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Marcinkiewicz-Fejér means of double conjugate
Walsh-Kaczmarz-Fourier series and Hardy spaces

Ushangi Goginava and Károly Nagy

Abstract

In the present paper we prove that for any 0 < p ≤ 2/3 there exists a martingale f in Hp such that the

Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series of the martingale f is not

uniformly bounded in the space Lp .
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In 1939 for the two-dimensional trigonometric Fourier series Marcinkiewicz [6] has proved for

f ∈ L log L([0, 2π]2) that the means

Mnf =
1
n

n−1∑
j=1

Sj,j (f)

converge a.e. to f as n → ∞ . Zhizhiashvili [16] improved this result for f ∈ L([0, 2π]2).

For the two-dimensional Walsh-Fourier series Weisz [12] proved that the maximal operator Mw,∗f =

supn≥1 |Mw
n (f)| is bounded from the two-dimensional dyadic martingale Hardy space Hp to the space Lp for

p > 2/3 and is of weak type (1,1). The first author [5] proved that the assumption p > 2/3 is essential for the

boundedness of the maximal operator Mw,∗ from the Hardy space Hp(G2) to the space Lp(G2).

First, we give a brief introduction to the theory of dyadic analysis [8]. Let P denote the set of positive

integers, N := P ∪ {0}. Denote Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group
operation is the modulo 2 addition and every subset is open. The Haar measure on Z2 is given such that
the measure of a singleton is 1/2. Let G be the complete direct product of the countable infinite copies of

the compact groups Z2. The elements of G are of the form x = (x0, x1, ..., xk, ...) with xk ∈ {0, 1} (k ∈ N) .

The group operation on G is the coordinate-wise addition, the measure (denoted by μ) and the topology are
the product measure and topology. The compact Abelian group G is called the Walsh group. A base for the
neighborhoods of G can be given in the following way:

I0 (x) := G,

In (x) := In (x0, ..., xn−1) := {y ∈ G : y = (x0, ..., xn−1, yn, yn+1, ...)} ,
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(x ∈ G, n ∈ N) . These sets are called dyadic intervals.

Let 0 = (0 : i ∈ N) ∈ G denote the null element of G, , In := In (0) (n ∈ N) . Set en := (0, ..., 0, 1, 0, ...) ∈
G, the nth coordinate of which is 1 and the rest are zeros (n ∈ N) .

For k ∈ N and x ∈ G denote

rk (x) := (−1)xk

the k th Rademacher function. If n ∈ N , then n =
∞∑

i=0

ni2i can be written, where ni ∈ {0, 1} (i ∈ N) , i. e. n

is expressed in the number system of base 2. Denote |n| := max{j ∈ N :nj �= 0} , that is 2|n| ≤ n < 2|n|+1.

The Walsh-Paley system is defined as a sequence of Walsh-Paley functions:

wn (x) :=
∞∏

k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1�

k=0
nkxk

(x ∈ G, n ∈ P) .

The Walsh-Kaczmarz functions are defined by κ0 := 1 and for n ≥ 1

κn(x) := r|n|(x)
|n|−1∏
k=0

(r|n|−1−k(x))nk = r|n| (x) (−1)

|n|−1�

k=0
nkx|n|−k−1

.

For A ∈ N define the transformation τA : G → G by

τA(x) := (xA−1, xA−2, ..., x0, xA, xA+1, ...).

By the definition of τA (see [11]), we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ G).

The space Lp

(
G2

)
, 0 < p ≤ ∞ with norms or quasi-norms ‖·‖p is defined in the usual way.

The Dirichlet kernels are defined by

Dα
n(x) :=

n−1∑
k=0

αk(x),

where αk = wk or κk. Recall that (see e.g. [8])

D2n(x) := Dw
2n(x) = Dκ

2n(x) =

{
2n, if x ∈ In(0),
0, if x /∈ In(0).

(1)

The two-dimensional dyadic cubes are of the form

In (x, y) := In (x) × In (y) .

The σ -algebra generated by the dyadic cubes {In (x, y) : (x, y) ∈ G × G} is denoted by Fn.
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Denote by f =
(
f(n), n ∈ N

)
a martingale with respect to (Fn, n ∈ N) (for details see, e.g. [14]). The

maximal function of a martingale f is defined by

f∗ = sup
n∈N

∣∣∣f(n)
∣∣∣ .

In case f ∈ L1

(
G2

)
, the maximal function can also be given by

f∗ (x, y) = sup
n∈N

1
μ (In(x, y))

∣∣∣∣∣∣∣
∫

In(x,y)

f (u, v) dμ (u, v)

∣∣∣∣∣∣∣ , (x, y) ∈ G× G.

For 0 < p < ∞ the Hardy martingale space Hp(G2) consists of all martingales for which

‖f‖Hp
:= ‖f∗‖p < ∞.

The Kronecker product (αn,m : n, m ∈ N) of two Walsh(-Kaczmarz) system is said to be the two-

dimensional Walsh(-Kaczmarz) system. That is,

αn,m (x, y) = αn (x)αm (y) .

If f ∈ L1

(
G2

)
, then the number f̂α (n, m) :=

∫
G2

fαn,m (n, m ∈ N) is said to be the (n, m)th Walsh-

(Kaczmarz)-Fourier coefficient of f. We can extend this definition to martingales in the usual way (see [13, 14]).

Denote by Sα
n,m the (n, m)th rectangular partial sum of the Walsh-(Kaczmarz)-Fourier series of a

martingale f . Namely,

Sα
n,m(f ; x, y) :=

n−1∑
k=0

m−1∑
i=0

f̂α(k, i)αk,i(x, y).

The Marcinkiewicz-Fejér means of a martingale f are defined by

Mα
n (f ; x, y) :=

1
n

n−1∑
k=0

Sα
k,k(f ; x, y).

The 2-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are defined by

Dα
k,l(x, y) := Dα

k (x)Dα
l (y), Kα

n (x, y) :=
1
n

n−1∑
k=0

Dα
k,k(x, y).

For a martingale

f ∼
∞∑

n=1

(
f(n) − f(n−1)

)
,

the conjugate transforms are defined by

f̃(t) ∼
∞∑

n=1

rn (t)
(
f(n) − f(n−1)

)
,
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where t ∈ G is fixed. Note that f̃(0) = f. As it is well-known, if f is an integrable function, then conjugate

transforms f̃(t) do exist almost everywhere, but they are not integrable in general. It is to see that S2n,2nf = fn.

Let
ρ0,0 := r0, ρk,l := rj

if

(k, l) ∈{2j−1, 2j−1 + 1, ..., 2j − 1} × {2j−1, 2j−1 + 1, ..., 2j − 1}

∪ {2j−1, 2j−1 + 1, ..., 2j − 1} × {0, 1, ..., 2j−1 − 1}

∪ {0, 1, ..., 2j−1 − 1} × {2j−1, 2j−1 + 1, ..., 2j − 1}.

The (n, m)th rectangular partial sum of the conjugate transforms is

S̃α,(t)
n,m (f ; x, y) :=

n−1∑
k=0

m−1∑
i=0

ρk,i(t)f̂α(k, i)αk,i(x, y) = Sα
n,m(f̃(t); x, y)

(t ∈ G). The Marcinkiewicz-Fejér means of the double conjugate Walsh(-Kaczmarz)-Fourier series are defined
by

M̃α,(t)
n (f ; x, y) :=

1
n

n−1∑
k=0

S̃
α,(t)
k,k (f ; x, y).

It is evident that M̃α,(0)
n (f ; x, y) = Mα

n(f ; x, y).

For the martingale f , we consider the maximal operators

Mα∗f(x, y) = sup
n

|Mα
n(f ; x, y)|, M̃α,(t)∗f(x, y) = sup

n
|M̃α,(t)

n (f, x, y)|

In 1974 Schipp [9] and Young [15] proved that the Walsh-Kaczmarz system is a convergence system. In

1981 Skvortsov [11] showed that the Walsh-Kaczmarz-Fejér means converge uniformly to f for any continuous

function f . For any integrable functions, Gát [1] proved, that the Fejér means with respect to the Walsh-

Kaczmarz system converge almost everywhere. Gát’s result was extended by Simon [10] to Hp spaces. Namely,

he proved that the maximal operator of Fejér means of one-dimensional Fourier series is bounded from Hardy
space Hp(G) into the space Lp(G) for p > 1/2.

For any integrable functions, the second author [7] proved, that the Marcinkiewicz-Fejér means with
respect to the two dimensional Walsh-Kaczmarz system converge almost everywhere to the function itself. This
Theorem was extended in [2, 3]. Namely, we proved that the following are true.

Theorem GGN [Gát, Goginava and Nagy [2]] Let p > 2/3 . Then there exists a constant cp > 0 such that

‖Mκ,∗f‖p ≤ cp‖f‖Hp .

Theorem GN [Goginava and Nagy [3]] Let 0 < p ≤ 2/3. Then there exists a martingale f ∈ Hp(G2) such

that
‖Mκ∗f‖p = +∞.
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Since, ∥∥∥f̃(t)
∥∥∥

Hp

= ‖f‖Hp
, 0 < p < ∞

and

‖f‖p
Hp

�
∫
G

∥∥∥f̃(t)
∥∥∥p

p
dt,

from Theorem GGN we obtain that (p > 2/3)

∥∥∥M̃κ,(t)
n f

∥∥∥p

Hp

= ‖Mκ
nf‖p

Hp
≤ cp

∫
G

∥∥∥M̃κ,(t)
n f

∥∥∥p

p
dt

= cp

∫
G

∥∥∥Mκ
n f̃(t)

∥∥∥p

p
dt ≤ cp

∫
G

∥∥∥f̃(t)
∥∥∥p

Hp

dt

= cp ‖f‖p
Hp

.

Hence we proved that the following is valid.

Theorem 1 Let p > 2/3. Then there exists a constant cp > 0 such that∥∥∥M̃κ(t)
n f

∥∥∥
Hp

≤ cp ‖f‖Hp
(f ∈ Hp, t ∈ G) .

In the present paper we prove that in Theorem 1 the assumption p > 2/3 is essential. Moreover, the
following are true.

Theorem 2 Let 0 < p ≤ 2/3 . Then there exists a martingale f ∈ Hp(G × G) such that

sup
n

‖M̃κ,(t)
n f‖p = +∞, t ∈ G.

Corollary 1 Let 0 < p ≤ 2/3 . Then there exists a martingale f ∈ Hp(G × G) such that

sup
n

‖Mκ
nf‖p = +∞.

For Walsh system the analogue of Theorem 1 is proved in [12, 14] and the analogue of Theorem 2 is

discussed in [4].

A bounded measurable function a is a p-atom, if there exists a dyadic 2-dimensional cube I × I, such
that

a)
∫

I×I

adμ = 0;

b) ‖a‖∞ ≤ μ(I × I)−1/p ;

c) supp a ⊂ I × I .
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The basic result of atomic decomposition is due to Weisz.

Theorem W [Weisz [14]] A martingale f =
(
f(n) : n ∈ N

)
is in Hp (0 < p ≤ 1) if and only if there exists a

sequence (ak, k ∈ N) of p-atoms and a sequence (μk, k ∈ N) of real numbers such that for every n ∈ N,

∞∑
k=0

μkS2n,2nak = f(n), (2)

∞∑
k=0

|μk|p < ∞.

Moreover,

‖f‖Hp
∼ inf

( ∞∑
k=0

|μk|p
)1/p

.

During the proof of Theorem 1 we will use the following Lemma [4]:

Lemma 1 (Goginava [4]) Let nA := 24A + 24A−4 + ... + 24 + 20 ,

x ∈ I4A(0, ..., 0, x4m = 1, 0, ..., 0, x4l = 1, x4l+1, ..., x4A−1)

and
y ∈ I4A(0, ..., 0, y4l = 1, x4l+1, ..., x4q−1, 1− x4q, y4q+1, ..., y4A−1)

for some m < l < q . Then

nA−1|Kw
nA−1

(x, y)| ≥ 24q+4l+4m−3.

Proof of Theorem 2: Let {Ak : k ∈ N} be an increasing sequence of positive integers such that

∞∑
k=0

1
Ap

k

< ∞, (3)

k−1∑
l=0

28Al/p

Al
<

28Ak/p

Ak
, (4)

10 · 28Ak−1

Ak−1
<

2Ak

Ak
. (5)

We note that such an increasing sequence {Ak : k ∈ N} which satisfies conditions (3)–(5) can be constructed.
Let

f(A) (x, y) :=
∑

{k:4Ak<A}
λkak (x, y) , where λk :=

4
Ak

and

ak (x, y) := 28(1/p−1)Ak−2 (D24Ak+1 (x) − D24Ak (x)) (D24Ak+1 (y) − D24Ak (y)) .
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The martingale f :=
(
f(0), f(1), ..., f(A), ...

)
∈ Hp

(
G2

)
. Since,

S2A,2Aak (x, y) =
{

0, if A ≤ 4Ak,
ak (x, y) , if A > 4Ak,

f(A) (x) =
∑

{k:4Ak<A}
λkak (x, y) =

∞∑
k=0

λkS2A,2Aak (x, y) .

(3) and Theorem W yield that f ∈ Hp

(
G2

)
.

Now, we give the Fourier coefficients.

f̂κ (i, j) =

⎧⎨⎩
28Ak(1/p−1)

Ak
, (i, j) ∈ {24Ak, ..., 24Ak+1 − 1} × {24Ak , ..., 24Ak+1 − 1},

0, (i, j) /∈
∞⋃

k=1

{24Ak, ..., 24Ak+1 − 1} × {24Ak, ..., 24Ak+1 − 1}. (6)

We decompose the nAk th Marcinkiewicz-Fejér means of double conjugate Walsh-Kaczmarz-Fourier series
as follows:

M̃κ,(t)
nAk

(f ; x, y) =
1

nAk

nAk
−1∑

j=1

S̃
κ,(t)
j,j (f ; x, y)

=
1

nAk

24Ak−1∑
j=1

S̃
κ,(t)
j,j (f ; x, y) +

1
nAk

nAk
−1∑

j=24Ak

S̃
κ,(t)
j,j (f ; x, y)

=: I + II. (7)

Let j ∈
{
0, 1, ..., 24Ak − 1

}
for some k . Then from (6) and (4), it is easy to show that

∣∣∣S̃κ,(t)
j,j (f ; x, y)

∣∣∣ ≤
k−1∑
l=0

∣∣∣∣∣∣r4Al(t)
24Al+1−1∑
ν=24Al

24Al+1−1∑
μ=24Al

f̂κ(ν, μ)κν(x)κμ(y)

∣∣∣∣∣∣
≤

k−1∑
l=0

24Al+1−1∑
ν=24Al

24Al+1−1∑
μ=24Al

∣∣∣f̂κ(ν, μ)
∣∣∣

≤
k−1∑
l=0

28Al/p

Al
≤ 2

28Ak−1/p

Ak−1
.

This yields that

|I| ≤ 1
nAk

24Ak−1∑
j=1

∣∣∣S̃κ,(t)
j,j (f ; x, y)

∣∣∣ ≤ 2
28Ak−1/p

Ak−1
. (8)

Now, we discuss II.
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Let i ∈
{
24Ak , ..., nAk − 1

}
. Then from (6) we conclude that

S̃
κ,(t)
i,i (f ; x, y) =

i−1∑
ν=0

i−1∑
μ=0

ρν,μ(t)f̂κ (ν, μ)κν(x)κμ(y)

=
k−1∑
l=0

r4Al(t)
24Al+1−1∑
ν=24Al

24Al+1−1∑
μ=24Al

f̂κ (ν, μ)κν(x)κμ(y)

+r4Ak(t)
i−1∑

ν=24Ak

i−1∑
μ=24Ak

f̂κ (ν, μ)κν(x)κμ(y)

=
k−1∑
l=0

r4Al(t)
28Al(1/p−1)

Al
(D24Al+1 (x) − D24Al (x)) (D24Al+1 (y) − D24Al (y))

+r4Ak(t)
28Ak(1/p−1)

Ak
(Dκ

i (x) − D24Ak (x)) (Dκ
i (y) − D24Ak (y))

and

II =
nAk−1

nAk

k−1∑
l=0

r4Al(t)
28Al(1/p−1)

Al
(D24Al+1(x) − D24Al (x)) ×

× (D24Al+1(y) − D24Al (y))

+ r4Ak(t)
28Ak(1/p−1)

nAkAk

nAk
−1∑

i=24Ak

(Dκ
i (x) − D24Ak (x)) (Dκ

i (y) − D24Ak (y))

=: II1 + II2.

By (4), (5) and |D2n(x)| ≤ 2n , we get that

|II1| ≤
k−1∑
l=0

28Al(1/p−1)

Al
28Al+2 ≤ 28Ak−1/p+3

Ak−1

and ∣∣∣M̃κ,(t)
nAk

(f ; x, y)
∣∣∣ ≥ |II2| −

2Ak

Ak
.

We can write the nth Dirichlet kernel with respect to the Walsh-Kaczmarz system in the following form:

Dκ
n(x) = D2|n|(x) + r|n|(x)Dw

n−2|n|(τ|n|(x)). (9)

This equation immediately implies for II2 that

II2 = r4Ak(t)
28Ak(1/p−1)

nAk Ak
r4Ak(x)r4Ak(y)

nAk−1−1∑
i=0

Dw
i (τ4Ak(x))Dw

i (τ4Ak(y))

= r4Ak(t)
28Ak(1/p−1)

nAk Ak
r4Ak(x)r4Ak(y)nAk−1K

w
nAk−1

(τ4Ak(x)), τ4Ak(y)).
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This implies ∣∣∣M̃κ,(t)
nAk

(f ; x, y)
∣∣∣ ≥ nAk−128Ak(1/p−1)

nAkAk
|Kw

nAk−1
(τ4Ak(x)), τ4Ak(y))| − 2Ak

Ak
.

For a fix Ak we give a subset of G × G as the following disjoint union:

G× G ⊇
Ak−3⋃

m=[Ak/2]

Ak−2⋃
l=m+1

Ak−1⋃
q=l+1

Jm.l
4Ak

× Ll,q
4Ak

,

where Jm,l
4Ak

:= {x ∈ G : x4Ak−1 = ... = x4Ak−4m = 0, x4Ak−4m−1 = 1, x4Ak−4m−2 = ... = x4Ak−4l =

0, x4Ak−4l−1 = 1}, and Ll,q
4Ak

:= {y ∈ G : y4Ak−1 = ... = y4Ak−4l = 0, y4Ak−4l−1 = 1, x4Ak−4l−2, ..., x4Ak−4q,

y4Ak−4q−1 = 1 − x4Ak−4q−1}.

Notice that, for any (x, y) ∈ Jm.l
4Ak

× Ll,q
4Ak

, ([Ak/2] ≤ m < l < q < Ak ) by the definition of τ4Ak and

Lemma 1 we have

∣∣∣M̃κ,(t)
nAk

(f ; x, y)
∣∣∣ ≥ 28Ak(1/p−1)

nAkAk
24q+4l+4m−3 − 2Ak

Ak
≥ c

28Ak(1/p−1)

nAkAk
24q+4l+4m.

Therefore, we write

∫
G×G

∣∣∣M̃κ,(t)
nAk

(f ; x, y)
∣∣∣p dμ(x, y) ≥

Ak−3∑
m=[Ak/2]

Ak−2∑
l=m+1

Ak−1∑
q=l+1

∫
Jm,l
4Ak

×Ll,q
4Ak

∣∣∣M̃κ,(t)
nAk

(f ; x, y)
∣∣∣p dμ(x, y)

≥ c

Ak−3∑
m=[Ak/2]

Ak−2∑
l=m+1

Ak−1∑
q=l+1

μ(Jm,l
4Ak

× Ll,q
4Ak

)
28Ak(1−p)

np
Ak

Ap
k

2p(4q+4l+4m)

= c
28Ak(1−p)

np
Ak

Ap
k

Ak−3∑
m=[Ak/2]

Ak−2∑
l=m+1

Ak−1∑
q=l+1

2−4l−4q2p(4q+4l+4m)

= c
28Ak(1−p)

np
Ak

Ap
k

Ak−3∑
m=[Ak/2]

24pm
Ak−2∑

l=m+1

24(p−1)l
Ak−1∑
q=l+1

24(p−1)q

= c
28Ak(1−p)

np
Ak

Ap
k

Ak−3∑
m=[Ak/2]

212pm−8m

≥ c
24Ak(2−3p)

Ap
k

Ak−3∑
m=[Ak /2]

24m(3p−2)

=

{
cA

1/3
k , if p = 2/3,

c 22Ak(2−3p)

Ap
k

, if 0 < p < 2/3.

The fact, that Ak → ∞ and 22Ak(2−3p)

Ap
k

→ ∞ (0 < p < 2/3) as k → ∞ , completes the proof of the main

theorem. �
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