non-zero constant, l is a positive integer and $l \geq 2$. Then $f^{\prime}\left[1+a n\left(f^{\prime}\right)^{n-2} f^{\prime \prime}\right]=A l\left(z-z_{0}\right)^{l-1}$. Recall that f has only multiple zeros. But f^{\prime} has exactly the same zero z_{0}, so f has the same zero z_{0} and z_{0} is the unique zero of f. Thus $f(z)=A_{0}\left(z-z_{0}\right)^{k}$, where A_{0} is non-zero constant, k is a positive integer and $k \geq 2$. Thus $f+a\left(f^{\prime}\right)^{n}=A_{0}\left(z-z_{0}\right)^{k}\left[1+a A_{0}^{n-1}\left(z-z_{0}\right)^{n k-n-k}\right]$ has at least two distinct zeros since $n k-n-k \geq 1$. This contradicts that our assumptions.

Case 2.2. If f is rational but not a polynomial. Suppose that $f+a\left(f^{\prime}\right)^{n}$ has exactly one zero z_{0} with multiplicity l. So we deduce that f has has exactly one zero z_{0} and then z_{0} is the unique zero of f. Otherwise $f+a\left(f^{\prime}\right)^{n}$ has at least two distinct zeros, which contradicts that our assumptions.

We set

$$
\begin{equation*}
f(z)=\frac{A\left(z-z_{0}\right)^{k}}{\left(z-z_{1}\right)^{l_{1}}\left(z-z_{2}\right)^{l_{2}} \cdots\left(z-z_{m}\right)^{l_{m}}}, \tag{2.2}
\end{equation*}
$$

where A is a non-zero constant and $l_{i} \geq 1(i=1,2, \ldots, m), k \geq 2$.
For simplicity, we denote

$$
l_{1}+l_{2}+\cdots+l_{m}=q
$$

From (2.2), it follows that

$$
\begin{equation*}
f^{\prime}(z)=\frac{A\left(z-z_{0}\right)^{k-1} g(z)}{\left(z-z_{1}\right)^{l_{1}+1}\left(z-z_{2}\right)^{l_{2}+1} \cdots\left(z-z_{m}\right)^{l_{m}+1}}, \tag{2.3}
\end{equation*}
$$

where $g(z)=k\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{m}\right)+\left(z-z_{0}\right)\left[l_{1}\left(z-z_{2}\right)\left(z-z_{3}\right) \cdots\left(z-z_{m}\right)+\cdots+l_{m}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots(z-\right.$ $\left.\left.z_{m-1}\right)\right]$.

From (2.2) and (2.3), then

$$
\begin{align*}
f+a\left(f^{\prime}\right)^{n}= & \frac{A\left(z-z_{0}\right)^{k}\left(z-z_{1}\right)^{(n-1) l_{1}+n}\left(z-z_{2}\right)^{(n-1) l_{2}+n} \cdots\left(z-z_{m}\right)^{(n-1) l_{m}+n}}{\left(z-z_{1}\right)^{n\left(l_{1}+1\right)}\left(z-z_{2}\right)^{n\left(l_{2}+1\right)} \cdots\left(z-z_{m}\right)^{n\left(l_{m}+1\right)}} \\
& +\frac{a A^{n}\left(z-z_{0}\right)^{n(k-1)} g^{n}(z)}{\left(z-z_{1}\right)^{n\left(l_{1}+1\right)}\left(z-z_{2}\right)^{n\left(l_{2}+1\right)} \cdots\left(z-z_{m}\right)^{n\left(l_{m}+1\right)}} . \tag{2.4}
\end{align*}
$$

Since $n(k-1)>k$ for $n \geq 3$ and $k \geq 2$, then (2.4) implies that

$$
\begin{equation*}
f+a\left(f^{\prime}\right)^{n}=\frac{A\left(z-z_{0}\right)^{k} g_{1}(z)}{\left(z-z_{1}\right)^{n\left(l_{1}+1\right)}\left(z-z_{2}\right)^{n\left(l_{2}+1\right)} \cdots\left(z-z_{m}\right)^{n\left(l_{m}+1\right)}}, \tag{2.5}
\end{equation*}
$$

here $g_{1}(z)=\left[\left(z-z_{1}\right)^{(n-1) l_{1}+n}\left(z-z_{2}\right)^{(n-1) l_{2}+n} \cdots\left(z-z_{m}\right)^{(n-1) l_{m}+n}+a A^{n-1}\left(z-z_{0}\right)^{n(k-1)-k} g^{n}(z)\right]$. By the assumption that $f+a\left(f^{\prime}\right)^{n}$ has exactly one zero z_{0} with multiply l, we deduce from (2.5) that

$$
\begin{equation*}
f+a\left(f^{\prime}\right)^{n}=\frac{C\left(z-z_{0}\right)^{l}}{\left(z-z_{1}\right)^{n\left(l_{1}+1\right)}\left(z-z_{2}\right)^{n\left(l_{2}+1\right)} \cdots\left(z-z_{m}\right)^{n\left(l_{m}+1\right)}} . \tag{2.6}
\end{equation*}
$$

Then (2.5) and (2.6) mean that

$$
\begin{equation*}
C\left(z-z_{0}\right)^{l} \equiv A\left(z-c_{0}\right)^{k} g_{1}(z) \tag{2.7}
\end{equation*}
$$

WANG

where C is a non-zero constant.

Case 2.2.1. If $l>k$, By (2.7) we conclude that g_{1} has a zero z_{0} and then $\left(z-z_{1}\right)^{(n-1) l_{1}+n}(z-$ $\left.z_{2}\right)^{(n-1) l_{2}+n} \cdots\left(z-z_{m}\right)^{(n-1) l_{m}+n}$ has a zero z_{0}, which is impossible.

Case 2.2.2. If $l=k,(2.7)$ implies that

$$
\begin{equation*}
h_{1}(z)+h_{2}(z) \equiv \frac{C}{A}, \tag{2.8}
\end{equation*}
$$

where $h_{1}(z)=\left(z-z_{1}\right)^{(n-1) l_{1}+n}\left(z-z_{2}\right)^{(n-1) l_{2}+n} \cdots\left(z-z_{m}\right)^{(n-1) l_{m}+n}$ and $h_{2}(z)=a A^{n-1}\left(z-z_{0}\right)^{n(k-1)-k} g^{n}(z)$.
We easily obtain from (2.8) that $\operatorname{deg}\left(h_{1}\right)=\operatorname{deg}\left(h_{2}\right)$. On the other hand, we deduce from Case 1.2 that

$$
\operatorname{deg}\left[p(z) q^{2 n-1}(z)\right] \neq \operatorname{deg}\left[\left(p^{\prime}(z) q(z)-p(z) q^{\prime}(z)\right)^{n}\right]
$$

Then (2.5) and the definitions of g_{1}, h_{1} and h_{2} yield that $\operatorname{deg}\left(h_{1}\right) \neq \operatorname{deg}\left(h_{2}\right)$. We thus have a contradiction again.

The proof is complete.

3. Proof of Theorem

Proof of Theorem 1. Suppose that F is not normal in D. Then there exists at least one point z_{0} such that F is not normal at the point z_{0}. Without loss of generality we assume that $z_{0}=0$ and $D=\triangle$. We consider two cases.

Case 1. $b=0$. Since the zeros of f have multiplicity at least 2 , then we may apply Lemma 1 with any positive value of α. Take $\alpha=\frac{n}{n-1}$, there exist:
(1) a real number $r, r<1$;
(2) points $z_{k} \rightarrow 0,\left|z_{k}\right|<r$;
(3) positive numbers $\rho_{k}, \rho_{k} \rightarrow 0$; and
(4) functions $f_{k}, f_{k} \in F$ such that

$$
\begin{equation*}
g_{k}(\xi)=\rho_{k}^{-\frac{n}{n-1}} f_{k}\left(z_{k}+\rho_{k} \xi\right) \rightarrow g(\xi) \tag{3.1}
\end{equation*}
$$

locally uniformly with respect to spherical metric on \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function and all of whose zeros are multiple.

From (3.1) we obtain

$$
g_{k}^{\prime}=\rho_{k}^{-\frac{1}{n-1}} f_{k}^{\prime} \rightarrow g^{\prime},
$$

and

$$
\begin{equation*}
\rho_{k}^{-\frac{n}{n-1}}\left[f_{k}+a\left(f_{k}^{\prime}\right)^{n}\right]=g_{k}+a\left(g_{k}^{\prime}\right)^{n} \rightarrow g+a\left(g^{\prime}\right)^{n} \tag{3.2}
\end{equation*}
$$

also locally uniformly with respect to the spherical metric.
If $g+a\left(g^{\prime}\right)^{n} \equiv 0$, then g clearly has no poles and is not any polynomial with order at least 2 , so g is a transcendental entire function. By Lemma 2, g is of exponential type. Since $a\left(g^{\prime}\right)^{n-1} \equiv-\frac{g}{g^{\prime}}$, by Nevanlinna's First Fundamental Theorem, it means that

$$
\begin{aligned}
(n-1) m(r, g) & \leq(n-1) m\left(r, g^{\prime}\right)+(n-1) m\left(r, \frac{g}{g^{\prime}}\right)+O(1) \\
& =m\left(r,\left(g^{\prime}\right)^{n-1}\right)+(n-1) m\left(r, \frac{g}{g^{\prime}}\right)+O(1)=n m\left(r, \frac{g}{g^{\prime}}\right)+O(1) \\
& =n\left[m\left(r, \frac{g^{\prime}}{g}\right)+N\left(r, \frac{g^{\prime}}{g}\right)-N\left(r, \frac{g}{g^{\prime}}\right)\right]+O(1) \\
& \leq n \bar{N}\left(r, \frac{1}{g}\right)+S(r, g) \leq \frac{n}{2} N\left(r, \frac{1}{g}\right)+S(r, g) \\
& \leq \frac{n}{2} T\left(r, \frac{1}{g}\right)+S(r, g)=\frac{n}{2} T(r, g)+S(r, g)
\end{aligned}
$$

Then $\frac{n-2}{2} T(r, g) \leq S(r, g)$ and thus $T(r, g)=S(r, g)$ since $n \geq 3$. This is a contradiction.
Since g is a non-constant meromorphic function, by Theorem B and Lemma 3, we deduce that $g+a\left(g^{\prime}\right)^{n}$ has at least two distinct zeros.

We conclude that $g+a\left(g^{\prime}\right)^{n}$ has just a unique zero.
Suppose that there exist two distinct zeros ξ_{0} and ξ_{0}^{*} and choose $\delta(\delta>0)$ small enough such that $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=\emptyset$, where $D\left(\xi_{0}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}\right|<\delta\right\}$ and $D\left(\xi_{0}^{*}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}^{*}\right|<\delta\right\}$.

From (3.1) and (3.2), by Hurwitz's theorem, there exist points $\xi_{k} \in D\left(\xi_{0}, \delta\right), \xi_{k}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ such that for sufficiently large k

$$
\begin{aligned}
& f_{k}\left(z_{k}+\rho_{k} \xi_{k}\right)+a\left[f_{k}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}\right)\right]^{n}=0 \\
& f_{k}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)+a\left[f_{k}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)\right]^{n}=0
\end{aligned}
$$

By the hypothesis that for each pair of functions f and g in $F, f+a\left(f^{\prime}\right)^{n}$ and $g+a\left(g^{\prime}\right)^{n}$ share 0 , we know that for any positive integer m

$$
\begin{array}{r}
f_{m}\left(z_{k}+\rho_{k} \xi_{k}\right)+a\left[f_{m}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}\right)\right]^{n}=0, \\
f_{m}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)+a\left[f_{m}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)\right]^{n}=0 .
\end{array}
$$

Fix m, take $k \rightarrow \infty$, and note $z_{k}+\rho_{k} \xi_{k} \rightarrow 0, z_{k}+\rho_{k} \xi_{k}^{*} \rightarrow 0$, then

$$
f_{m}(0)+a\left(f_{m}^{\prime}\right)^{n}(0)=0
$$

Since the zeros of $f_{m}+a\left(f_{m}^{\prime}\right)^{n}$ has no accumulation point, so

$$
z_{k}+\rho_{k} \xi_{k}=0, \quad z_{k}+\rho_{k} \xi_{k}^{*}=0
$$

Hence

$$
\xi_{k}=-\frac{z_{k}}{\rho_{k}}, \quad \xi_{k}^{*}=-\frac{z_{k}}{\rho_{k}}
$$

WANG

This contradicts the fact that $\xi_{k} \in D\left(\xi_{0}, \delta\right), \xi_{k}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ and $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=\emptyset$. So $g+a\left(g^{\prime}\right)^{n}$ has just a unique zero. This contradicts the fact that $g+a\left(g^{\prime}\right)^{n}$ has at least two distinct zeros.

Case 2. $b \neq 0$. By Lemma 1 again, there exist:
(1) a real number $r, r<1$;
(2) points $z_{k} \rightarrow 0,\left|z_{k}\right|<r$;
(3) positive numbers $\rho_{k}, \rho_{k} \rightarrow 0$; and
(4) functions $f_{k}, f_{k} \in F$ such that

$$
\begin{equation*}
g_{k}(\xi)=\rho_{k}^{-1} f_{k}\left(z_{k}+\rho_{k} \xi\right) \rightarrow g(\xi) \tag{3.3}
\end{equation*}
$$

locally uniformly with respect to spherical metric on \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function, all of whose zeros are multiple.

From (3.3) we obtain

$$
g_{k}^{\prime}=f_{k}^{\prime} \rightarrow g^{\prime}
$$

and

$$
\begin{equation*}
f_{k}+a\left(f_{k}^{\prime}\right)^{n}-b=\rho_{k} g_{k}+a\left(g_{k}^{\prime}\right)^{n}-b \rightarrow a\left(g^{\prime}\right)^{n}-b \tag{3.4}
\end{equation*}
$$

also locally uniformly with respect to the spherical metric.
If $g+a\left(g^{\prime}\right)^{n} \equiv b$. The argument in this case is completely analogous to the proof of $g+a\left(g^{\prime}\right)^{n} \equiv 0$ and then we have a contradiction. So we omit its proof.

We conclude that $a\left(g^{\prime}\right)^{n}-b$ has at most one zero.
Case 2.1. If $a\left(g^{\prime}\right)^{n}-b$ has no zeros. Suppose then that $a\left(g^{\prime}\right)^{n}-b \neq 0$. Let $c_{1}, c_{2}, \ldots, c_{n}$ be the (distinct) solutions of $w^{n}=b / a$. By Nevanlinna's Second Fundamental Theorem,

$$
\begin{aligned}
T\left(r, g^{\prime}\right) & \leq \bar{N}\left(r, g^{\prime}\right)+\bar{N}\left(r, \frac{1}{g^{\prime}-c_{1}}\right)+\cdots+\bar{N}\left(r, \frac{1}{g^{\prime}-c_{n}}\right)+S\left(r, g^{\prime}\right) \\
& \leq \bar{N}\left(r, g^{\prime}\right)+S\left(r, g^{\prime}\right) \leq \frac{1}{2} N\left(r, g^{\prime}\right)+S\left(r, g^{\prime}\right) \\
& \leq \frac{1}{2} T\left(r, g^{\prime}\right)+S\left(r, g^{\prime}\right)
\end{aligned}
$$

It follows that $T\left(r, g^{\prime}\right)=S\left(r, g^{\prime}\right)$, a contradiction.
Case 2.2. If $a\left(g^{\prime}\right)^{n}-b$ has zeros, we claim that $a\left(g^{\prime}\right)^{n}-b$ has just a unique zero. Suppose that there exist two distinct zeros ξ_{0} and ξ_{0}^{*} and choose $\delta(\delta>0)$ small enough such that $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=\emptyset$, where $D\left(\xi_{0}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}\right|<\delta\right\}$ and $D\left(\xi_{0}^{*}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}^{*}\right|<\delta\right\}$.

From (3.3) and (3.4), by Hurwitz's theorem, there exist points $\xi_{k} \in D\left(\xi_{0}, \delta\right), \xi_{k}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ such that for sufficiently large k

$$
\begin{aligned}
& f_{k}\left(z_{k}+\rho_{k} \xi_{k}\right)+a\left[f_{k}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}\right)\right]^{n}-b=0 \\
& f_{k}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)+a\left[f_{k}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)\right]^{n}-b=0 .
\end{aligned}
$$

By the hypothesis that for each pair of functions f and g in $F, f+a\left(f^{\prime}\right)^{n}$ and $g+a\left(g^{\prime}\right)^{n}$ share b, we know that for any positive integer m

$$
\begin{aligned}
& f_{m}\left(z_{k}+\rho_{k} \xi_{k}\right)+a\left[f_{m}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}\right)\right]^{n}-b=0 \\
& f_{m}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)+a\left[f_{m}^{\prime}\left(z_{k}+\rho_{k} \xi_{k}^{*}\right)\right]^{n}-b=0
\end{aligned}
$$

Fix m, take $k \rightarrow \infty$, and note $z_{k}+\rho_{k} \xi_{k} \rightarrow 0, z_{k}+\rho_{k} \xi_{k}^{*} \rightarrow 0$, then

$$
f_{m}(0)+a\left(f_{m}^{\prime}\right)^{n}(0)-b=0 .
$$

Since the zeros of $f_{m}+a\left(f_{m}^{\prime}\right)^{n}-b$ has no accumulation point, so

$$
z_{k}+\rho_{k} \xi_{k}=0, \quad z_{k}+\rho_{k} \xi_{k}^{*}=0
$$

Hence

$$
\xi_{k}=-\frac{z_{k}}{\rho_{k}}, \quad \xi_{k}^{*}=-\frac{z_{k}}{\rho_{k}}
$$

This contradicts the fact that $\xi_{k} \in D\left(\xi_{0}, \delta\right), \xi_{k}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ and $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=\emptyset$. So $a\left(g^{\prime}\right)^{n}-b$ has just a unique zero. Let $c_{1}, c_{2}, \ldots, c_{n}$ be the (distinct) solutions of $w^{n}=b / a$. Hence $g^{\prime}-c_{i}$ has at most one zeros and the same zero as $a\left(g^{\prime}\right)^{n}-b$ for the only one of $i \in\{1,2, \ldots, n\}$. By Nevanlinna's Second Fundamental Theorem,

$$
\begin{aligned}
T\left(r, g^{\prime}\right) & \leq \bar{N}\left(r, g^{\prime}\right)+\bar{N}\left(r, \frac{1}{g^{\prime}-c_{1}}\right)+\cdots+\bar{N}\left(r, \frac{1}{g^{\prime}-c_{n}}\right)+S\left(r, g^{\prime}\right) \\
& \leq \bar{N}\left(r, g^{\prime}\right)+S\left(r, g^{\prime}\right) \leq \frac{1}{2} N\left(r, g^{\prime}\right)+S\left(r, g^{\prime}\right) \\
& \leq \frac{1}{2} T\left(r, g^{\prime}\right)+S\left(r, g^{\prime}\right)
\end{aligned}
$$

It follows that $T\left(r, g^{\prime}\right)=S\left(r, g^{\prime}\right)$, which is impossible.
This proves the Theorem 1.

Acknowledgement

The author would like to thank Professor Qiao Jian-yong and Professor Li Yu-hua for their useful conversations and for their help in preparing the manuscript. The author would like to thank the referee for his/her valuable suggestions made to this paper.

References

[1] Chen, H.H. and Gu, Y.X. : An improvement of Marty criterion and its application, Sci China Ser A, 36, 674-681 (1993).
[2] Cline, J. and Hayman, Y.K.: The spherical derivatives of integral and meromorphic functions, Comment Math Hev, 40, 117-148 (1966).

WANG

[3] Drasin, D.: Normal families and Nevanlinna theory, Acta Math. 122, 231-263 (1969).
[4] Fang, M.L. and Zalcman, L.: A note on normality and shared values, J. Aust. Math. Soc. 76, 141-150 (2004).
[5] Fang, M.L. and Zalcman, L. : On the value distribution of $f+a\left(f^{\prime}\right)^{n}$, Sci China Ser A, 51(7), 1196-1202 (2008).
[6] Hayman, H.K. : Meromorphic functions, Clarendon, Oxford, 1964.
[7] Montel, P. : Sur les familles de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine, Ann. Sci. cole Norm. Sup. 29, 487-535 (1912).
[8] Pang, X.C. and Zalcman, L. : Normal families and shared values, Bull. London Math. Soc, 32, 325-331 (2000).
[9] Rubel, L.A. : Four counterexamples to Bloch's principle, Proc. Amer. Math. Soc., 98, 257-260 (1986).
[10] Schiff, J. : Normal families, Springer-Verlag, Berlin, 1993.
[11] Schwick, W. : Share values and normality, Arch Math (Basel), 59, 50-54 (1992).
[12] Sun, D.C. : On the normal criterion of shared values, J. Wuhan Univ. Natur. Sci. Ed (in Chinese), 3, 9-12 (1994).
[13] Yang, C.C. and Yi, H. X. : Uniqueness Theory of Meromorphic Functions, Science Press/Kluwer Academic, Beijing/New York, 2003.
[14] Yang, L. : Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[15] Ye, Y.S. : A Picard type theorem and Bloch law, Chinese Ann Math Ser B, 15, 75-80 (1994).
[16] Zhang, Q.D. : Normal criteria concerning sharing values, Kodai Math. J., 25, 8-14 (2002).

You-Ming WANG
Received: 17.09.2009
Department of Applied Mathematics, College of Science,
Hunan Agricultural University,
ChangSha 410128, P.R. CHINA

[^0]: 2000 Mathematics Subject Classification: 30D35, 30D45.
 Foundation item: Project Supported by Scientific Research Fund of Hunan Provincial Education Department; Supported by the QNF of Hunan agriculture university.

