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operators
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Abstract
An n-tuple of commuting operators, (11,7%,,...,75) on a Hilbert space H is said to be hypercyclic, if
there exists a vector x € H such that the set {leszkQ..‘Tnk":c ki > 0,1 = 1727..‘71} is dense in ‘H. In

this paper, we give sufficient conditions under which the adjoint of an n-tuple of a weighted composition

operator on a Hilbert space of analytic functions is hypercyclic.
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1. Introduction

An n-tuple of operators is a finite sequence of length n of commuting continuous linear operators

11,15, ...,T, acting on a locally convex topological vector space X . Hypercyclic tuples of operators were
introduced in [5, 7] and [12]. A tuple (71,75, ...,T;,) is said to be hypercyclic, if there exists a vector = € X
such that the set {lengkQ...Tnk”x i k; > 0,4 =1,2,...,n} is dense in X. This definition generalizes the
hypercyclicity of a single operator to a tuple of operators. Like Feldman in [7], we denote the semigroup
generated by a tuple T' = (11,...,T,) by Fr = {lengkQ...Tnk" cki > 0,0 =1,2,...,n} and the orbit of x
under the tuple T by orb(T,z) = {Sz : S € Fr}.

Consider a Hilbert space ‘H of functions analytic on the open unit disc D such that for each A € D the
linear functional ey of evaluation at A is bounded on H. Moreover, the constant function 1 and the identity

function f(z) = z are in H. The weighted Hardy space is the well-known example of such H. Let (8(n))n
be a sequence of positive numbers with 3(0) = 1. The weighted Hardy space H?(/3) is defined as the space of

0 ~
analytic functions f = Y f(n)z" on D satisfying

n=0
£ =D [Fm)PIB(n)]* < oo.
n=0

The classical Hardy space, the Bergman space and the Dirichlet space are weighted Hardy spaces with
1 1
3

B(n) =1, B(n) =(n+1)"2 and B(n) = (n+ 1)z, respectively. Reference [4] is a good source on properties of
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weighted Hardy spaces. The continuity of point evaluations along with the Riesz representation theorem imply
that for each A € D there is a unique function K € H such that f(\) = (f, K\), f € H. The function K} is
the reproducing kernel for the point A.

A complex-valued function w on D for which wf € H for every f € H is called a multiplier of H and the
collection of all multipliers is denoted by M (H). Each multiplier w of H determines a multiplication operator
M, on H by M,f = wf, f € H. Each multiplier is a bounded analytic function on D. In fact, since the

constant functions are in H, every function in M (H) is analytic on . Moreover, if A € D then
W ENN)| = (Mo Ky, Kx)| < [[Mol|[| Kx ]

This implies that |w(\)| < || My]| for every A € D and so w € H®. If w € M(H) and ¢ is a mapping from
D into D such that f o isin H for every f € H, then an application of the closed graph theorem shows
that the weighted composition operator C,, , defined by C,, (f)(2) = M,C,(f)(2) = w(2)f(p(z)) is bounded.
From now on, we assume that w and ¢ satisfy these properties. For a positive integer n, the nth iterate of
, denoted by ¢, , is the function obtained by composing ¢ with itself n times; also, g is defined to be the

identity function. Moreover, when ¢ is invertible, we define the iterates ¢_, = @ top lo...op™! (n times).
n—1

Also, Oy, K\ = w(A) Ky for every A in D which implies that C7" Ky = Ho w(p;j(A) Ky, (n)- Moreover,
j=

Cu, o(f) = (n_lw o wk)f oy, for every f € H. The properties of composition and weighted composition
k=0

operators on various spaces of analytic functions have been investigated by many authors; see monographs

[4, 15] and, for example, the following recent papers [9, 10, 11] and references therein.

In this paper, we give sufficient conditions for the n-tuple of the adjoint of a weighted composition op-
erator to be hypercyclic. Hypercyclicity of operators have been widely studied. It was shown by Rolewicz [13]
that twice the backward shift on the space ¢2(N) is hypercyclic. Many natural operators are hypercyclic. For
example, certain operators in the classes of weighted shifts [14], composition operators [2], and the adjoint of
subnormal, hyponormal and multiplication operators [6, 3], and the weighted composition operators and their

adjoint operators [16, 17, 11] are hypercyclic. A good source on this topic is [1].

Proposition 1 ([7], Proposition 2.4) Suppose that T = (T1, ..., Ty) is a hypercyclic tuple on a separable Banach
space X . Then every non-zero orbit of T* = (11", ..., T,,") 1is unbounded.

C*

Proposition 2 If o1 and @o are analytic maps of the disc into itself then (C} ,C,)

o1 is not hypercyclic on 'H .

Proof. Since C%lewhl =1, then the orbit of 1 under (C,,,Cy,) is bounded. Thus, using Proposition 1,
the result follows. O

2. Tuples of weighted composition operators

We begin this section with a lemma that gives a necessary and sufficient condition for two weighted
composition operators to commute.
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Lemma 1 If wi(2) and wa(2) are nonzero for all z € D, then C,, ., and Cu, o, commute if and only if

10w =01 and wy - (W2 0¢1) = ws - (w1 ©p2).

Proof. Suppose that Cy,, ,, and C,, ,, commute. Then

w1 - (w2 © 901) = Cw17901cw279021 = Cw279020w179011 =Wz (wl © 902)'

Moreover, since

(Wi (w20op1) (p20p1))(2) = (CutprCunpa9)(2)
= (Cu 2 Cu,19)(2) = (w2 - (w1 0 92) - (1 0 ¥2))(2),

where g(z) = z we have ¢1 0 @3 = s 0 1. For the converse, take f € H. Then

CororCunpaf = wi-(w2-(fopz))opr
= w1 (w2oyr): fowsoypr
= wo-(wrowa): fowsops
= wy-(wr-(fowr))ops

= Cw27902 thsal f

Proposition 3 If T'= (Cu, 4, , Cus,ps) 15 a hypercyclic tuple then
(1) wi(z) and wa(z) are both nonzero for every z € D.

(2) (¢1,p2) is univalent.

Proof. (1) If wi(z) =0 for some z, then C} _ K. = wi(z)K,, (») = 0. Thus,

wi,$1

C*n] C*m K — 0

w2,p2 T Wi,P1

for every m; > 0 and n; > 0 which implies that an orbit of T = (C Clrps)

wi,p17?

is bounded. Therefore, by
Proposition 1, T' = (Cu, 4, ; Cus,e,) is not hypercyclic. Hence, wq(z) # 0 for every z € D. Similarly, wa(z) # 0
for every z € D.
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(2) Let f be a hypercyclic vector for T. Suppose that (¢1(2), p2(2)) = (p1(A), v2(A)). Then

<CZ;7902 w1, Salf’ > - < w1, Salf’ C::;TLSOQK >

m—1
= <leo((p1) 901 ns H w2 K(gag)m(z)>
i 1=0
m—1 n—1
= [T wel(@2)i(2) T[T 1 0 (0))((02)m(2)) - (f © (£1)n)(92)m (2))
1=0 i=0
m—1 n—1
= wi((p2)m(2))w2(2) leo )(92)m (N)-(f © (91)n) (92)m(A)
1=1 =1
_ willpam(2)en() T o T o o (o, e
= ey U wz«soz)zw)g(wl (1)0) (92)m (V) - (F © (91)n) (92)m(N))
_ wi((p2)m(2))w2(2) |
= ) () GG E):

where m and n are non-negative integers so that m? +n2 # 0. Thus,

&
—
—
—
AS)
v
~
3
—

N
N
=

wa(z)

e A (G MGV NGY

(9, K1)
for every g € H . Set g = 1. Therefore,
(h, KZ> = (h, K>\>
for every h € H. Now, taking h(s) = s, we get z = . O

We remark that it follows from the Denjoy-Wolff theorem [4] that if ¢ is a self map of D and has a fixed

point in D then it is unique.

Proposition 4 If T = (Cu, ¢, Cun,p.) @8 a hypercyclic tuple and a is an interior fived point of w1 or ¢2,
then |wi(a)| > 1 or |we(a)| > 1.

Proof. Suppose that ¢1(a) = a. Then ¢1(p2(a)) = v2(p1(a)) = p2(a), which implies that ps(a) =a. So

oxm - on a _( ( ))nc*m Ka (TQ)H(WQ(G))mKa

w2,p2 ~ Wi,P1 w2,p2

Now, if |wi(a)] <1 and |wa(a)| < 1, then ord(T*, K,) is bounded. Thus, by Proposition 1, T' is not hyper-

cyclic, which is a contradiction. O

Corollary 1 If @1 or @2 has an interior fized point then (Cy,,,Cy,) is not hypercyclic.

Proof. Put wi(z) =1 and ws(z) =1 in Proposition 4. O

An argument similar to the proof of Proposition 2.5 of [7] shows the next proposition.
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Proposition 5 (Hypercyclicity Criterion) Suppose that (Th,Ts, ..., Tp,) is an n-tuple of operators on a separable
Banach space Z. Suppose further that there exist n strictly increasing sequences of positive integers {ki;};,

{koj}j ;... and {kn;};, dense sets X and Y in Z and functions S; : Y — Z such that

(1) For each x € X, Ty 9Ty . Tp"z — 0 as j — o0
(2) for each y €Y, Sjy — 0 as j — oo;

(3) for each y €Y, leleQkQ"...Tf"ijy — 1y as j — 0.
Then (Th,T5,...,T,) is hypercyclic.

It follows from Lemma 1 that if

P10 P2 =20p1, W1 =wi0ps and ws = ws 0P, (%)

then C,, ., and C,, ,, commute. We give some examples of such functions. Suppose that ¢, (z) = ¢z

o0
where r =2, p and ¢ are integers so that (p,q) = 1. Define w;(2) = >_ an2", where
n=0

on

1 — 2kg
0, = (n 7 for some k € Z),
0 otherwise;

then w, € H>. Moreover, w, 0 p,(2) = wy(z) forall z € D and ¢, o s = @50 Q.
Theorem 1 Let p1 and @2 be two disc automorphism such that () holds and

SUP [| K () 0(p1)n (2) | < 00
neZ

for every z € D. If the sets
A={zeD: lm jl]om o (p1))(2) - (w2 0 (12);)(2) = 0}

and

B={zeD: lm [Jlwo(e) i) (@20 (p) )] =0}
7=0

have limit points in D, then (C* C?. ..) is hypercyclic.

w1,p17 T w2,p2

Proof. We will show that the hypercyclicity criterion holds. To see this take T; = Cf,, ,, for ¢ =1,2. Since

H (Wi o (0)) 2K (o))

for i =1,2 and n > 1, we have

H w1 O gOl H w2 O SOQ §01) ( )]K(SOQ)nO(Sal)n(Z)
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for every n > 1.
Put S4 = span{K, : z € A} and Sp = span{K, : z € B}. Therefore, S4 = Sgp = H thanks to
(Sa)*t = (Sp)*==(0).

Since sup || K (py),0(p1)n(2)|] <00, w201 = wy and g1 0¢ps = w301, we conclude that for every f € Sy
nez

IV f —0
as m — 00.
On the other hand, w0 7! =wa, wiopy ' =w;y and ;' oy ' = 5 o !; therefore, if z € B then
1 oy (2) € B. So we can define
S:{K,:z€ B} — Sp

by

SK. = i) 1) @2((2) TN Kyptagyico

and extend it linearly to Sp. Now, T5T1SK, = K., and so T;'T{*'S™ is the identity on Sp for every n > 0.

Moreover, it is easily seen that

5K = [[ 1o @) @20 @) G K nolon) o

Jj=1

for every m > 1; thus, S™ converges pointwise to zero on the dense subset Sp. Hence, hypercyclicity criterion

implies that (C (O

o o1 Cos ) 18 hypercyclic. O

Corollary 2 If the sets
{zeD: lim (w1(z)wz2(z))" =0}

n—--4oo
and
1

el I ey

have limit points in D then (M}

wi?

M,) is hypercyclic on 'H.
Proof. Put ¢1(z) = pa(z) = z and apply the preceding theorem. O

Example 1 Let wi(z) = z and wa(z) = z + 5. It is easily seen that

{x:0§x§_5% V29

1C{zeD: nirpkoo(z(z +5))" =0}

and

5+ /2 1
.1 VI CceD: lm ——— =0
fri-l<os<—F—tclzeb: Im rtgm =%

hence (M7, , M) is hypercyclic on H. Also, since ranw; NOD = O for i = 1,2, the operators M , i = 1,2

wi?

are not hypercyclic on H (see [[8], Theorem 4.9]).
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Recall that if ¢ is a hyperbolic automorphism then by the Denjoy-Wolff Theorem, one of its fixed point is the

—1

Denjoy-Wolff point of ¢ and the other is repulsive; i.e., it is the Denjoy-Wolff point of ¢~ . Furthermore, the

angular derivative of ¢ at the Denjoy-Wolff point a, ¢'(a) is less than 1 (see [[2], Page 24]).

Corollary 3 Suppose that {K) : A € D} is bounded in which K is the reproducing kernel at X, and o1 and
w2 are two hyperbolic automorphisms with the Denjoy- Wolff points a1 and as and repulsive fized points by
and by, respectively. Moreover, suppose that () holds, wi and ws have non-tangential limits wi(a1) at aq,
wa(az) at az, wi(b1) at b1 and wa(bs) at by. If |wi(ar)wa(az)] < 1 < |wi(b1)wz(b2)| then (C C ) is

W1,P17? T w2,p2

hypercyclic.

Proof. Since ¢f(a1) < 1 for every z € D, there is a non-tangential approach region containing all iterates
(p1)n(2) (see [[4], Lemma 2.66]),s0 lim wi((¢1)n(2)) = wi(a1). Similarly, lim ws((p2)n(2)) = wa(az). Thus,

lim (w1 0 (p1)n(2)) - (W2 0 (P2)n(2)) = wi(a1)w2(az),

n—oo

which implies that
D (1= [(wio(#1)5(2)) - (w2 0 (p2);(2))]) = oo.
7=0

Therefore,

n—1
lim [ (w0 (#1);(2)) - (w2 0 (92);(2))] = 0.
7=0

n—o0 -

Thus, the set A in Theorem 1, has a limit point in D). Similarly, since ((¢1)-1)"(b1) <1 and ((¢2)-1)"(b2) <1
D1 = fwre (p)—5(2) - (w20 (o2) 5 ()] 7) = oe,
7j=1

and so the set B in Theorem 1, has a limit point in ID. Hence, the proof is completed by applying Theorem 1.
O

Note that if ¢1 and 9 are two elliptic automorphisms so that C,, and C,, commute then they have the same

interior fixed points. For a € D, consider an automorphism of I defined by ¥.(2) = #=, (# € D). Some

spaces such as the Hardy, Bergman and Dirichlet spaces contain v, for every a € D.

Theorem 2 Suppose that H contains 1, for every a € D. Let @1 and pa be two elliptic automorphisms
with an interior fized point a such that () holds. If the sets A and B in Theorem 1 have limits in D, then
(@ Oy

o ors Coa ) 18 hypercyclic.

Proof. First, assume that a = 0. Then ¢1(2) = €1z and p2(2) = %22 for some 61,05 € [0,27]. Thus, for
z€D, {(¢2)no(p1)n(2) :n €Z} C z0D. But 20D is a compact subset of D and so for f € H the continuity
of f implies that

(f((@?)n © ((pl)n(z)))nel

is a bounded sequence; this along with the principle of uniform boundedness shows that for every z € D
(K(g2)no(e1)n(z)Inez
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is also bounded. Hence, by applying Theorem 1, (C C?. ) is hypercyclic.

W1,P17 T w2,p2

Now, for the general case put K = {fo,!: f € H} endowed with inner product

<f7 g>l€ = <f 0y, g0 ¢a>H-

Then K is a Hilbert space of analytic functions on D and Cy, : K — H defined by Cy, f = f o, is a linear
isometric isomorphism. Furthermore, @1 = 1, 0 1 01,1 and @a = 1, 0 w2 0 1), ! are automorphisms with the

interior fixed point zero, and ; = wy o, ! and Wy = we 04, ! are in M(K). Finally, since by the first step

(C5, 5., C5, 5,) 1s hypercyclic and Cy, 5, = CJal 0 Gy, p; © Cy, for i =1,2, one can see that (C3, ., ,C5, )
is also hypercyclic. O

Example 2 Consider p1(2) = iz, @a(z) = —iz, wi(z) = 2* and wa(z) = 2* + 3. Then the sets A and B
mentioned in Theorem 1 are
A={zeD: lim 2(*+3)"=0}

n—---4oo

and

1
B = D: 1 —— =0}.
{Z € n 11200 2471(24 + 3)71 }

It is easily seen that [0,%) C A and (%, 1) € B. Hence, (C}, C?. ) 1s hypercyclic.

W1,P17? T w2,p2

Proposition 6 Let 1 and @2 be two elliptic automorphisms with an interior fixed point a and wi,ws : D —
C satisfy the inequality
|wi(a)wz(a)| < 1< liminf |wq(2)wa(2)].
. o

|2|—1

C*

w27902)

If () holds then (C

1apr is a hypercyclic pair.

Proof. Asit is seen in the preceding theorem, we can assume that a = 0 and ¢;(z) = €1z and pa(2) = €922
for some 6y, 05 € [0,27]. Therefore, (¢2)n0(p1)n(z) = e™P2eim%1 2 for every n € Z. This along with the principle

of uniform boundedness implies that sup || K(y,), o(p1)a(z)|| < 00 for every z € D. On the other hand, since
nez

|w1(0)w2(0)] < 1 there exist a constant A; and a positive number d; such that |wi(z)w2(2)| < A1 < 1 whenever

|z] < d1. This, in turn, implies that if |z] < §; then
n—1
| TT wilten)i())wz((p2)())] < AF — 0
3=0

as n — +oo. Consequently, {z : |z| < 1} is a subset of the set A in Theorem 1. Moreover, since

1< Ililm inf |wy(2)wz(2)| there exist a constant Ay and a positive number d2 < 1 such that w1 (z)wa(2)| > A2 > 1
z|—1—

when |z| > 1 — 5. Therefore, if |z| > 1 — §, then
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as n — +o0o0. Thus, {z : |z| > 1 — 2} is a subset of the set B in Theorem 1. Hence (C cr ) is

W1,P17 T wW2,p2

hypercyclic. O

Example 3 Consider ¢1(2) =iz, ga(2) = €'Tz, wi(2) = 2% and wa(z) = 2* + ¢ where |¢| > 2. Since

lw1(0)w2(0)] <1< Ililm 1111£ |w1 (2)w2(2)]

(@ C?. .)s 1S a hypercyclic pair.

W1,$p17 T WwW2,p2

Proposition 7 Suppose that there are positive integers my and mo such that (p1)m, (2) = z and (p2)m,(2) = 2
forall zeD. If

mlmg—l

oD(Yran( [ (wio(p1);-wao(w2);) #0,

=0

and (%) holds then (C C?. ) is hypercyclic.

Wi,p1? T wW2,p2
Proof. We observe that {(p1)n 0 (92)n(2) : n € Z} is a subset of {(p1)j0(p2)i(2):j=0,....,m —1, k=
0,...,ma — 1}. So the sequence (K(,,),0(ps).(z))necz is bounded for every z in D. Furthermore, since the

function

m1m2—1

( JI wio(er);-waolp2))(z)
j=0

is analytic on D, the open mapping theorem implies that

mlmg—l

U={zeD:|( H w10 (1)) w2 o (p2);)(2)] <1}
=0

and

mlmg—l

V={zeD:| H w10 (1)) - w20 (p2))(2)] > 1}
j=0

n—1
are non-empty open sets. Fix z € U, and let P, = (][] w1 o (¢1); w20 (p2);j)(z) for n € N. For € > 0, since
3=0

mlmg—l

Qu=( [ wiclen; wo(e2)i(2) —0
=0
as k — o0, one can choose k > 0 such that M|Qg| < e, in which

M= max{|(H w10 (1) wao(p2)j)(2)] :4=0,1,...,mimg — 1}.

=0
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Now, if n > kmims then |P,| < M|Qk| < ¢ which implies that P, — 0 as n — oo. Moreover, since for

every z € D
m1m2—1 m1m2—1
( JI wio()j-wiolpa)-)z)=( [ wiolpr);-waol(p2))(2)
j=0 j=0
by a similar method one can see that
n—1
[Tlwr0 (o) -wao(p2)-) )] " — 0
j=0
as n — oo for every z € V. Hence, the result follows using Theorem 1. O

Corollary 4 If ran(wy.we) () OD # 0, then (M

w1?

M) is hypercyclic.
Proof. Let ¢i(z) =z and p2(z) = z for all z € D in above proposition. O

Taking ws(z) =1 in the above corollary, we get the following result from [8], as a special case.
Corollary 5 ([8]) If ran(w1) (0D # 0, then M is hypercyclic.

Remark. By analogous proofs we can show that the results in this paper are also valid for n-tuples of the

adjoint of the weighted composition operators on H.
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