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Generalization of some properties of Banach algebras to
fundamental locally multiplicative topological algebras
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Abstract

In this article we generalized some properties of Banach algebras, to a new class of topological algebras

namely fundamental and fundamental locally multiplicative topological algebras (abbreviated by FLM ).

Also the new notion of sub-multiplicatively metrizable topological algebra is given and some well known

spectral properties of Banach algebras are generalized to such kind of algebras.
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1. Introduction

The notion of fundamental topological spaces (also algebras) has been introduced in [1] in 1990 extending
the meaning of both local convexity and local boundedness.

A topological linear space A is said to be fundamental one if there exists b > 1 such that for every
sequence (xn) of A , the convergence of bn(xn − xn−1) to zero in A implies that (xn) is Cauchy.

A fundamental topological algebra is an algebra whose underlying topological linear space is fundamental.
The famous Cohen factorization theorem for complete metrizable fundamental topological algebras is proved in

[1] and the nth roots and quasi square roots in fundamental topological algebras are studied in [4].

The fundamental locally multiplicative topological algebras (abbreviated by FLM ) with a property very

similar to the normed algebras is also introduced in [2]. A fundamental topological algebra is called locally
multiplicative if there exists a neighborhood U0 of zero such that, for every neighborhood V of zero, the
sufficiently large powers of U0 lie in V .

Also in [2] a topological structure is defined on the algebraic dual space of an FLM algebra to make it
a normed space, and some of the famous theorems of Banach algebras are extended for complete metrizable
FLM algebras. In this paper we have studied the linear multiplicative functionals on FLM algebras and
proved some results on them in section 2. In section 3, we introduced the new notion of sub-multiplicative
metrizable topological algebras and by using it we generalized some properties of Banach algebras to FLM

algebras.
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2. Multiplicative functional on FLM algebras

A version of the Gleason, Kahane-Zelazko theorem is proved for FLM algebras in [3]. In theorem 5.5 of

[3], T : A −→ C is assumed a non-zero linear functional on A and proved that T is multiplicative if and only

if T (a) ∈ Sp(a) for all a ∈ A . Now by replacing C by a semi-simple complete metrizable FLM algebra B we
generalized it as follow.

Theorem 2.1 Let A and B be two commutative complete metrizable FLM algebras, with unit elements, and
let B be semi-simple. If T : A −→ B is a linear mapping, such that Sp(Tx) ⊂ Sp(x) , for any x ∈ A , then T

is a multiplicative mapping.

Proof. Let f be a multiplicative and linear functional on B and put F (x) = f(Tx) for any x ∈ A . So F

is a linear functional on A , and also by theorem 5.5 [3],

F (x) = f(Tx) ∈ Sp(Tx) ⊂ Sp(x),

and so by using again theorem 5.5 [3] F is multiplicative and linear functional on A . It follows that

F (xy) = F (x)F (y),

or
f(Txy) = f(Tx)f(Ty) = f(TxTy).

Since f is arbitrary multiplicative linear functional on B and B is semi-simple, thus T is multiplicative.
�

Let A and B be two commutative complete metrizable FLM algebras, with unit elements eA and eB ,
respectively. If T is a multiplicative linear mapping from A into B , such that TeA �= eB , then it may be
Sp(Tx) is not a subset of Sp(x). Furthermore Sp(x) ⊂ Sp(Tx). For example, let A1 and A2 be commutative
complete metrizable FLM algebras, B = A1 ⊕ A2 and T : A1 −→ B . Then we have the following theorem.

Theorem 2.2 Let A and B be two commutative complete metrizable FLM algebras, with unit elements eA

and eB , respectively. Let T be a linear multiplicative mapping from A to B , such that TeA = eB . Then for
any x ∈ A , Sp(Tx) ⊂ Sp(x) .

Proof. By assumption we have

eB = TeA = Txx−1 = TxTx−1,

for any invertible element x ∈ A . This shows that, for any such x , Tx is invertible in B and

T (x−1) = (Tx)−1.

Now if λ /∈ Sp(x), then x − λeA is invertible in A and so T (x − λeA) = Tx − λeB is invertible in B .

Therefore λ /∈ Sp(Tx). �

446



ZOHRI, JABBARI

3. New results on FLM algebras

In this section, by introducing the new notion of sub-multiplicative metrizable topological algebra, we
generalize some well known spectral properties of Banach algebras to complete metrizable FLM algebras.

By ΩA we mean the set of all elements a ∈ A such that ρ(a) < 1, where ρ(a) is the spectral radius of

a ∈ A . We denote the center of topological algebra A , by Z(A), such that

Z(A) = {a ∈ A : ax = xa, for all x ∈ A}.

Definition 3.1 Let (A, d) be a metrizable topological algebra. We say A is a sub-multiplicative metrizable
topological algebra if

d(0, xy) ≤ d(0, x)d(0, y)

for each x, y ∈ A .

It is clear that, when A is a sub-multiplicatively metrizable topological algebra, the meter dA is not a discrete
meter; for example, if dA is a Dirac meter on some ideal E of A , the sub-multiplicatively of the meter fails.
For abbreviation we denote dA(0, x) by DA(x) for any x ∈ A .

The following lemma is proved for Banach algebras and has a similar proof for FLM algebras (see

theorem 3.2.6, [5]). Therefore, we remove its proof, because it is well known and clear.

Lemma 3.2 Let A be a complete metrizable FLM algebra and x ∈ A . Then for every nonconstant polynomial
P with complex coefficients we have

Sp(P (x)) = P (Sp(x)).

Let A be a complete metrizable fundamental topological algebra with unit e and x ∈ A . If for some b > 1,
bnxn −→ 0 in A , then e − x is invertible and

(e − x)−1 =
∞∑

n=0

xn

and also if for some b > 1, bn(e − x)n −→ 0, then x is invertible (theorem 4.1, [2]). If A is a complete

metrizable FLM algebra with meter dA , then (e − x) is invertible for dA(0, x) = DA(x) < 1. Now if A is a

complete metrizable FLM algebra with sub-multiplicatively meter dA and λ �= 0, then (e − λx) is invertible

for dA(0, x) = DA(x) < |λ| .

Theorem 3.3 Let A be a complete metrizable FLM algebra with sub-multiplicative meter dA . Then ρ(x) =

limn→∞ DA(xn)1/n .

Proof. From above discussion, we have ρ(x) ≤ DA(x), for any x ∈ A . Now if applied the previous lemma

to xn , we have ρ(x)n ≤ DA(xn). Let f be a linear functional on A , then the map from C\Sp(x) to C , which

λ �→ f((λe − x)−1) is holomorphic. By theorem 4.1 of [2], we have

f((λe − x)−1) =
1
λ

(f(e) +
f(x)

λ
+ . . . +

f(xn)
λn

+ . . .).
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Fix λ , such that |λ| > ρ(x). Then for every linear functional f on A , we have supn | f(xn)
λn | < ∞ . By

applying the Banach-Steinhaus theorem (theorem 2.8, [7]) to the space of all continuous linear functional on A

and to the sequence of Tn from that to C , defined by Tn(f) = f(xn)
λn , we conclude that there exists a constant

C , depending to λ , such that DA(xn) ≤ C|λ|n for all n ≥ 1. Then

lim
n−→∞

sup DA(xn)1/n ≤ |λ|,

for all |λ| ≥ ρ(x). Hence we conclude

ρ(x) ≤ lim
n−→∞

inf DA(xn)1/n ≤ lim
n−→∞

sup DA(xn)1/n ≤ ρ(x),

therefore ρ(x) = limn→∞ DA(xn)1/n . �

Let E(A) be the set of all elements x ∈ A for which E(x) =
∑∞

n=1
xn

n! , can be defined. If A be a

complete metrizable FLM algebra, then E(A) = A (theorem 5.4, [3]).

The following theorem is a version of Zemánek theorem (theorem 5.3.1, [5]) for FLM algebras:

Theorem 3.4 Let A be a complete metrizable FLM algebra with sub-multiplicatively meter dA . Then the
following statements are equivalent:

(i) a is in the Jacobson radical of A ;

(ii) Sp(a + x) = Sp(x) , for all x ∈ A ;

(iii) ρ(a + x) = 0 , for all quasi-nilpotent elements x in A ;

(iv) ρ(a + x) = 0 , for all quasi-nilpotent elements x in a neighborhood 0 in A ;

(v) there exists C > 0 such that ρ(x) ≤ CDA(x − a) , for all x ∈ A in a neighborhood of a in A .

Proof. Straightforward. �

Theorem 3.5 Let A be a complete semi-simple metrizable FLM algebra with sub-multiplicative meter. If
g : ΩA −→ ΩA be a holomorphic map satisfying g(0) = 0 and g′(0) = I , then g(c) = c for all c ∈ ΩA ∩ Z(A).

To prove this theorem we need to the following lemma.

Lemma 3.6 Let A be a complete metrizable FLM algebra with sub-multiplicative meter dA . Suppose that
x, y ∈ A satisfy xy = yx . Then ρ(x + y) ≤ ρ(x) + ρ(y) and ρ(xy) ≤ ρ(x)ρ(y) .

Proof. Since xy = yx , then (xy)n = xnyn for each integer n ≥ 1. By theorem 3.3, we have

ρ(xy) = lim
n→0

DA((xy)n)1/n = lim
n→0

DA(xnyn)1/n

≤ lim
n→0

DA(xn)1/n lim
n→0

DA(yn)1/n

= ρ(x)ρ(y).
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Let ρ(x) < α , ρ(y) < β and a = x/α , b = y/β . Then ρ(a) < 1 and ρ(b) < 1. Therefore

there exists some integer N such that for n ≥ N , we have max(DA(a2n

), DA(b2n

)) < 1. Now let γn =

max0≤k≤2n DA(ak)DA(b2n−k), then we have

DA((a + b)2
n

)1/2n

= DA(
2n∑

k=0

(
2n

k

)
xky2n−k)1/2n

≤ (
2n∑

k=0

(
2n

k

)
αkβ2n−kDA(ak)DA(b2n−k))1/2n

≤ (α + β)γ1/2n

n .

The sequence (γn) is decreasing and therefore

ρ(x + y) = lim
n−→∞

(DA(x + y)2
n

)1/2n

≤ (α + β) lim
n−→∞

sup γ1/2n

n

≤ (α + β) lim
n−→∞

sup γ
1/2n

N

= α + β,

for arbitrary ρ(x) < α , ρ(y) < β . The proof is complete. �

Proof. [Proof of theorem 3.5]

Fix c ∈ ΩA ∩ Z(A). Define f : C −→ ΩA with f(λ) = g(λc). f is holomorphic on

{λ ∈ C : |λ| <
1

ρ(c)
}.

Then g has Taylor expansion about 0 and we have

g(λc) = λc +
∞∑

j=2

λjaj (|λ| <
1

ρ(c)
).

Now we have to prove that aj = 0, for all j ; if not the case, suppose for contradiction, that there is some

j with aj �= 0 and let k be the smallest integer such that ak �= 0. Take q ∈ A with ρ(q) = 0 and let n ≥ 1.

Then, writing gn for the n-fold composition g ◦ · · · ◦ g , we have

gn(λc + λknq) = λc + λkn(ak + q) + O(λk+1) (λ → 0).

Now as c and q commute, it follows that ρ(λc + λknq) ≤ ρ(λc) + ρ(λknq) = |λ|ρ(c) (lemma 3.4), and so

we can define a holomorphic function h : {0 < |λ| < 1/ρ(c)} −→ A by

h(λ) =
gn(λc + λknq) − λc

nλk
(0 < |λ| < 1/ρ(c)),
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isolated singularity at λ = 0 can be removed by setting h(0) = ak + q . By Vesentini’s theorem (theorem 3.4.7,

[5]), the composition ρ ◦ h is a subharmonic function on {0 < |λ| < 1/ρ(c)} , and so by the maximum principle

ρ(h(0)) ≤ max
|λ|=1

ρ(h(λ)).

Making use of lemma 3.4 again to estimate the right-hand side, it follows that

ρ(ak + q) ≤ 2/n.

As this is true for each n , we can let n −→ ∞ deduce that ρ(ak + q) = 0. And as this holds for each

q ∈ A with ρ(q) = 0, Zemánek’s characterization of the radical (theorem 3.5), implies that ak belongs to the
radical of A , which is zero since A is semi-simple. Thus ak = 0, and we have arrived at a contradiction. We
conclude that indeed aj = 0 for all j ≥ 2, and hence from (1) that g(c) = c . �

In theorem 3.5 the property of sub-multiplicativity of FLM algebras is essential but in the next theorem
we do not need it.

Theorem 3.7 Let A be a semi-simple complete metrizable FLM algebra. Given a ∈ ΩA\ZA , then there exists

a holomorphic map g : ΩA −→ ΩA satisfying g(0) = 0 and g′(0) = I such that g(a) �= a .

Proof. Let a ∈ ΩA\ZA . Then there exists u ∈ A , such that au �= ua . Suppose that dA(0, u) < 1, where

dA is a meter on A . Then v := log(e − u) satisfies e−vaev �= a . Define g : ΩA −→ ΩA by

g(x) = e−
xv
a xe

xv
a (x ∈ ΩA).

Then g is a holomorphic function, g(0) = 0 and g′(0) = I , but g(a) = e−vaev �= a . �

By combination of theorems 3.5 and 3.7, we have the following theorem.

Theorem 3.8 Let A and B be semi-simple complete metrizable FLM algebras with sub-multiplicatively meter.
If f : ΩA −→ ΩB is a biholomorphic map, then f(ΩA ∩ZA) = ΩB ∩ ZB .

Proof. Let c ∈ ΩA ∩ ZA be an arbitrary. Without loss of generality suppose that c �= 0. Then from
assumption about f , f(c) �= f(0). Take b ∈ B , and define h : ΩB −→ ΩB by

h(y) = e−(
y−f(0)

f(c)−f(0) )2bye(
y−f(0)

f(c)−f(0) )2b (y ∈ ΩB).

By above definition h is a holomorphic function, h(f(0)) = f(0) and h′(f(0)) = I . Now set g =

f−1 ◦ h ◦ f , then g is a holomorphic function from ΩA into ΩA , such that g(0) = 0 and g′(0) = I . Therefore

g(c) = c (theorem 2.1), and from definition of g , we have h(f(c)) = f(c). By proof of theorem 2.2, f(c) ∈ ZB .

In case c = 0, by continuity of f , the proof remains true. Hence f(ΩA ∩ ZA) ⊂ ΩB ∩ ZB .

Let c ∈ ΩB ∩ ZB , with applying the same argument to f−1 , we have c ∈ f(ΩA ∩ ZA). Therefore

ΩB ∩ ZB ⊂ f(ΩA ∩ ZA). �
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