Invariants of symmetric algebras associated to graphs

Maurizio Imbesi, Monica La Barbiera

Abstract

In this work we deal with the symmetric algebra of monomial ideals that arise from graphs, the edge ideals. The notion of s-sequence is explored for such ideals in order to compute standard algebraic invariants of their symmetric algebra in terms of the corresponding invariants of special quotients of the polynomial ring related to the graphs.

Key Words: Edge ideals, symmetric algebra, s-sequence

1. Introduction

In this article we study the symmetric algebra of monomial ideals ([1], [4]), in particular of some ideals arising from graphs. In order to compute standard invariants of such symmetric algebra, we investigate some cases for which the monomial ideals are generated by s-sequences. In [2] the notion of s-sequence is employed to compute the invariants of the symmetric algebra of finitely generated modules. Our proposal is to compute standard invariants of the symmetric algebra in terms of the corresponding invariants of special quotients of the polynomial ring related to the graph. This computation can be obtained for finitely generated modules generated by an s-sequence.

Let G be a graph with no cycles. An algebraic object attached to G is the edge ideal $I(G)$ that is a monomial ideal of $R=K\left[X_{1}, \ldots, X_{n}\right], K$ a field, n the number of vertices of $G . I(G)$ is generated by square-free monomials of degree two in the polynomial ring $R, I(G)=\left(\left\{X_{i} X_{j} \mid\left\{v_{i}, v_{j}\right\}\right.\right.$ is an edge of $\left.\left.G\right\}\right)$. In [6] there are some results about monomial ideals of R that can arise from the edges of a simple graph.

The aim of this paper is to investigate classes of simple graphs and to prove that the notion of s-sequence can be explored in this family of monomial ideals in order to compute algebraic invariants of their symmetric algebra.

The work is organized as follows. In section 2 some preliminary notions about the theory of s-sequences are given. In sections 3 and 4 the notion of s-sequence is investigated for edge ideals associated to trees and forests. In section 5 we give the structure of the annihilator ideals of these edge ideals generated by an s-sequence and we compute the invariants: (a) the dimension, $\operatorname{dim}_{R}\left(\operatorname{Sym}_{R}(I(G))\right)$; (b) the multiplicity, e $\left(\operatorname{Sym}_{R}(I(G))\right)$; and (c) the Castelnuovo-Mumford regularity, $\operatorname{reg}_{R}\left(\operatorname{Sym}_{R}(I(G))\right)$. More precisely, we achieve formulas for (a), (b) and when $I(G)$ is generated by a strong s-sequence we give bounds for (c) in terms of the annihilator ideals.

[^0]
2. Preliminaries and notations

Let's recall the theory of s-sequences in order to apply it to our classes of monomial ideals.
Let M be a finitely generated module on a Noetherian ring R, and f_{1}, \ldots, f_{t} be the generators of M. Let $\left(a_{i j}\right)$, for $i=1, \ldots, t, j=1, \ldots, p$, be the relation matrix of M. Let $\operatorname{Sym}_{R}(M)$ be the symmetric algebra of M, then $\operatorname{Sym}_{R}(M)=R\left[T_{1}, \ldots, T_{t}\right] / J$, where $R\left[T_{1}, \ldots, T_{t}\right]$ is a polynomial ring in the variables T_{1}, \ldots, T_{t} and J is its relation ideal, generated by $g_{j}=\sum_{i, j} a_{i j} T_{i}$, for $i=1, \ldots, t, j=1, \ldots, p$.

If we assign degree 1 to each variable T_{i} and degree 0 to the elements of R, then J is a graded ideal and $\operatorname{Sym}_{R}(M)$ is a graded algebra on R.

Set $S=R\left[T_{1}, \ldots, T_{t}\right]$ and let \prec be a monomial order on the monomials of S in the variables T_{i}. With respect to this term order, if $f=\sum a_{\alpha} \underline{T}^{\alpha}$, where $\underline{T}^{\alpha}=T_{1}^{\alpha_{1}} \cdots T_{t}^{\alpha_{t}}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in \mathbb{N}^{t}$, we put $\operatorname{in}_{\prec}(f)=a_{\alpha} \underline{T}^{\alpha}$, where \underline{T}^{α} is the largest monomial in f such that $a_{\alpha} \neq 0$.
So we can define the monomial ideal $\operatorname{in}_{\prec}(J)=\left(\left\{\operatorname{in}_{\prec}(f) \mid f \in J\right\}\right)$.
For every $i=1, \ldots, t$, we set $M_{i-1}=R f_{1}+\cdots+R f_{i-1}$ and let $\mathcal{I}_{i}=M_{i-1}:_{R} f_{i}$ be the colon ideal. Since $M_{i} / M_{i-1} \simeq R / \mathcal{I}_{i}, \mathcal{I}_{i}$ is the annihilator of the cyclic module $R / \mathcal{I}_{i} . \mathcal{I}_{i}$ is called an annihilator ideal of the sequence f_{1}, \ldots, f_{t}.

It is $\left(\mathcal{I}_{1} T_{1}, \mathcal{I}_{2} T_{2}, \ldots, \mathcal{I}_{t} T_{t}\right) \subseteq \operatorname{in}_{\prec}(J)$, and the two ideals coincide in degree 1.
Definition 2.1 The sequence f_{1}, \ldots, f_{t} is said to be an s-sequence for M if

$$
\left(\mathcal{I}_{1} T_{1}, \mathcal{I}_{2} T_{2}, \ldots, \mathcal{I}_{t} T_{t}\right)=\operatorname{in}_{\prec}(J)
$$

When $\mathcal{I}_{1} \subseteq \mathcal{I}_{2} \subseteq \cdots \subseteq \mathcal{I}_{t}, f_{1}, \ldots, f_{t}$ is said to be a strong s-sequence.
If $R=K\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring over a field K, we can use the Gröbner bases theory to compute in $_{\prec}(J)$. Let \prec be any term order on $K\left[X_{1}, \ldots, X_{n} ; T_{1}, \ldots, T_{t}\right]$ with $X_{i} \prec T_{j}$ for all i, j. Then for any Gröbner basis B for $J \subset K\left[X_{1}, \ldots, X_{n}, T_{1}, \ldots, T_{t}\right]$ with respect to \prec, we have $\operatorname{in}_{\prec}(J)=\left(\left\{\operatorname{in}_{\prec}(f) \mid f \in B\right\}\right)$. If the elements of B are linear in the T_{i}, it follows that f_{1}, \ldots, f_{t} is an s-sequence for M.

Let $M=I=\left(f_{1}, \ldots, f_{t}\right)$ be a monomial ideal of $R=K\left[X_{1}, \ldots, X_{n}\right]$. Set $f_{i j}=\frac{f_{i}}{\left[f_{i}, f_{j}\right]}$ for $i \neq j$, where [f_{i}, f_{j}] is the greatest common divisor of the monomials f_{i} and $f_{j} . J$ is generated by $g_{i j}=f_{i j} T_{j}-f_{j i} T_{i}$ for $1 \leqslant i<j \leqslant t$. The monomial sequence f_{1}, \ldots, f_{t} is an s-sequence if and only if $g_{i j}$ for $1 \leqslant i<j \leqslant t$ is a Gröbner basis for J for any term order in $K\left[X_{1}, \ldots, X_{n} ; T_{1}, \ldots, T_{t}\right]$ with $X_{i} \prec T_{j}$ for all i, j.

Notice that the annihilator ideals of the monomial sequence f_{1}, \ldots, f_{t} are the ideals $I_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$, for $i=1, \ldots, t([2])$.

Remark 2.1 ([2], Lemma 1.4)

From the theory of Gröbner bases, if f_{1}, \ldots, f_{t} is a monomial s-sequence with respect to some admissible term order \prec, then f_{1}, \ldots, f_{t} is an s-sequence for any other admissible term order.

We now study the symmetric algebra of a class of monomial modules over the polynomial ring $R=$ $K\left[X_{1}, \ldots, X_{n}\right]$ that are monomial ideals arising from graphs.

Let G be a graph, $V(G)$ and $E(G)$ be the sets of its vertices and edges respectively. G is said to be simple if, for all $\left\{v_{i}, v_{j}\right\} \in E(G)$, it is $v_{i} \neq v_{j} . G$ is connected if it has no isolated subgraphs.

A forest is an acyclic graph. A tree is a connected acyclic graph.
If $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $R=K\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring over a field K such that each variable X_{i} corresponds to the vertex v_{i}, the edge ideal $I(G)$ associated to G is the ideal $\left(\left\{X_{i} X_{j} \mid\left\{v_{i}, v_{j}\right\} \in\right.\right.$ $E(G)\}) \subset R$.

3. Trees and s-sequences

In this section we give a study of edge ideals associated to connected acyclic graphs. The results show that the generators of the edge ideal of a tree form an s-sequence.

Let G be a connected acyclic graph with n vertices and define the edge ideal in $R=K\left[X_{1}, \ldots, X_{n}\right]$,

$$
\begin{gathered}
I(G)=\left(X_{1} X_{r}, X_{2} X_{r}, \ldots, X_{r-1} X_{r}, X_{1} X_{r+1}, X_{r+1} X_{r+2}, \ldots, X_{r+s_{1}-1} X_{r+s_{1}},\right. \\
\\
\left.X_{2} X_{r+s_{1}+1}, \ldots, X_{r-1} X_{r+s_{1}+\ldots+s_{r-2}+1}, \ldots, X_{n-1} X_{n}\right)
\end{gathered}
$$

Proposition 3.1 Let $I(G)=\left(X_{1} X_{r}, X_{2} X_{r}, \ldots, X_{r-1} X_{r}, X_{1} X_{r+1}, X_{r+1} X_{r+2}, \ldots, X_{r+s_{1}-1} X_{r+s_{1}}, X_{2} X_{r+s_{1}+1}\right.$, $\left.\ldots, X_{r-1} X_{r+s_{1}+\ldots+s_{r-2}+1}, \ldots, X_{n-1} X_{n}\right) \subset R$ be the edge ideal of a graph G with $n=r+\ldots+s_{r-1}$ vertices and $n-1$ edges. If $\operatorname{Sym}_{R}(I(G))=R\left[T_{1}, \ldots, T_{n-1}\right] / J$, then $J=\left(\left\{g_{i j}, 1 \leqslant i<j \leqslant n-1\right\}\right)$, where

$$
g_{i j}= \begin{cases}X_{i} T_{j}-X_{j} T_{i} & \text { if } 1 \leqslant i<j \leqslant r-1 \\ X_{r} T_{j}-X_{j+1} T_{i} & \text { if } i=1 ; j=r \text { or } i=2, \ldots, r-1 ; j=r+s_{1}+\ldots+s_{i-1} \\ X_{i} T_{j+1}-X_{j+2} T_{j} & \text { if } i=1 ; j=r \text { or } i=2, \ldots, r-1 ; j=r+s_{1}+\ldots+s_{i-1} \\ X_{i} T_{j}-X_{j+1} T_{i} & \text { if } j=i+1 ; i=r+1, \ldots, r+s_{1}-2 \text { or } j=i+1 ; i=r+ \\ & +s_{1}+\ldots+s_{h-1}+k, h=2, \ldots, r-1, k=1, \ldots, s_{h}-2 \\ f_{i} T_{j}-f_{j} T_{i} & \text { otherwise, with } f_{i} \text { the generators of } I(G) .\end{cases}
$$

Proof. Observe that G is a graph having only the vertex corresponding to the variable X_{r} of degree >2. The generators of $I(G)$ are the following:
$f_{1}=X_{1} X_{r}, f_{2}=X_{2} X_{r}, \ldots, f_{r-1}=X_{r-1} X_{r}$,
$f_{r}=X_{1} X_{r+1}, f_{r+1}=X_{r+1} X_{r+2}, \ldots, f_{r+s_{1}-1}=X_{r+s_{1}-1} X_{r+s_{1}}$,
$f_{r+s_{1}}=X_{2} X_{r+s_{1}+1}, \ldots, f_{r+s_{1}+s_{2}-1}=X_{r+s_{1}+s_{2}-1} X_{r+s_{1}+s_{2}}, \ldots \ldots$,
$f_{r+s_{1}+\ldots+s_{r-2}}=X_{r-1} X_{r+\ldots+s_{r-2}+1}, \ldots, f_{n-1}=f_{r+\ldots+s_{r-1}-1}=X_{n-1} X_{n}$.
Put $r=t_{1}, r+s_{1}=t_{2}, r+s_{1}+s_{2}=t_{3}, \ldots, n=r+s_{1}+\ldots+s_{r-1}=t_{r}$.
Set $f_{i j}=\frac{f_{i}}{\left[f_{i}, f_{j}\right]}$ for $i<j=1, \ldots, t_{r}-1$.
We compute:
$f_{12}=f_{13}=\ldots=f_{1, t_{1}-1}=X_{1}, f_{1, t_{1}}=X_{t_{1}}, f_{1, t_{1}+1}=\ldots=f_{1, t_{r}-1}=X_{1} X_{t_{1}}=f_{1}$,
$f_{23}=f_{24}=\ldots=f_{2, t_{1}-1}=X_{2}, f_{2, t_{1}}=\ldots=f_{2, t_{2}-1}=X_{2} X_{t_{1}}=f_{2}, \quad f_{2, t_{2}}=X_{t_{1}}$,
$f_{2, t_{2}+1}=\ldots=f_{2, t_{r}-1}=X_{2} X_{t_{1}}=f_{2}, \ldots \ldots$,
$f_{t_{1}-2, t_{1}-1}=X_{t_{1}-2}, f_{t_{1}-2, t_{1}}=\ldots=f_{t_{1}-2, t_{r-2}-1}=X_{t_{1}-2} X_{t_{1}}=f_{t_{1}-2}, f_{t_{1}-2, t_{r-2}}=X_{t_{1}}$,
$f_{t_{1}-2, t_{r-2}+1}=\ldots=f_{t_{1}-2, t_{r}-1}=X_{t_{1}-2} X_{t_{1}}=f_{t_{1}-2}$,
$f_{t_{1}-1, t_{1}}=\ldots=f_{t_{1}-1, t_{r-1}-1}=X_{t_{1}-1} X_{t_{1}}=f_{t_{1}-1}, \quad f_{t_{1}-1, t_{r-1}}=X_{t_{1}}$,
$f_{t_{1}-1, t_{r-1}+1}=\ldots=f_{t_{1}-1, t_{r}-1}=X_{t_{1}-1} X_{t_{1}}=f_{t_{1}-1}$,
$f_{t_{1}, t_{1}+1}=X_{1}, f_{t_{1}, t_{1}+2}=\ldots=f_{t_{1}, t_{r}-1}=X_{1} X_{t_{1}+1}=f_{t_{1}}$,

```
\(f_{t_{1}+1, t_{1}+2}=X_{t_{1}+1}, f_{t_{1}+1, t_{1}+3}=\ldots=f_{t_{1}+1, t_{r}-1}=X_{t_{1}+1} X_{t_{1}+2}=f_{t_{1}+1}, \ldots \ldots\),
\(f_{t_{2}-2, t_{2}-1}=X_{t_{2}-2}, f_{t_{2}-2, t_{2}}=\ldots=f_{t_{2}-2, t_{r}-1}=X_{t_{2}-2} X_{t_{2}-1}=f_{t_{2}-2}\),
\(f_{t_{2}-1, t_{2}}=\ldots=f_{t_{2}-1, t_{r}-1}=X_{t_{2}-1} X_{t_{2}}=f_{t_{2}-1}, \ldots \ldots\),
\(f_{t_{r-1}, t_{r-1}+1}=X_{t_{1}-1}, f_{t_{r-1}, t_{r-1}+2}=\ldots=f_{t_{r-1}, t_{r}-1}=X_{t_{1}-1} X_{t_{r-1}+1}=f_{t_{r-1}}, \ldots\),
\(f_{t_{r}-2, t_{r}-1}=X_{t_{r}-2}\).
```

In a general form we write:
$f_{i j}=f_{t_{i}, t_{i+1}}=X_{i}$, for $1 \leqslant i<j \leqslant r-1 ; \quad f_{t_{r-1}, t_{r-1}+1}=X_{t_{1}-1}$;
$f_{i, t_{i}}=X_{t_{1}} ; f_{t_{i}+k, t_{i}+k+1}=X_{t_{i}+k}$, for $i=1, \ldots, r-1, k=1, \ldots, s_{i}-2$;
$f_{i j}=f_{i}$ otherwise, $i<j$.
In a similar way we can obtain:
$f_{j i}=X_{j}$, for $1 \leqslant i<j \leqslant r-1$;
$f_{t_{i}, i}=X_{t_{i}+1} ; f_{t_{i}+k, t_{i}+k-1}=X_{t_{i}+k+1}$, for $i=1, \ldots, r-1, k=1, \ldots, s_{i}-1$;
$f_{j i}=f_{j} \quad$ otherwise, $i<j$.
Then the generators of J are the linear forms:
$g_{i j}=X_{i} T_{j}-X_{j} T_{i}$, for $1 \leqslant i<j \leqslant r-1$;
$g_{i, t_{i}}=X_{t_{1}} T_{t_{i}}-X_{t_{i}+1} T_{i} ; g_{t_{i}, t_{i}+1}=X_{i} T_{t_{i}+1}-X_{t_{i}+2} T_{t_{i}}$, for $i=1, \ldots, r-1$;
$g_{t_{i}+k, t_{i}+k+1}=X_{t_{i}+k} T_{t_{i}+k+1}-X_{t_{i}+k+2} T_{t_{i}+k}$, for $i=1, \ldots, r-1, k=1, \ldots, s_{i}-2$;
$g_{i j}=f_{i} T_{j}-f_{j} T_{i} \quad$ otherwise, $i<j$.

Theorem 3.1 Let G be a connected acyclic graph with n vertices. Let $R=K\left[X_{1}, \ldots, X_{n}\right]$. The edge ideal

$$
\begin{gathered}
I(G)=\left(X_{1} X_{r}, X_{2} X_{r}, \ldots, X_{r-1} X_{r}, X_{1} X_{r+1}, X_{r+1} X_{r+2}, \ldots, X_{r+s_{1}-1} X_{r+s_{1}},\right. \\
\\
\left.X_{2} X_{r+s_{1}+1}, \ldots, X_{r-1} X_{r+s_{1}+\ldots+s_{r-2}+1}, \ldots, X_{n-1} X_{n}\right)
\end{gathered}
$$

is generated by an s-sequence.
Proof. Following the steps of the proof of Proposition 3.1, let
$f_{1}=X_{1} X_{t_{1}}, f_{2}=X_{2} X_{t_{2}}, \ldots, f_{t_{1}-1}=X_{t_{1}-1} X_{t_{1}}$,
$f_{t_{1}}=X_{1} X_{t_{1}+1}, f_{t_{1}+1}=X_{t_{1}+1} X_{t_{1}+2}, \ldots, f_{t_{2}-1}=X_{t_{2}-1} X_{t_{2}}, \ldots \ldots$,
$f_{t_{r-1}}=X_{t_{1}-1} X_{t_{r-1}+1}, \ldots, f_{t_{r}-1}=X_{t_{r}-1} X_{t_{r}}$
be the generators of $I(G)$. They form an s-sequence if $B=\left\{g_{i j}=f_{i j} T_{j}-f_{j i} T_{i} \mid 1 \leqslant i<j \leqslant t_{r}-1\right\}$ is a Gröbner basis for J. For a suitable term order \prec, we want to prove that the S-pairs $S\left(g_{i j}, g_{h l}\right)$, with $i, j, h, l \in\left\{1, \ldots, t_{r}-1\right\}, i<j, i<h<l$, have a standard expression with respect to B with remainder 0 . Note that, to get a standard expression of $S\left(g_{i j}, g_{h l}\right)$ is equivalent to find some $g_{s t} \in B$ whose initial term divides the initial term of $S\left(g_{i j}, g_{n l}\right)$ and substitute a multiple of $g_{s t}$ such that the remaindered polynomial has a smaller initial term and so on up to the remainder is 0 . We have

$$
S\left(g_{i j}, g_{h l}\right)=\frac{f_{i j} f_{l h}}{\left[f_{i j}, f_{h l}\right]} T_{j} T_{h}-\frac{f_{h l} f_{j i}}{\left[f_{i j}, f_{h l}\right]} T_{i} T_{l} .
$$

Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertex set of G with $\operatorname{deg}\left(v_{r}\right)>2, v_{r} \in V(G)$. If $\left[\mathrm{in}_{\prec}\left(g_{i j}\right), \operatorname{in}_{\prec}\left(g_{h l}\right)\right]=1$, then $S\left(g_{i j}, g_{h l}\right)=f_{l h} g_{i j} T_{h}-f_{j i} g_{h l} T_{i}$. If $\left[\mathrm{in}_{\prec}\left(g_{i j}\right), \mathrm{in}_{\prec}\left(g_{h l}\right)\right] \neq 1$, the following standard expressions occur:

- When the path from v_{i} to v_{j} and the one from v_{h} to v_{l} do not contain v_{r},

$$
S\left(g_{i j}, g_{h l}\right)=\left[f_{j i}, f_{l h}\right]\left(\frac{f_{j l}}{\left[f_{i h}, f_{j l}\right]} g_{i h} T_{l}-\frac{f_{i h}}{\left[f_{i h}, f_{j l}\right]} g_{j l} T_{h}\right)
$$

with $\quad g_{j l}=-g_{l j} \quad$ if $l<j \quad$ and $\quad g_{i h}=g_{j l}=0, f_{i h}=f_{j l}=1 \quad$ if $i=h, j=l ;$

- When the path from v_{h} to v_{l} contains v_{r},

$$
S\left(g_{i j}, g_{h l}\right)=\left[f_{j i}, f_{l h}\right]\left(\frac{f_{l j}}{\left[f_{h i}, f_{l j}\right]} g_{i h} T_{j}-\frac{f_{h i}}{\left[f_{h i}, f_{l j}\right]} g_{j l} T_{i}\right)
$$

- When the path from v_{i} to v_{j} and the one from v_{h} to v_{l} contain v_{r},

$$
S\left(g_{i j}, g_{h l}\right)=g_{i j} T_{l}-g_{h l} T_{j}
$$

such that $\operatorname{in}_{\prec}\left(g_{i j} T_{l}\right)$ and $\operatorname{in}_{\prec}\left(g_{h l} T_{j}\right)$ are smaller than $\operatorname{in}_{\prec}\left(S\left(g_{i j}, g_{h l}\right)\right)$, for some monomial order \prec and for an ordering fixed on the variables.

Hence all the S-pairs $S\left(g_{i j}, g_{h l}\right)$ reduce to 0 with respect to B.

Theorem 3.2 Let G be a tree with n vertices. The edge ideal of it $I(G) \subset R=K\left[X_{1}, \ldots, X_{n}\right]$ is generated by an s-sequence.
Proof. A tree G can be intended as an extension of the connected acyclic graph examined in the present section in which there are further vertices of degree >2. Namely, G may have vertices $v_{p}, p \neq r$, where three or more edges begin or end. In this way, for each of these vertices in G, we can take in account the previous considerations.

Let f_{1}, \ldots, f_{n-1} denote the generators of the edge ideal $I(G)$. Following a procedure as in Proposition 3.1, we are able to obtain the generators $g_{i j}=f_{i j} T_{j}-f_{j i} T_{i}, 1 \leqslant i<j \leqslant n-1$ of the relation ideal J of the symmetric algebra of $I(G)$.

To show that f_{1}, \ldots, f_{n-1} is an s-sequence, it is enough to see that the set of $g_{i j}$ is a Gröbner basis for J, i.e. the S-pairs $S\left(g_{i j}, g_{h l}\right)$ such that $i, j, h, l \in\{1, \ldots, n-1\}, i<j, i<h<l$, have a standard expression with respect to $\left\{g_{i j}\right\}$ with remainder 0 .

Through a generalization of the reasoning of Theorem 3.1, similar formulas hold for the $S\left(g_{i j}, g_{h l}\right)$ by iterating the computation for getting standard expressions of the S-pairs in every vertex of degree >2.

In conclusion, all the S-pairs reduce to 0 with respect to $\left\{g_{i j}\right\}$.

Remark 3.1 In the following we will examine interesting classes of connected acyclic graphs with n vertices that are certain trees, so their edge ideals in $R=K\left[X_{1}, \ldots, X_{n}\right]$ are generated by s-sequences. In particular:

$$
\begin{aligned}
& I(G)=\left(X_{1} X_{n}, X_{2} X_{n}, \ldots, X_{n-1} X_{n}\right), \text { the star with } n-1 \text { edges, } \\
& I(G)=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{n-1} X_{n}\right), \text { the line with } n \text { points, } \\
& I(G)=\left(X_{1} X_{n-1}, X_{2} X_{n-1}, \ldots, X_{n-2} X_{n-1}, X_{\ell} X_{n}\right), \ell=1, \ldots, n-2 .
\end{aligned}
$$

The first two cases are considered in [3].

4. Forests and s-sequences

In this section we consider the following edge ideals of $R=K\left[X_{1}, \ldots, X_{n}\right]$ associated to forests:
a) $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$,
b) $I(G)=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, X_{m+2} X_{n}, \ldots, X_{n-1} X_{n}\right)$.

Proposition 4.1 Let $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$ be the edge ideal of a graph G with n vertices and $t=n-\frac{m}{2}-1$ edges. If $\operatorname{Sym}_{R}(I(G))=R\left[T_{1}, \ldots, T_{t}\right] / J$, then $J=\left(\left\{g_{i j}, 1 \leqslant i<\right.\right.$ $j \leqslant t\}$), where

$$
g_{i j}= \begin{cases}X_{2 i-1} X_{2 i} T_{j}-X_{2 j-1} X_{2 j} T_{i} & \text { if } 1 \leqslant i<j \leqslant \frac{m}{2} \\ X_{i+\frac{m}{2}} T_{j}-X_{j+\frac{m}{2}} T_{i} & \text { if } \frac{m}{2}+1 \leqslant i \leqslant n-\frac{m}{2}-2, \\ & \frac{m}{2}+2 \leqslant j \leqslant n-\frac{m}{2}-1 \\ X_{2 i-1} X_{2 i} T_{j}-X_{j+\frac{m}{2}} X_{n} T_{i} & \text { if } 1 \leqslant i \leqslant \frac{m}{2}, \frac{m}{2}+1 \leqslant j \leqslant n-\frac{m}{2}-1 .\end{cases}
$$

Proof. $\quad I(G)$ is generated by $t=n-\frac{m}{2}-1$ monomials as follows: $f_{1}=X_{1} X_{2}, f_{2}=X_{3} X_{4}, \ldots$, $f_{\frac{m}{2}}=X_{m-1} X_{m}, f_{\frac{m}{2}+1}=X_{m+1} X_{n}, \ldots, f_{t}=X_{n-1} X_{n}$. Set $f_{i j}=\frac{f_{i}}{\left[f_{i}, f_{j}\right]}$ for $i<j, i, j=1, \ldots, t$.
For $i<j$, we compute $f_{i j}=X_{2 i-1} X_{2 i}$ for $1 \leqslant i \leqslant \frac{m}{2}$ and $2 \leqslant j \leqslant n-\frac{m}{2}-1$ and $f_{i j}=X_{i+\frac{m}{2}}$ for $\frac{m}{2}+1 \leqslant i<j \leqslant n-\frac{m}{2}-1$.
Similarly, we have $f_{j i}=X_{2 j-1} X_{2 j}$ for $1 \leqslant i<j \leqslant \frac{m}{2}, f_{j i}=X_{j+\frac{m}{2}}$ for $\frac{m}{2}+1 \leqslant i<j \leqslant n-\frac{m}{2}-1$ and $f_{j i}=X_{j+\frac{m}{2}} X_{n}$ for $1 \leqslant i \leqslant \frac{m}{2}, \frac{m}{2}+1 \leqslant j \leqslant n-\frac{m}{2}-1$.
Being J generated by the linear forms $g_{i j}=f_{i j} T_{j}-f_{j i} T_{i}$ for $1 \leqslant i<j \leqslant t$, the thesis follows.

Proposition 4.2 Let $I(G)=\left(X_{1} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, X_{m+2} X_{n}, \ldots, X_{n-1} X_{n}\right)$ be the edge ideal of a graph G with n vertices and $n-2$ edges. If $\operatorname{Sym}_{R}(I(G))=R\left[T_{1}, \ldots, T_{n-2}\right] / J$, then $J=\left(\left\{g_{i j}, 1 \leqslant i<j \leqslant\right.\right.$ $n-2\}$), where

$$
g_{i j}= \begin{cases}X_{i} T_{j}-X_{j} T_{i} & \text { if } 1 \leqslant i<j \leqslant m-1 \\ X_{i} X_{m} T_{j}-X_{j+1} X_{n} T_{i} & \text { if } 1 \leqslant i \leqslant m-1, m \leqslant j \leqslant n-2 \\ X_{i+1} T_{j}-X_{j+1} T_{i} & \text { if } m \leqslant i<j \leqslant n-2 .\end{cases}
$$

Proof. $\quad I(G)$ is generated by $n-2$ elements as follows: $f_{1}=X_{1} X_{m}, f_{2}=X_{2} X_{m}, \ldots, f_{m-1}=X_{m-1} X_{m}$, $f_{m}=X_{m+1} X_{n}, \ldots, f_{n-2}=X_{n-1} X_{n}$. Set $f_{i j}=\frac{f_{i}}{\left[f_{i}, f_{j}\right]}$ for $i<j, i, j=1, \ldots, n-2$.
For $i<j$, we compute $f_{i j}=X_{i}$ for $1 \leqslant i<j \leqslant m-1, f_{i j}=X_{i} X_{m}$ for $1 \leqslant i \leqslant m-1, m \leqslant j \leqslant n-2$, and $f_{i j}=X_{i+1}$ for $m \leqslant i<j \leqslant n-2$.
Similarly, we have $f_{j i}=X_{j}$ for $1 \leqslant i<j \leqslant m-1, f_{j i}=X_{j+1} X_{n}$ for $1 \leqslant i \leqslant m-1, m \leqslant j \leqslant n-2$ and $f_{j i}=X_{j+1}$ for $m \leqslant i<j \leqslant n-2$.
Being J generated by the linear forms $g_{i j}=f_{i j} T_{j}-f_{j i} T_{i}$ for $1 \leqslant i<j \leqslant n-2$, then the assertion follows.

Next result states that the above ideals are generated by an s-sequence.

Theorem 4.1 Let $R=K\left[X_{1}, \ldots, X_{n}\right]$. The edge ideals
a) $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$
b) $I(G)=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, X_{m+2} X_{n}, \ldots, X_{n-1} X_{n}\right)$
are generated by an s-sequence.
Proof. a) Let $f_{1}=X_{1} X_{2}, f_{2}=X_{3} X_{4}, \ldots, f_{\frac{m}{2}}=X_{m-1} X_{m}, f_{\frac{m}{2}+1}=X_{m+1} X_{n}, \ldots, f_{t}=X_{n-1} X_{n}$, $t=n-\frac{m}{2}-1$, be the generators of $I(G)$. One has: if $f_{i j}=X_{2 i-1} X_{2 i}$ for $1 \leqslant i<j \leqslant \frac{m}{2}$, then $\left[f_{i j}, f_{h l}\right]=1$ for $i<j, h<l, i \neq h, j \neq l$ with $i, j, h, l \in\left\{1, \ldots, \frac{m}{2}\right\}$; if $f_{i j}=X_{i+\frac{m}{2}}$ for $\frac{m}{2}+1 \leqslant i<j \leqslant t$, then $f_{i j} \neq f_{h l}$ if $i \neq h$ and $j \neq l$, hence $\left[f_{i j}, f_{h l}\right]=1$ for $i<j, h<l, i \neq h, j \neq l$ with $i, j, h, l \in\left\{\frac{m}{2}+1, \ldots, t\right\}$; if $f_{i j}=X_{2 i-1} X_{2 i}$ for $1 \leqslant i<j \leqslant \frac{m}{2}$ and $f_{h l}=X_{h+\frac{m}{2}}$ for $\frac{m}{2}+1 \leqslant h<l \leqslant t$, then $\left[f_{i j}, f_{h l}\right]=1$ for all $i<j$, $h<l, i \neq h, j \neq l$. Hence by [2] (Prop. 1.7) it follows that f_{1}, \ldots, f_{t} is an s-sequence.
b) Let $f_{1}=X_{1} X_{m}, f_{2}=X_{2} X_{m}, \ldots, f_{m-1}=X_{m-1} X_{m}, f_{m}=X_{m+1} X_{n}, \ldots, f_{n-2}=X_{n-1} X_{n}$ be the generators of $I(G)$.

We observe that if $B=\left\{g_{i j}=f_{i j} T_{j}-f_{j i} T_{i} \mid 1 \leqslant i<j \leqslant n-2\right\}$ is a Gröbner basis for J then f_{1}, \ldots, f_{n-2} is an s-sequence. Hence we prove that $S\left(g_{i j}, g_{h l}\right)$, with $i, j, h, l \in\{1, \ldots, n-2\}$, has a standard expression with respect B with remainder 0 . We have:

$$
\begin{equation*}
S\left(g_{i j}, g_{h l}\right)=\frac{f_{i j} f_{l h}}{\left[f_{i j}, f_{h l}\right]} T_{j} T_{h}-\frac{f_{h l} f_{j i}}{\left[f_{i j}, f_{h l}\right]} T_{i} T_{l} . \tag{*}
\end{equation*}
$$

Then we compute a standard expression of $S\left(g_{i j}, g_{h l}\right)$ with respect to B with remainder 0 . If $\left[\mathrm{in}_{\prec}\left(g_{i j}\right)\right.$, in $\left._{\prec}\left(g_{h l}\right)\right]=$ 1 , then $S\left(g_{i j}, g_{h l}\right)=f_{l h} T_{h} g_{i j}-f_{j i} T_{i} g_{h l}$ for all $i, j, h, l \in\{1, \ldots, n-2\}$. If $\left[\mathrm{in}_{\prec}\left(g_{i j}\right), \mathrm{in}_{\prec}\left(g_{h l}\right)\right] \neq 1$, then we compute a standard expression for all S-polynomials $S\left(g_{i j}, g_{h l}\right)$ using (*):

- $S\left(g_{i j}, g_{i l}\right)=-\left[f_{j i}, f_{l i}\right] g_{j l} T_{i}$
- $S\left(g_{i j}, g_{h j}\right)=\left[f_{j i}, f_{j h}\right] g_{i h} T_{j}$
- $S\left(g_{i j}, g_{h l}\right)=\left[f_{j i}, f_{l h}\right]\left(f_{f_{j}} g_{i h} T_{j}+f_{h i} g_{l j} T_{i}\right)$ if $j>l$.
- $S\left(g_{i j}, g_{h l}\right)=\left[f_{j i}, f_{l h}\right]\left(f_{l j} g_{i h} T_{j}-f_{h i} g_{j l} T_{i}\right)$ if $j<l$.

Hence all S-polynomials $S\left(g_{i j}, g_{h l}\right)$ reduce to 0 with respect to B.

Remark 4.1 A subclass of the case a) of this section is considered in [3], precisely the forest with edge ideal $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{n-1} X_{n}\right)$.

5. Invariants of the symmetric algebra

In this section we use the theory of s-sequences in order to compute standard algebraic invariants of the symmetric algebra of the examined edge ideals in terms of their annihilator ideals.

We analyze the following classes of edge ideals associated to a connected graph G (see Remark 3.1):

1) $I(G)=\left(X_{1} X_{n}, X_{2} X_{n}, \ldots, X_{n-1} X_{n}\right)$,
2) $I(G)=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{n-1} X_{n}\right)$,
3) $I(G)=\left(X_{1} X_{n-1}, X_{2} X_{n-1}, \ldots, X_{n-2} X_{n-1}, X_{\ell} X_{n}\right), \ell=1, \ldots, n-2$.

Proposition 5.1 Let G be the graph with n vertices having edge ideal $I(G)=\left(X_{1} X_{n}, X_{2} X_{n}, \ldots, X_{n-1} X_{n}\right) \subset$ $R=K\left[X_{1}, \ldots, X_{n}\right]$. The annihilator ideals of the generators of $I(G)$ are

$$
\mathcal{I}_{1}=(0), \quad \mathcal{I}_{i}=\left(X_{1}, \ldots, X_{i-1}\right), \quad \text { for } \quad i=2, \ldots, n-1
$$

Proof. Let $I(G)=\left(f_{1}, \ldots, f_{n-1}\right)$, where $f_{1}=X_{1} X_{n}, f_{2}=X_{2} X_{n}, \ldots, f_{n-1}=X_{n-1} X_{n}$. Set $f_{h k}=\frac{f_{h}}{\left[f_{h}, f_{k}\right]}$ for $h<k, h, k=1, \ldots, n-1$. Then the annihilator ideals of the monomial sequence f_{1}, \ldots, f_{n-1} are $\mathcal{I}_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$ for $i=1, \ldots, n-1$. For $i=1$ we have $\mathcal{I}_{1}=(0)$ and by the structure of these monomials it follows $\mathcal{I}_{2}=\left(f_{12}\right)=\left(X_{1}\right), \mathcal{I}_{3}=\left(f_{13}, f_{23}\right)=\left(X_{1}, X_{2}\right), \ldots, \mathcal{I}_{n-1}=\left(f_{1, n-1}, f_{2, n-1}, \ldots, f_{n-2, n-1}\right)=$ $\left(X_{1}, X_{2}, \ldots, X_{n-2}\right)$.

Hence $\mathcal{I}_{i}=\left(X_{1}, \ldots, X_{i-1}\right)$, for $i=2, \ldots, n-1$.

Remark 5.1 By Proposition 5.1 it follows $\operatorname{in}_{\prec}(J)=\left(\left(X_{1}\right) T_{2},\left(X_{1}, X_{2}\right) T_{3}, \ldots,\left(X_{1}, X_{2}, \ldots, X_{n-2}\right) T_{n-1}\right)$.
Theorem 5.1 Let $G, I(G)$ be as in Proposition 5.1. For the symmetric algebra of $I(G) \subset R$ it holds:
a) $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$,
b) $e\left(\operatorname{Sym}_{R}(I(G))=n-1\right.$,
c) $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))=1\right.$.

Proof. By Proposition 5.1 the s-sequence that generates $I(G)$ is strong.
a) By $[6](\operatorname{Thm} .8 .2 .8), \operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=\sup \{n+1, n-1\}=n+1$, where $n-1$ is the number of the edges of G.
b) By $[2]$ (Prop. 2.4), it follows that $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{i=1}^{n-1} \mathrm{e}\left(R / \mathcal{I}_{i}\right)$. By Proposition 5.1 the annihilator ideals I_{i} are generated by a regular sequence, then by [5](Thm. 4.8), e $\left(R / \mathcal{I}_{i}\right)=1$, for $i=2, \ldots, n-1$ and $\mathrm{e}(R /(0))=1$. Hence $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{i=1}^{n-1} e\left(R / \mathcal{I}_{i}\right)=n-1$.
c) $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right)=\operatorname{reg}\left(R\left[T_{1}, \ldots, T_{n-1}\right] / J\right) \leqslant \operatorname{reg}\left(R\left[T_{1}, \ldots, T_{n-1}\right] / \operatorname{in}_{\prec}(J)\right) \leqslant \max _{2 \leqslant j \leqslant n-1}\left\{\sum_{i=1}^{j-1}\right.$ $\left.\operatorname{deg}\left(f_{i j}\right)-(j-2)\right\}$, by $[5]\left(\right.$ Thm. 4.8). Then one has $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right) \leqslant \max _{2 \leqslant j \leqslant n-1}\left\{\sum_{i=1}^{j-1} \operatorname{deg}\left(X_{i}\right)-(j-2)\right\}=$ $(j-1)-(j-2)=1$.

Moreover J is generated by the linear forms of degree two $X_{i} T_{j}-X_{j} T_{i}$, for $i, j=1, \ldots, n-1$. Then $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right)=\operatorname{reg}\left(R\left[T_{1}, \ldots, T_{n-1}\right] / J\right) \geq 1$. It follows that $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right)=1$.

Proposition 5.2 Let G be the graph with n vertices having edge ideal $I(G)=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{n-1} X_{n}\right) \subset$ $R=K\left[X_{1}, \ldots, X_{n}\right]$. The annihilator ideals of the generators of $I(G)$ are

$$
\mathcal{I}_{1}=(0), \mathcal{I}_{2}=\left(X_{1}\right), \mathcal{I}_{3}=\left(X_{2}\right), \mathcal{I}_{i}=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{i-3} X_{i-2}, X_{i-1}\right)
$$

for $i=4, \ldots, n-1$.
Proof. Let $I(G)=\left(f_{1}, \ldots, f_{n-1}\right)$ where $f_{1}=X_{1} X_{2}, f_{2}=X_{2} X_{3}, \ldots, f_{n-1}=X_{n-1} X_{n}$. Set $f_{h k}=\frac{f_{h}}{\left[f_{h}, f_{k}\right]}$ for $h<k, h, k=1, \ldots, n-1$. The annihilator ideals of the monomial sequence f_{1}, \ldots, f_{n-1} are $\mathcal{I}_{i}=$ $\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$ for $i=1, \ldots, n-1$. We have $\mathcal{I}_{1}=(0), \mathcal{I}_{2}=\left(f_{12}\right)=\left(X_{1}\right), \mathcal{I}_{3}=\left(f_{13}, f_{23}\right)=\left(X_{1} X_{2}, X_{2}\right)=$
$\left(X_{2}\right), \mathcal{I}_{4}=\left(f_{14}, f_{24}, f_{34}\right)=\left(X_{1} X_{2}, X_{3}\right), \ldots, \mathcal{I}_{n-1}=\left(f_{1, n-1}, f_{2, n-1}, \ldots, f_{n-2, n-1}\right)=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots\right.$, $\left.X_{n-4} X_{n-3}, X_{n-2}\right)$.

Hence $\mathcal{I}_{i}=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{i-3} X_{i-2}, X_{i-1}\right)$, for $i=4, \ldots, n-1$.

Theorem 5.2 Let $G, I(G)$ be as in Proposition 5.2. For the symmetric algebra of $I(G) \subset R$ it holds:
a) $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$
b) $e\left(\operatorname{Sym}_{R}(I(G))=\binom{n-1}{1}+\binom{n-2}{2}+\binom{n-3}{3}+\ldots\right.$

Proof. a) By $[6](\operatorname{Thm} .8 .2 .8), \operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=\sup \{n+1, n-1\}=n+1$, where $n-1$ is the number of the edges of G.
b) By $[2](\operatorname{Prop.} 2.4), \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{1 \leqslant i_{1}<\cdots<i_{r} \leqslant n-1} \mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)$ with $\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=$ $d-r$, where $d=\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$ and $1 \leqslant r \leqslant n-1$. Set $d^{\prime}=\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=n+1-r$.

The multiplicity e $\left(\operatorname{Sym}_{R}(I(G))\right)$ is given by the sum of the following terms:

$$
\begin{array}{ll}
r=1, & \mathrm{e}\left(R / \mathcal{I}_{1}\right)=1, \\
r=2, & \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}\right)\right)=1, \\
r=3, & \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{4}\right)\right)=1 \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{4}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{5}\right)\right)=1 \\
r=4, & \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{4}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{5}\right)\right)=1 \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{4}+\mathcal{I}_{5}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{4}+\mathcal{I}_{6}\right)\right)=1 \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{4}+\mathcal{I}_{5}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{4}+\mathcal{I}_{6}\right)\right)=1 \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{5}+\mathcal{I}_{6}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{5}+\mathcal{I}_{7}\right)\right)=1
\end{array}
$$

and so on, where, for $r \leqslant n-1$, the number of $\mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)$ such that $\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=n+1-r$ is in general double with respect to that of the preceding case $r-1$, namely from each $\mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r-1}}\right)\right)=1$ it comes $\mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r-1}}, \mathcal{I}_{i_{r-1}+1}\right)\right)=1$ and $\mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r-1}}, \mathcal{I}_{i_{r-1}+2}\right)\right)=1$.

But if the index i_{r-1} is equal to $n-2$, it derives only e $\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r-1}+1}\right)\right)=1$, nothing if $i_{r-1}=n-1$.
Consequently, some of the $\mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)$ cannot be considered, those having maximum index greater or equal than n. In particular,

$$
\begin{aligned}
& r=n-2, \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{n-3}+\mathcal{I}_{n-2}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{n-3}+\mathcal{I}_{n-1}\right)\right)= \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{n-4}+\mathcal{I}_{n-2}+\mathcal{I}_{n-1}\right)\right)=\ldots=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\ldots \mathcal{I}_{n-1}\right)\right)=1 \\
& \left.\quad r=n-1, \quad \mathrm{e}\left(R / \mathcal{I}_{1}+\ldots+\mathcal{I}_{n-1}\right)\right)=1 .
\end{aligned}
$$

Let $F_{0}=0, F_{1}=1, \ldots, F_{i}=F_{i-2}+F_{i-1}, i \geqslant 2$, be the Fibonacci sequence. It results:

- if $n=2 \quad \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}\right)\right)=1$,
- if $n=3 \quad \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}\right)\right)=2=1+F_{2}$,
- if $n=4 \quad \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}\right)\right)+$

$$
+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)\right)=4=2+F_{3}
$$

- if $n=5$

$$
\begin{aligned}
& \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}\right)\right)+ \\
& +\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{4}\right)\right)+\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{3}+\mathcal{I}_{4}\right)\right)+ \\
& +\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{4}\right)\right)=7=4+F_{4}
\end{aligned}
$$

and so on.
Hence $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)$ is the sum of the first $n-1$ terms of the Fibonacci sequence, that is $F_{n+1}-1$, so the assertion follows taking in consideration the Lucas' formula.

Proposition 5.3 Let G be the graph with n vertices having edge ideal $I(G)=\left(X_{1} X_{n-1}, X_{2} X_{n-1}, \ldots\right.$, $\left.X_{n-2} X_{n-1}, X_{\ell} X_{n}\right), \ell=1, \ldots, n-2, I(G) \subset R=K\left[X_{1}, \ldots, X_{n}\right]$. The annihilator ideals of the generators of $I(G)$ are

$$
\mathcal{I}_{1}=(0), \quad \mathcal{I}_{i}=\left(X_{1}, \ldots, X_{i-1}\right), \text { for } i=2, \ldots, n-2, \quad \mathcal{I}_{n-1}=\left(X_{n-1}\right)
$$

Proof. Let $I(G)=\left(f_{1}, f_{2}, \ldots, f_{n-2}, f_{n-1}\right)$, where $f_{1}=X_{1} X_{n}, f_{2}=X_{2} X_{n}, \ldots, f_{n-2}=X_{n-2} X_{n-1}$, $f_{n-1}=X_{\ell} X_{n}, \ell=1, \ldots, n-2$. Set $f_{h k}=\frac{f_{h}}{\left[f_{h}, f_{k}\right]}$ for $h<k, h, k=1, \ldots, n-1$. The annihilator ideals of the monomial sequence f_{1}, \ldots, f_{n-1} are $\mathcal{I}_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$, for $i=1, \ldots, n-1$. Hence we have $\mathcal{I}_{1}=(0)$, $\mathcal{I}_{2}=\left(f_{12}\right)=\left(X_{1}\right), \mathcal{I}_{3}=\left(f_{13}, f_{23}\right)=\left(X_{1}, X_{2}\right), \ldots, \mathcal{I}_{n-2}=\left(f_{1, n-2}, \ldots, f_{n-3, n-2}\right)=\left(X_{1}, X_{2}, \ldots, X_{n-3}\right)$, $\mathcal{I}_{n-1}=\left(f_{1, n-1}, \ldots, f_{n-2, n-1}\right)=\left(X_{1} X_{n-1}, \ldots, X_{\ell-1} X_{n-1}, X_{n-1}, X_{\ell+1} X_{n-1}, \ldots, X_{n-2} X_{n-1}\right)=\left(X_{n-1}\right)$.

Theorem 5.3 Let $G, I(G)$ be as in Proposition 5.3. For the symmetric algebra of $I(G) \subset R$ it holds:
a) $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$,
b) $e\left(\operatorname{Sym}_{R}(I(G))=2(n-2)\right.$.

Proof. a) By $[6](\operatorname{Thm} .8 .2 .8), \operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=\sup \{n+1, n-1\}=n+1$, where $n-1$ is the number of the edges of G.
b) $\operatorname{By}[2]\left(\right.$ Prop. 2.4), $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{1 \leqslant i_{1}<\cdots<i_{r} \leqslant n-1} \mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)$ with $\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=$ $d-r$, where $d=\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$ and $1 \leqslant r \leqslant n-1$. Set $d^{\prime}=\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=n+1-r$. The multiplicity e $\left(\operatorname{Sym}_{R}(I(G))\right)$ is given by the sum of the following terms:

$$
\begin{aligned}
& r=1, \quad \mathrm{e}\left(R / \mathcal{I}_{1}\right)=1 \\
& r=2, \quad \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{n-1}\right)\right)=1 \\
& r=3, \quad \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{n-1}\right)\right)=1 \\
& \ldots \ldots \ldots \ldots \cdots \cdots \\
& r=n-2, \quad \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{n-2}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{n-3}+\mathcal{I}_{n-1}\right)\right)=1 \\
& r=n-1, \quad \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{n-1}\right)\right)=1
\end{aligned}
$$

and the assertion easily follows.

Now we analyze the following classes of edge ideals:

1) $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{n-1} X_{n}\right)$,
2) $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$,
3) $I(G)=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, X_{m+2} X_{n}, \ldots, X_{n-1} X_{n}\right)$,
where G is a non connected graph (see section 3).
Proposition 5.4 Let G be a graph with n vertices and edge ideal $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{n-1} X_{n}\right) \subset R=$ $K\left[X_{1}, \ldots, X_{n}\right]$. The annihilator ideals of the generators of $I(G)$ are

$$
\mathcal{I}_{1}=(0), \mathcal{I}_{i}=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{2 i-3} X_{2 i-2}\right), \quad \text { for } \quad i=2, \ldots, \frac{n}{2}
$$

Proof. Let $I(G)=\left(f_{1}, \ldots, f_{\frac{n}{2}}\right)$ where $f_{1}=X_{1} X_{2}, f_{2}=X_{3} X_{4}, \ldots, f_{\frac{n}{2}}=X_{n-1} X_{n}$. Then the annihilator ideals of the monomial sequence $f_{1}, \ldots, f_{\frac{n}{2}}$ are $\mathcal{I}_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$ for $i=1, \ldots, \frac{n}{2}$. For $i=1$ we have $\mathcal{I}_{1}=(0)$. Moreover, $\mathcal{I}_{2}=\left(f_{12}\right)=\left(X_{1} X_{2}\right), \mathcal{I}_{3}=\left(f_{13}, f_{23}\right)=\left(X_{1} X_{2}, X_{3} X_{4}\right), \ldots$, $\mathcal{I}_{\frac{n}{2}}=\left(f_{1, \frac{n}{2}}, f_{2, \frac{n}{2}}, \ldots, f_{\frac{n}{2}-1, \frac{n}{2}}\right)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{n-3} X_{n-2}\right)$.
Hence $\mathcal{I}_{i}=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{2 i-3} X_{2 i-2}\right)$, for $i=2, \ldots, \frac{n}{2}$.

Remark 5.2 By Proposition 5.4 it follows that
$\operatorname{in}_{\prec}(J)=\left(\left(X_{1} X_{2}\right) T_{2},\left(X_{1} X_{2}, X_{3} X_{4}\right) T_{3}, \ldots,\left(X_{1} X_{2}, \ldots, X_{n-3} X_{n-2}\right) T_{\frac{n}{2}}\right)$.
Theorem 5.4 Let $R=K\left[X_{1}, \ldots, X_{n}\right], I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{n-1} X_{n}\right)$. Then:
a) $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$,
b) $e\left(\operatorname{Sym}_{R}(I(G))=\sum_{i=1}^{\frac{n}{2}} 2^{i-1}\right.$,
c) $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G)) \leqslant \frac{n}{2}\right.$.

Proof. By Proposition 5.4, $I(G)$ is generated by a strong s-sequence.
a) By [5] (Thm. 4.8), $\operatorname{Sym}_{R}(I(G))$ is Cohen-Macaulay having dimension $\operatorname{dim}(R)+1=n+1$.
b) By [2] (Prop. 2.4), it follows that $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{i=1}^{\frac{n}{2}} \mathrm{e}\left(R / \mathcal{I}_{i}\right)$. By Proposition 5.4 we compute $\mathrm{e}\left(R / \mathcal{I}_{1}\right)=1, \mathrm{e}\left(R / \mathcal{I}_{2}\right)=2, \mathrm{e}\left(R / \mathcal{I}_{3}\right)=4, \mathrm{e}\left(R / \mathcal{I}_{4}\right)=8, \ldots, \mathrm{e}\left(R / \mathcal{I}_{i}\right)=2^{i-1}$. Hence $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=$ $\sum_{i=1}^{\frac{n}{2}} 2^{i-1}$.
c) $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right)=\operatorname{reg}\left(R\left[T_{1}, \ldots, T_{\frac{n}{2}}\right] / J\right) \leqslant \operatorname{reg}\left(R\left[T_{1}, \ldots, T_{\frac{n}{2}}\right] / \operatorname{in}_{\prec}(J)\right) \leqslant \max _{2 \leqslant j \leqslant \frac{n}{2}}\left\{\sum_{i=1}^{j-1} \operatorname{deg}\left(f_{i j}\right)-\right.$ $(j-2)\}$ by [5] (Thm. 4.8). Then one computes: $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right) \leqslant \max _{2 \leqslant j \leqslant \frac{n}{2}}\left\{\sum_{i=1}^{j-1} \operatorname{deg}\left(X_{2 i-1} X_{2 i}\right)-(j-\right.$ $2)\}=\max _{2 \leqslant j \leqslant \frac{n}{2}}\{2(j-1)-(j-2)\}=\frac{n}{2}$.

Proposition 5.5 Let $I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$ be an ideal of $R=$ $K\left[X_{1}, \ldots, X_{n}\right]$. Then the annihilator ideals of the generators of $I(G)$ are:

$$
\mathcal{I}_{1}=(0), \quad \mathcal{I}_{i}=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{2 i-3} X_{2 i-2}\right) \quad \text { for } \quad i=2, \ldots, \frac{m}{2}+1
$$

$\mathcal{I}_{\frac{m}{2}+j}=\left(X_{1} X_{2}, \ldots, X_{m-1} X_{m}, X_{m+1}, \ldots, X_{m+j-1}\right)$ for $j=2, \ldots, n-m-1$.
Proof. Let $f_{1}=X_{1} X_{2}, f_{2}=X_{3} X_{4}, \ldots, f_{\frac{m}{2}}=X_{m-1} X_{m}, f_{\frac{m}{2}+1}=X_{m+1} X_{n}, \ldots, f_{t}=X_{n-1} X_{n}$, for $t=n-\frac{m}{2}-1$, be the generators of $I(G)$. Then the annihilator ideals of the monomial sequence f_{1}, \ldots, f_{t} are the following: $\mathcal{I}_{1}=(0)$, and by the structure of the monomials, $\mathcal{I}_{2}=\left(X_{1} X_{2}\right), \mathcal{I}_{3}=\left(X_{1} X_{2}, X_{3} X_{4}\right), \ldots, \mathcal{I}_{\frac{m}{2}}=$ $\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-3} X_{m-2}\right), \mathcal{I}_{\frac{m}{2}+1}=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-3} X_{m-2}, X_{m-1} X_{m}\right), \mathcal{I}_{\frac{m}{2}+2}=\left(X_{1} X_{2}, X_{3} X_{4}\right.$, $\left.\ldots, X_{m-3} X_{m-2}, X_{m-1} X_{m}, X_{m+1}\right), \ldots, \mathcal{I}_{t}=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-3} X_{m-2}, X_{m-1} X_{m}, X_{m+1}, \ldots, X_{n-2}\right)$. The assertion follows.

Remark 5.3 By Proposition 5.5 one has
$\operatorname{in}_{\prec}(J)=\left(\left(X_{1} X_{2}\right) T_{2},\left(X_{1} X_{2}, X_{3} X_{4}\right) T_{3}, \ldots,\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-3} X_{m-2}, X_{m-1} X_{m}, X_{m+1}, \ldots, X_{n-2}\right)\right.$ $\left.T_{n-\frac{m}{2}-1}\right)$.

Theorem 5.5 Let $R=K\left[X_{1}, \ldots, X_{n}\right], I(G)=\left(X_{1} X_{2}, X_{3} X_{4}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$. Then:
a) $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$
b) $e\left(\operatorname{Sym}_{R}(I(G))=\sum_{i=1}^{\frac{m}{2}} 2^{i-1}+2^{\frac{m}{2}}(n-m-1)\right.$
c) $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G)) \leqslant \frac{m}{2}+1\right.$.

Proof. By Proposition 5.5 $I(G)$ is generated by a strong s-sequence.
a) By [5] (Thm. 4.8), $\operatorname{Sym}_{R}(I(G))$ is Cohen-Macaulay having dimension $\operatorname{dim}(R)+1=n+1$.
b) By [2] (Prop. 2.4), it follows that $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{i=1}^{t} \mathrm{e}\left(R / I_{i}\right), t=n-\frac{m}{2}-1$. Using Proposition 5.5, we compute $\mathrm{e}\left(R / \mathcal{I}_{1}\right)=1$, $\mathrm{e}\left(R / \mathcal{I}_{2}\right)=2$, $\mathrm{e}\left(R / \mathcal{I}_{3}\right)=4$, $\mathrm{e}\left(R / \mathcal{I}_{4}\right)=8, \ldots, \mathrm{e}\left(R / \mathcal{I}_{\frac{m}{2}}\right)=2^{\frac{m}{2}-1}$, $\mathrm{e}\left(R / \mathcal{I}_{\frac{m}{2}+1}\right)=2^{\frac{m}{2}}, \ldots, \mathrm{e}\left(R / \mathcal{I}_{t}\right)=2^{\frac{m}{2}}$. Hence: $\mathrm{e}\left(R / \mathcal{I}_{i}\right)=2^{i-1}$, for $i=1, \ldots, \frac{m}{2}$ and $\mathrm{e}\left(R / \mathcal{I}_{j}\right)=2^{\frac{m}{2}}$, for $j=\frac{m}{2}, \ldots, t$. It follows $\mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{i=1}^{\frac{n}{2}} 2^{i-1}+\left(t-\left(\frac{m}{2}+1\right)+1\right) 2^{\frac{m}{2}}$. The assertion holds.
c) Let $t=n-\frac{m}{2}-1$. Then $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right)=\operatorname{reg}\left(R\left[T_{1}, \ldots, T_{t}\right] / J\right) \leqslant \operatorname{reg}\left(R\left[T_{1}, \ldots, T_{t}\right] / \operatorname{in}_{\prec}(J)\right) \leqslant$ $\max _{2 \leqslant j \leqslant t}\left\{\sum_{i=1}^{j-1} \operatorname{deg}\left(f_{i j}\right)-(j-2)\right\}$, by [5] (Thm. 4.8). So it is $\operatorname{reg}\left(S_{y m}(I(G))\right) \leqslant \max _{2 \leqslant j \leqslant n-\frac{m}{2}-1}\left\{\sum_{k=1}^{j-1}\right.$ $\left.\operatorname{deg}\left(X_{2 k-1} X_{2 k}\right)-(j-2)\right\}$. Set $d=\sum_{k=1}^{j-1} \operatorname{deg}\left(X_{2 k-1} X_{2 k}\right)-(j-2)$. One computes: $d=k$, for $k=1, \ldots, \frac{m}{2}$ and $d=\frac{m}{2}+1$, for $k=\frac{m}{2}+1, \ldots, n-\frac{m}{2}-2$. Hence $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(G))\right) \leqslant \frac{m}{2}+1$.

Proposition 5.6 Let $I(G)=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1} X_{n}, \ldots, X_{n-1} X_{n}\right)$ be an ideal of $R=$ $K\left[X_{1}, \ldots, X_{m}, \ldots, X_{n}\right], m, n>2$. Then the annihilator ideals of the generators of $I(G)$ are:

$$
\begin{gathered}
\mathcal{I}_{1}=(0), \quad \mathcal{I}_{i}=\left(X_{1}, X_{2} \ldots, X_{i-1}\right) \text { for } i=2, \ldots, m-1, \\
\mathcal{I}_{m}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}\right) \\
\mathcal{I}_{j}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1}, \ldots, X_{j}\right) \text { for } j=m+1, \ldots, n-2 .
\end{gathered}
$$

Proof. Let $f_{1}=X_{1} X_{m}, f_{2}=X_{2} X_{m}, \ldots, f_{m-1}=X_{m-1} X_{m}, f_{m}=X_{m+1} X_{n}, \ldots, f_{n-2}=X_{n-1} X_{n}$ be the generators of $I(G)$. Then the annihilator ideals of the monomial sequence f_{1}, \ldots, f_{n-2} are the
following: $\mathcal{I}_{1}=(0)$, and by the structure of the monomials, $\mathcal{I}_{2}=\left(X_{1}\right), \mathcal{I}_{3}=\left(X_{1}, X_{2}\right), \ldots, \mathcal{I}_{m-1}=$ $\left(X_{1}, X_{2}, \ldots, X_{m-2}\right), \mathcal{I}_{m}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}\right), \mathcal{I}_{m+1}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1}\right)$, $\mathcal{I}_{m+2}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1}, X_{m+2}\right), \ldots, \mathcal{I}_{n-2}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1}\right.$, $\left.X_{m+2}, \ldots, X_{n-2}\right)$. The assertion follows.

Theorem 5.6 Let $R=K\left[X_{1}, \ldots, X_{m}, \ldots, X_{n}\right], m, n>2$, and $I(G)=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}\right.$,
$\left.X_{m+1} X_{n}, X_{m+2} X_{n}, \ldots, X_{n-1} X_{n}\right)$. Then:
a) $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$,
b) $e\left(\operatorname{Sym}_{R}(I(G))=m n-m^{2}-1\right.$.

Proof. a) By Proposition 5.6, $\mathcal{I}_{1}=(0), \mathcal{I}_{i}=\left(X_{1}, X_{2} \ldots, X_{i-1}\right)$ if $i=2, \ldots, m-1, \mathcal{I}_{m}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots\right.$, $\left.X_{m-1} X_{m}\right), \mathcal{I}_{i}=\left(X_{1} X_{m}, X_{2} X_{m}, \ldots, X_{m-1} X_{m}, X_{m+1}, \ldots, X_{i}\right)$ if $i=m+1, \ldots, n-2$, and by [2] (Prop. 2.4) we have $\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=\max _{1 \leqslant r \leqslant n-2}\left\{\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)+r\right\}$, for $1 \leqslant i_{1}<\cdots<i_{r} \leqslant n-2$. Hence the maximum dimension is given for $1 \leqslant i_{1}<\cdots<i_{r} \leqslant n-2: \operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)+r=n-(r-1)+r=n+1$ and $\operatorname{dim}\left(\operatorname{Sym}_{R}(I((G)))=n+1\right.$.
b) By $[2]($ Prop. 2.4$), \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\sum_{1 \leqslant i_{1}<\cdots<i_{r} \leqslant n-1} \mathrm{e}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)$ with $\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=$ $d-r$, where $d=\operatorname{dim}\left(\operatorname{Sym}_{R}(I(G))\right)=n+1$ and $1 \leqslant r \leqslant n-1$. Set $d^{\prime}=\operatorname{dim}\left(R /\left(\mathcal{I}_{i_{1}}, \ldots, \mathcal{I}_{i_{r}}\right)\right)=n+1-r$. The multiplicity e $\left(\operatorname{Sym}_{R}(I(G))\right)$ is given by the sum of the following terms:

$$
\begin{aligned}
& r=1, \quad \mathrm{e}\left(R / \mathcal{I}_{1}\right)=1 \\
& r=2, \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{m}\right)\right)=1 \\
& r=3, \\
& \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{m}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{m}+\mathcal{I}_{m+1}\right)\right)=1
\end{aligned}
$$

```
    \(r=m-1,(m-1\) terms \()\)
\(\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-2}+\mathcal{I}_{m-1}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-2}+\mathcal{I}_{m}\right)\right)=\)
\(\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-3}+\mathcal{I}_{m}+\mathcal{I}_{m+1}\right)\right)=\ldots=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{2 m-3}\right)\right)=1\)
    \(r=m, \quad(m-1\) terms \()\)
\(\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-1}+\mathcal{I}_{m}\right)\right)=2\)
\(\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-2}+\mathcal{I}_{m}+\mathcal{I}_{m+1}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-3}+\mathcal{I}_{m}+\mathcal{I}_{m+1}+\mathcal{I}_{m+2}\right)\right)=\ldots=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{m}+\right.\right.\)
\(\left.\left.\ldots+\mathcal{I}_{2 m-2}\right)\right)=1\)
```

 \(r=n-m,(m-1\) terms \()\)
 $\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-m}\right)\right)=2$
$\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-2}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-m+1}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-3}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-m+2}\right)\right)=\ldots=$
$\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-2}\right)\right)=1$
$r=n-m+1,(m-2$ terms $)$
$\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-m+1}\right)\right)=2$
$\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-2}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-m+2}\right)\right)=\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-3}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-m+3}\right)\right)=\ldots=$
$\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-2}\right)\right)=1$

```
        \(r=n-3,(2\) terms \()\)
\(\mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-3}\right)\right)=2, \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m-2}+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-2}\right)\right)=1\)
    \(r=n-2, \quad \mathrm{e}\left(R /\left(\mathcal{I}_{1}+\ldots+\mathcal{I}_{m}+\ldots+\mathcal{I}_{n-2}\right)\right)=2\).
```

Hence $\quad \mathrm{e}\left(\operatorname{Sym}_{R}(I(G))\right)=\frac{m(m-1)}{2}+m(n-2 m)+\frac{m(m+1)}{2}-3+2$, so the assertion follows.

References

[1] Herzog, J., Hibi, T.: Monomial Ideals, Springer, Graduate Texts in Mathematics 260 (2011).
[2] Herzog, J., Restuccia, G., Tang, Z.: s-sequences and symmetric algebras, Manuscripta Math., 104, 479-501 (2001).
[3] Imbesi, M., La Barbiera, M.: Edge ideals and connection problems, Comm. in Appl. and Industr. Maths., 1(2), 127-134 (2010).
[4] Kühl, M.: On the symmetric algebra of an ideal, Manuscripta Math., 37, 49-60 (1982).
[5] Tang, Z.: On certain monomial sequences, J. of Algebra, 282, 831-842 (2004).
[6] Villarreal, R.H.: Monomial Algebras, Dekker, Pure and Applied Mathematics 238 (2001).

Maurizio IMBESI
Faculty of Sciences, Department of Mathematics, University of Messina
Viale Ferdinando Stagno d'Alcontres, 31
I 98166 Messina-ITALY
e-mail: imbesim@unime.it
Monica LA BARBIERA
Faculty of Sciences, Department of Mathematics,
University of Messina
Viale Ferdinando Stagno d'Alcontres, 31
I 98166 Messina-ITALY
e-mail: monicalb@dipmat.unime.it

[^0]: 2000 AMS Mathematics Subject Classification: 05C99, 15A78, 13P10.

