Hypercyclic tuples of the adjoint of the weighted composition operators

Rahmat Soltani, Bahram Khani Robati, Karim Hedayatian

Abstract

An n-tuple of commuting operators, $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ on a Hilbert space \mathcal{H} is said to be hypercyclic, if there exists a vector $x \in \mathcal{H}$ such that the set $\left\{T_{1}{ }^{k_{1}} T_{2}{ }^{k_{2}} \ldots T_{n}{ }^{k_{n}} x: k_{i} \geq 0, i=1,2, \ldots n\right\}$ is dense in \mathcal{H}. In this paper, we give sufficient conditions under which the adjoint of an n-tuple of a weighted composition operator on a Hilbert space of analytic functions is hypercyclic.

Key Words: Hypercyclicity, tuples, weighted composition operators

1. Introduction

An n-tuple of operators is a finite sequence of length n of commuting continuous linear operators $T_{1}, T_{2}, \ldots, T_{n}$ acting on a locally convex topological vector space X. Hypercyclic tuples of operators were introduced in [5, 7] and [12]. A tuple $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be hypercyclic, if there exists a vector $x \in X$ such that the set $\left\{T_{1}{ }^{k_{1}} T_{2}{ }^{k_{2}} \ldots T_{n}{ }^{k_{n}} x: k_{i} \geq 0, i=1,2, \ldots, n\right\}$ is dense in X. This definition generalizes the hypercyclicity of a single operator to a tuple of operators. Like Feldman in [7], we denote the semigroup generated by a tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ by $\mathcal{F}_{T}=\left\{T_{1}{ }^{k_{1}} T_{2}{ }^{k_{2}} \ldots T_{n}{ }^{k_{n}}: k_{i} \geq 0, i=1,2, \ldots, n\right\}$ and the orbit of x under the tuple T by $\operatorname{orb}(T, x)=\left\{S x: S \in \mathcal{F}_{T}\right\}$.

Consider a Hilbert space \mathcal{H} of functions analytic on the open unit disc \mathbb{D} such that for each $\lambda \in \mathbb{D}$ the linear functional e_{λ} of evaluation at λ is bounded on \mathcal{H}. Moreover, the constant function 1 and the identity function $f(z)=z$ are in \mathcal{H}. The weighted Hardy space is the well-known example of such \mathcal{H}. Let $(\beta(n))_{n}$ be a sequence of positive numbers with $\beta(0)=1$. The weighted Hardy space $H^{2}(\beta)$ is defined as the space of analytic functions $f=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ on \mathbb{D} satisfying

$$
\|f\|_{\beta}^{2}=\sum_{n=0}^{\infty}|\hat{f}(n)|^{2}|\beta(n)|^{2}<\infty
$$

The classical Hardy space, the Bergman space and the Dirichlet space are weighted Hardy spaces with $\beta(n)=1, \beta(n)=(n+1)^{-\frac{1}{2}}$ and $\beta(n)=(n+1)^{\frac{1}{2}}$, respectively. Reference [4] is a good source on properties of

[^0]weighted Hardy spaces. The continuity of point evaluations along with the Riesz representation theorem imply that for each $\lambda \in \mathbb{D}$ there is a unique function $K_{\lambda} \in \mathcal{H}$ such that $f(\lambda)=\left\langle f, K_{\lambda}\right\rangle, f \in \mathcal{H}$. The function K_{λ} is the reproducing kernel for the point λ.

A complex-valued function ω on \mathbb{D} for which $\omega f \in \mathcal{H}$ for every $f \in \mathcal{H}$ is called a multiplier of \mathcal{H} and the collection of all multipliers is denoted by $M(\mathcal{H})$. Each multiplier ω of \mathcal{H} determines a multiplication operator M_{ω} on \mathcal{H} by $M_{\omega} f=\omega f, f \in \mathcal{H}$. Each multiplier is a bounded analytic function on \mathbb{D}. In fact, since the constant functions are in \mathcal{H}, every function in $M(\mathcal{H})$ is analytic on \mathbb{D}. Moreover, if $\lambda \in \mathbb{D}$ then

$$
\left|\omega(\lambda) K_{\lambda}(\lambda)\right|=\left|\left\langle M_{\omega} K_{\lambda}, K_{\lambda}\right\rangle\right| \leq\left\|M_{\omega}\right\|\left\|K_{\lambda}\right\|^{2} .
$$

This implies that $|\omega(\lambda)| \leq\left\|M_{\omega}\right\|$ for every $\lambda \in \mathbb{D}$ and so $\omega \in H^{\infty}$. If $\omega \in M(\mathcal{H})$ and φ is a mapping from \mathbb{D} into \mathbb{D} such that $f \circ \varphi$ is in \mathcal{H} for every $f \in \mathcal{H}$, then an application of the closed graph theorem shows that the weighted composition operator $C_{\omega, \varphi}$ defined by $C_{\omega, \varphi}(f)(z)=M_{\omega} C_{\varphi}(f)(z)=\omega(z) f(\varphi(z))$ is bounded. From now on, we assume that ω and φ satisfy these properties. For a positive integer n, the nth iterate of φ, denoted by φ_{n}, is the function obtained by composing φ with itself n times; also, φ_{0} is defined to be the identity function. Moreover, when φ is invertible, we define the iterates $\varphi_{-n}=\varphi^{-1} \circ \varphi^{-1} \circ \ldots \circ \varphi^{-1}$ (n times). Also, $C_{w, \varphi}^{*} K_{\lambda}=\overline{w(\lambda)} K_{\varphi(\lambda)}$ for every λ in \mathbb{D} which implies that $C_{w, \varphi}^{* n} K_{\lambda}=\prod_{j=0}^{n-1} \overline{w\left(\varphi_{j}(\lambda)\right)} K_{\varphi_{n}(\lambda)}$. Moreover, $C_{w, \varphi}^{n}(f)=\left(\prod_{k=0}^{n-1} w \circ \varphi_{k}\right) f \circ \varphi_{n}$ for every $f \in \mathcal{H}$. The properties of composition and weighted composition operators on various spaces of analytic functions have been investigated by many authors; see monographs $[4,15]$ and, for example, the following recent papers [9, 10, 11] and references therein.

In this paper, we give sufficient conditions for the n-tuple of the adjoint of a weighted composition operator to be hypercyclic. Hypercyclicity of operators have been widely studied. It was shown by Rolewicz [13] that twice the backward shift on the space $\ell^{2}(\mathbb{N})$ is hypercyclic. Many natural operators are hypercyclic. For example, certain operators in the classes of weighted shifts [14], composition operators [2], and the adjoint of subnormal, hyponormal and multiplication operators [6, 3], and the weighted composition operators and their adjoint operators $[16,17,11]$ are hypercyclic. A good source on this topic is [1].

Proposition 1 ([7], Proposition 2.4) Suppose that $T=\left(T_{1}, \ldots, T_{n}\right)$ is a hypercyclic tuple on a separable Banach space X. Then every non-zero orbit of $T^{*}=\left(T_{1}{ }^{*}, \ldots, T_{n}{ }^{*}\right)$ is unbounded.

Proposition 2 If φ_{1} and φ_{2} are analytic maps of the disc into itself then $\left(C_{\varphi_{1}}^{*}, C_{\varphi_{2}}^{*}\right)$ is not hypercyclic on \mathcal{H}.
Proof. Since $C_{\varphi_{1}}{ }^{k_{1}} C_{\varphi_{2}}{ }^{k_{2}} 1=1$, then the orbit of 1 under $\left(C_{\varphi_{1}}, C_{\varphi_{2}}\right)$ is bounded. Thus, using Proposition 1, the result follows.

2. Tuples of weighted composition operators

We begin this section with a lemma that gives a necessary and sufficient condition for two weighted composition operators to commute.

Lemma 1 If $\omega_{1}(z)$ and $\omega_{2}(z)$ are nonzero for all $z \in \mathbb{D}$, then $C_{\omega_{1}, \varphi_{1}}$ and $C_{\omega_{2}, \varphi_{2}}$ commute if and only if $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$ and $\omega_{1} \cdot\left(\omega_{2} \circ \varphi_{1}\right)=\omega_{2} \cdot\left(\omega_{1} \circ \varphi_{2}\right)$.

Proof. Suppose that $C_{\omega_{1}, \varphi_{1}}$ and $C_{\omega_{2}, \varphi_{2}}$ commute. Then

$$
\omega_{1} \cdot\left(\omega_{2} \circ \varphi_{1}\right)=C_{\omega_{1}, \varphi_{1}} C_{\omega_{2}, \varphi_{2}} 1=C_{\omega_{2}, \varphi_{2}} C_{\omega_{1}, \varphi_{1}} 1=\omega_{2} \cdot\left(\omega_{1} \circ \varphi_{2}\right)
$$

Moreover, since

$$
\begin{aligned}
\left(\omega_{1} \cdot\left(\omega_{2} \circ \varphi_{1}\right) \cdot\left(\varphi_{2} \circ \varphi_{1}\right)\right)(z) & =\left(C_{\omega_{1}, \varphi_{1}} C_{\omega_{2}, \varphi_{2}} g\right)(z) \\
& =\left(C_{\omega_{2}, \varphi_{2}} C_{\omega_{1}, \varphi_{1}} g\right)(z)=\left(\omega_{2} \cdot\left(\omega_{1} \circ \varphi_{2}\right) \cdot\left(\varphi_{1} \circ \varphi_{2}\right)\right)(z)
\end{aligned}
$$

where $g(z)=z$ we have $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$. For the converse, take $f \in \mathcal{H}$. Then

$$
\begin{aligned}
C_{\omega_{1}, \varphi_{1}} C_{\omega_{2}, \varphi_{2}} f & =\omega_{1} \cdot\left(\omega_{2} \cdot\left(f \circ \varphi_{2}\right)\right) \circ \varphi_{1} \\
& =\omega_{1} \cdot\left(\omega_{2} \circ \varphi_{1}\right) \cdot f \circ \varphi_{2} \circ \varphi_{1} \\
& =\omega_{2} \cdot\left(\omega_{1} \circ \varphi_{2}\right) \cdot f \circ \varphi_{1} \circ \varphi_{2} \\
& =\omega_{2} \cdot\left(\omega_{1} \cdot\left(f \circ \varphi_{1}\right)\right) \circ \varphi_{2} \\
& =C_{\omega_{2}, \varphi_{2}} C_{\omega_{1}, \varphi_{1}} f
\end{aligned}
$$

Proposition 3 If $T=\left(C_{\omega_{1}, \varphi_{1}}, C_{\omega_{2}, \varphi_{2}}\right)$ is a hypercyclic tuple then
(1) $\omega_{1}(z)$ and $\omega_{2}(z)$ are both nonzero for every $z \in \mathbb{D}$.
(2) $\left(\varphi_{1}, \varphi_{2}\right)$ is univalent.

Proof. (1) If $\omega_{1}(z)=0$ for some z, then $C_{\omega_{1}, \varphi_{1}}^{*} K_{z}=\overline{\omega_{1}(z)} K_{\varphi_{1}(z)}=0$. Thus,

$$
C_{\omega_{2}, \varphi_{2}}^{* n_{j}} C_{\omega_{1}, \varphi_{1}}^{* m_{j}} K_{z}=0
$$

for every $m_{j} \geq 0$ and $n_{j} \geq 0$ which implies that an orbit of $T^{*}=\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is bounded. Therefore, by Proposition 1, $T=\left(C_{\omega_{1}, \varphi_{1}}, C_{\omega_{2}, \varphi_{2}}\right)$ is not hypercyclic. Hence, $\omega_{1}(z) \neq 0$ for every $z \in \mathbb{D}$. Similarly, $\omega_{2}(z) \neq 0$ for every $z \in \mathbb{D}$.
(2) Let f be a hypercyclic vector for T. Suppose that $\left(\varphi_{1}(z), \varphi_{2}(z)\right)=\left(\varphi_{1}(\lambda), \varphi_{2}(\lambda)\right)$. Then

$$
\begin{aligned}
& \left\langle C_{\omega_{2}, \varphi_{2}}^{m} C_{\omega_{1}, \varphi_{1}}^{n} f, K_{z}\right\rangle=\left\langle C_{\omega_{1}, \varphi_{1}}^{n} f, C_{\omega_{2}, \varphi_{2}}^{* m} K_{z}\right\rangle \\
= & \left\langle\prod_{i=0}^{n-1} \omega_{1} \circ\left(\varphi_{1}\right)_{i} \cdot f \circ\left(\varphi_{1}\right)_{n},\left[\prod_{i=0}^{m-1} \overline{\omega_{2} \circ\left(\varphi_{2}\right)_{i}(z)}\right] K_{\left(\varphi_{2}\right)_{m}(z)}\right\rangle \\
= & \prod_{i=0}^{m-1} \omega_{2}\left(\left(\varphi_{2}\right)_{i}(z)\right) \prod_{i=0}^{n-1}\left(\omega_{1} \circ\left(\varphi_{1}\right)_{i}\right)\left(\left(\varphi_{2}\right)_{m}(z)\right) \cdot\left(f \circ\left(\varphi_{1}\right)_{n}\right)\left(\left(\varphi_{2}\right)_{m}(z)\right) \\
= & \omega_{1}\left(\left(\varphi_{2}\right)_{m}(z)\right) \omega_{2}(z) \prod_{i=1}^{m-1} \omega_{2}\left(\left(\varphi_{2}\right)_{i}(\lambda)\right) \prod_{i=1}^{n-1}\left(\omega_{1} \circ\left(\varphi_{1}\right)_{i}\right)\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \cdot\left(f \circ\left(\varphi_{1}\right)_{n}\right)\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \\
= & \frac{\omega_{1}\left(\left(\varphi_{2}\right)_{m}(z)\right) \omega_{2}(z)}{\omega_{1}\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \omega_{2}(\lambda)} \prod_{i=0}^{m-1} \omega_{2}\left(\left(\varphi_{2}\right)_{i}(\lambda)\right) \prod_{i=0}^{n-1}\left(\omega_{1} \circ\left(\varphi_{1}\right)_{i}\right)\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \cdot\left(f \circ\left(\varphi_{1}\right)_{n}\right)\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \\
= & \frac{\omega_{1}\left(\left(\varphi_{2}\right)_{m}(z)\right) \omega_{2}(z)}{\omega_{1}\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \omega_{2}(\lambda)}\left\langle C_{\omega_{2}, \varphi_{2}}^{m} C_{\omega_{1}, \varphi_{1}}^{n} f, K_{\lambda}\right\rangle
\end{aligned}
$$

where m and n are non-negative integers so that $m^{2}+n^{2} \neq 0$. Thus,

$$
\left\langle g, K_{z}\right\rangle=\frac{\omega_{1}\left(\left(\varphi_{2}\right)_{m}(z)\right) \omega_{2}(z)}{\omega_{1}\left(\left(\varphi_{2}\right)_{m}(\lambda)\right) \omega_{2}(\lambda)}\left\langle g, K_{\lambda}\right\rangle
$$

for every $g \in \mathcal{H}$. Set $g \equiv 1$. Therefore,

$$
\left\langle h, K_{z}\right\rangle=\left\langle h, K_{\lambda}\right\rangle
$$

for every $h \in \mathcal{H}$. Now, taking $h(s)=s$, we get $z=\lambda$.

We remark that it follows from the Denjoy-Wolff theorem [4] that if φ is a self map of \mathbb{D} and has a fixed point in \mathbb{D} then it is unique.

Proposition 4 If $T=\left(C_{\omega_{1}, \varphi_{1}}, C_{\omega_{2}, \varphi_{2}}\right)$ is a hypercyclic tuple and a is an interior fixed point of φ_{1} or φ_{2}, then $\left|\omega_{1}(a)\right|>1$ or $\left|\omega_{2}(a)\right|>1$.
Proof. Suppose that $\varphi_{1}(a)=a$. Then $\varphi_{1}\left(\varphi_{2}(a)\right)=\varphi_{2}\left(\varphi_{1}(a)\right)=\varphi_{2}(a)$, which implies that $\varphi_{2}(a)=a$. So

$$
C_{\omega_{2}, \varphi_{2}}^{* m} C_{\omega_{1}, \varphi_{1}}^{* n} K_{a}=\left(\overline{\omega_{1}(a)}\right)^{n} C_{\omega_{2}, \varphi_{2}}^{* m} K_{a}=\left(\overline{\omega_{1}(a)}\right)^{n}\left(\overline{\omega_{2}(a)}\right)^{m} K_{a}
$$

Now, if $\left|\omega_{1}(a)\right| \leq 1$ and $\left|\omega_{2}(a)\right| \leq 1$, then $\operatorname{orb}\left(T^{*}, K_{a}\right)$ is bounded. Thus, by Proposition $1, T$ is not hypercyclic, which is a contradiction.

Corollary 1 If φ_{1} or φ_{2} has an interior fixed point then $\left(C_{\varphi_{1}}, C_{\varphi_{2}}\right)$ is not hypercyclic.
Proof. Put $\omega_{1}(z) \equiv 1$ and $\omega_{2}(z) \equiv 1$ in Proposition 4.
An argument similar to the proof of Proposition 2.5 of [7] shows the next proposition.

Proposition 5 (Hypercyclicity Criterion) Suppose that $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of operators on a separable Banach space Z. Suppose further that there exist n strictly increasing sequences of positive integers $\left\{k_{1 j}\right\}_{j}$, $\left\{k_{2 j}\right\}_{j}, \ldots$, and $\left\{k_{n j}\right\}_{j}$, dense sets X and Y in Z and functions $S_{j}: Y \longrightarrow Z$ such that
(1) For each $x \in X, T_{1}^{k_{1 j}} T_{2}^{k_{2 j}} \ldots T_{n}^{k_{n j}} x \longrightarrow 0$ as $j \longrightarrow \infty$;
(2) for each $y \in Y, S_{j} y \longrightarrow 0$ as $j \longrightarrow \infty$;
(3) for each $y \in Y, T_{1}^{k_{1 j}} T_{2}^{k_{2 j}} \ldots T_{n}^{k_{n j}} S_{j} y \longrightarrow y$ as $j \longrightarrow \infty$.

Then $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is hypercyclic.
It follows from Lemma 1 that if

$$
\begin{equation*}
\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}, \quad \omega_{1}=\omega_{1} \circ \varphi_{2} \text { and } \omega_{2}=\omega_{2} \circ \varphi_{1} \tag{*}
\end{equation*}
$$

then $C_{\omega_{1}, \varphi_{1}}$ and $C_{\omega_{2}, \varphi_{2}}$ commute. We give some examples of such functions. Suppose that $\varphi_{r}(z)=e^{i r \pi} z$ where $r=\frac{p}{q}, p$ and q are integers so that $(p, q)=1$. Define $\omega_{r}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where

$$
a_{n}= \begin{cases}\frac{1}{2^{n}} & \left(n=\frac{2 k q}{p} \text { for some } k \in \mathbb{Z}\right) \\ 0 & \text { otherwise }\end{cases}
$$

then $\omega_{r} \in H^{\infty}$. Moreover, $\omega_{r} \circ \varphi_{r}(z)=\omega_{r}(z)$ for all $z \in \mathbb{D}$ and $\varphi_{r} \circ \varphi_{s}=\varphi_{s} \circ \varphi_{r}$.
Theorem 1 Let φ_{1} and φ_{2} be two disc automorphism such that (*) holds and

$$
\sup _{n \in \mathbb{Z}}\left\|K_{\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)}\right\|<\infty
$$

for every $z \in \mathbb{D}$. If the sets

$$
A=\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty} \prod_{j=0}^{n-1}\left(\omega_{1} \circ\left(\varphi_{1}\right)_{j}\right)(z) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)=0\right\}
$$

and

$$
B=\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty} \prod_{j=0}^{n}\left[\left(\omega_{1} \circ\left(\varphi_{1}\right)_{-j}\right)(z) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{-j}\right)(z)\right]^{-1}=0\right\}
$$

have limit points in \mathbb{D}, then $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.
Proof. We will show that the hypercyclicity criterion holds. To see this take $T_{i}=C_{\omega_{i}, \varphi_{i}}^{*}$ for $i=1,2$. Since

$$
T_{i}^{n} K_{z}=\left[\prod_{j=0}^{n-1} \overline{\left(\omega_{i} \circ\left(\varphi_{i}\right)_{j}\right)(z)}\right] K_{\left(\varphi_{i}\right)_{n}(z)}
$$

for $i=1,2$ and $n \geq 1$, we have

$$
T_{2}^{n} T_{1}^{n} K_{z}=\left[\prod_{j=0}^{n-1} \overline{\omega_{1} \circ\left(\varphi_{1}\right)_{j}(z)}\right]\left[\prod_{j=0}^{n-1} \overline{\omega_{2} \circ\left(\varphi_{2}\right)_{j} \circ\left(\varphi_{1}\right)_{n}(z)}\right] K_{\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)}
$$

for every $n \geq 1$.
Put $S_{A}=\operatorname{span}\left\{K_{z}: z \in A\right\}$ and $S_{B}=\operatorname{span}\left\{K_{z}: z \in B\right\}$. Therefore, $\overline{S_{A}}=\overline{S_{B}}=\mathcal{H}$ thanks to $\left(S_{A}\right)^{\perp}=\left(S_{B}\right)^{\perp}=(0)$.

Since $\sup _{n \in \mathbb{Z}}\left\|K_{\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)}\right\|<\infty, \omega_{2} \circ \varphi_{1}=\omega_{2}$ and $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$, we conclude that for every $f \in S_{A}$

$$
T_{2}^{n} T_{1}^{n} f \longrightarrow 0
$$

as $n \longrightarrow \infty$.
On the other hand, $\omega_{2} \circ \varphi_{1}^{-1}=\omega_{2}, \omega_{1} \circ \varphi_{2}^{-1}=\omega_{1}$ and $\varphi_{1}^{-1} \circ \varphi_{2}^{-1}=\varphi_{2}^{-1} \circ \varphi_{1}^{-1}$; therefore, if $z \in B$ then $\varphi_{1}^{-1} \circ \varphi_{2}^{-1}(z) \in B$. So we can define

$$
S:\left\{K_{z}: z \in B\right\} \longrightarrow S_{B}
$$

by

$$
S K_{z}={\overline{\left(\omega_{1}\left(\left(\varphi_{1}\right)^{-1}(z)\right) \cdot \omega_{2}\left(\left(\varphi_{2}\right)^{-1}(z)\right)\right)}}^{-1} K_{\varphi_{1}^{-1} \circ \varphi_{2}^{-1}(z)}
$$

and extend it linearly to S_{B}. Now, $T_{2} T_{1} S K_{z}=K_{z}$, and so $T_{2}^{n} T_{1}^{n} S^{n}$ is the identity on S_{B} for every $n \geq 0$. Moreover, it is easily seen that

$$
S^{n} K_{z}=\prod_{j=1}^{n}{\overline{\left[\left(\omega_{1} \circ\left(\varphi_{1}\right)_{-j}\right)(z) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{-j}\right)(z)\right]}}^{-1} K_{\left(\left(\varphi_{1}\right)_{-n} \circ\left(\varphi_{2}\right)_{-n}\right)(z)}
$$

for every $n \geq 1$; thus, S^{n} converges pointwise to zero on the dense subset S_{B}. Hence, hypercyclicity criterion implies that $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.

Corollary 2 If the sets

$$
\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty}\left(\omega_{1}(z) \omega_{2}(z)\right)^{n}=0\right\}
$$

and

$$
\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty} \frac{1}{\left(\omega_{1}(z) \omega_{2}(z)\right)^{n}}=0\right\}
$$

have limit points in \mathbb{D} then $\left(M_{\omega_{1}}^{*}, M_{\omega_{2}}^{*}\right)$ is hypercyclic on \mathcal{H}.
Proof. Put $\varphi_{1}(z)=\varphi_{2}(z)=z$ and apply the preceding theorem.

Example 1 Let $\omega_{1}(z)=z$ and $\omega_{2}(z)=z+5$. It is easily seen that

$$
\left\{x: 0 \leq x \leq \frac{-5+\sqrt{29}}{2}\right\} \subseteq\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty}(z(z+5))^{n}=0\right\}
$$

and

$$
\left\{x:-1<x<\frac{-5+\sqrt{21}}{2}\right\} \subseteq\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty} \frac{1}{(z(z+5))^{n}}=0\right\}
$$

hence $\left(M_{\omega_{1}}^{*}, M_{\omega_{2}}^{*}\right)$ is hypercyclic on \mathcal{H}. Also, since $\operatorname{ran} \omega_{i} \cap \partial \mathbb{D}=\emptyset$ for $i=1,2$, the operators $M_{\omega_{i}}^{*}, i=1,2$ are not hypercyclic on \mathcal{H} (see [[8], Theorem 4.9]).

Recall that if φ is a hyperbolic automorphism then by the Denjoy-Wolff Theorem, one of its fixed point is the Denjoy-Wolff point of φ and the other is repulsive; i.e., it is the Denjoy-Wolff point of φ^{-1}. Furthermore, the angular derivative of φ at the Denjoy-Wolff point $a, \varphi^{\prime}(a)$ is less than 1 (see [[2], Page 24]).

Corollary 3 Suppose that $\left\{K_{\lambda}: \lambda \in \mathbb{D}\right\}$ is bounded in which K_{λ} is the reproducing kernel at λ, and φ_{1} and φ_{2} are two hyperbolic automorphisms with the Denjoy-Wolff points a_{1} and a_{2} and repulsive fixed points b_{1} and b_{2}, respectively. Moreover, suppose that $(*)$ holds, ω_{1} and ω_{2} have non-tangential limits $\omega_{1}\left(a_{1}\right)$ at a_{1}, $\omega_{2}\left(a_{2}\right)$ at $a_{2}, \omega_{1}\left(b_{1}\right)$ at b_{1} and $\omega_{2}\left(b_{2}\right)$ at b_{2}. If $\left|\omega_{1}\left(a_{1}\right) \omega_{2}\left(a_{2}\right)\right|<1<\left|\omega_{1}\left(b_{1}\right) \omega_{2}\left(b_{2}\right)\right|$ then $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.
Proof. Since $\varphi_{1}^{\prime}\left(a_{1}\right)<1$ for every $z \in \mathbb{D}$, there is a non-tangential approach region containing all iterates $\left(\varphi_{1}\right)_{n}(z)$ (see [[4], Lemma 2.66]), so $\lim _{n \rightarrow \infty} \omega_{1}\left(\left(\varphi_{1}\right)_{n}(z)\right)=\omega_{1}\left(a_{1}\right)$. Similarly, $\lim _{n \rightarrow \infty} \omega_{2}\left(\left(\varphi_{2}\right)_{n}(z)\right)=\omega_{2}\left(a_{2}\right)$. Thus,

$$
\lim _{n \rightarrow \infty}\left(\omega_{1} \circ\left(\varphi_{1}\right)_{n}(z)\right) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{n}(z)\right)=\omega_{1}\left(a_{1}\right) \omega_{2}\left(a_{2}\right)
$$

which implies that

$$
\sum_{j=0}^{\infty}\left(1-\left|\left(\omega_{1} \circ\left(\varphi_{1}\right)_{j}(z)\right) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{j}(z)\right)\right|\right)=\infty
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \prod_{j=0}^{n-1}\left|\left(\omega_{1} \circ\left(\varphi_{1}\right)_{j}(z)\right) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{j}(z)\right)\right|=0
$$

Thus, the set A in Theorem 1, has a limit point in \mathbb{D}. Similarly, since $\left(\left(\varphi_{1}\right)_{-1}\right)^{\prime}\left(b_{1}\right)<1$ and $\left(\left(\varphi_{2}\right)_{-1}\right)^{\prime}\left(b_{2}\right)<1$,

$$
\sum_{j=1}^{\infty}\left(1-\left|\left(\omega_{1} \circ\left(\varphi_{1}\right)_{-j}(z)\right) \cdot\left(\omega_{2} \circ\left(\varphi_{2}\right)_{-j}(z)\right)\right|^{-1}\right)=\infty
$$

and so the set B in Theorem 1, has a limit point in \mathbb{D}. Hence, the proof is completed by applying Theorem 1.

Note that if φ_{1} and φ_{2} are two elliptic automorphisms so that $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ commute then they have the same interior fixed points. For $\alpha \in \mathbb{D}$, consider an automorphism of \mathbb{D} defined by $\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z},(z \in \mathbb{D})$. Some spaces such as the Hardy, Bergman and Dirichlet spaces contain ψ_{α} for every $\alpha \in \mathbb{D}$.

Theorem 2 Suppose that \mathcal{H} contains ψ_{α} for every $\alpha \in \mathbb{D}$. Let φ_{1} and φ_{2} be two elliptic automorphisms with an interior fixed point a such that $(*)$ holds. If the sets A and B in Theorem 1 have limits in \mathbb{D}, then $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.
Proof. First, assume that $a=0$. Then $\varphi_{1}(z)=e^{i \theta_{1}} z$ and $\varphi_{2}(z)=e^{i \theta_{2}} z$ for some $\theta_{1}, \theta_{2} \in[0,2 \pi]$. Thus, for $z \in \mathbb{D},\left\{\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z): n \in \mathbb{Z}\right\} \subseteq z \partial \mathbb{D}$. But $z \partial \mathbb{D}$ is a compact subset of \mathbb{D} and so for $f \in \mathcal{H}$ the continuity of f implies that

$$
\left(f\left(\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)\right)\right)_{n \in \mathbb{Z}}
$$

is a bounded sequence; this along with the principle of uniform boundedness shows that for every $z \in \mathbb{D}$

$$
\left(K_{\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)}\right)_{n \in \mathbb{Z}}
$$

is also bounded. Hence, by applying Theorem $1,\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.
Now, for the general case put $\mathcal{K}=\left\{f \circ \psi_{a}^{-1}: f \in \mathcal{H}\right\}$ endowed with inner product

$$
\langle f, g\rangle_{\mathcal{K}}=\left\langle f \circ \psi_{a}, g \circ \psi_{a}\right\rangle_{\mathcal{H}} .
$$

Then \mathcal{K} is a Hilbert space of analytic functions on \mathbb{D} and $C_{\psi_{a}}: \mathcal{K} \longrightarrow \mathcal{H}$ defined by $C_{\psi_{a}} f=f \circ \psi_{a}$ is a linear isometric isomorphism. Furthermore, $\tilde{\varphi_{1}}=\psi_{a} \circ \varphi_{1} \circ \psi_{a}^{-1}$ and $\tilde{\varphi_{2}}=\psi_{a} \circ \varphi_{2} \circ \psi_{a}^{-1}$ are automorphisms with the interior fixed point zero, and $\tilde{\omega_{1}}=\omega_{1} \circ \psi_{a}^{-1}$ and $\tilde{\omega_{2}}=\omega_{2} \circ \psi_{a}^{-1}$ are in $M(\mathcal{K})$. Finally, since by the first step $\left(C_{\tilde{\omega}_{1}, \tilde{\varphi_{1}}}^{*}, C_{\tilde{\omega}_{2}, \tilde{\varphi}_{2}}^{*}\right)$ is hypercyclic and $C_{\tilde{\omega_{i}}, \tilde{\varphi}_{i}}=C_{\psi_{a}}^{-1} \circ C_{\omega_{i}, \varphi_{i}} \circ C_{\psi_{a}}$ for $i=1,2$, one can see that $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is also hypercyclic.

Example 2 Consider $\varphi_{1}(z)=i z, \varphi_{2}(z)=-i z, \omega_{1}(z)=z^{4}$ and $\omega_{2}(z)=z^{4}+3$. Then the sets A and B mentioned in Theorem 1 are

$$
A=\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty} z^{4 n}\left(z^{4}+3\right)^{n}=0\right\}
$$

and

$$
B=\left\{z \in \mathbb{D}: \lim _{n \longrightarrow+\infty} \frac{1}{z^{4 n}\left(z^{4}+3\right)^{n}}=0\right\}
$$

It is easily seen that $\left[0, \frac{1}{2}\right) \subseteq A$ and $\left(\frac{1}{\sqrt[4]{2}}, 1\right) \subseteq B$. Hence, $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.
Proposition 6 Let φ_{1} and φ_{2} be two elliptic automorphisms with an interior fixed point a and $\omega_{1}, \omega_{2}: \mathbb{D} \longrightarrow$ \mathbb{C} satisfy the inequality

$$
\left|\omega_{1}(a) \omega_{2}(a)\right|<1<\liminf _{|z| \longrightarrow 1^{-}}\left|\omega_{1}(z) \omega_{2}(z)\right| .
$$

If $(*)$ holds then $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is a hypercyclic pair.
Proof. As it is seen in the preceding theorem, we can assume that $a=0$ and $\varphi_{1}(z)=e^{i \theta_{1}} z$ and $\varphi_{2}(z)=e^{i \theta_{2}} z$ for some $\theta_{1}, \theta_{2} \in[0,2 \pi]$. Therefore, $\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)=e^{i n \theta_{2}} e^{i n \theta_{1}} z$ for every $n \in \mathbb{Z}$. This along with the principle of uniform boundedness implies that $\sup _{n \in \mathbb{Z}}\left\|K_{\left(\varphi_{2}\right)_{n} \circ\left(\varphi_{1}\right)_{n}(z)}\right\|<\infty$ for every $z \in \mathbb{D}$. On the other hand, since $\left|\omega_{1}(0) \omega_{2}(0)\right|<1$ there exist a constant λ_{1} and a positive number δ_{1} such that $\left|\omega_{1}(z) \omega_{2}(z)\right|<\lambda_{1}<1$ whenever $|z|<\delta_{1}$. This, in turn, implies that if $|z|<\delta_{1}$ then

$$
\left|\prod_{j=0}^{n-1} \omega_{1}\left(\left(\varphi_{1}\right)_{j}(z)\right) \omega_{2}\left(\left(\varphi_{2}\right)_{j}(z)\right)\right|<\lambda_{1}^{n} \longrightarrow 0
$$

as $n \longrightarrow+\infty$. Consequently, $\left\{z:|z|<\delta_{1}\right\}$ is a subset of the set A in Theorem 1. Moreover, since $1<\liminf _{|z| \rightarrow 1^{-}}\left|\omega_{1}(z) \omega_{2}(z)\right|$ there exist a constant λ_{2} and a positive number $\delta_{2}<1$ such that $\left|\omega_{1}(z) \omega_{2}(z)\right|>\lambda_{2}>1$ when $|z|>1-\delta_{2}$. Therefore, if $|z|>1-\delta_{2}$ then

$$
\prod_{j=1}^{n}\left|\left(\omega_{1} \circ\left(\varphi_{1}\right)_{-j}\right)(z)\left(\omega_{2} \circ\left(\varphi_{2}\right)_{-j}\right)(z)\right|^{-1}<\frac{1}{\lambda_{2}^{n}} \longrightarrow 0
$$

as $n \longrightarrow+\infty$. Thus, $\left\{z:|z|>1-\delta_{2}\right\}$ is a subset of the set B in Theorem 1. Hence $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.

Example 3 Consider $\varphi_{1}(z)=i z, \varphi_{2}(z)=e^{i \frac{\pi}{4}} z, \omega_{1}(z)=z^{8}$ and $\omega_{2}(z)=z^{4}+c$ where $|c|>2$. Since

$$
\left|\omega_{1}(0) \omega_{2}(0)\right|<1<\liminf _{|z| \longrightarrow 1^{-}}\left|\omega_{1}(z) \omega_{2}(z)\right|
$$

$\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$, is a hypercyclic pair.

Proposition 7 Suppose that there are positive integers m_{1} and m_{2} such that $\left(\varphi_{1}\right)_{m_{1}}(z)=z$ and $\left(\varphi_{2}\right)_{m_{2}}(z)=z$ for all $z \in \mathbb{D}$. If

$$
\partial \mathbb{D} \bigcap \operatorname{ran}\left(\prod_{j=0}^{m_{1} m_{2}-1}\left(\omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right) \neq \emptyset\right.
$$

and $(*)$ holds then $\left(C_{\omega_{1}, \varphi_{1}}^{*}, C_{\omega_{2}, \varphi_{2}}^{*}\right)$ is hypercyclic.
Proof. We observe that $\left\{\left(\varphi_{1}\right)_{n} \circ\left(\varphi_{2}\right)_{n}(z): n \in \mathbb{Z}\right\}$ is a subset of $\left\{\left(\varphi_{1}\right)_{j} \circ\left(\varphi_{2}\right)_{k}(z): j=0, \ldots, m_{1}-1, k=\right.$ $\left.0, \ldots, m_{2}-1\right\}$. So the sequence $\left(K_{\left(\varphi_{1}\right)_{n} \circ\left(\varphi_{2}\right)_{n}(z)}\right)_{n \in \mathbb{Z}}$ is bounded for every z in \mathbb{D}. Furthermore, since the function

$$
\left(\prod_{j=0}^{m_{1} m_{2}-1} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)
$$

is analytic on \mathbb{D}, the open mapping theorem implies that

$$
U=\left\{z \in \mathbb{D}:\left|\left(\prod_{j=0}^{m_{1} m_{2}-1} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)\right|<1\right\}
$$

and

$$
V=\left\{z \in \mathbb{D}:\left|\left(\prod_{j=0}^{m_{1} m_{2}-1} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)\right|>1\right\}
$$

are non-empty open sets. Fix $z \in U$, and let $P_{n}=\left(\prod_{j=0}^{n-1} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)$ for $n \in \mathbb{N}$. For $\varepsilon>0$, since

$$
Q_{k}=\left(\prod_{j=0}^{m_{1} m_{2}-1} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}(z)\right)^{k} \longrightarrow 0
$$

as $k \longrightarrow \infty$, one can choose $k>0$ such that $M\left|Q_{k}\right|<\varepsilon$, in which

$$
M=\max \left\{\left|\left(\prod_{j=0}^{i} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)\right|: i=0,1, \ldots, m_{1} m_{2}-1\right\}
$$

Now, if $n>k m_{1} m_{2}$ then $\left|P_{n}\right| \leq M\left|Q_{k}\right|<\varepsilon$ which implies that $P_{n} \longrightarrow 0$ as $n \longrightarrow \infty$. Moreover, since for every $z \in \mathbb{D}$

$$
\left(\prod_{j=0}^{m_{1} m_{2}-1} \omega_{1} \circ\left(\varphi_{1}\right)_{-j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{-j}\right)(z)=\left(\prod_{j=0}^{m_{1} m_{2}-1} \omega_{1} \circ\left(\varphi_{1}\right)_{j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{j}\right)(z)
$$

by a similar method one can see that

$$
\left.\prod_{j=0}^{n-1}\left[\omega_{1} \circ\left(\varphi_{1}\right)_{-j} \cdot \omega_{2} \circ\left(\varphi_{2}\right)_{-j}\right)(z)\right]^{-1} \longrightarrow 0
$$

as $n \longrightarrow \infty$ for every $z \in V$. Hence, the result follows using Theorem 1 .

Corollary 4 If $\operatorname{ran}\left(\omega_{1} \cdot \omega_{2}\right) \bigcap \partial \mathbb{D} \neq \emptyset$, then $\left(M_{\omega_{1}}^{*}, M_{\omega_{2}}^{*}\right)$ is hypercyclic.
Proof. Let $\varphi_{1}(z)=z$ and $\varphi_{2}(z)=z$ for all $z \in \mathbb{D}$ in above proposition.
Taking $\omega_{2}(z) \equiv 1$ in the above corollary, we get the following result from [8], as a special case.
Corollary $5([8])$ If $\operatorname{ran}\left(\omega_{1}\right) \bigcap \partial \mathbb{D} \neq \emptyset$, then $M_{\omega_{1}}^{*}$ is hypercyclic.
Remark. By analogous proofs we can show that the results in this paper are also valid for n-tuples of the adjoint of the weighted composition operators on \mathcal{H}.

Acknowledgments

This research was in part supported by a grant from Shiraz University Research Council.

References

[1] Bayart, F., Matheron, E.: Dynamics of linear operators, Cambridge university press, 179, 2009.
[2] Bourdon, P. S., Shapiro, J. H.: Cyclic phenomena for composition operators, Memoirs,. Amer. Math. Soc. 596, 1997.
[3] Bourdon P. S., Shapiro, J. H. Hypercyclic operators that commute with the Bergman backward shift, Trans. Amer. Math. Soc. 352, 5293-5316 (2000).
[4] Cowen, C. C., MacCluer, B.: Composition operators on spaces of analytic functions, CRC Press, 1995.
[5] Feldman, N. S.: Hypercyclic pairs of coanalytic Toeplitz operators, Integral Equations Operator Theory, 58, 153-173 (2007).
[6] Feldman, N., Miller, V. and Miller, L.: Hypercyclic and supercyclic cohyponormal operators, Acta Sci. Math. 68, 303-328 (2002).
[7] Feldman, N. S.: Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346, 82-98 (2008).

SOLTANI, ROBATI, HEDAYATIAN

[8] Godefroy, G., Shapiro, J. H.: Operators with dense invariant cyclic manifolds, J. Funct. anal. 98, 229-269 (1991).
[9] Haji Shaabani, M., Khani Robati, B.: On the norm of certain weighted composition operators on the Hardy space, Abstr. Appl. Anal. 2009, Article ID 720217, 13 pages (2009).
[10] Hedayatian, K., Karimi, L.: On convexity of composition and multiplication operators on weighted Hardy spaces, Abstr. Appl. Anal. 2009, Article ID 931020, 9 pages (2009).
[11] Kamali, Z., Hedayatian, K. and Khani Robati, B.: Non-weakly supercyclic weighted composition operators, Abstr. Appl. Anal. 2010, Article ID 143808, 14 pages (2010).
[12] Kerchy, L.: Cyclic properties and stability of commuting power bounded operators, Acta Sci. Math. (Szeged), 71(1-2), 299-312 (2005).
[13] Rolewicz, S.: On orbits of elements, Studia. Math. 33, 17-22 (1969).
[14] Salas, H. N.: Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347, 993-1004 (1995).
[15] Shapiro, J.: Composition operators and classical function theory, Springer-Verlag, New York, 1993.
[16] Yousefi B., Rezaei, H.: Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135(10), 3263-3271 (2007).
[17] Yousefi, B., Soltani, R.: Hypercyclicity of the adjoint of weighted composition operators, Proc. Indian Acad. Sci. (Math. Sci.) 119(4), 513-519 (2009).

Rahmat SOLTANI, Bahram Khani ROBATI, Received: 15.10.2010
Karim HEDAYATIAN
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71454, IRAN e-mail: r_soltani@pnu.ac.ir, e-mails: \{bkhani, hedayati\}@shirazu.ac.ir

[^0]: 2010 AMS Mathematics Subject Classification: 47A16, 47B33, 47B38.

