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Invariants of symmetric algebras associated to graphs

Maurizio Imbesi, Monica La Barbiera

Abstract
In this work we deal with the symmetric algebra of monomial ideals that arise from graphs, the edge
ideals. The notion of s-sequence is explored for such ideals in order to compute standard algebraic invariants
of their symmetric algebra in terms of the corresponding invariants of special quotients of the polynomial

ring related to the graphs.
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1. Introduction

In this article we study the symmetric algebra of monomial ideals ([1], [4]), in particular of some ideals
arising from graphs. In order to compute standard invariants of such symmetric algebra, we investigate some
cases for which the monomial ideals are generated by s-sequences. In [2] the notion of s-sequence is employed
to compute the invariants of the symmetric algebra of finitely generated modules. Our proposal is to compute
standard invariants of the symmetric algebra in terms of the corresponding invariants of special quotients of
the polynomial ring related to the graph. This computation can be obtained for finitely generated modules
generated by an s-sequence.

Let G be a graph with no cycles. An algebraic object attached to G is the edge ideal I(G) that is
a monomial ideal of R = K[Xy,...,X,], K a field, n the number of vertices of G. I(G) is generated by
square-free monomials of degree two in the polynomial ring R, I(G) = ({X;X; | {vi,v;} is an edge of G }). In
[6] there are some results about monomial ideals of R that can arise from the edges of a simple graph.

The aim of this paper is to investigate classes of simple graphs and to prove that the notion of s-sequence
can be explored in this family of monomial ideals in order to compute algebraic invariants of their symmetric
algebra.

The work is organized as follows. In section 2 some preliminary notions about the theory of s-sequences
are given. In sections 3 and 4 the notion of s-sequence is investigated for edge ideals associated to trees and
forests. In section 5 we give the structure of the annihilator ideals of these edge ideals generated by an s-sequence
and we compute the invariants: (a) the dimension, dimg(Symg (I(G))); (b) the multiplicity, e(Symg (I(G)));
and (c) the Castelnuovo-Mumford regularity, regr(Symg (I(G))). More precisely, we achieve formulas for (a),

(b) and when I(G) is generated by a strong s-sequence we give bounds for (c) in terms of the annihilator ideals.

2000 AMS Mathematics Subject Classification: 05C99, 15A78, 13P10.
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2. Preliminaries and notations

Let’s recall the theory of s-sequences in order to apply it to our classes of monomial ideals.

Let M be a finitely generated module on a Noetherian ring R, and f1,..., f; be the generators of M.
Let (a;;), fori=1,...,¢t, j=1,...,p, be the relation matrix of M. Let Symgr (M) be the symmetric algebra
of M, then Symgr (M) = R[Ty,...,T;]/J, where R[T,...,T¢] is a polynomial ring in the variables Ti,..., T}
and J is its relation ideal, generated by g; = Zi,j a;; T; ,fori=1,...,t, 5=1,...,p.

If we assign degree 1 to each variable T; and degree 0 to the elements of R, then J is a graded ideal
and Sympg (M) is a graded algebra on R.

Set S = R[T1,...,T;] and let < be a monomial order on the monomials of S in the variables T;. With
respect to this term order, if f = Y a,T%, where T% = T --- T/ and a = (ai,...,a:) € N, we put
ing(f) = aaI, where T® is the largest monomial in f such that a, # 0.

So we can define the monomial ideal in<(J) = ({in<(f)|f € J}).

For every i = 1,...,t, weset M;_1 = Rf1 +---+ Rf;—1 and let 7, = M;_1 :g f; be the colon ideal.
Since M;/M;_1 ~ R/Z;, Z; is the annihilator of the cyclic module R/Z;. Z; is called an annihilator ideal of
the sequence fi,..., f:.

It is (7111, ZoTo, ..., 2, ) Cins(J), and the two ideals coincide in degree 1.

Definition 2.1 The sequence fi,..., f; is said to be an s-sequence for M if
(IlTl,IQTQ, e ,ItTt) = in< (J)
When 7, CZ5, C --- C 1y, f1,..., [t is said to be a strong s-sequence.

If R=K[Xy,...,X,] is the polynomial ring over a field K, we can use the Grobner bases theory to
compute in.(J). Let < be any term order on K[Xy,...,X;T1,...,T;] with X; < Tj for all 4, j. Then for any
Grébner basis B for J C K[Xq,...,X,,Th,...,Ti] with respect to <, we have in(J) = ({in<(f) | f € B}).

If the elements of B are linear in the T;, it follows that fi,..., f; is an s-sequence for M .

Let M =1=(f1,...,ft) be a monomial ideal of R = K[X3,...,X,]. Set fi; = [flf—lf]] for i # j, where
[fi, f5] is the greatest common divisor of the monomials f; and f;. J is generated by g;; = fi;7; — fj:1; for
1 < i < j <t. The monomial sequence fi,..., f; is an s-sequence if and only if g;; for 1 <i < j <<t isa
Grobner basis for J for any term order in K[Xq,...,X,;Th,...,T;] with X; < Tj for all 4,j.

Notice that the annihilator ideals of the monomial sequence fi, ..., f; are the ideals I; = (fis, f2i,- -, fi—1,i),
for i=1,...,t ([2]).

Remark 2.1 ([2], Lemma 1.4)
From the theory of Grobner bases, if fi,..., f; is a monomial s-sequence with respect to some admissible term

order <, then fi,..., f; is an s-sequence for any other admissible term order.

We now study the symmetric algebra of a class of monomial modules over the polynomial ring R =
K[Xy,...,X,] that are monomial ideals arising from graphs.

Let G be a graph, V(G) and E(G) be the sets of its vertices and edges respectively. G is said to be
simple if, for all {v;,v;} € E(G), it is v; # v; . G is connected if it has no isolated subgraphs.
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A forest is an acyclic graph. A tree is a connected acyclic graph.

If V(G) = {v1,...,un} and R = K[Xy,...,X,] is the polynomial ring over a field K such that each
variable X; corresponds to the vertex v;, the edge ideal I(G) associated to G is the ideal ({X;X;|{vi,v;} €
E(G)}) CR.

3. Trees and s-sequences

In this section we give a study of edge ideals associated to connected acyclic graphs. The results show

that the generators of the edge ideal of a tree form an s-sequence.

Let G be a connected acyclic graph with n vertices and define the edge ideal in R = K[X7, ..., X,],
I(G) = (XlX’I‘7 X2X7‘7 ey Xr—eru Xer—i-l ) Xr+1X7‘+27 ORI Xr+51—1X7‘+51 )
X2X7‘+51+17 ey XT—lXT+51 +.o4Ssp_otly ey Xn—an) .

PI‘OpOSitiOl’l 3.1 Let I(G) = (XlXT, XQXT, .. '7X’I‘—1X’I‘7 XIXT—H N XT+1XT+2, e ,XT+51_1XT+51 N XQXT+51+1,
ey Xr 1 X dsi 445 gty - s Xn—1Xn) C R be the edge ideal of a graph G with n=7r 4 ...+ s,_1 vertices
and n—1 edges. If Symgr(I(G)) = R[T4,...,Th_1]/J, then J = ({gi;,1 <i < j<n—1}), where

XiTj—X;T; ifl1<i<j<r—1
X, T, —X;1T; ifi=1;j=r ori=2,...,r—1;j=r+s+...4+8_1
o XiTj—i-l —Xj+2Tj ifi=1j=r ori=2,...,r—1;j=r+s1+...+8_-1
i XT =X, Ty  if j=itlyi=r+1,.. . r+s—2 or j=i+1;i=r+
+s14...+sp_1+k, h=2,...,r—1,k=1,...,8,—2
fiTi—f;T; otherwise, with f; the generators of I(G).
Proof. Observe that G is a graph having only the vertex corresponding to the variable X, of degree > 2.
The generators of I(G) are the following:

H=X1 X, fo=Xo X, fro1 =X 1 X,

=X Xoi1, rrn=Xo1 Xog2, oo frasi -1 = Xogsy —1 X sy

Jrasi =XoXosi 41, o frasitsa-1=Xopsy +80-1XKrdsy4sar e en e ;
Jrasitotsr s =Xe1 Xt s, oty Jno1=fra s -1 = X1 X
Put r=ty, r+s1 =to, r+s1+s2 =t3,...,.n=r+s14+...4+8._1 =t,.
Set fij = gy fori<j=1,....t, - 1.

We compute:

fiz=fiz=...=fin1=X1, fe,=X4,, = . =fi1=X1Xy, =f1,
fos=foa= ... =fo1,-1=Xo, o, =.. .= for,1=Xo Xy, = f2, fou, =Xy,
fotor1= - =for,1=Xo Xy, =fo, ... .. ;

fo—2t-1=Xt, 2, fr,—26, = . =fr,24, - 1=Xt, 2 Xy, = fr, 2, fr,—2.4,_.= X4y,
frimotr o1 = =fri—2,4, -1 =X, —2 X4, = fr, -2,

fo1t= - =fo-1t,1=Xe, 1 X, =fr,-1, fo-1.4._, =Xt

fo-1teav1= - =fr,10,-1=Xe, 1 X, = fo, -1,

fot1=X1, fio 2= = fo . 1=X1 Xy, 1= f1y
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Jarit+2=Xe 11, furints= - =far,-1= X 1 X 2= fro11, -0 - ;
Jto—2t,-1=Xt,-2, fto2t6= . =fto—2t,-1=Xt, 2 Xt, 1= ft, -2,

Jtoto= = fro 1t 1= Xeo 1 Xty = from1, oo - ,

ftooitrar1=Xe -1, fro it = =g =Xn X i =Fe 0,

fe—2.4t,—1=Xt, 0.

In a general form we write:

fisg = fripipn = X, for 1< <j<r—1; fi,_ 4,111 = X415

fito = Xe1 s frithtith+1 = Xeyh, for i=1,...,r=1, k=1,...,5—2;

fij = fi otherwise, i< j.

In a similar way we can obtain:

fii=X;, for 1<i<y<r—1;

feoi =Xt frovktirh—1 = Xgyghyr, fori=1,...,r=1, k=1,...,5—1;
fii=1f; otherwise, i <j.

Then the generators of J are the linear forms:

gij = XiTj—X;T;, for 1 <i<j<r—1;

git; = X, Tt, =X, 11Ti; grit01 = XiTp 1 — X 42Ty, for i=1,...,r—1;
Gtitktitk+1 =Xt 0k Tt k01— Xpphr2Ty 4k, fori=1,...,r—=1, k=1,...,8—2;
9i; = fiT;— f;T; otherwise, i < j. O

Theorem 3.1 Let G be a connected acyclic graph with n vertices. Let R = K[X1,...,X,]. The edge ideal

I(G) = (XlX’I‘7 X2X7‘7 .. '7X7‘—1X7‘7 XlXT+17XT+1X’I‘+27 .. '7X7‘+51—1X7‘+51 J)
X2X7‘+51+17 ey Xr—er—i-sl—i-...—i-sT,g—i-lu ey Xn—an)

is generated by an s-sequence.
Proof. Following the steps of the proof of Proposition 3.1, let
[1=X1Xy,, =X X4y, ..., 1= X, 1 Xy,
fo=X1 Xy 11, =X 1 X 12, fro1 =X 1 Xy, oo ;
Jooa =X, 1 Xt 415 fr,1= X0, 1 Xy,
be the generators of I(G). They form an s-sequence if B = {¢;; = fi;T; — f;: 1 | 1 < i< j <t —1}
is a Grobner basis for J. For a suitable term order <, we want to prove that the S-pairs S(g:;, gn1), with
i,j,h, 1€ {1,... t, —1},i<j, i<h<l, have a standard expression with respect to B with remainder 0. Note
that, to get a standard expression of S(g;;, gn1) is equivalent to find some g+ € B whose initial term divides the
initial term of S(gi;, gri) and substitute a multiple of g, such that the remaindered polynomial has a smaller
initial term and so on up to the remainder is 0. We have

fijfin
[fis fril

I fji

TJTh a [fiju fhl]

S(gij, gn) = T1;.

Let V(G) = {v1,...,vn} be the vertex set of G with deg(v,) > 2, v, € V(G). If [in<(gij),in<(gn)] =1, then
S(gij, 9m) = fingiiTh — fiigmTi. If [in<(gs5),in<(gn)] # 1, the following standard expressions occur:
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e When the path from v; to v; and the one from v to v; do not contain v,,
S(gij» gni) = [fjin flh]( i gindy — fin g]lTh>
[fin, fi1] [fin, fi1]

with gji=—g;; ifl<j and gin=g;=0, fin=Ffu=1 if i=h,j=1;

e When the path from v, to v; contains v,

S(gij, gn) = [fjiaflh]([f}j fzg]gZhT [f{ fzg]ngT>

e When the path from v; to v; and the one from vy to v; contain v,
S(9i5, 9n1) = 9i; T — g1y,
such that in<(g;;7;) and in.(gnT;) are smaller than in.(S(g:j,gni)), for some monomial order < and

for an ordering fixed on the variables.

Hence all the S-pairs S(gi;, gn) reduce to 0 with respect to B. O

Theorem 3.2 Let G be a tree with n vertices. The edge ideal of it I(G) C R = K[Xq,...,X,] is generated
by an s-sequence.

Proof. A tree G can be intended as an extension of the connected acyclic graph examined in the present
section in which there are further vertices of degree >2. Namely, G may have vertices v,, p # r, where three
or more edges begin or end. In this way, for each of these vertices in G, we can take in account the previous

considerations.
Let fi1,..., fn_1 denote the generators of the edge ideal I(G). Following a procedure as in Proposition

3.1, we are able to obtain the generators g;; = fi;1; — f;:1i, 1 < i < j <n —1 of the relation ideal J of the
symmetric algebra of I(G).

To show that fi,..., fn—1 is an s-sequence, it is enough to see that the set of g;; is a Grobner basis for
J,i.e. the S-pairs S(gi;, gni) such that 4,4, h,l € {1,...,n—1},i<j, i<h<l, have a standard expression with
respect to {g;;} with remainder 0.

Through a generalization of the reasoning of Theorem 3.1, similar formulas hold for the S(g:;, gni) by
iterating the computation for getting standard expressions of the S-pairs in every vertex of degree >2 .

In conclusion, all the S-pairs reduce to 0 with respect to {g;;}. O

Remark 3.1 In the following we will examine interesting classes of connected acyclic graphs with n vertices

that are certain trees, so their edge ideals in R = K[X7, ..., X,,] are generated by s-sequences. In particular:
I(G) = (X1 X, Xo X, ..., Xn—1X,), the star with n—1 edges,
I(G) = (X1 X9, X2 X3,...,X,,-1X,,), the line with n points,
I(G)=(X1 X1, X0 Xn_1,..., X0 02X, 1, X Xy), €=1,...,n-2.

The first two cases are considered in [3].
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4. Forests and s-sequences

In this section we consider the following edge ideals of R = K[X7,...,X,] associated to forests:

a) I(G) = (X1 X2, X3Xu, .o, Xon—1Xom, Xont1 Xy -, X1 X))
b) I(G) = (X1X7TL7 XZXmu .. '7Xm—1Xmu Xm-i—anu Xm+2Xnu .. '7Xn—1Xn) .

Proposition 4.1 Let I(G) = (X1Xo2, X3X4, ...y Xn—1Xm, Xm+1Xn, .., Xn_1X,) be the edge ideal of a
graph G with n vertices and t =n — 3 — 1 edges. If Symgr(I(G)) = R[Ty,..., T3]/ J, then J = ({gij,1 <i <
j < t}), where

Xoi1 X0 Ty — Xoj 1 Xo;T;y if1<i<j
Xi+%Tj—Xj+%T% if%+1<l -
Z12<j<n—%

gij = 2_1
Xoi1Xoi Ty — Xjpn Xo T if1<i< g, F+1<j<n—3 -

Proof. I(G) is generated by t = n — F — 1 monomials as follows: f; = X1Xo, fo = X3X4, ...,
Jo=Xn1Xm, foy1 =XmpXn, ooy fi = X1 X, Set fi

_ _fi .

= 7] cij=1,...,t

For i < j, we compute f;; = Xg;1Xo; for 1 < ¢ < F and 2 < j<n-—-4—-1and fi; = X;4n for
FHI<i<j<n-3 -1

Slmllarly, we have fji = Xoj 1Xoj for 1 <i<j< %, fji=Xjpm for T+1<i<j<n—53—1and
fii= j+%anOl"1<i<%,%+l j<n—"2 1.
Being J generated by the linear forms g¢;; = fi;1; — f;:1; for 1 < < t, the thesis follows. O

Proposition 4.2 Let I(G) = (X1 Xm, -, Xm—1Xm, Xm+1Xn, Xm+2Xn, - .., Xn_1X,) be the edge ideal of a

graph G with n vertices and n — 2 edges. If Symg(I(G)) = R[T1,...,Th—2]/J, then J = ({gij,1 <i < j <
n —2}), where

X1, — X;T; fl<i<js<m—1

Gij = XiXpnT; — X; 01 X0 T ifl<i<m—-—1, m<j<n—2

X Ty — X Ty ifm<i<j<n—2.
Proof. I(G) is generated by n — 2 elements as follows: f1 = X1X,,, fo = XoXn, .-+, fr-1 = X;m—1Xm,
fm =Xmt1Xn, -y fn—o=Xn_1X,. Set fuz fOl“’L<j i,j=1,...,n—2.
For i < j, we compute f;; = X; for 1 <i<j < —1, fij=XiXpm for 1<i<m—-1, m<j<n—-2, and
fij=Xip1 for m<i<j<n—2.
Similarly, we have f;; = X; for 1<i<j<m—-1, fj; = XX, for 1<i<m—-1, m<j<n—2 and
fii=Xjp for m<i<j<n—2.
Being J generated by the linear forms g¢;; = f;;1; — f;:1; for 1 < 7 < n—2, then the assertion follows. O

Next result states that the above ideals are generated by an s-sequence.

Theorem 4.1 Let R= K[X;,...,X,]. The edge ideals

a) I(G) = (XlXQ, X3X4, .. .7Xm_1Xm, Xm+1Xn, .. .7Xn_1Xn)
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b) I(G) = (Xleu XZXmu .. '7Xm—1Xmu Xm-i—anu Xm+2Xnu .. '7Xn—1Xn)

are generated by an s-sequence.
Proof. a) Let f1 = X1Xo, fo = XXy, ..., fo = XmaXm, for = XpnpXa, o fi = Xno1 X,
t =n— 3 — 1, be the generators of I(G). One has: if f;; = Xo; 1Xy; for 1 <i < j <, then [fij, fu] =1
fori<j, h<l,i#h, j#1l withdjhle{l,....,5};if fij=Xjym for T +1<i<j<t, then fij # fu
if i # h and j # I, hence [fij, fru] = 1 for i < j, h <, i # h, j #1 with 4,5,h,l € { +1,...,t}; if
fij = Xoi1Xo; for 1 i< j <G and fru = Xpyz for 3 +1<h <1<t then [fijs fm] =1 forall i < j,
h<l,i#h, j#1. Hence by [2] (Prop. 1.7) it follows that fi,..., f; is an s-sequence.

b) Let fi = XaXm, fo = XoXm, ooy fnm1 = Xonm1 X, fo = Xont1 Xy -1, fn—2 = X,,—1X,, be the
generators of I(G).

We observe that if B = {g;; = fi;T; — f;:1i | 1 < i < j < n—2} is a Grébner basis for J then
fi,.-., fa—2 is an s-sequence. Hence we prove that S(g;;, gn), with i,5,h,1 € {1,...,n — 2}, has a standard
expression with respect B with remainder 0. We have:

Staoan) = 2 - 20

TTh. ()

Then we compute a standard expression of S(g;;, gn) with respect to B with remainder 0. If [in<(g;;), in<(gn)] =
1, then S(gij,9n) = finThgij — fiiTigm for all 4,4, h,1 € {1,...,n—2}. If [in(gi;),in<(gn1)] # 1, then we

compute a standard expression for all S-polynomials S(g;;, gri) using (*):
o S(gij, 9i) = —[fji» fulgnTi
* S(9ij> gns) = [fiir FinlginT}
o S(gij, gn) = [fjis fin](frjginTy + frigiyTi) if j > 1.

o S(gij,9n) = [fi6, fn) (friginTy — fraguTi) if 5 <.

Hence all S-polynomials S(gi;, gni) reduce to 0 with respect to B. O

Remark 4.1 A subclass of the case a) of this section is considered in [3], precisely the forest with edge ideal
I(G) = (X1 X, X3 Xu, ., X1 Xn).

5. Invariants of the symmetric algebra

In this section we use the theory of s-sequences in order to compute standard algebraic invariants of the

symmetric algebra of the examined edge ideals in terms of their annihilator ideals.

We analyze the following classes of edge ideals associated to a connected graph G (see Remark 3.1):
1) I(G) = (XanuXZXnu"'7Xn—1Xn) )
2) I(G) = (X1X27X2X37"'7Xn—1Xn) )
3) I(G) = (Xan_l,Xan_l, .. .7Xn_2Xn_1,Xan), le, .. .,n—2.
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Proposition 5.1 Let G be the graph with n vertices having edge ideal I(G) = (X1 X, XoXn, ..., Xpn_1Xp) C
R =K[Xy,...,X,]. The annihilator ideals of the generators of I(G) are

I1=(0), IiZ(Xl,...,Xi_l), fO'l“ i=2,...,n—1.

Proof. Let I(G) = (f1,..., fu_1), where fi = X1X,,, fo=XoXp, ..., foo1 = Xn_1Xn. Set frr = [fhfyfk]

for h < k, h,k = 1,...,n — 1. Then the annihilator ideals of the monomial sequence fi,..., f,_1 are

Zi = (f1i, f2ir- -+, fiz1,4) fori=1,...,n—1. For i = 1 we have Z; = (0) and by the structure of these monomials

it follows Zy = (fi12) = (X1), I3 = (fi3, fe3) = (X1, X2), ..., Tn1 = (fin-1, fon—1, s fu2n-1) =
(X1, Xo,..., Xn_9).
Hence Z; = (X1,...,X;1), for i=2,...,n—1. O

Remark 5.1 By Proposition 5.1 it follows in<(J) = ((X1) T, (X1, X2)T5, ..., (X1, X0y ..o, Xpo) Th1) -

Theorem 5.1 Let G,I(G) be as in Proposition 5.1. For the symmetric algebra of I(G) C R it holds:
a) dim(Symg(I(G))) =n+1,

b) e(Syma(I(G)) =n — 1,

) reg(Symn(1(G)) = 1.

Proof. By Proposition 5.1 the s-sequence that generates I(G) is strong.

a) By [6](Thm. 8.2.8), dim(Symg(I(G))) =sup{n+1,n—1} =n+ 1, where n— 1 is the number of the
edges of G.

b) By [2](Prop. 2.4), it follows that e(Symg (I(G))) = > _1 e(R/Z;). By Proposition 5.1 the annihilator
ideals I; are generated by a regular sequence, then by [5](Thm. 4.8), e(R/Z;) = 1, for i = 2,...,n— 1 and
e(R/(0)) = 1. Hence e(Symr(I(G))) = X" e(R/T;) =n —1.

c) reg(Symg(I(Q))) = reg(R[Ty,...,Ty_1]/J) < reg(R[Ty,...,T,_1]/in<(J)) < maX2<j<n_1{Zj__1
deg(fi;)—(i—2)}, by [5](Thm. 4.8). Then one has reg(Sympg(I(G))) < maxogj<n— 1{2 deg( —(—2)} =
G-1D-G-2) =1

Moreover J is generated by the linear forms of degree two X;T; — X;T;, for 4,5 =1,...,n—1. Then
reg(Symgr(I1(G))) = reg(R[Ty, ..., Th-1]/J) > 1. It follows that reg(Symg(I(G))) =1. O

Proposition 5.2 Let G be the graph with n vertices having edge ideal I(G) = (X1 X9, Xo X3, ..., X;—1X,) C
R =K[Xy,...,X,]. The annihilator ideals of the generators of I(G) are

Ty =(0),Zo = (X1), I3 = (X2), T; = (X1 X2, X0 X3, ..., X5 3X; 9, Xs1),

fori=4,....n—1.

Proof. Let I(G) = (fi,..., fa_1) where fi = X1 Xo, fo = XoXs, ..., fuo1 = Xp_1X,. Set fur = [fhf,”fk]

for h < k, h,k = 1,...,n — 1. The annihilator ideals of the monomial sequence fi,..., f,—1 are Z; =
(fris f2is -5 fim1) fori=1,...,n—1. Wehave I; = (0), Zo = (f12) = (X1), I3 = (f13, fa3) = (X1 X2, X2) =
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(X2), Iy = (fias foa, f3a) = (XuX2,X3),...,Tn-1 = (fin-1, fon—1,-- s faom-1) = (X1Xo, XoX3,...,
Xn—4Xn—37Xn—2)-
Hence Ii = (X1X2,X2X3, . ..,Xi_gXi_z,Xi_l), for ¢ = 4, NN 1. d

Theorem 5.2 Let G,I(G) be as in Proposition 5.2. For the symmetric algebra of I(G) C R it holds:

a) dim(Symgr(I(G))) =n+1

b) e(Symp(1(G)) = ("Il> + (";2> + (";3> .

Proof. a) By [6](Thm. 8.2.8), dim(Symg(I(G))) =sup{n+1,n—1} =n + 1, where n — 1 is the number
of the edges of G.
b) By [2] (Prop. 2.4), e(Symgr(I(G))) = Zl§i1<»~<u§n—1 e(R/(Ziy,.-.,Z;,)) with dim(R/(Z;,, . .., L;,)) =
d —r, where d = dim(Symr(I(G)))=n+1and 1 <r<n—1. Set d =dim(R/(Zi,,...,L;,))=n+1—r.
The multiplicity e(Sympg(I(G))) is given by the sum of the following terms:

r=1, e(R/T)) =1,

r=2 eR/(T1+ 1) = e(R/(Ty + T3)) = 1,

r=3, eR/(Ti+Ta+Ts) = e(R/(T1 + To+TI4)) =1
e(R/(Ti+Ts+Tu) = e(R/(Ty + Ts + T5)) = 1,

r=4, e(R/(Ti+Ta+Ts+1s) = e(R/(T1+ Lo+ T3+ T5)) = 1
e(R/(T1 + To+ T+ Ts)) = e(R/(Ty + To + Ts + Tp))
e(R/(T1 + Ts + Tu + Ts)) = e(R/(Ty + Ts + Ts + Ty))
e(R/(T1 + Ts + Ts + T¢)) = e(R/(Ty + Ts + Ts + Ir))

1
1
L

and so on, where, for » < n— 1, the number of e(R/(Z;,,...,Z;.)) such that dim(R/(Z;,,...,Z;.)) =n+1—r
is in general double with respect to that of the preceding case r —1, namely from each e(R/(Z;,,...,Zi,_,)) =1
it comes e(R/(Ziy,-- -+ Zi, 1, Zip 1+1)) =1 and e(R/(Ziy, .., Ti, 1, Lin_142)) = 1.
But if the index 4,1 is equal to n—2, it derives only e(R/(Z,, ..., Zi._,+1)) = 1, nothingif i1 =n—1.
Consequently, some of the e(R/(Z;,,...,Z;.)) cannot be considered, those having maximum index greater

or equal than n. In particular,

r=n—2,
e(R/(L +...+7Z, 3 +In_2)) = e(R/(L +...+7Z, 3 +In_1)) =
e(R/(Il +...+Zh 4 +In_2+In_1)) =...= e(R/(Il + 723+ .. 'In—l)) =1

r=n—1, eR/Ii+...+1,1))=1.
Let Fo=0,F1=1,..., F;=F,_o+ F;_1,1 > 2, be the Fibonacci sequence. It results:
-ifn=2 e(Symr(I(G))) = e(R/(Th)) =1,
-ifn=3  e(Symr(I(G))) = e(R/(T1))+ e(R/(T1 + Io)) =2 =1+ Fy,
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Sifn=4 <SymR<I<G>» = e(R/(T)+ o(R/(T) +To))+

e(R/(T1 +I3))+ e(R/(Th + I+ 13)) =4 =2+ F3,
-ifn=5 (SymR (1(G))) = e(R/(T1))+ e(R/(T1 + I2))+ e(R/(T1 + Is))+
e(R/(Th + I + I3))+ e(R/(T1 + 2 + Iu))+ e(R/(Z1 + I3 + Iu))+
e(R/(Th +Io+ 13+ 14) = T=4+ Fy,
and so on.
Hence e(Sympg(I(G))) is the sum of the first n—1 terms of the Fibonacci sequence, that is Fj,11 — 1,
so the assertion follows taking in consideration the Lucas’ formula. O

Proposition 5.3 Let G be the graph with n vertices having edge ideal I1(G) = (X1X,-1,XoX0-1,...,
Xn—oXn_1,XX,), £=1,...,n—=2, I(G) C R = K[Xy1,...,X,]. The annihilator ideals of the generators
of I(G) are

7h=(0), Z,=(X1,...,Xi—1), for i=2,...,n=2, I, 1=(X,_1).

Proof. Let I(G) = (fl,fz,...7fn_2,fn 1), where f1 = Xan, f2 = )(2)(7“...7 fn—2 = Xn—2Xn—17

fno1=Xe Xy, €=1,...,n—2. Set frx = for h<k, hk=1,...,n—1. The annihilator ideals of the
monomial sequence fi,..., f,_1 are Z; = (f1i7f2i, ooy fic1,4), for ¢ =1,...,n—1. Hence we have Z; = (0),
Iy = (fi12) = (X1), I3 = (f13, f23) = (X1, X2),..., Zn—2 = (fin—2,-- s Ju-3n—2) = (X1, Xo,..., X_3),

Tni=(fin-1,-- fa—2m—1)= (XiXn_1,.. ., Xe1 Xn_1, X1, Xe1 X1, -, X2 Xno1) = (Xpm1). O

Theorem 5.3 Let G,I(G) be as in Proposition 5.3. For the symmetric algebra of I(G) C R it holds:
a) dim(Symg(I(G))) =n+1,
b) e(Sympr(I(G)) =2(n — 2).

Proof. a) By [6](Thm. 8.2.8), dim(Symg(I(G))) =sup{n+1,n—1} =n + 1, where n — 1 is the number
of the edges of G.

b) By [2] (Prop. 2.4), e(Symr(1(G))) = X1<i<...<ir<n_1 B/ (Tiy, - .., i) with dim(R/(Z;,, ..., T;,)) =
d —r, where d = dim(Symr(I(G))) =n+1and 1 <r<n—1. Set d =dim(R/(Zi,,...,L;,))=n+1—r.

The multiplicity e(Sympg(I(G))) is given by the sum of the following terms:

r=1, e(R/T1) =1,

r=2, G(R/(Il +I2)) = e(R/(L +In_1)) =1,

r=3, G(R/(Il + 15 +I3)) = e(R/(L + 15 +In_1)) =1,

F=n=2 e(R/(Ti+. .+ Tu2) = e(R/(T1 + .o+ Tug + Tuo)) = 1,
r=n-1, e(R/(Ti+...4T,1)) =1,

and the assertion easily follows. O
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Now we analyze the following classes of edge ideals:
1) I(G) = (X1 X2, X3X4,..., Xn1Xy) ,
2) I(G) = (X1 X2, X3 Xy, ..., X1 X, Xonp1 X,y o, X1 X))
3) I(G) = (XiXm, XoXoms ooy, Xono1 X, X1 X0, X2 X, -+ o, Xnm1 Xn)

where G is a non connected graph (see section 3).

Proposition 5.4 Let G be a graph with n vertices and edge ideal I(G) = (X1 X2, X3X4,..., X, 1X,,) CR=
K[Xy,...,Xy,]. The annihilator ideals of the generators of I(G) are

. n
I = (0), Z; = (X1 X2, X3Xy, ..., Xo;_3X9; 2), for i=2,..., 5

Proof. Let I(G) = (fl,...,f%) where fi = X1Xz2, fo = X3X4, ..., fo = X,1X,,. Then the an-

nihilator ideals of the monomial sequence fi,. ..,f% are Z; = (fui, f2ir---, fi14) for @ = 1,...,%. For

i = 1 we have Il = (0) Moreover, IQ = (flg) = (XlXQ), Ig = (f13,f23) = (XlXQ,X3X4), ceey
Te = (frn fom,o o foorn) = (XaXo, X5 Xy, oo, X3 Xn2).

Hence Ii = (XlXQ, X3X4, .. .,Xzi_gXQi_z), for i = 2, ceey % 0

Remark 5.2 By Proposition 5.4 it follows that
ing(J) = (X1 X2) T, (X1 X2, X3X4) T, ..., (X1 X2, .., Xp—3Xp—2)Tn) .

Theorem 5.4 Let R=K[X1,...,X,)], I(G) = (X1 X2, X3X4,...,X,1X,,). Then:
a) dim(Symg(I(G))) =n+1,

b) e(Symr(I(G) = S, 27,

) reg(Syma(I(G)) < 2.

Proof. By Proposition 5.4, I(G) is generated by a strong s-sequence.

a) By [5] (Thm. 4.8), Sympg(I(G)) is Cohen-Macaulay having dimension dim(R)+1=n+1.

b) By [2] (Prop. 2.4), it follows that e(Symg(I(G))) = Z-%:l e(R/Z;). By Proposition 5.4 we compute
e(R/I:) = 1, e(R/I) = 2, e(R/I3) = 4, e(R/T4) = 8,...,e(R/Z;) = 2i=1. Hence e(Symg(I(Q))) =

i%:l 9i—1.

c) reg(Symp(I(G))) = reg(R[Ty,. .., Ty]/J) < reg(R[T1, ..., T2]/in<(J)) < maxagj<n {77} deg(fi;)—
(j —2)} by [5] (Thm. 4.8). Then one computes: reg(Sympg(I(G))) < mangjg;_l{zg:—ll deg(Xa;i—1X2;) — (j —
2)} =maxag;<3{20-1) - -2)} = 5. =

Proposition 5.5 Let I(G) = (X1 X9, X3X4, ..., X1 X, X1 X0, .., Xno1Xy) be an ideal of R =
K[Xy,...,X,]. Then the annihilator ideals of the generators of I(G) are:
I =(0), Zi = (X1 X2, X3X4, ..., Xoi 3X0;-2) for i=2,..., % +1,
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I%‘f‘j = (XlXQ, . ..,Xm_le,Xm+1, . ..,Xm+j_1) fOT‘ j = 2, e, =m — 1.

Proof. Let f1 = X1Xo, fo = X3X,, ..., fm =X 1 X, f%_H = Xpt1Xn, ooy, ft = Xpno1 X, for
t=n—%—1, be the generators of I(G). Then the annihilator ideals of the monomial sequence f1,..., f; are the
following: Z; = (0), and by the structure of the monomials, Zo = (X1Xs), Z3 = (X1 X2, X3X4), ..., Inm =
(X1 X2, X5 X4, .o, Xip—3Xm—2), Tmy1 = (X1 X2, X3Xa,.o o, Xin—3Xm—2, Xin—1Xm), Tmio = (X1 Xo, X3Xy,

s Xm—3Xm—2, Xm—1Xms Xmt1)y ooy Lt = (XnXo, X3Xu, oo o, Xon—3Xim—2, X1 X, X1, -+, Xn—2).
The assertion follows. a

Remark 5.3 By Proposition 5.5 one has
ing(J) = (X1 Xo) Tp, (X1 X2, X3X4) T3, ..., (X1Xo, X3 Xy, ..., X 3Xm—2, X1 X, Xong1, .-, Xn2)
Tn———l)

Theorem 5.5 Let R = K[X1,...,X,], I(G) = (X1 X2, X3X4, ..., Xm—-1Xm, Xm+1Xn,..., Xn-1X,). Then:
a) dim(Symgr(I(G))) =n+1
b) e(Symp(I(G)) = 2, 271 4 2% (n—m — 1)
c) reg(Symr(I1(G)) < F + 1.
Proof. By Proposition 5.5 I(G) is generated by a strong s-sequence.
a) By [5] (Thm. 4.8), Sympg(I(G)) is Cohen-Macaulay having dimension dim(R)+1=n+1.
b) By [2] (Prop. 2.4), it follows that e(Symg(I(G))) = 25:1 e(R/I;), t = n— 3 — 1. Using

Proposition 5.5, we compute e(R/Z1) = 1, e(R/I2) = 2, e(R/I3) = 4, e(R/I4) = 8,...,e(R/Im) = %_1,
e(R/Tp 1) = 2%,..., e(R/T;) = 2% . Hence: e(R/I;) = 2%, for i = 1,...,% and e(R/Z;) = 2%,

,.1

Jj=%,...,t. It follows e(Symr(I(G))) = Z-%:l 20714 (t — (2 4+ 1)+ 1)2% . The assertion holds.
c) Let t =n — 3 —1. Then reg(Symg(I(G))) = reg(R[T1,...,T3]/J) < reg(R[T1,...,Ty]/ins(J)) <
maxo<;<i{ 2151 dea(fiy) — (7 = 2)}, by [5] (Thm. 4.8). So it is reg(SymR (1)) < maxagjcn-g-1{X500

deg(Xak—1Xor) — (5 —2)}. Set d = ch;i deg(Xogr—1Xox) — (j — 2). One computes: d =k, for k=1,..., %

and d= 5 +1,for k=3 +1,...,n— % — 2. Hence reg(Symgr(I(G))) < F + 1. O
Proposition 5.6 Let I(G) = (X1 Xm, XoXms ooy Xono1Xm, Xm+1Xn, .., Xn—1X,) be an ideal of R =
K[X1,...,Xm,.., Xn], myn > 2. Then the annihilator ideals of the generators of I1(G) are:
Il = (0), Ii = (Xl,XQ...7Xi_1) fO'l“ 1= 2,...,m— 1,
In= (Xleu XoXom, .. '7Xm—1Xm)

Ti= (X1 Xm, Xo X, oo s Xonm1Xm, Xmt1s- -, Xj) for j=m+1,...,n—2.
Proof. Let fl = Xleu f2 = XQXmu SR fm—l = Xm—leu fm = Xm-i-anu SERE) fn—2 = Xn 1 X,
be the generators of I(G). Then the annihilator ideals of the monomial sequence fi,..., f,_2 are the
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following: Z; = (0), and by the structure of the monomials, Zo = (X1), Zs = (X1,X2), ..., Zm—1 =
(X1, X0, s X—2)y I = (Xn X, XoXony oo s Xone1 X))y Iit1 = (XaXom, Xo Xy ooy X1 Xom, Xmt1) s
Itz = (X1Xm, XoXmy oo oy X1 Xmy, Xmt1, Xma2), ooy In—o2 = (X1Xm, XoXm, ooy Xn—1Xm, Xim+1,
Xm+2,...,Xn_2). The assertion follows. O

Theorem 5.6 Let R=K[X1,...,Xm,...,Xs], myn>2 and I(G) = (X1 Xm, XoXm, -+, Xin—1Xm,
X1 Xy Xonso X -+ Xn_1Xn). Then:

a) dim(Symgr(I(G))) =n+1,

b) e(Symr(I(G)) = mn —m? — 1.
Proof. a)By Proposition 5.6, 77 = (0), Z; = (X1, X2..., X;—1)ifi=2,....m—1,Z,, = (X1 Xm, Xo X, ...,
Xm_le), Ii = (Xle,Xsz, ey Xm_le,Xm_H, .. .,Xi) if 1= m 4+ 1, N 2, and by [2] (Prop. 24)
we have dim(Symg (I(G))) = maxi<rgn—2{dim(R/(Zsy, ..., ;) +7}, for 1 <i3 < --- <4, < n—2. Hence the
maximum dimension is given for 1 < iy < -+ < i, < n—2: dim(R/(Z;y,..., L)) +r=n—(r—1)+r=n+1
and dim(Symgr(I((G))) =n+1.

b) By [2](Prop. 2.4), e(Symr(I(G))) = > 1<i<...<ir<n_1 R/ (Ziys - .-, Ti,)) with dim(R/(Z;,, ..., Z;,.)) =
d —r, where d = dim(Symr(I(G)))=n+1and 1 <r<n—1. Set d =dim(R/(Zi,,...,L;,))=n+1—r.
The multiplicity e(Sympg(I(G))) is given by the sum of the following terms:

r=1, e(R/11)=1
r=2, eR/(Th+L))=¢eR/(T1+Tn))=1
r=3, e(R/(L + 15 +I3)) = e(R/(L -‘rIz-i—Im)) = e(R/(L +Zm +Im+1)) =1

r=m-—1, (m—1 terms)
e(R/(Ti+ .. .+ Tmo2+Tma))=eR/(T1+.. .+ Tn2+TIn) =
e(R/(Ti+. A Tn3+Tn+Tmi1))=...= e(R/(T1 + T+ ...+ Tom-3)) = 1

r=m, (m—1 terms)
e(R/I(Th+ ..+ Zm1+Tn)) =2
e(R/(Ti+ ...+ T2+ Loy + Ins1)) = e(R/ (@1 + ...+ Ty + T + Tt +Tins2)) = ... = e(R/(T1 + Ty +
vt Tom—2)) =1

r=n—m, (m—1 terms)
e(RI(Th+..4+Zm+..+Lp-m)) =2
e(R/T1+ ... 4T+ T+ oo+ Tpmi1)) = e(R/(T1 + ..+ Tn-s + I + oo+ Tnomaa)) = ... =
e(R/(T1 +Tm+ ...+ Th2)) =1

r=n—m+1, (m—2 terms)
e(RI(Ti+... 4T+ ...+ Ty my1)) =2
e(R/T1+ ... 4T+ T+ oo+ Tpmi2)) = e(R/(T1 + .+ Tn-s + I + oo 4 Tnomas)) = ... =
e(R/(Tv+To4+TIm+...+Ip2)) =1
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r=n-—23, (2 terms)
e(R/(Il+...+Im+...+In_3))=2, e(R/(I1+...+Im_2 + I+ ... +1,2))=1

r=n-—2, e(R/(Il++Im++In—2)):2

-1 1
Hence e(Symg(I(G))) = % +m(n —2m) + % — 3+ 2, so the assertion follows. O
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