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On normality of meromorphic functions with multiple zeros and
sharing values

You-Ming Wang

Abstract

In this paper we study the problem of normal families of meromorphic functions concerning shared values.

Let F be a family of meromorphic functions in the plane domain D ⊆ � and n be a positive integer. Let

a, b be two finite complex constants such that a �= 0. If n ≥ 3 and f + a(f ′)n and g + a(g′)n share b in

D for every pair of functions f, g ∈ F , then F is normal in D . And some examples are provided to show

the result is sharp.
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1. Introduction and main results

In this paper, we denote by C the whole complex plane. Let f be a meromorphic function in a domain

D ⊂ C . For a ∈ C , set Ef(a) = {z ∈ D : f(z) = a} . We say that two meromorphic functions f and g share

the value a provided that Ef (a) = Eg(a) in D . When a = ∞ the zeros of f − a mean the poles of f (see [3]).

Let h be a meromorphic function in a domain D ⊂ C . We say h is a normal function if there exists a

positive number M such that h�(z) ≤ M for all z ∈ D , where h�(z) = |h′(z)|
1+|h(z)|2 denotes the spherical derivative

of h .
Let F be a family of meromorphic functions in a domain D ⊆ C . We say that F is normal in D if every

sequence {fn} ⊆ F contains a subsequence which converges spherically uniformly on the compact subsets of D

(see [10]).

According to Bloch ′ s principle, every condition which reduces a meromorphic function in the plane C

to a constant, makes a family of meromorphic functions in a domain D normal. Although the principle is false
in general (see [9]), many authors proved normality criteria for families of meromorphic functions by starting

from Picard type theorems (see [6, 13, 14]). It is also more interesting to find normality criteria from the

point of view of shared values. In this area, Schwick [11] first proved an interesting result that a family of
meromorphic functions, in a domain in which every function shares three distinct finite complex numbers with
its first derivative, is normal. And later, Sun [12] proved that a family of meromorphic functions, in a domain in
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which each pair of functions share three fixed distinct values, is normal. This is an improvement of the famous
Montel ′ s Normal Criterion [7] by the idea of shared values. More results about normality criteria concerning

shared values can be found, for instance, in [4, 8, 16] and so on.

In [15], Ye proved the following.

Theorem A Let f be a transcendental meromorphic function and a be a nonzero finite complex number.

Then f + a(f ′)n assumes every finite complex value infinitely often for each positive integer n ≥ 3 .

Ye asked whether Theorem A remains valid for n = 2. Fang and Zalcman, in [5], gave an affirmative
answer to this question and obtained the following.

Theorem B Let f be a transcendental meromorphic function and a be a nonzero finite complex number.

Then f + a(f ′)n assumes every finite complex value infinitely often for each positive integer n ≥ 2 .

Corresponding to Theorem B there are the following theorems about normal families in [5].

Theorem C Let F be a family of meromorphic functions on the plane domain D , let n ≥ 2 be a positive inte-

ger, and let a �= 0, b be two complex numbers. If, for each f ∈ F , all zeros of f are multiple and f +a(f ′)n �= b

on D , then F is normal in D .

It is natural to ask whether Theorem C can be improved by the idea of shared values. In this paper, we
study the problem and obtain the following theorem.

Theorem 1 Let F be a family of meromorphic functions in the plane domain D and n be a positive integer.

Let a, b be two finite complex constants such that a �= 0 . If n ≥ 3 and f + a(f ′)n and g + a(g′)n share b in

D for every pair of functions f, g ∈ F , then F is normal in D .

Example 1 Let D = {z : |z| < 1} and F = {fn(z)} , where

fn(z) = nz2, z ∈ D, n = 1, 2, . . . .

Clearly, f + (f ′)2 = (n + 4n2)z2 . So for each pair m, n , fn + (f ′
n)2 and fm + (f ′

m)2 share the value 0 in D ,

however, F fails to be normal in D since f�
n( 1√

n
) =

√
n → ∞ as n → ∞ .

Example 2 Let D = {z : |z| < 1} and F = {fn(z)} , where

fn(z) = nz, z ∈ D, n = 1, 2, . . . .

Clearly, f − (f ′)3 = n(z −n2). So for each pair m, n , fn + (f ′
n)3 and fm + (f ′

m)3 share the value 0 in D , but,

F fails to be normal in D since f�
n( 1

n
) = n

2
→ ∞ as n → ∞ .

Example 1 shows that Theorem 1 is not valid when n = 2, so the condition n = 3 is best possible for
Theorem 1. And Example 2 shows that Theorem 1 is not valid when f has no multiple zeros, so the condition
that f has only multiple zeros is best possible for Theorem 1.
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2. Some Lemmas

Lemma 1 [1] Let F be a family of meromorphic functions in the unit disk � ⊆ C and let k be a positive

integer. Suppose that all zeros of f have multiplicity at least k for every f ∈ F , and suppose that there exists

a number A ≥ 1 such that |f(k)(z)| ≤ A whenever f(z) = 0 . If F is not normal at z0 ∈ � , then for any

0 ≤ α ≤ k , there exist

(1) a number r ∈ (0, 1) ;

(2) a sequence of complex numbers zn → z0, |zn| ≤ r ;

(3) a sequence of functions fn ∈ F ;

(4) a sequence of positive numbers ρn → 0

such that gn(ξ) = ρ−α
n fn(zn + ρnξ) converges locally uniformly (with respect to spherical metric) to a non-

constant meromorphic function g(ξ) on C , and moreover, the zeros of g(ξ) are of multiplicity at least k ,

g�(ξ) ≤ g�(0) = kA + 1 .

Remark 1 In Lemma 1, if 0 ≤ α < k , then the hypothesis of f(k) can be dropped, and kA+1 can be replaced
by an arbitrary positive number (see [1]).

Lemma [2] A normal function has order at most two. A normal entire function is of exponential type, and

thus has order at most one.

Lemma 3 Let n ≥ 3 be a positive integer and f be a non-constant rational meromorphic function with

multiple zeros, then f + a(f ′)n has at least two distinct zeros.

Proof. Case 1. If f + a(f ′)n has no zeros.

Case 1.1. Since n ≥ 3 and f is a non-constant function, it is easily obtained that f is not a polynomial.

Case 1.2. If f is rational but not a polynomial. Set f(z) = p(z)
q(z) and use deg(g) to denote the degree of a

polynomial g , where p(z), q(z) are polynomials. Put deg(p(z)) = p ≥ 2 and deg(q(z)) = q . Then

f + a(f ′)n =
p(z)q2n−1(z) + a[p′(z)q(z) − p(z)q′(z)]n

q2n(z)
(2.1)

has no zeros. Recall that deg[p(z)q2n−1(z)] = 2nq + p − q and deg[(p′(z)q(z) − p(z)q′(z))n] ≤ n(p + q − 1).

Case 1.2.1. If q ≥ p−1, so 2nq+p−q > n(p+q−1) and then deg[p(z)q2n−1(z)] > deg[(p′(z)q(z)−p(z)q′(z))n] .

Hence (2.1) means that f + a(f ′)n has zeros, which contradicts that f + a(f ′)n has no zeros.

Case 1.2.2. If q < p − 1, a simple calculation implies that deg[p′(z)q(z) − p(z)q′(z)]n = n(p + q − 1) and

2nq + p − q < n(p + q − 1), therefore, deg[p(z)q2n−1(z)] < deg[(p′(z)q(z) − p(z)q′(z))n] . It follows from (2.1)

that f + a(f ′)n has zeros. This is a contradiction, again.

Case 2. Suppose that f + a(f ′)n has exactly one zero z0 .

Case 2.1. If f is a non-constant polynomial.
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Set f + a(f ′)n = A(z − z0)l , where A is a non-zero constant, l is a positive integer and l ≥ 2. Then

f ′[1 + an(f ′)n−2f ′′] = Al(z − z0)l−1 . Recall that f has only multiple zeros. But f ′ has exactly the same zero

z0 , so f has the same zero z0 and z0 is the unique zero of f . Thus f(z) = A0(z − z0)k , where A0 is non-zero

constant, k is a positive integer and k ≥ 2. Thus f + a(f ′)n = A0(z − z0)k[1 + aAn−1
0 (z − z0)nk−n−k] has at

least two distinct zeros since nk − n − k ≥ 1. This contradicts that our assumptions.

Case 2.2. If f is rational but not a polynomial. Suppose that f + a(f ′)n has exactly one zero z0 with
multiplicity l . So we deduce that f has has exactly one zero z0 and then z0 is the unique zero of f . Otherwise
f + a(f ′)n has at least two distinct zeros, which contradicts that our assumptions.

We set

f(z) =
A(z − z0)k

(z − z1)l1 (z − z2)l2 · · · (z − zm)lm
, (2.2)

where A is a non-zero constant and li ≥ 1(i = 1, 2, . . . , m), k ≥ 2.

For simplicity, we denote

l1 + l2 + · · ·+ lm = q.

From (2.2), it follows that

f ′(z) =
A(z − z0)k−1g(z)

(z − z1)l1+1(z − z2)l2+1 · · · (z − zm)lm+1
, (2.3)

where g(z) = k(z−z1)(z−z2) · · · (z−zm)+(z−z0)[l1(z−z2)(z−z3) · · · (z−zm)+ · · ·+lm(z−z1)(z−z2) · · · (z−
zm−1)] .

From (2.2) and (2.3), then

f + a(f ′)n =
A(z − z0)k(z − z1)(n−1)l1+n(z − z2)(n−1)l2+n · · · (z − zm)(n−1)lm+n

(z − z1)n(l1+1)(z − z2)n(l2+1) · · · (z − zm)n(lm+1)

+
aAn(z − z0)n(k−1)gn(z)

(z − z1)n(l1+1)(z − z2)n(l2+1) · · · (z − zm)n(lm+1)
. (2.4)

Since n(k − 1) > k for n ≥ 3 and k ≥ 2, then (2.4) implies that

f + a(f ′)n =
A(z − z0)kg1(z)

(z − z1)n(l1+1)(z − z2)n(l2+1) · · · (z − zm)n(lm+1)
, (2.5)

here g1(z) = [(z − z1)(n−1)l1+n(z − z2)(n−1)l2+n · · · (z − zm)(n−1)lm+n + aAn−1(z − z0)n(k−1)−kgn(z)] . By the

assumption that f + a(f ′)n has exactly one zero z0 with multiply l , we deduce from (2.5) that

f + a(f ′)n =
C(z − z0)l

(z − z1)n(l1+1)(z − z2)n(l2+1) · · · (z − zm)n(lm+1)
. (2.6)

Then (2.5) and (2.6) mean that

C(z − z0)l ≡ A(z − c0)kg1(z), (2.7)
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where C is a non-zero constant.

Case 2.2.1. If l > k , By (2.7) we conclude that g1 has a zero z0 and then (z − z1)(n−1)l1+n(z −
z2)(n−1)l2+n · · · (z − zm)(n−1)lm+n has a zero z0 , which is impossible.

Case 2.2.2. If l = k , (2.7) implies that

h1(z) + h2(z) ≡ C

A
, (2.8)

where h1(z) = (z−z1)(n−1)l1+n(z−z2)(n−1)l2+n · · · (z−zm)(n−1)lm+n and h2(z) = aAn−1(z−z0)n(k−1)−kgn(z).

We easily obtain from (2.8) that deg(h1) = deg(h2). On the other hand, we deduce from Case 1.2 that

deg[p(z)q2n−1(z)] �= deg[(p′(z)q(z) − p(z)q′(z))n].

Then (2.5) and the definitions of g1, h1 and h2 yield that deg(h1) �= deg(h2). We thus have a contradiction
again. �

The proof is complete.

3. Proof of Theorem

Proof of Theorem 1. Suppose that F is not normal in D . Then there exists at least one point z0 such that
F is not normal at the point z0 . Without loss of generality we assume that z0 = 0 and D = � . We consider
two cases.

Case 1. b = 0. Since the zeros of f have multiplicity at least 2, then we may apply Lemma 1 with any positive
value of α . Take α = n

n−1
, there exist:

(1) a real number r , r < 1;

(2) points zk → 0, |zk| < r ;

(3) positive numbers ρk , ρk → 0; and

(4) functions fk , fk ∈ F such that

gk(ξ) = ρ
− n

n−1
k fk(zk + ρkξ) → g(ξ) (3.1)

locally uniformly with respect to spherical metric on C , where g(ξ) is a non-constant meromorphic function
and all of whose zeros are multiple.

From (3.1) we obtain

g′k = ρ
− 1

n−1
k f ′

k → g′,

and

ρ
− n

n−1
k [fk + a(f ′

k)n] = gk + a(g′k)n → g + a(g′)n, (3.2)
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also locally uniformly with respect to the spherical metric.

If g + a(g′)n ≡ 0, then g clearly has no poles and is not any polynomial with order at least 2, so g is a

transcendental entire function. By Lemma 2, g is of exponential type. Since a(g′)n−1 ≡ − g
g′ , by Nevanlinna ′ s

First Fundamental Theorem, it means that

(n − 1)m(r, g) ≤ (n − 1)m (r, g′) + (n − 1)m
(

r,
g

g′

)
+ O(1)

= m
(
r, (g′)n−1

)
+ (n − 1)m

(
r,

g

g′

)
+ O(1) = nm

(
r,

g

g′

)
+ O(1)

= n

[
m

(
r,

g′

g

)
+ N

(
r,

g′

g

)
− N

(
r,

g

g′

)]
+ O(1)

≤ nN

(
r,

1
g

)
+ S(r, g) ≤ n

2
N

(
r,

1
g

)
+ S(r, g)

≤ n

2
T

(
r,

1
g

)
+ S(r, g) =

n

2
T (r, g) + S(r, g).

Then n−2
2 T (r, g) ≤ S(r, g) and thus T (r, g) = S(r, g) since n ≥ 3. This is a contradiction.

Since g is a non-constant meromorphic function, by Theorem B and Lemma 3, we deduce that g +a(g′)n

has at least two distinct zeros.
We conclude that g + a(g′)n has just a unique zero.

Suppose that there exist two distinct zeros ξ0 and ξ∗0 and choose δ(δ > 0) small enough such that

D(ξ0 , δ)
⋂

D(ξ∗0 , δ) = ∅ , where D(ξ0 , δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0 | < δ} .

From (3.1) and (3.2), by Hurwitz ′ s theorem, there exist points ξk ∈ D(ξ0 , δ), ξ∗k ∈ D(ξ∗0 , δ) such that

for sufficiently large k

fk(zk + ρkξk) + a[f ′
k(zk + ρkξk)]n = 0,

fk(zk + ρkξ∗k) + a[f ′
k(zk + ρkξ∗k)]n = 0.

By the hypothesis that for each pair of functions f and g in F , f + a(f ′)n and g + a(g′)n share 0, we know
that for any positive integer m

fm(zk + ρkξk) + a[f ′
m(zk + ρkξk)]n = 0,

fm(zk + ρkξ∗k) + a[f ′
m(zk + ρkξ∗k)]n = 0.

Fix m , take k → ∞ , and note zk + ρkξk → 0, zk + ρkξ∗k → 0, then

fm(0) + a(f ′
m)n(0) = 0.

Since the zeros of fm + a(f ′
m)n has no accumulation point, so

zk + ρkξk = 0, zk + ρkξ∗k = 0.

Hence

ξk = −zk

ρk
, ξ∗k = −zk

ρk
.
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This contradicts the fact that ξk ∈ D(ξ0, δ), ξ∗k ∈ D(ξ∗0 , δ) and D(ξ0, δ)
⋂

D(ξ∗0 , δ) = ∅ . So g + a(g′)n has just

a unique zero. This contradicts the fact that g + a(g′)n has at least two distinct zeros.

Case 2. b �= 0. By Lemma 1 again, there exist:
(1) a real number r , r < 1;

(2) points zk → 0, |zk| < r ;

(3) positive numbers ρk, ρk → 0; and

(4) functions fk, fk ∈ F such that

gk(ξ) = ρ−1
k fk(zk + ρkξ) → g(ξ) (3.3)

locally uniformly with respect to spherical metric on C , where g(ξ) is a non-constant meromorphic function,
all of whose zeros are multiple.

From (3.3) we obtain

g′k = f ′
k → g′,

and

fk + a(f ′
k)n − b = ρkgk + a(g′k)n − b → a(g′)n − b (3.4)

also locally uniformly with respect to the spherical metric.

If g + a(g′)n ≡ b . The argument in this case is completely analogous to the proof of g + a(g′)n ≡ 0 and
then we have a contradiction. So we omit its proof.

We conclude that a(g′)n − b has at most one zero.

Case 2.1. If a(g′)n − b has no zeros. Suppose then that a(g′)n − b �= 0. Let c1, c2, . . . , cn be the (distinct)

solutions of wn = b/a . By Nevanlinna ′ s Second Fundamental Theorem,

T (r, g′) ≤ N(r, g′) + N

(
r,

1
g′ − c1

)
+ · · ·+ N

(
r,

1
g′ − cn

)
+ S(r, g′)

≤ N(r, g′) + S(r, g′) ≤ 1
2
N(r, g′) + S(r, g′)

≤ 1
2
T (r, g′) + S(r, g′).

It follows that T (r, g′) = S(r, g′), a contradiction.

Case 2.2. If a(g′)n − b has zeros, we claim that a(g′)n − b has just a unique zero. Suppose that there exist

two distinct zeros ξ0 and ξ∗0 and choose δ(δ > 0) small enough such that D(ξ0, δ)
⋂

D(ξ∗0 , δ) = ∅ , where

D(ξ0 , δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0 | < δ} .

From (3.3) and (3.4), by Hurwitz ′ s theorem, there exist points ξk ∈ D(ξ0 , δ), ξ∗k ∈ D(ξ∗0 , δ) such that

for sufficiently large k

fk(zk + ρkξk) + a[f ′
k(zk + ρkξk)]n − b = 0,

fk(zk + ρkξ∗k) + a[f ′
k(zk + ρkξ∗k)]n − b = 0.
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By the hypothesis that for each pair of functions f and g in F , f + a(f ′)n and g + a(g′)n share b , we know
that for any positive integer m

fm(zk + ρkξk) + a[f ′
m(zk + ρkξk)]n − b = 0,

fm(zk + ρkξ∗k) + a[f ′
m(zk + ρkξ∗k)]n − b = 0.

Fix m , take k → ∞ , and note zk + ρkξk → 0, zk + ρkξ∗k → 0, then

fm(0) + a(f ′
m)n(0) − b = 0.

Since the zeros of fm + a(f ′
m)n − b has no accumulation point, so

zk + ρkξk = 0, zk + ρkξ∗k = 0.

Hence

ξk = −zk

ρk
, ξ∗k = −zk

ρk
.

This contradicts the fact that ξk ∈ D(ξ0, δ), ξ∗k ∈ D(ξ∗0 , δ) and D(ξ0, δ)
⋂

D(ξ∗0 , δ) = ∅ . So a(g′)n − b has just

a unique zero. Let c1, c2, . . . , cn be the (distinct) solutions of wn = b/a . Hence g′ − ci has at most one zeros

and the same zero as a(g′)n − b for the only one of i ∈ {1, 2, . . . , n} . By Nevanlinna ′ s Second Fundamental
Theorem,

T (r, g′) ≤ N(r, g′) + N

(
r,

1
g′ − c1

)
+ · · ·+ N

(
r,

1
g′ − cn

)
+ S(r, g′)

≤ N(r, g′) + S(r, g′) ≤ 1
2
N(r, g′) + S(r, g′)

≤ 1
2
T (r, g′) + S(r, g′).

It follows that T (r, g′) = S(r, g′), which is impossible.

This proves the Theorem 1.
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