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Marcinkiewicz-Fejér means of double conjugate
Walsh-Kaczmarz-Fourier series and Hardy spaces

Ushangi Goginava and Kdroly Nagy

Abstract

In the present paper we prove that for any 0 < p < 2/3 there exists a martingale f in H, such that the
Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series of the martingale f is not

uniformly bounded in the space L, .
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In 1939 for the two-dimensional trigonometric Fourier series Marcinkiewicz [6] has proved for
f € Llog L([0, 27]?) that the means

converge a.e. to f as n — oo. Zhizhiashvili [16] improved this result for f € L([0, 2n]?).

For the two-dimensional Walsh-Fourier series Weisz [12] proved that the maximal operator M"*f =
Sup,,>q IMY (f)] is bounded from the two-dimensional dyadic martingale Hardy space H,, to the space L, for
p > 2/3 and is of weak type (1,1). The first author [5] proved that the assumption p > 2/3 is essential for the
boundedness of the maximal operator M™* from the Hardy space H,(G?) to the space L,(G?).

First, we give a brief introduction to the theory of dyadic analysis [8]. Let P denote the set of positive
integers, N := P U {0}. Denote Zy the discrete cyclic group of order 2, that is Zy = {0,1}, where the group
operation is the modulo 2 addition and every subset is open. The Haar measure on Z, is given such that
the measure of a singleton is 1/2. Let G be the complete direct product of the countable infinite copies of
the compact groups Zs. The elements of G are of the form = = (z¢, 21, ..., Tk, ...) wWith z, € {0,1} (k € N).
The group operation on G is the coordinate-wise addition, the measure (denoted by ) and the topology are

the product measure and topology. The compact Abelian group G is called the Walsh group. A base for the
neighborhoods of G can be given in the following way:

IO (JJ) = G,

I, () = I (20, ey @ne1) i={Yy € G : Yy = (X0y ooy Troe1, Yy Ynt1s - )} 5
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(x € G,n € N). These sets are called dyadic intervals.
Let 0= (0:4 € N) € G denote the null element of G, , I, := I, (0) (n € N). Set e, :=(0,...,0,1,0,...) €
G, the nth coordinate of which is 1 and the rest are zeros (n € N).

For k € N and x € G denote
r (z) == (=1)"*
the kth Rademacher function. If n € N, then n = Y n;2" can be written, where n; € {0,1} (i € N),i. e. n
i=0
is expressed in the number system of base 2. Denote |n| := max{j € N n; # 0}, that is 2/l <n < 27+,

The Walsh-Paley system is defined as a sequence of Walsh-Paley functions:

In|—1
e n > ngx
wn (@) = [ (i (@)™ =7 (2) (-1) =0 (€ G,neP).
k=0
The Walsh-Kaczmarz functions are defined by kg :=1 and for n > 1

In|—1

Inl~1 > NEZ|n|—k—1
kin(2) 1= 1) (2) [ (nj1=u(@))™ = 11 (2) (1) =0 .
k=0

For A € N define the transformation 74 : G — G by
TA(J:) = (xA—lu LA-25 -+, L0, LA, LA+, )
By the definition of 74 (see [11]), we have

Kn(x) = 7| (0)w,, o (Tn)(z)) (n € N,z € G).

The space L, (G?),0 < p < oo with norms or quasi-norms |-|| , 18 defined in the usual way.

The Dirichlet kernels are defined by
n—1
Dy(x) == ax(x),
k=0

where aj = wy, or ki. Recall that (see e.g. [8])

I

The two-dimensional dyadic cubes are of the form

The o-algebra generated by the dyadic cubes {I,, (z,y) : (z,y) € G x G} is denoted by F,.
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Denote by f = (f(™),n € N) a martingale with respect to (F,,n € N) (for details see, e.g. [14]). The

maximal function of a martingale f is defined by

fe = sup | £
neN

In case f € Ly (GQ) , the maximal function can also be given by

J(x,y) = sup ————
@9) = S0 @) l
n{Z,Y

For 0 < p < oo the Hardy martingale space H,(G?) consists of all martingales for which

111, = [1F*[l, < oo

fu,v)dp(u,v)|, (z,y)€GxG.

The Kronecker product (ou,m :n,m € N) of two Walsh(-Kaczmarz) system is said to be the two-

dimensional Walsh(-Kaczmarz) system. That is,

Qn.m (LL', y) = On (JJ) Qm (y) :

If fe Ly (G?), then the number fo‘ (n,m) = f fanm (n,m e N) is said to be the (n,m)th Walsh-

(Kaczmarz)-Fourier coefficient of f. We can extend this definition to martingales in the usual way (see [13, 14]).

Denote by Sy, the (n,m)th rectangular partial sum of the Walsh-(Kaczmarz)-Fourier series of a

martingale f. Namely,

Se iz, y) = f (. i) ok i(, ).

0 4

3
L
3

b
i
I\
=]

The Marcinkiewicz-Fejér means of a martingale f are defined by
My (fiz,y) ZskkﬁCCQ
The 2-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are defined by
Di (2, y) := Dy () D' (y), K5 (x,y) ZDk k().

For a martingale

Fr > (50— poemY,

n=1
the conjugate transforms are defined by
FO w3 @) (£ = )
n=1
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where t € G is fixed. Note that f(o) = f. As it is well-known, if f is an integrable function, then conjugate

transforms f(t) do exist almost everywhere, but they are not integrable in general. It is to see that Son on f = fp.

Let
P00 *=T0o, Pkl=Tj

if
(k) e{27 1277 41, 29 — 1) x {2071 297 41,27 — 1)
uf{2i-t 277t 41, ...,27 — 1} x {0,1,...,277 1 — 1}

U{0,1,...,277 1} x {2971 2971 127 — 1},

The (n, m)th rectangular partial sum of the conjugate transforms is

n—1m—1

Se0(fiay) = 30 3 ) (kD () = S5, (75 2,9)

k=0 =0

(t € G). The Marcinkiewicz-Fejér means of the double conjugate Walsh(-Kaczmarz)-Fourier series are defined
by

Z 7(75) f,.fL' y

k=0

Ma(t) fl'y

3|}—‘

It is evident that J\;lf{’(o)(f;x,y) = MS(f;x,y).

For the martingale f, we consider the maximal operators

M f(a,y) = sup M3 (fia, ), MO f(a,y) = sup MO (f, 2, 9)|

In 1974 Schipp [9] and Young [15] proved that the Walsh-Kaczmarz system is a convergence system. In
1981 Skvortsov [11] showed that the Walsh-Kaczmarz-Fejér means converge uniformly to f for any continuous
function f. For any integrable functions, G&t [1] proved, that the Fejér means with respect to the Walsh-
Kaczmarz system converge almost everywhere. G&t’s result was extended by Simon [10] to H,, spaces. Namely,
he proved that the maximal operator of Fejér means of one-dimensional Fourier series is bounded from Hardy
space H,(G) into the space L,(G) for p > 1/2.

For any integrable functions, the second author [7] proved, that the Marcinkiewicz-Fejér means with
respect to the two dimensional Walsh-Kaczmarz system converge almost everywhere to the function itself. This

Theorem was extended in [2, 3]. Namely, we proved that the following are true.

Theorem GGN [Gdt, Goginava and Nagy [2]] Let p > 2/3. Then there exists a constant ¢, > 0 such that

M= fllp < el fll -

Theorem GN [Goginava and Nagy [3]] Let 0 < p < 2/3. Then there exists a martingale f € H,(G?) such

that
[M™ fllp =
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Since,

|79, =17la,. 0<p<oo
P

and

2 =0l
191, = [ 7] .
G
from Theorem GGN we obtain that (p > 2/3)

|70

— 1A, < [ [0

G
~ p ~
cp/HM;;f(t) pdtgcp/Hf(t)
G G

= ollflE, -

p p
dt
H, P

dt

p
Hy

Hence we proved that the following is valid.

Theorem 1 Let p > 2/3. Then there exists a constant ¢, > 0 such that
7508 <elifln, (femuted).
P

In the present paper we prove that in Theorem 1 the assumption p > 2/3 is essential. Moreover, the

following are true.
Theorem 2 Let 0 < p <2/3. Then there exists a martingale f € H,(G x G) such that

sup ||M27(t)f||p =+o00, ted.

Corollary 1 Let 0 < p <2/3. Then there exists a martingale f € H,(G x G) such that

sup || M5, fl, = +oc.

For Walsh system the analogue of Theorem 1 is proved in [12, 14] and the analogue of Theorem 2 is
discussed in [4].

A bounded measurable function a is a p-atom, if there exists a dyadic 2-dimensional cube I x I, such
that

a) [ adp=0;
IxI

b) llall < pu(I x I)~1/7;

c) suppa C I x I.
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The basic result of atomic decomposition is due to Weisz.
Theorem W [Weisz [14]] A martingale f = (f(") :n € N) is in H, (0 <p <1) if and only if there eists a
sequence (ag, k € N) of p-atoms and a sequence (ug, k € N) of real numbers such that for every n € N,

Z [ San gnay, = f, (2)

k=0

o0
D luwl? < oo
k=0

Moreover,

oo 1/p
[ 1l g, ~ inf (Z |Mk|p> :

k=0

During the proof of Theorem 1 we will use the following Lemma [4]:

Lemma 1 (Goginava [4]) Let na =24 424444 424420,
HAS I4A(07 "'707x4m = 17 07 ...,0,:1:4[ = 17x4l+17 "'7:'[;414—1)

and
RS I4A(07 sy an4l = 17 L4l41y -y Taq—1, 1- LT4qy Yaq+1, "'7y4A—1)

for some m <l < q. Then

na-1|KY,  (z,y)| > 2tatairam=s,

naA-1

Proof of Theorem 2: Let {A; : kK € N} be an increasing sequence of positive integers such that

— 1
k=0 "k
k—1 28Al/p 28Ak/p
I g —
= A A

10 - 284k-1 24k
—_— < .
Ap_1 Ap,

()

We note that such an increasing sequence {Ay : k € N} which satisfies conditions (3)—(5) can be constructed.
Let

4
f(A) (LL', y) = E )\kak (LL', y) ) where )\k =
Ay
{k:4AL<A}

and
ag (CL‘, y) = 98(1/p—1)Ar—2 (D24Ak+1 (CL‘) — Dgaa, (CL‘)) (D24Ak+1 (y) — Dgaa, (y)) .
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The martingale f:= (O, fM, . fWD ) e H,(G?) . Since,
. (o, if A <44,
20200k (TU) =\ ) A > 44y,
A () = Z Axay (2, 9) Z)\kSZA 2aay (2,9) .
{k:4A, <A} k=0

(3) and Theorem W yield that f € H, (G?).

Now, we give the Fourier coeflicients.

. TR (i) € {20 L 2 1 20 gt

K ; - — o0 6
f (17]) 0, (’L,]) ¢ U {24Ak, ”'724Ak+1 _ 1} x {24Ak, ”'724Ak+1 _ 1} ( )
=1

We decompose the n 4, th Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series

as follows:
1 nAk—l
M) = o 3 Sy

1 P& " e

- S7t 7‘/'[:7 + 7t 7‘/'[;
™ Z w4 D S0 )

J=2%"k
= I+1II. (7)

Let j € {0,1,...,2** — 1} for some k. Then from (6) and (4), it is easy to show that

k—1 24Al+1_124Al+1_1
_
SOy < Yl Y Y Fwmml@)m)
=0 v=2441 M:24Al

k—1 24Al+1_1 24Al+1_1

Fr (., u)‘

(]
=\
(]

k-1 9841/p 98Ak—1/p
<

< 2
To= A T A
This yields that
24Ak_1
1 (1) 98Ak_1/p
Il < — S (fs <2 8
| | nA J:1 257 (f7 x? y) Ak;_l ( )

Now, we discuss I1.
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Let ¢ € {24’4’“, ey A, — 1}. Then from (6) we conclude that

i—11—1

SEOFrmy) = DD o ®F (v ) (@) (y)

v=0 pn=0

Q4AI+1 _q A+l _q

k—1
= ZT4Az(t) Z Z f“(u,u)n,,(:c)ﬁ“(y)
=0

y:24Al M:24Al

i—1 i—1
Fraadt) > D> ) (@) (y)
V:24Ak /’L:24Ak
28Az(1/17 1)
= Z 744, (t) ———— (Daia,11(x) — Dyaa, () (Dasa 41 (y) — Daaa, (y))

984Ax(1/p—1)

+raa,(t) A (Di(z) = Daaay (2)) (D (y) — Dasax (y))
and
28Az(1/17 1)
11 = nAk ! ZT4A1 ——— (Dy1a+1(x) — Doaa, (z)) ¥

Ay

X (D24Al+1 (y) — D24Al (y))
98Ak(1/p—1) a1

+ raa,(t) (Dif(x) = Dyaay. () (Dif (y) = Dasar(y))

na, Ak PavyyS

= I + 1.
By (4), (5) and |Dan(z)] < 2™, we get that
28Al(1/p 1) SA +2 28A;C 1/p+3

|I1,] < Z 7Ak—1

and

24
(MEO Fr)| = 118] = =
A

We can write the nth Dirichlet kernel with respect to the Walsh-Kaczmarz system in the following form:
Dy (x) = Do () + ) (2) Dy _ g (T (). (9)

This equation immediately implies for Il> that

98Ak(1/p—1) [
I, = r4a,(t) AL raa,(@)raa,(y) Y DP(raa,()D (1aa, (1))
k i=0

984Ax(1/p—1)

= raa,(t Taa, (T)raa, (Y)na, - 1KVnAIC 1(T4Ak(x))7T4Ak(y))'

nA,CAk
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This implies

nAk_128Ak(1/p—1) " 2A;C

K"Ak71 (T4Ak(x))7T4Ak(y))| - A .

M )| 2 =

For a fix A we give a subset of G x G as the following disjoint union:

Ar—3  Ap—2 Ap-—1

GxGD U U U XLZE&,C

=[Af /2] I=m~+1 q=I+1

where J&l =z € G : 244,-1 = . = TaAp—am = 0,Z44,—am-1 = 1, Taa,—am-2 = .. = TaA,—a1 =
0,244,—a1—1 = 1}, and L4A,C ={y € G :ma—1 = = Yaa-a1 = 0,Yaa,—a1-1 = 1, Taa,—a1-2, ..., TaA,—4q,
YaAp—dq—1 = 1 — Taa,—aq—1}-

Notice that, for any (z,y) € Jy4! x Li’gk, ([Ak/2]) < m <l < ¢ < Ag) by the definition of 744, and

Lemma 1 we have

98Ax(1/p—1) 9 Ak 98Ak(1/p—1)

4q+4l+4m—3 _ >c

4 q+4l+4m
nA, Ay A — nA, Ay

MO ,y)| 2

nAk

Therefore, we write

Ar—3  Ap—2 Ap-—1

p
[ peoges] e = DN DD Lo 0] due
GxG —[Ay /2] l=m+1 q=i+1 7 Tid, X Lad,
Ak—3 Ak—2 Ak_l . . 28Ak(1—p) !
m, , 4q+4l+4m
SRS S SYC T R
k

m=[Ay /2] l=m+1 q=I+1

28Ak(1 p) Ar—3 Ap—2 Ap—1

_ Z Z Z 2—41 4q2p(4q+4l+4m)

7’L
A =[Ax /2] l=m+1 g=I+1
8Ar(1—p) Ar=3 Ag—2 Ap—1
_ 2 Y gt T a0l Y gie-na
i, Ay
ke m=[Ay /2] l=m+1 q=l+1

28Ak(1—p) Ap—3

o 12pm—8m
= C——5— E 2

W Ak m=[Ay /2]

94Ar(2—3p)  Ar73

4m(3p—2
> —— Z 94m(3p—2)

ko m=[Ay /2]
e, if p=2/3,
I if0 < p < 2/3.
k

The fact, that Ay — oo and %ﬁs—p) — 00 (0 <p<2/3)as k— oo, completes the proof of the main

theorem. O
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