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An oscillation theorem for second-order nonlinear differential
equations of Euler type
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Abstract

We consider the nonlinear equation t2x′′ + g(x) = 0, where g(x) satisfies xg(x) > 0 for x �= 0, but is

not assumed to be sublinear or superlinear. We study the problem whether all nontrivial solutions of the

equation are oscillatory in some critical cases.
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1. Introduction

The existence of oscillatory and periodic solutions plays a key role in characterizing the behavior of
differential equations. The dynamic behaviors of second order differential equation have been widely investigated
due to their application in many fields such as physics, mechanics and engineering technique fields. In such
applications, it is important to know the existence of oscillatory and periodic solutions of equations. The
oscillation problem for second order nonlinear differential equations has been studied in many papers (for

example, see [1-16] and the references cited therein). In this paper we consider the second order nonlinear
differential equation of Euler type

t2x′′ + g(x) = 0, t > 0, (1.1)

and give sufficient conditions for all nontrivial solutions of this system to be oscillatory. Here, g(x) is locally
Lipschitz, continuous on R , and

xg(x) > 0 if x �= 0. (1.2)

A nontrivial solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros. Otherwise, the
solution is said to be nonoscillatory. Because of Sturm’s separation theorem, the solutions of second order
linear differential equations are either all oscillatory or all nonoscillatory, but cannot be both. Thus, we can
classify second order linear differential equations into two types. However, the oscillation problem for (1.1) is

not so easy, because g(x) is nonlinear.

Euler differential equation is a special case of (1.1). In fact if we let g(x) = λx , then (1.1) is called

Euler differential equation. In this case, the number 1/4 is called the oscillation constant and it is well known

that if λ > 1/4, then all nontrivial solutions of (1.1) are oscillatory and otherwise they are nonoscillatory. In
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other words, 1/4 is the lower bound for all nontrivial solutions of (1.1) to be oscillatory. Other results on the

oscillation constant for linear differential equations can be found in [9–13] and the references cited therein.

Wong [16] studied the equation

x′′ + a(t)g(x) = 0, t > 0, (1.3)

which includes the Emden Fowler differential equation. Using Sturm’s comparison theorem, he proved Theo-
rems A and B as follows

Theorem A Assume that a(t) is continuously differentiable and satisfies

t2a(t) ≥ 1 (1.4)

for t sufficiently large, and that there exists a λ with λ > 1/4 such that

g(x)
x

≥ 1
4

+
λ

(log |x|)2 , (1.5)

for |x| sufficiently large. Then all nontrivial solutions of (1.5) are oscillatory.

Theorem B Assume that a(t) is continuously differentiable and satisfies

0 ≤ t2a(t) ≤ 1 (1.6)

for t sufficiently large and

A(t) :=
a′(t)

2a
3
2 (t)

+ 1 = o(t) as t → ∞. (1.7)

If, in addition, A(t) ≤ 0 and there exists a λ with 0 < λ ≤ 1/16 such that

g(x)
x

≤ 1
4

+
λ

(log |x|)2 (1.8)

for x > 0 or x < 0, |x| sufficiently large, then all nontrivial solutions of (1.5) are nonoscillatory.

Theorems A and B are complete extensions of the result for the linear case and can be applied to sublin-
ear and superlinear cases. Since (1.1) is nonlinear, we cannot use Sturm’s separation theorem. So, oscillatory

solutions and nonoscillatory solutions maybe exist together in (1.1). But, Theorems A and B show that it is
impossible.

Since (1.3) coincides with (1.1) when a(t) = 1/t2 , it seems reasonable to assume (1.4) and (1.6) in

Theorems A and B, respectively. But condition (1.7) on A(t) is considerably strict. Although it is known that

all nontrivial solutions of (1.3) are nonoscillatory if a(t) = 1/t3 and g(x) is linear or sublinear, condition (1.7)

is not satisfied. Thus, the oscillation problem for (1.1) has been solved completely when

lim sup
|x|→∞

g(x)
x

<
1
4

or lim inf
|x|→∞

g(x)
x

>
1
4
.
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The purpose of this paper is to give sufficient conditions for all nontrivial solutions of (1.1) to be oscillatory
which can be applied when in the following case:

lim inf
|x|→∞

g(x)
x

≤ 1
4
≤ lim sup

|x| →∞

g(x)
x

. (1.9)

In the next section, we will introduce a Liénard system which is equivalent to (1.1). To study the oscillation

problem for (1.1) the significant point is to find conditions for deciding whether all orbits intersect the vertical
isocline y = −x in the equivalent Liénard system.

2. The equivalent Liénard system

The change of variable t = es reduces (1.1) to the equation

ẍ − ẋ + g(x) = 0, s ∈ R,

where ˙= d
ds

. This equation is equivalent to the system

ẋ = y + x

ẏ = −g(x),
(2.10)

which is of Liénard type. Hereafter we denote s by t again. Sugie and Hara in [12] showed that each solution

of (1.1) exists in the future, thus every solution of (2.1) exists in the future.

We say that system (2.1) has property (X+) in the right half plane (resp. in the left half plane), if for

every point (x0, y0) with y0 > x0 and x0 ≥ 0 (resp. y0 < x0 and x0 ≤ 0), the positive semitrajectory of (2.1)

passing through (x0, y0) crosses the vertical isocline y = −x .

Several interesting sufficient conditions for property (X+) have been presented by M. Gyllenberg, P. Yan

and J. Jiang [6], M. Gyllenberg, P. Yan [7], Hara and Yoneyama [8], Villary and Zanolin [14]. The following
theorems can be applied when none of their results are applicable.

Consider the Liénard system
ẋ = y − F (x), ẏ = −g(x), (2.11)

where F (x) and g(x) are continuous on R with F (0) = 0 and g(x) satisfies (1.2). Let

G(x) =
∫ x

0

g(ξ)dξ. (2.12)

The following two theorems proved in [2] about property (X+) in the right and left half-plane.

Theorem E ([3, Theorem 2.3]) Assume G(+∞) = +∞ . Then, system (2.2) has property (X+) in the
right half-plane if

lim sup
x→+∞

( ∫ x

b

(
F (ξ)g(ξ)
(2G(ξ))

3
2

+
g(ξ)
G(ξ)

)
dξ +

F (x)√
2G(x)

)
= +∞, for some b > 0. (2.13)
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Theorem F ([3, Theorem 2.4]) Assume G(−∞) = +∞ . Then, system (2.2) has property (X+) in the left
half-plane if

lim inf
x→−∞

( ∫ b

x

(
− F (ξ)g(ξ)

(2G(ξ))3�2
+

g(ξ)
G(ξ)

)
dξ +

F (x)√
2G(x)

)
= −∞ for some b < 0. (2.14)

We have the following results which are special cases of two theorems above, by letting F (x) = −x in (2.4) and

(2.5).

Corollary 2.1 Assume G(+∞) = +∞ . Then, system (2.1) has property (X+) in the right half plane if

lim sup
x→+∞

(∫ x

b

(
−ξg(ξ)

(2G(ξ))
3
2

+
g(ξ)
G(ξ)

)
dξ − x√

2G(x)

)
= +∞ for some b > 0. (2.15)

Corollary 2.2 Assume G(−∞) = +∞ . Then system (2.1) has property (X+) in the left half plane if

lim inf
x→−∞

(∫ b

x

(
ξg(ξ)

(2G(ξ))
3
2

+
g(ξ)
G(ξ)

)
dξ − x√

2G(x)

)
= −∞ for some b < 0. (2.16)

We will need the following lemmas (refer to [12, Lemma 3.1 and 3.2] for the proof) in the next section

Lemma 2.1 For each point C = (c,−c) with c > 0 , the positive semitrajectory of (2.1) passing through C

crosses the negative y-axis.

Lemma 2.2 For each point C = (−c, c) with c > 0 , the positive semitrajectory of (2.1) passing through C

crosses the positive y-axis.

3. Main results

In this section we will present our main results and present some examples to illustrate our results. The
main theorem is as follows.

Theorem 3.1 Suppose that (2.6) and (2.7) hold. Then, all nontrivial solutions of (1.1) are oscillatory.

Proof. Each solution of (1.1) exists in the future [12, Proposition 2.1]. Since (2.6) and (2.7) hold, system

(2.1) which is equivalent to (1.1) has property (X+) in the right and left half plane. Thus, it follows from

Lemmas 2.1 and 2.2 that every solution of (2.1) keeps on rotating around the origin except the zero solution.

Hence, all nontrivial solutions of (1.1) are oscillatory.

Theorem 3.2 Let λ > 0 . Then all nontrivial solutions of (1.1) are oscillatory if

G(x) ≥ 1
8

(
x ln(|x|)

ln(|x|)− λ

)2

(3.17)

for |x| > R with a sufficiently large R > 0 .
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Proof. Suppose that (3.1) holds, then for |x| > R

1 − |x|
2
√

2G(x)
≥ λ

ln(|x|) ,

hence, for x > R we have

∫ x

R

(
−ξg(ξ)

(2G(ξ)) 3
2

+
g(ξ)
G(ξ)

)
dξ =

∫ x

R

g(ξ)
G(ξ)

(
1 − ξ

2
√

2G(ξ)

)
dξ

≥ λ

∫ x

R

g(ξ)
G(ξ) ln(ξ)

dξ = λ

(
ln(G(x))

ln(x)
− ln(G(R))

ln(R)
+

∫ x

R

ln(G(ξ))
ξ ln2(ξ)

dξ

)

≥ λ

(
ln(G(x))

ln(x)
− ln(G(R))

ln(R)
+

∫ x

b

1
ξ ln(ξ)

dξ

)
for some b > R.

Therefore,

lim
x→+∞

∫ x

R

(
−ξg(ξ)

(2G(ξ))
3
2

+
g(ξ)
G(ξ)

)
dξ = +∞.

Notice that x√
2G(x)

is bounded, thus (2.6) holds. Similarly, we can conclude that (2.7) holds. Therefore,

Theorem 3.1 implies that all nontrivial solutions of (1.1) are oscillatory.

Corollary 3.1 Suppose that

lim inf
|x|→∞

G(x)
x2

>
1
8
. (3.18)

Where, G(x) is defined by (2.3) . Then all nontrivial solutions of (1.1) are oscillatory.

Proof. Suppose that (3.2) holds, then,

α = lim inf
|x|→∞

(
1 − x

2
√

2G(x)

)
> 0.

Hence, for x > R with sufficiently large R > 0 we have

∫ x

R

(
−ξg(ξ)

(2G(ξ))
3
2

+
g(ξ)
G(ξ)

)
dξ =

∫ x

R

g(ξ)
G(ξ)

(
1− ξ

2
√

2G(ξ)

)
dξ

≥ α

2

∫ x

R

g(ξ)
G(ξ)

dξ =
α

2
(lnG(x) − lnG(R)) .

Therefore,

lim
x→+∞

∫ x

R

(
−ξg(ξ)

(2G(ξ))
3
2

+
g(ξ)
G(ξ)

)
dξ = +∞.

Since x√
2G(x)

is bounded, (2.6) holds. Similarly, we can conclude that (2.7) holds, thus, all nontrivial solutions

of (1.1) are oscillatory. �
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Corollary 3.2 Let λ > 0 . Then all nontrivial solutions of (1.1) are oscillatory if

g(x)
x

≥ 1
4

+
λ

log |x| (3.19)

for |x| > R with a sufficiently large R > 0 .

Proof. Define continuous functions k(x), K(x) and L(x) on R by

k(x) =
λx

log |x| , K(x) =
∫ x

0

k(ξ)dξ and L(x) =
λx2

2 log |x|

for |x| sufficiently large, respectively. Then we have

K(x) ≥ L(x) − M for some M > 0

and by (3.3)

G(x) ≥ 1
8
x2 + K(x) − N for some N > 0.

Hence, for |x| sufficiently large

G(x) ≥ 1
8
x2 + L(x) − (N + M) ≥ 1

8
x2 +

λx2

4log|x|

=
x2

8

(
1 +

2λ

log|x|

)
≥ 1

8

(
xlog(|x|)

log(|x|) − λ
4

)2

.

Hence, by Theorem 3.2 all nontrivial solutions of (1.1) are oscillatory. �

Proposition 3.1 For every α ≥ 0 there exists a function g ∈ C∞(R) such that

xg(x) > 0 if x �= 0, lim inf
|x|→∞

g(x)
x

= α,

and all nontrivial solutions of (1.1) are oscillatory.

Proof. First let m > max{|n|, 1
4}. Then we prove all nontrivial solutions of (1.1) are oscillatory if

g(x)
x

≥ m + n cos(x).

for |x| > R with a sufficiently large R > 0.

It is clear that (1.2) holds. We have

G(x) ≥ m

2
x2 + nx sin(x) + n cos(x) − n,

thus,

lim inf
|x|→∞

G(x)
x2

≥ m

2
>

1
8
.
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Hence, by Corollary 3.1 all nontrivial solutions of (1.1) are oscillatory. �

Second let λ > 0, β ∈ R and α > 1
2 . Then we prove all nontrivial solutions of (1.1) are oscillatory if

g(x)
x

≥ exp(−λx2) + α cos2(βx).

for |x| > R with a sufficiently large R > 0.

It is clear that (1.2) holds. We have

G(x) ≥ 1
8

(
−4e−λx2

λ
+ 2αx2 +

α cos(2βx)
β2

+
2αx sin(2βx)

β

)
+

1
2λ

− α

β2
,

thus,

lim inf
|x|→∞

G(x)
x2

≥ α

4
>

1
8
.

Hence, by Corollary 3.1 all nontrivial solutions of (1.1) are oscillatory.

Now let g(x) = (1
4 +α)x+ 1

4x cos(x) and g(x) = x exp(−x2)+x cos2(x) for α > 0 and α = 0, respectively.

The proof is complete.

References

[1] Aghajani, A. and Moradifam, A. : Oscillation of solutions of second-order nonlinear differential equations of Euler

type, J. Math. Anal. Appl. 326, 1076-1089 (2007).

[2] Aghajani, A. and Moradifam, A. : Some sufficient conditions for the intersection with the vertical isocline in the

Liénard plane, Appl. Math. Letters 19, 491-497 (2006).

[3] Aghajani, A. and Roomi, V. : On the property of (X+ ) for generalized Liénard system, International Journal of

Dynamical Systems and Differential Equations 1, 276-282 (2008).

[4] Aghajani, A. and Roomi, V. : Some Necessary and Sufficient Conditions for the Existence of Homoclinic Orbits for

Generalized Liénard Systems, J. Korean Math. Soc., (In press).

[5] Atkinson, F. V. : On second order non-linear oscillations, Pacific J. Math. 5, 643-647 (1955).

[6] Gyllenberg, M. and Yan, P. and Jiang, J. : The qualitative behavior of the second-order system with zero diagonal

coefficient, J. Math. Anal. Appl. 291, 322-340 (2004).

[7] Gyllenberg, M. and Yan, P. : New conditions for the intersection of orbits with the vertical isocline of the Lienard

system, Mathematical and Computer Modelling 49, 906-911 (2009).

[8] Hara, T. and Yoneyama, T. : On the global center of generalized Liénard equation and its application to stability

problems, Funkcial. Ekvac. 28, 171-192 (1985).

[9] Hille, E. : Non-oscillation theorems, Tran. Amer. Math. Soc. 64, 234-252 (1948).

279



AGHAJANI, ROOMI

[10] Kneser, A. : Untersuchungen uber die reelen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann.

42, 409-435 (1893).

[11] Nehari, Z. : Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85, 428-445

(1957).

[12] Sugie, J. and Hara, T. : Nonlinear oscillations of second order differential equations of Euler type, Proc. Amer.

Math. Soc. 124, 3173-3181 (1996).

[13] Swanson, C. A. : Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New

York/London 1968.

[14] Villari, G. and Zanolin, F. : On a dynamical system in the Liénard plane. Necessary and sufficient conditions for

the intersection with the vertical isocline and applications, Funkcial. Ekvac. 33, 19-38 (1990).

[15] Wong, J. S. W. : Remarks on nonoscillation theorems for a second order non-linear differential equation, Proc.

Amer. Math. Soc. 83, 541-546 (1981).

[16] Wong, J. S. W. : Oscillation theorems for second-order nonlinear differential equations of Euler type, Methods

Appl. Anal. 3, 476-485 (1996).

Asadollah AGHAJANI, Vahid ROOMI
School of Mathematics,
Iran University of Science and Technology,
Narmak, Tehran-IRAN
e-mail: aghajani@iust.ac.ir, roomi@iust.ac.ir

Received: 14.08.2010

280


