Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series and Hardy spaces

Ushangi Goginava and Károly Nagy

Abstract

In the present paper we prove that for any $0<p \leq 2 / 3$ there exists a martingale f in H_{p} such that the Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series of the martingale f is not uniformly bounded in the space L_{p}.

Key Words: Walsh-Kaczmarz system, Fejér means, Marcinkiewicz means, Martingale-Hardy space
In 1939 for the two-dimensional trigonometric Fourier series Marcinkiewicz [6] has proved for $f \in L \log L\left([0,2 \pi]^{2}\right)$ that the means

$$
\mathcal{M}_{n} f=\frac{1}{n} \sum_{j=1}^{n-1} S_{j, j}(f)
$$

converge a.e. to f as $n \rightarrow \infty$. Zhizhiashvili [16] improved this result for $f \in L\left([0,2 \pi]^{2}\right)$.
For the two-dimensional Walsh-Fourier series Weisz [12] proved that the maximal operator $\mathcal{M}^{w, *} f=$ $\sup _{n \geq 1}\left|\mathcal{M}_{n}^{w}(f)\right|$ is bounded from the two-dimensional dyadic martingale Hardy space H_{p} to the space L_{p} for $p>2 / 3$ and is of weak type $(1,1)$. The first author [5] proved that the assumption $p>2 / 3$ is essential for the boundedness of the maximal operator $\mathcal{M}^{w, *}$ from the Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$.

First, we give a brief introduction to the theory of dyadic analysis [8]. Let \mathbf{P} denote the set of positive integers, $\mathbf{N}:=\mathbf{P} \cup\{0\}$. Denote \mathbb{Z}_{2} the discrete cyclic group of order 2 , that is $\mathbb{Z}_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on \mathbb{Z}_{2} is given such that the measure of a singleton is $1 / 2$. Let G be the complete direct product of the countable infinite copies of the compact groups \mathbb{Z}_{2}. The elements of G are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbf{N})$. The group operation on G is the coordinate-wise addition, the measure (denoted by μ) and the topology are the product measure and topology. The compact Abelian group G is called the Walsh group. A base for the neighborhoods of G can be given in the following way:

$$
\begin{gathered}
I_{0}(x):=G \\
I_{n}(x):=I_{n}\left(x_{0}, \ldots, x_{n-1}\right):=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\},
\end{gathered}
$$

[^0]$(x \in G, n \in \mathbf{N})$. These sets are called dyadic intervals.
Let $0=(0: i \in \mathbf{N}) \in G$ denote the null element of $G, I_{n}:=I_{n}(0)(n \in \mathbf{N})$. Set $e_{n}:=(0, \ldots, 0,1,0, \ldots) \in$ G, the nth coordinate of which is 1 and the rest are zeros $(n \in \mathbf{N})$.

For $k \in \mathbf{N}$ and $x \in G$ denote

$$
r_{k}(x):=(-1)^{x_{k}}
$$

the k th Rademacher function. If $n \in \mathbf{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$ can be written, where $n_{i} \in\{0,1\}(i \in \mathbf{N})$, i. e. n is expressed in the number system of base 2. Denote $|n|:=\max \left\{j \in \mathbf{N}: n_{j} \neq 0\right\}$, that is $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as a sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1) \sum_{k=0}^{|n|-1} n_{k} x_{k} \quad(x \in G, n \in \mathbf{P})
$$

The Walsh-Kaczmarz functions are defined by $\kappa_{0}:=1$ and for $n \geq 1$

$$
\kappa_{n}(x):=r_{|n|}(x) \prod_{k=0}^{|n|-1}\left(r_{|n|-1-k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{|n|-k-1}} .
$$

For $A \in \mathbf{N}$ define the transformation $\tau_{A}: G \rightarrow G$ by

$$
\tau_{A}(x):=\left(x_{A-1}, x_{A-2}, \ldots, x_{0}, x_{A}, x_{A+1}, \ldots\right)
$$

By the definition of τ_{A} (see [11]), we have

$$
\kappa_{n}(x)=r_{|n|}(x) w_{n-2^{|n|}}\left(\tau_{|n|}(x)\right) \quad(n \in \mathbf{N}, x \in G)
$$

The space $L_{p}\left(G^{2}\right), 0<p \leq \infty$ with norms or quasi-norms $\|\cdot\|_{p}$ is defined in the usual way.
The Dirichlet kernels are defined by

$$
D_{n}^{\alpha}(x):=\sum_{k=0}^{n-1} \alpha_{k}(x)
$$

where $\alpha_{k}=w_{k}$ or κ_{k}. Recall that (see e.g. [8])

$$
D_{2^{n}}(x):=D_{2^{n}}^{w}(x)=D_{2^{n}}^{\kappa}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n}(0) \tag{1}\\ 0, & \text { if } x \notin I_{n}(0)\end{cases}
$$

The two-dimensional dyadic cubes are of the form

$$
I_{n}(x, y):=I_{n}(x) \times I_{n}(y)
$$

The σ-algebra generated by the dyadic cubes $\left\{I_{n}(x, y):(x, y) \in G \times G\right\}$ is denoted by \mathcal{F}_{n}.

Denote by $f=\left(f^{(n)}, n \in \mathbf{N}\right)$ a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbf{N}\right)$ (for details see, e.g. [14]). The maximal function of a martingale f is defined by

$$
f^{*}=\sup _{n \in \mathbf{N}}\left|f^{(n)}\right|
$$

In case $f \in L_{1}\left(G^{2}\right)$, the maximal function can also be given by

$$
f^{*}(x, y)=\sup _{n \in \mathbf{N}} \frac{1}{\mu\left(I_{n}(x, y)\right)}\left|\int_{I_{n}(x, y)} f(u, v) d \mu(u, v)\right|, \quad(x, y) \in G \times G
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}\left(G^{2}\right)$ consists of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty
$$

The Kronecker product ($\alpha_{n, m}: n, m \in \mathbf{N}$) of two Walsh(-Kaczmarz) system is said to be the twodimensional Walsh(-Kaczmarz) system. That is,

$$
\alpha_{n, m}(x, y)=\alpha_{n}(x) \alpha_{m}(y)
$$

If $f \in L_{1}\left(G^{2}\right)$, then the number $\widehat{f}^{\alpha}(n, m):=\int_{G^{2}} f \alpha_{n, m} \quad(n, m \in \mathbf{N})$ is said to be the (n, m) th Walsh-(Kaczmarz)-Fourier coefficient of f. We can extend this definition to martingales in the usual way (see [13, 14]).

Denote by $S_{n, m}^{\alpha}$ the (n, m) th rectangular partial sum of the Walsh-(Kaczmarz)-Fourier series of a martingale f. Namely,

$$
S_{n, m}^{\alpha}(f ; x, y):=\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \widehat{f}^{\alpha}(k, i) \alpha_{k, i}(x, y)
$$

The Marcinkiewicz-Fejér means of a martingale f are defined by

$$
\mathcal{M}_{n}^{\alpha}(f ; x, y):=\frac{1}{n} \sum_{k=0}^{n-1} S_{k, k}^{\alpha}(f ; x, y)
$$

The 2-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are defined by

$$
D_{k, l}^{\alpha}(x, y):=D_{k}^{\alpha}(x) D_{l}^{\alpha}(y), \quad K_{n}^{\alpha}(x, y):=\frac{1}{n} \sum_{k=0}^{n-1} D_{k, k}^{\alpha}(x, y) .
$$

For a martingale

$$
f \sim \sum_{n=1}^{\infty}\left(f^{(n)}-f^{(n-1)}\right)
$$

the conjugate transforms are defined by

$$
\widetilde{f}^{(t)} \sim \sum_{n=1}^{\infty} r_{n}(t)\left(f^{(n)}-f^{(n-1)}\right)
$$

where $t \in G$ is fixed. Note that $\widetilde{f}^{(0)}=f$. As it is well-known, if f is an integrable function, then conjugate transforms $\widetilde{f}^{(t)}$ do exist almost everywhere, but they are not integrable in general. It is to see that $S_{2^{n}, 2^{n}} f=f_{n}$.

Let

$$
\rho_{0,0}:=r_{0}, \quad \rho_{k, l}:=r_{j}
$$

if

$$
\begin{aligned}
(k, l) \in & \left\{2^{j-1}, 2^{j-1}+1, \ldots, 2^{j}-1\right\} \times\left\{2^{j-1}, 2^{j-1}+1, \ldots, 2^{j}-1\right\} \\
& \cup\left\{2^{j-1}, 2^{j-1}+1, \ldots, 2^{j}-1\right\} \times\left\{0,1, \ldots, 2^{j-1}-1\right\} \\
& \cup\left\{0,1, \ldots, 2^{j-1}-1\right\} \times\left\{2^{j-1}, 2^{j-1}+1, \ldots, 2^{j}-1\right\} .
\end{aligned}
$$

The (n, m) th rectangular partial sum of the conjugate transforms is

$$
\tilde{S}_{n, m}^{\alpha,(t)}(f ; x, y):=\sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \rho_{k, i}(t) \hat{f}^{\alpha}(k, i) \alpha_{k, i}(x, y)=S_{n, m}^{\alpha}\left(\tilde{f}^{(t)} ; x, y\right)
$$

$(t \in G)$. The Marcinkiewicz-Fejér means of the double conjugate Walsh(-Kaczmarz)-Fourier series are defined by

$$
\tilde{\mathcal{M}}_{n}^{\alpha,(t)}(f ; x, y):=\frac{1}{n} \sum_{k=0}^{n-1} \tilde{S}_{k, k}^{\alpha,(t)}(f ; x, y)
$$

It is evident that $\tilde{\mathcal{M}}_{n}^{\alpha,(0)}(f ; x, y)=\mathcal{M}_{n}^{\alpha}(f ; x, y)$.
For the martingale f, we consider the maximal operators

$$
\mathcal{M}^{\alpha *} f(x, y)=\sup _{n}\left|\mathcal{M}_{n}^{\alpha}(f ; x, y)\right|, \quad \tilde{\mathcal{M}}^{\alpha,(t) *} f(x, y)=\sup _{n}\left|\tilde{\mathcal{M}}_{n}^{\alpha,(t)}(f, x, y)\right|
$$

In 1974 Schipp [9] and Young [15] proved that the Walsh-Kaczmarz system is a convergence system. In 1981 Skvortsov [11] showed that the Walsh-Kaczmarz-Fejér means converge uniformly to f for any continuous function f. For any integrable functions, Gát [1] proved, that the Fejér means with respect to the WalshKaczmarz system converge almost everywhere. Gát's result was extended by Simon [10] to H_{p} spaces. Namely, he proved that the maximal operator of Fejér means of one-dimensional Fourier series is bounded from Hardy space $H_{p}(G)$ into the space $L_{p}(G)$ for $p>1 / 2$.

For any integrable functions, the second author [7] proved, that the Marcinkiewicz-Fejér means with respect to the two dimensional Walsh-Kaczmarz system converge almost everywhere to the function itself. This Theorem was extended in [2,3]. Namely, we proved that the following are true.

Theorem GGN [Gát, Goginava and Nagy [2]] Let $p>2 / 3$. Then there exists a constant $c_{p}>0$ such that

$$
\left\|\mathcal{M}^{\kappa, *} f\right\|_{p} \leq c_{p}\|f\|_{H_{p}}
$$

Theorem GN [Goginava and Nagy [3]] Let $0<p \leq 2 / 3$. Then there exists a martingale $f \in H_{p}\left(G^{2}\right)$ such that

$$
\left\|\mathcal{M}^{\kappa *} f\right\|_{p}=+\infty
$$

Since,

$$
\left\|\widetilde{f}^{(t)}\right\|_{H_{p}}=\|f\|_{H_{p}}, \quad 0<p<\infty
$$

and

$$
\|f\|_{H_{p}}^{p} \backsim \int_{G}\left\|\widetilde{f}^{(t)}\right\|_{p}^{p} d t
$$

from Theorem GGN we obtain that $(p>2 / 3)$

$$
\begin{aligned}
\left\|\widetilde{M}_{n}^{\kappa,(t)} f\right\|_{H_{p}}^{p} & =\left\|M_{n}^{\kappa} f\right\|_{H_{p}}^{p} \leq c_{p} \int_{G}\left\|\widetilde{M}_{n}^{\kappa,(t)} f\right\|_{p}^{p} d t \\
& =c_{p} \int_{G}\left\|M_{n}^{\kappa} \widetilde{f}^{(t)}\right\|_{p}^{p} d t \leq c_{p} \int_{G}\left\|\widetilde{f}^{(t)}\right\|_{H_{p}}^{p} d t \\
& =c_{p}\|f\|_{H_{p}}^{p} .
\end{aligned}
$$

Hence we proved that the following is valid.

Theorem 1 Let $p>2 / 3$. Then there exists a constant $c_{p}>0$ such that

$$
\left\|\tilde{\mathcal{M}}_{n}^{\kappa(t)} f\right\|_{H_{p}} \leq c_{p}\|f\|_{H_{p}}\left(f \in H_{p}, t \in G\right)
$$

In the present paper we prove that in Theorem 1 the assumption $p>2 / 3$ is essential. Moreover, the following are true.

Theorem 2 Let $0<p \leq 2 / 3$. Then there exists a martingale $f \in H_{p}(G \times G)$ such that

$$
\sup _{n}\left\|\tilde{\mathcal{M}}_{n}^{\kappa,(t)} f\right\|_{p}=+\infty, \quad t \in G
$$

Corollary 1 Let $0<p \leq 2 / 3$. Then there exists a martingale $f \in H_{p}(G \times G)$ such that

$$
\sup _{n}\left\|\mathcal{M}_{n}^{\kappa} f\right\|_{p}=+\infty
$$

For Walsh system the analogue of Theorem 1 is proved in $[12,14]$ and the analogue of Theorem 2 is discussed in [4].

A bounded measurable function a is a p-atom, if there exists a dyadic 2-dimensional cube $I \times I$, such that
a) $\int_{I \times I} a d \mu=0$;
b) $\|a\|_{\infty} \leq \mu(I \times I)^{-1 / p}$;
c) $\operatorname{supp} a \subset I \times I$.

The basic result of atomic decomposition is due to Weisz.
Theorem W [Weisz [14]] A martingale $f=\left(f^{(n)}: n \in \mathbf{N}\right)$ is in $H_{p}(0<p \leq 1)$ if and only if there exists a sequence $\left(a_{k}, k \in \mathbf{N}\right)$ of p-atoms and a sequence $\left(\mu_{k}, k \in \mathbf{N}\right)$ of real numbers such that for every $n \in \mathbf{N}$,

$$
\begin{gather*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}, 2^{n}} a_{k}=f^{(n)} \tag{2}\\
\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
\end{gather*}
$$

Moreover,

$$
\|f\|_{H_{p}} \sim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}
$$

During the proof of Theorem 1 we will use the following Lemma [4]:

Lemma 1 (Goginava [4]) Let $n_{A}:=2^{4 A}+2^{4 A-4}+\ldots+2^{4}+2^{0}$,

$$
x \in I_{4 A}\left(0, \ldots, 0, x_{4 m}=1,0, \ldots, 0, x_{4 l}=1, x_{4 l+1}, \ldots, x_{4 A-1}\right)
$$

and

$$
y \in I_{4 A}\left(0, \ldots, 0, y_{4 l}=1, x_{4 l+1}, \ldots, x_{4 q-1}, 1-x_{4 q}, y_{4 q+1}, \ldots, y_{4 A-1}\right)
$$

for some $m<l<q$. Then

$$
n_{A-1}\left|K_{n_{A-1}}^{w}(x, y)\right| \geq 2^{4 q+4 l+4 m-3}
$$

Proof of Theorem 2: Let $\left\{A_{k}: k \in \mathbf{N}\right\}$ be an increasing sequence of positive integers such that

$$
\begin{gather*}
\sum_{k=0}^{\infty} \frac{1}{A_{k}^{p}}<\infty \tag{3}\\
\sum_{l=0}^{k-1} \frac{2^{8 A_{l} / p}}{A_{l}}<\frac{2^{8 A_{k} / p}}{A_{k}} \tag{4}\\
\frac{10 \cdot 2^{8 A_{k-1}}}{A_{k-1}}<\frac{2^{A_{k}}}{A_{k}} \tag{5}
\end{gather*}
$$

We note that such an increasing sequence $\left\{A_{k}: k \in \mathbf{N}\right\}$ which satisfies conditions (3)-(5) can be constructed. Let

$$
f^{(A)}(x, y):=\sum_{\left\{k: 4 A_{k}<A\right\}} \lambda_{k} a_{k}(x, y), \text { where } \lambda_{k}:=\frac{4}{A_{k}}
$$

and

$$
a_{k}(x, y):=2^{8(1 / p-1) A_{k}-2}\left(D_{2^{4 A_{k}+1}}(x)-D_{2^{4 A_{k}}}(x)\right)\left(D_{2^{4 A_{k}+1}}(y)-D_{2^{4 A_{k}}}(y)\right)
$$

The martingale $f:=\left(f^{(0)}, f^{(1)}, \ldots, f^{(A)}, \ldots\right) \in H_{p}\left(G^{2}\right)$. Since,

$$
\begin{gathered}
S_{2^{A}, 2^{A}} a_{k}(x, y)= \begin{cases}0, & \text { if } A \leq 4 A_{k}, \\
a_{k}(x, y), & \text { if } A>4 A_{k},\end{cases} \\
f^{(A)}(x)=\sum_{\left\{k: 4 A_{k}<A\right\}} \lambda_{k} a_{k}(x, y)=\sum_{k=0}^{\infty} \lambda_{k} S_{2^{A}, 2^{A}} a_{k}(x, y) .
\end{gathered}
$$

(3) and Theorem W yield that $f \in H_{p}\left(G^{2}\right)$.

Now, we give the Fourier coefficients.

$$
\widehat{f}^{\kappa}(i, j)= \begin{cases}\frac{2^{8 A_{k}(1 / p-1)}}{A_{k}}, & (i, j) \in\left\{2^{4 A_{k}}, \ldots, 2^{4 A_{k}+1}-1\right\} \times\left\{2^{4 A_{k}}, \ldots, 2^{4 A_{k}+1}-1\right\} \tag{6}\\ 0, & (i, j) \notin \bigcup_{k=1}^{\infty}\left\{2^{4 A_{k}}, \ldots, 2^{4 A_{k}+1}-1\right\} \times\left\{2^{4 A_{k}}, \ldots, 2^{4 A_{k}+1}-1\right\}\end{cases}
$$

We decompose the $n_{A_{k}}$ th Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series as follows:

$$
\begin{align*}
\tilde{\mathcal{M}}_{n_{A_{k}}}^{\kappa,(t)}(f ; x, y) & =\frac{1}{n_{A_{k}}} \sum_{j=1}^{n_{A_{k}}-1} \tilde{S}_{j, j}^{\kappa,(t)}(f ; x, y) \\
& =\frac{1}{n_{A_{k}}} \sum_{j=1}^{2^{4 A_{k}-1}} \tilde{S}_{j, j}^{\kappa,(t)}(f ; x, y)+\frac{1}{n_{A_{k}}} \sum_{j=2^{4 A_{k}}}^{n_{A_{k}}-1} \tilde{S}_{j, j}^{\kappa,(t)}(f ; x, y) \\
& =: I+I I . \tag{7}
\end{align*}
$$

Let $j \in\left\{0,1, \ldots, 2^{4 A_{k}}-1\right\}$ for some k. Then from (6) and (4), it is easy to show that

$$
\begin{aligned}
\left|\tilde{S}_{j, j}^{\kappa,(t)}(f ; x, y)\right| & \leq \sum_{l=0}^{k-1}\left|r_{4 A_{l}}(t) \sum_{\nu=2^{4 A_{l}}}^{2^{4 A_{l}+1}} \sum_{\mu=2^{4 A_{l}}}^{2^{4 A_{l}+1}-1} \widehat{f^{\kappa}}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y)\right| \\
& \leq \sum_{l=0}^{k-1} \sum_{\nu=2^{4 A_{l}}}^{2^{4 A_{l}+1}}-1 \sum_{\mu=2^{4 A_{l}}}^{2^{4 A_{l}+1}-1}\left|\widehat{f}^{\kappa}(\nu, \mu)\right| \\
& \leq \sum_{l=0}^{k-1} \frac{2^{8 A_{l} / p}}{A_{l}} \leq 2 \frac{2^{8 A_{k-1} / p}}{A_{k-1}}
\end{aligned}
$$

This yields that

$$
\begin{equation*}
|I| \leq \frac{1}{n_{A_{k}}} \sum_{j=1}^{2^{4 A_{k}-1}}\left|\tilde{S}_{j, j}^{\kappa,(t)}(f ; x, y)\right| \leq 2 \frac{2^{8 A_{k-1} / p}}{A_{k-1}} \tag{8}
\end{equation*}
$$

Now, we discuss $I I$.

Let $i \in\left\{2^{4 A_{k}}, \ldots, n_{A_{k}}-1\right\}$. Then from (6) we conclude that

$$
\begin{aligned}
\tilde{S}_{i, i}^{\kappa,(t)}(f ; x, y)= & \sum_{\nu=0}^{i-1} \sum_{\mu=0}^{i-1} \rho_{\nu, \mu}(t) \widehat{f^{\kappa}}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y) \\
= & \sum_{l=0}^{k-1} r_{4 A_{l}}(t) \sum_{\nu=2^{4 A_{l}}}^{2^{4 A_{l}+1}-12^{2^{4 A_{l}+1}}-1} \sum_{\mu=2^{4 A_{l}}} \widehat{f^{\kappa}}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y) \\
& \quad+r_{4 A_{k}}(t) \sum_{\nu=2^{4 A_{k}}}^{i-1} \sum_{\mu=2^{4 A_{k}}}^{i-1} \widehat{f_{k}^{\kappa}}(\nu, \mu) \kappa_{\nu}(x) \kappa_{\mu}(y) \\
= & \sum_{l=0}^{k-1} r_{4 A_{l}}(t) \frac{2^{8 A_{l}(1 / p-1)}}{A_{l}}\left(D_{2^{4 A_{l}+1}}(x)-D_{2^{4 A_{l}}}(x)\right)\left(D_{2^{4 A_{l}+1}}(y)-D_{2^{4 A_{l}}}(y)\right) \\
& \quad+r_{4 A_{k}}(t) \frac{2^{8 A_{k}(1 / p-1)}}{A_{k}}\left(D_{i}^{\kappa}(x)-D_{2^{4 A_{k}}}(x)\right)\left(D_{i}^{\kappa}(y)-D_{2^{4 A_{k}}}(y)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
I I= & \frac{n_{A_{k}-1}}{n_{A_{k}}} \sum_{l=0}^{k-1} r_{4 A_{l}}(t) \frac{2^{8 A_{l}(1 / p-1)}}{A_{l}}\left(D_{2^{4 A_{l}+1}}(x)-D_{2^{4 A_{l}}}(x)\right) \times \\
& \times\left(D_{2^{4 A_{l}+1}}(y)-D_{2^{4 A_{l}}}(y)\right) \\
+ & r_{4 A_{k}}(t) \frac{2^{8 A_{k}(1 / p-1)}}{n_{A_{k}} A_{k}} \sum_{i=2^{4 A_{k}}}^{n_{A_{k}}-1}\left(D_{i}^{\kappa}(x)-D_{2^{4 A_{k}}}(x)\right)\left(D_{i}^{\kappa}(y)-D_{2^{4 A_{k}}}(y)\right) \\
= & I I_{1}+I I_{2} .
\end{aligned}
$$

By (4), (5) and $\left|D_{2^{n}}(x)\right| \leq 2^{n}$, we get that

$$
\left|I I_{1}\right| \leq \sum_{l=0}^{k-1} \frac{2^{8 A_{l}(1 / p-1)}}{A_{l}} 2^{8 A_{l}+2} \leq \frac{2^{8 A_{k-1} / p+3}}{A_{k-1}}
$$

and

$$
\left|\tilde{\mathcal{M}}_{n_{A_{k}}}^{\kappa,(t)}(f ; x, y)\right| \geq\left|I I_{2}\right|-\frac{2^{A_{k}}}{A_{k}}
$$

We can write the nth Dirichlet kernel with respect to the Walsh-Kaczmarz system in the following form:

$$
\begin{equation*}
D_{n}^{\kappa}(x)=D_{2^{|n|}}(x)+r_{|n|}(x) D_{n-2^{|n|}}^{w}\left(\tau_{|n|}(x)\right) \tag{9}
\end{equation*}
$$

This equation immediately implies for $I I_{2}$ that

$$
\begin{aligned}
I I_{2} & =r_{4 A_{k}}(t) \frac{2^{8 A_{k}(1 / p-1)}}{n_{A_{k}} A_{k}} r_{4 A_{k}}(x) r_{4 A_{k}}(y) \sum_{i=0}^{n_{A_{k}-1}-1} D_{i}^{w}\left(\tau_{4 A_{k}}(x)\right) D_{i}^{w}\left(\tau_{4 A_{k}}(y)\right) \\
& \left.=r_{4 A_{k}}(t) \frac{2^{8 A_{k}(1 / p-1)}}{n_{A_{k}} A_{k}} r_{4 A_{k}}(x) r_{4 A_{k}}(y) n_{A_{k}-1} K_{n_{A_{k}-1}}^{w}\left(\tau_{4 A_{k}}(x)\right), \tau_{4 A_{k}}(y)\right)
\end{aligned}
$$

This implies

$$
\left.\left.\left|\tilde{\mathcal{M}}_{n_{A_{k}}}^{\kappa,(t)}(f ; x, y)\right| \geq \frac{n_{A_{k}-1} 2^{8 A_{k}(1 / p-1)}}{n_{A_{k}} A_{k}} \right\rvert\, K_{n_{A_{k}-1}}^{w}\left(\tau_{4 A_{k}}(x)\right), \tau_{4 A_{k}}(y)\right) \left\lvert\,-\frac{2^{A_{k}}}{A_{k}}\right.
$$

For a fix A_{k} we give a subset of $G \times G$ as the following disjoint union:

$$
G \times G \supseteq \bigcup_{m=\left[A_{k} / 2\right]}^{A_{k}-3} \bigcup_{l=m+1}^{A_{k}-2} \bigcup_{q=l+1}^{A_{k}-1} J_{4 A_{k}}^{m \cdot l} \times L_{4 A_{k}}^{l, q}
$$

where $J_{4 A_{k}}^{m, l}:=\left\{x \in G: x_{4 A_{k}-1}=\ldots=x_{4 A_{k}-4 m}=0, x_{4 A_{k}-4 m-1}=1, x_{4 A_{k}-4 m-2}=\ldots=x_{4 A_{k}-4 l}=\right.$ $\left.0, x_{4 A_{k}-4 l-1}=1\right\}$, and $L_{4 A_{k}}^{l, q}:=\left\{y \in G: y_{4 A_{k}-1}=\ldots=y_{4 A_{k}-4 l}=0, y_{4 A_{k}-4 l-1}=1, x_{4 A_{k}-4 l-2}, \ldots, x_{4 A_{k}-4 q}\right.$, $\left.y_{4 A_{k}-4 q-1}=1-x_{4 A_{k}-4 q-1}\right\}$.

Notice that, for any $(x, y) \in J_{4 A_{k}}^{m \cdot l} \times L_{4 A_{k}}^{l, q},\left(\left[A_{k} / 2\right] \leq m<l<q<A_{k}\right)$ by the definition of $\tau_{4 A_{k}}$ and Lemma 1 we have

$$
\left|\tilde{\mathcal{M}}_{n_{A_{k}}}^{\kappa,(t)}(f ; x, y)\right| \geq \frac{2^{8 A_{k}(1 / p-1)}}{n_{A_{k}} A_{k}} 2^{4 q+4 l+4 m-3}-\frac{2^{A_{k}}}{A_{k}} \geq c \frac{2^{8 A_{k}(1 / p-1)}}{n_{A_{k}} A_{k}} 2^{4 q+4 l+4 m}
$$

Therefore, we write

$$
\begin{aligned}
\int_{G \times G}\left|\tilde{\mathcal{M}}_{n_{A_{k}}}^{\kappa,(t)}(f ; x, y)\right|^{p} d \mu(x, y) & \geq \sum_{m=\left[A_{k} / 2\right]}^{A_{k}-3} \sum_{l=m+1}^{A_{k}-2} \sum_{q=l+1}^{A_{k}-1} \int_{J_{4 A_{k}}^{m, l} \times L_{4 A_{k}}^{l, q}}\left|\tilde{\mathcal{M}}_{n_{A_{k}}}^{\kappa,(t)}(f ; x, y)\right|^{p} d \mu(x, y) \\
& \geq c \sum_{m=\left[A_{k} / 2\right]}^{A_{k}-3} \sum_{l=m+1}^{A_{k}-2} \sum_{q=l+1}^{A_{k}-1} \mu\left(J_{4 A_{k}}^{m, l} \times L_{4 A_{k}}^{l, q}\right) \frac{2^{8 A_{k}(1-p)}}{n_{A_{k}}^{p} A_{k}^{p}} 2^{p(4 q+4 l+4 m)} \\
& =c \frac{2^{8 A_{k}(1-p)}}{n_{A_{k}}^{p} A_{k}^{p}} \sum_{m=\left[A_{k} / 2\right]}^{A_{k}-3} \sum_{l=m+1}^{A_{k}-2} \sum_{q=l+1}^{A_{k}-1} 2^{-4 l-4 q} 2^{p(4 q+4 l+4 m)} \\
& =c \frac{2^{8 A_{k}(1-p)}}{n_{A_{k}}^{p} A_{k}^{p}} \sum_{m=\left[A_{k} / 2\right]}^{A_{k}-3} 2^{4 p m} \sum_{l=m+1}^{A_{k}-2} 2^{4(p-1) l} \sum_{q=l+1}^{A_{k}-1} 2^{4(p-1) q} \\
& =c \frac{2^{8 A_{k}(1-p)}}{n_{A_{k}}^{p} A_{k}^{p}} \sum_{m=\left[A_{k} / 2\right]}^{A_{k}-3} 2^{12 p m-8 m} \\
& \geq c \frac{2^{4 A_{k}(2-3 p)}}{A_{k}^{p}} \sum_{m=\left[A_{k} / 2\right]}^{A_{k}-3} 2^{4 m(3 p-2)} \\
& =\left\{\begin{array}{l}
c A_{k}^{1 / 3}, \\
c \frac{2^{2} A_{k}(2-3 p)}{A_{k}^{p}}, \quad \text { if } 0<p<2 / 3, \\
\text { if } p
\end{array}\right.
\end{aligned}
$$

The fact, that $A_{k} \rightarrow \infty$ and $\frac{2^{2 A_{k}(2-3 p)}}{A_{k}^{p}} \rightarrow \infty(0<p<2 / 3)$ as $k \rightarrow \infty$, completes the proof of the main theorem.

References

[1] Gát, G.: On $(C, 1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system. Studia Math. 130, 135-148 (1998).
[2] Gát, G., Goginava, U., Nagy, K.: On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system. Studia Sci. Math. Hung. 46, 399-421 (2009).
[3] Goginava, U., Nagy, K.: On the maximal operator of the Marcinkiewicz-Fejér means of double Walsh-KaczmarzFourier series. Publ. Math. (Debrecen) 75, 95-104 (2009).
[4] Goginava, U.: The martingale Hardy type inequality for the Marcinkiewicz-Fejér means of the two-dimensional conjugate Walsh-Fourier series. Acta Mathematica Sinica, English Series (2010) (to appear).
[5] Goginava, U.: The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series. East J. Approx. 12, 295-302 (2006).
[6] Marcinkiewicz, J.: Sur une methode remarquable de sommation des series doubles de Fourier. Ann. Scuola Norm. Sup. Pisa 8, 149-160 (1939).
[7] Nagy, K.: On the two-dimensional Marcinkiewicz means with respect to Walsh-Kaczmarz system. J. Approx. Theory 142, 138-165 (2006).
[8] Schipp, F., Wade, W.R., Simon, P. and Pál, J.: Walsh Series. An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol-New York 1990.
[9] Schipp, F.: Pointwise convergence of expansions with respect to certain product systems. Analysis Math. 2, 63-75 (1976).
[10] Simon, P.: On the Cesàro summability with respect to the Walsh-Kaczmarz system. J. Approx. Theory 106, 249-261 (2000).
[11] Skvortsov, V.A.: On Fourier series with respect to the Walsh-Kaczmarz system. Anal. Math. 7, 141-150 (1981).
[12] Weisz, F.: Convergence of double Walsh-Fourier series and Hardy spaces. Approx. Theory and its Appl. 17, 32-44 (2001).
[13] Weisz, F.: Martingale Hardy spaces and their applications in Fourier analysis. Springer-Verlang, Berlin, 1994.
[14] Weisz, F.: Summability of multi-dimensional Fourier series and Hardy space. Kluwer Academic, Dordrecht, 2002.
[15] Young, W.S.: On the a.e. convergence of Walsh-Kaczmarz-Fourier series. Proc. Amer. Math. Soc. 44, 353-358 (1974).
[16] Zhizhiashvili, L.V.: Generalization of a theorem of Marcinkiewicz. Izv. Akad. Nauk USSR Ser Math. 32, 1112-1122 (1968).

Ushangi GOGINAVA
Received: 22.06.2010
U. Goginava, Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, GEORGIA
e-mail: z_goginava@hotmail.com
Károly NAGY
Institute of Mathematics and Computer Sciences, College of Nyíregyháza,
P.O. Box 166, Nyíregyháza, H-4400 HUNGARY
e-mail: nkaroly@nyf.hu

[^0]: 2000 AMS Mathematics Subject Classification: 42C10.

