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Abstract

An n-tuple of commuting operators, (T1, T2,, ..., Tn) on a Hilbert space H is said to be hypercyclic, if

there exists a vector x ∈ H such that the set {T1
k1T2

k2 ...Tn
knx : ki ≥ 0, i = 1, 2, ...n} is dense in H . In

this paper, we give sufficient conditions under which the adjoint of an n-tuple of a weighted composition

operator on a Hilbert space of analytic functions is hypercyclic.
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1. Introduction

An n-tuple of operators is a finite sequence of length n of commuting continuous linear operators
T1, T2,, ..., Tn acting on a locally convex topological vector space X . Hypercyclic tuples of operators were

introduced in [5, 7] and [12] . A tuple (T1, T2, ..., Tn) is said to be hypercyclic, if there exists a vector x ∈ X

such that the set {T1
k1T2

k2 ...Tn
knx : ki ≥ 0, i = 1, 2, ..., n} is dense in X . This definition generalizes the

hypercyclicity of a single operator to a tuple of operators. Like Feldman in [7], we denote the semigroup

generated by a tuple T = (T1, ..., Tn) by FT = {T1
k1T2

k2 ...Tn
kn : ki ≥ 0, i = 1, 2, ..., n} and the orbit of x

under the tuple T by orb(T, x) = {Sx : S ∈ FT } .

Consider a Hilbert space H of functions analytic on the open unit disc D such that for each λ ∈ D the
linear functional eλ of evaluation at λ is bounded on H . Moreover, the constant function 1 and the identity
function f(z) = z are in H . The weighted Hardy space is the well-known example of such H . Let (β(n))n

be a sequence of positive numbers with β(0) = 1. The weighted Hardy space H2(β) is defined as the space of

analytic functions f =
∞∑

n=0
f̂(n)zn on D satisfying

‖f‖2
β =

∞∑
n=0

|f̂(n)|2|β(n)|2 < ∞.

The classical Hardy space, the Bergman space and the Dirichlet space are weighted Hardy spaces with

β(n) = 1, β(n) = (n + 1)−
1
2 and β(n) = (n + 1)

1
2 , respectively. Reference [4] is a good source on properties of
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weighted Hardy spaces. The continuity of point evaluations along with the Riesz representation theorem imply
that for each λ ∈ D there is a unique function Kλ ∈ H such that f(λ) = 〈f, Kλ〉 , f ∈ H . The function Kλ is
the reproducing kernel for the point λ .

A complex-valued function ω on D for which ωf ∈ H for every f ∈ H is called a multiplier of H and the
collection of all multipliers is denoted by M(H). Each multiplier ω of H determines a multiplication operator
Mω on H by Mωf = ωf , f ∈ H . Each multiplier is a bounded analytic function on D . In fact, since the
constant functions are in H , every function in M(H) is analytic on D . Moreover, if λ ∈ D then

|ω(λ)Kλ(λ)| = |〈MωKλ, Kλ〉| ≤ ‖Mω‖‖Kλ‖2.

This implies that |ω(λ)| ≤ ‖Mω‖ for every λ ∈ D and so ω ∈ H∞. If ω ∈ M(H) and ϕ is a mapping from
D into D such that f ◦ ϕ is in H for every f ∈ H , then an application of the closed graph theorem shows
that the weighted composition operator Cω,ϕ defined by Cω,ϕ(f)(z) = MωCϕ(f)(z) = ω(z)f(ϕ(z)) is bounded.

From now on, we assume that ω and ϕ satisfy these properties. For a positive integer n , the nth iterate of
ϕ , denoted by ϕn , is the function obtained by composing ϕ with itself n times; also, ϕ0 is defined to be the

identity function. Moreover, when ϕ is invertible, we define the iterates ϕ−n = ϕ−1 ◦ϕ−1 ◦ ... ◦ϕ−1 (n times).

Also, C∗
w, ϕKλ = w(λ)Kϕ(λ) for every λ in D which implies that C∗n

w, ϕKλ =
n−1∏
j=0

w(ϕj(λ))Kϕn(λ) . Moreover,

Cn
w, ϕ(f) = (

n−1∏
k=0

w ◦ ϕk)f ◦ ϕn for every f ∈ H . The properties of composition and weighted composition

operators on various spaces of analytic functions have been investigated by many authors; see monographs
[4, 15] and, for example, the following recent papers [9, 10, 11] and references therein.

In this paper, we give sufficient conditions for the n-tuple of the adjoint of a weighted composition op-
erator to be hypercyclic. Hypercyclicity of operators have been widely studied. It was shown by Rolewicz [13]

that twice the backward shift on the space �2(N) is hypercyclic. Many natural operators are hypercyclic. For

example, certain operators in the classes of weighted shifts [14], composition operators [2], and the adjoint of

subnormal, hyponormal and multiplication operators [6, 3], and the weighted composition operators and their

adjoint operators [16, 17, 11] are hypercyclic. A good source on this topic is [1].

Proposition 1 ([7], Proposition 2.4) Suppose that T = (T1, ..., Tn) is a hypercyclic tuple on a separable Banach

space X . Then every non-zero orbit of T ∗ = (T1
∗, ..., Tn

∗) is unbounded.

Proposition 2 If ϕ1 and ϕ2 are analytic maps of the disc into itself then (C∗
ϕ1

, C∗
ϕ2

) is not hypercyclic on H .

Proof. Since Cϕ1
k1Cϕ2

k21 = 1, then the orbit of 1 under (Cϕ1 , Cϕ2) is bounded. Thus, using Proposition 1,

the result follows. �

2. Tuples of weighted composition operators

We begin this section with a lemma that gives a necessary and sufficient condition for two weighted
composition operators to commute.
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Lemma 1 If ω1(z) and ω2(z) are nonzero for all z ∈ D , then Cω1,ϕ1 and Cω2,ϕ2 commute if and only if

ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 and ω1 · (ω2 ◦ ϕ1) = ω2 · (ω1 ◦ ϕ2) .

Proof. Suppose that Cω1,ϕ1 and Cω2,ϕ2 commute. Then

ω1 · (ω2 ◦ ϕ1) = Cω1,ϕ1Cω2,ϕ21 = Cω2,ϕ2Cω1,ϕ11 = ω2 · (ω1 ◦ ϕ2).

Moreover, since

(ω1 · (ω2 ◦ ϕ1) · (ϕ2 ◦ ϕ1))(z) = (Cω1,ϕ1Cω2,ϕ2g)(z)

= (Cω2,ϕ2Cω1,ϕ1g)(z) = (ω2 · (ω1 ◦ ϕ2) · (ϕ1 ◦ ϕ2))(z),

where g(z) = z we have ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 . For the converse, take f ∈ H . Then

Cω1,ϕ1Cω2,ϕ2f = ω1 · (ω2 · (f ◦ ϕ2)) ◦ ϕ1

= ω1 · (ω2 ◦ ϕ1) · f ◦ ϕ2 ◦ ϕ1

= ω2 · (ω1 ◦ ϕ2) · f ◦ ϕ1 ◦ ϕ2

= ω2 · (ω1 · (f ◦ ϕ1)) ◦ ϕ2

= Cω2,ϕ2Cω1,ϕ1f.

�

Proposition 3 If T = (Cω1,ϕ1 , Cω2,ϕ2) is a hypercyclic tuple then

(1) ω1(z) and ω2(z) are both nonzero for every z ∈ D .

(2) (ϕ1, ϕ2) is univalent.

Proof. (1) If ω1(z) = 0 for some z , then C∗
ω1,ϕ1

Kz = ω1(z)Kϕ1(z) = 0. Thus,

C∗nj
ω2,ϕ2

C∗mj
ω1,ϕ1

Kz = 0

for every mj ≥ 0 and nj ≥ 0 which implies that an orbit of T ∗ = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is bounded. Therefore, by

Proposition 1, T = (Cω1,ϕ1 , Cω2,ϕ2) is not hypercyclic. Hence, ω1(z) 
= 0 for every z ∈ D . Similarly, ω2(z) 
= 0

for every z ∈ D .
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(2) Let f be a hypercyclic vector for T . Suppose that (ϕ1(z), ϕ2(z)) = (ϕ1(λ), ϕ2(λ)). Then

〈Cm
ω2,ϕ2

Cn
ω1,ϕ1

f, Kz〉 = 〈Cn
ω1,ϕ1

f, C∗m
ω2,ϕ2

Kz〉

= 〈
n−1∏
i=0

ω1 ◦ (ϕ1)i · f ◦ (ϕ1)n, [
m−1∏
i=0

ω2 ◦ (ϕ2)i(z)]K(ϕ2)m(z)〉

=
m−1∏
i=0

ω2((ϕ2)i(z))
n−1∏
i=0

(ω1 ◦ (ϕ1)i)((ϕ2)m(z)) · (f ◦ (ϕ1)n)((ϕ2)m(z))

= ω1((ϕ2)m(z))ω2(z)
m−1∏
i=1

ω2((ϕ2)i(λ))
n−1∏
i=1

(ω1 ◦ (ϕ1)i)((ϕ2)m(λ)).(f ◦ (ϕ1)n)((ϕ2)m(λ))

=
ω1((ϕ2)m(z))ω2(z)
ω1((ϕ2)m(λ))ω2(λ)

m−1∏
i=0

ω2((ϕ2)i(λ))
n−1∏
i=0

(ω1 ◦ (ϕ1)i)((ϕ2)m(λ)) · (f ◦ (ϕ1)n)((ϕ2)m(λ))

=
ω1((ϕ2)m(z))ω2(z)
ω1((ϕ2)m(λ))ω2(λ)

〈Cm
ω2,ϕ2

Cn
ω1,ϕ1

f, Kλ〉,

where m and n are non-negative integers so that m2 + n2 
= 0. Thus,

〈g, Kz〉 =
ω1((ϕ2)m(z))ω2(z)
ω1((ϕ2)m(λ))ω2(λ)

〈g, Kλ〉

for every g ∈ H . Set g ≡ 1. Therefore,

〈h, Kz〉 = 〈h, Kλ〉

for every h ∈ H . Now, taking h(s) = s , we get z = λ . �

We remark that it follows from the Denjoy-Wolff theorem [4] that if ϕ is a self map of D and has a fixed
point in D then it is unique.

Proposition 4 If T = (Cω1,ϕ1 , Cω2,ϕ2) is a hypercyclic tuple and a is an interior fixed point of ϕ1 or ϕ2 ,

then |ω1(a)| > 1 or |ω2(a)| > 1 .

Proof. Suppose that ϕ1(a) = a . Then ϕ1(ϕ2(a)) = ϕ2(ϕ1(a)) = ϕ2(a), which implies that ϕ2(a) = a . So

C∗m
ω2,ϕ2

C∗n
ω1,ϕ1

Ka = (ω1(a))nC∗m
ω2,ϕ2

Ka = (ω1(a))n(ω2(a))mKa

Now, if |ω1(a)| ≤ 1 and |ω2(a)| ≤ 1, then orb(T ∗, Ka) is bounded. Thus, by Proposition 1, T is not hyper-
cyclic, which is a contradiction. �

Corollary 1 If ϕ1 or ϕ2 has an interior fixed point then (Cϕ1 , Cϕ2) is not hypercyclic.

Proof. Put ω1(z) ≡ 1 and ω2(z) ≡ 1 in Proposition 4. �

An argument similar to the proof of Proposition 2.5 of [7] shows the next proposition.
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Proposition 5 (Hypercyclicity Criterion) Suppose that (T1, T2, ..., Tn) is an n-tuple of operators on a separable

Banach space Z . Suppose further that there exist n strictly increasing sequences of positive integers {k1j}j ,

{k2j}j ,..., and {knj}j , dense sets X and Y in Z and functions Sj : Y −→ Z such that

(1) For each x ∈ X , T
k1j

1 T
k2j

2 ...T
knj
n x −→ 0 as j −→ ∞ ;

(2) for each y ∈ Y , Sjy −→ 0 as j −→ ∞ ;

(3) for each y ∈ Y , T
k1j

1 T
k2j

2 ...T
knj
n Sjy −→ y as j −→ ∞ .

Then (T1, T2, ..., Tn) is hypercyclic.

It follows from Lemma 1 that if

ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, ω1 = ω1 ◦ ϕ2 and ω2 = ω2 ◦ ϕ1, (∗)

then Cω1,ϕ1 and Cω2,ϕ2 commute. We give some examples of such functions. Suppose that ϕr(z) = eirπz

where r = p
q , p and q are integers so that (p, q) = 1. Define ωr(z) =

∞∑
n=0

anzn , where

an =
{

1
2n (n = 2kq

p for some k ∈ Z),
0 otherwise;

then ωr ∈ H∞ . Moreover, ωr ◦ ϕr(z) = ωr(z) for all z ∈ D and ϕr ◦ ϕs = ϕs ◦ ϕr .

Theorem 1 Let ϕ1 and ϕ2 be two disc automorphism such that (∗) holds and

sup
n∈Z

‖K(ϕ2)n◦(ϕ1)n(z)‖ < ∞

for every z ∈ D . If the sets

A = {z ∈ D : lim
n−→+∞

n−1∏
j=0

(ω1 ◦ (ϕ1)j)(z) · (ω2 ◦ (ϕ2)j)(z) = 0}

and

B = {z ∈ D : lim
n−→+∞

n∏
j=0

[(ω1 ◦ (ϕ1)−j)(z) · (ω2 ◦ (ϕ2)−j)(z)]−1 = 0}

have limit points in D , then (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is hypercyclic.

Proof. We will show that the hypercyclicity criterion holds. To see this take Ti = C∗
ωi,ϕi

for i = 1, 2. Since

Tn
i Kz = [

n−1∏
j=0

(ωi ◦ (ϕi)j)(z)]K(ϕi)n(z)

for i = 1, 2 and n ≥ 1, we have

Tn
2 Tn

1 Kz = [
n−1∏
j=0

ω1 ◦ (ϕ1)j(z)][
n−1∏
j=0

ω2 ◦ (ϕ2)j ◦ (ϕ1)n(z)]K(ϕ2)n◦(ϕ1)n(z)
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for every n ≥ 1.

Put SA = span{Kz : z ∈ A} and SB = span{Kz : z ∈ B} . Therefore, SA = SB = H thanks to

(SA)⊥ = (SB)⊥ = (0).

Since sup
n∈Z

‖K(ϕ2)n◦(ϕ1)n(z)‖ < ∞ , ω2 ◦ϕ1 = ω2 and ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 , we conclude that for every f ∈ SA

Tn
2 Tn

1 f −→ 0

as n −→ ∞ .

On the other hand, ω2 ◦ ϕ−1
1 = ω2 , ω1 ◦ ϕ−1

2 = ω1 and ϕ−1
1 ◦ ϕ−1

2 = ϕ−1
2 ◦ ϕ−1

1 ; therefore, if z ∈ B then

ϕ−1
1 ◦ ϕ−1

2 (z) ∈ B . So we can define

S : {Kz : z ∈ B} −→ SB

by

SKz = (ω1((ϕ1)−1(z)) · ω2((ϕ2)−1(z)))
−1

Kϕ−1
1 ◦ϕ−1

2 (z)

and extend it linearly to SB . Now, T2T1SKz = Kz , and so Tn
2 Tn

1 Sn is the identity on SB for every n ≥ 0.
Moreover, it is easily seen that

SnKz =
n∏

j=1

[(ω1 ◦ (ϕ1)−j)(z) · (ω2 ◦ (ϕ2)−j)(z)]
−1

K((ϕ1)−n◦(ϕ2)−n)(z)

for every n ≥ 1; thus, Sn converges pointwise to zero on the dense subset SB . Hence, hypercyclicity criterion
implies that (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is hypercyclic. �

Corollary 2 If the sets
{z ∈ D : lim

n−→+∞
(ω1(z)ω2(z))n = 0}

and

{z ∈ D : lim
n−→+∞

1
(ω1(z)ω2(z))n

= 0}

have limit points in D then (M∗
ω1

, M∗
ω2

) is hypercyclic on H .

Proof. Put ϕ1(z) = ϕ2(z) = z and apply the preceding theorem. �

Example 1 Let ω1(z) = z and ω2(z) = z + 5 . It is easily seen that

{x : 0 ≤ x ≤ −5 +
√

29
2

} ⊆ {z ∈ D : lim
n−→+∞

(z(z + 5))n = 0}

and

{x : −1 < x <
−5 +

√
21

2
} ⊆ {z ∈ D : lim

n−→+∞

1
(z(z + 5))n

= 0}

hence (M∗
ω1

, M∗
ω2

) is hypercyclic on H . Also, since ranωi ∩ ∂D = ∅ for i = 1, 2 , the operators M∗
ωi

, i = 1, 2

are not hypercyclic on H (see [[8],Theorem 4.9]).
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Recall that if ϕ is a hyperbolic automorphism then by the Denjoy-Wolff Theorem, one of its fixed point is the

Denjoy-Wolff point of ϕ and the other is repulsive; i.e., it is the Denjoy-Wolff point of ϕ−1 . Furthermore, the
angular derivative of ϕ at the Denjoy-Wolff point a , ϕ′(a) is less than 1 (see [[2], Page 24]).

Corollary 3 Suppose that {Kλ : λ ∈ D} is bounded in which Kλ is the reproducing kernel at λ, and ϕ1 and
ϕ2 are two hyperbolic automorphisms with the Denjoy-Wolff points a1 and a2 and repulsive fixed points b1

and b2 , respectively. Moreover, suppose that (∗) holds, ω1 and ω2 have non-tangential limits ω1(a1) at a1 ,

ω2(a2) at a2 , ω1(b1) at b1 and ω2(b2) at b2 . If |ω1(a1)ω2(a2)| < 1 < |ω1(b1)ω2(b2)| then (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is

hypercyclic.

Proof. Since ϕ′
1(a1) < 1 for every z ∈ D , there is a non-tangential approach region containing all iterates

(ϕ1)n(z) (see [[4], Lemma 2.66]), so lim
n→∞

ω1((ϕ1)n(z)) = ω1(a1). Similarly, lim
n→∞

ω2((ϕ2)n(z)) = ω2(a2). Thus,

lim
n→∞

(ω1 ◦ (ϕ1)n(z)) · (ω2 ◦ (ϕ2)n(z)) = ω1(a1)ω2(a2),

which implies that
∞∑

j=0

(1 − |(ω1 ◦ (ϕ1)j(z)) · (ω2 ◦ (ϕ2)j(z))|) = ∞.

Therefore,

lim
n→∞

n−1∏
j=0

|(ω1 ◦ (ϕ1)j(z)) · (ω2 ◦ (ϕ2)j(z))| = 0.

Thus, the set A in Theorem 1, has a limit point in D . Similarly, since ((ϕ1)−1)′(b1) < 1 and ((ϕ2)−1)′(b2) < 1,

∞∑
j=1

(1 − |(ω1 ◦ (ϕ1)−j(z)) · (ω2 ◦ (ϕ2)−j(z))|−1) = ∞,

and so the set B in Theorem 1, has a limit point in D . Hence, the proof is completed by applying Theorem 1.
�

Note that if ϕ1 and ϕ2 are two elliptic automorphisms so that Cϕ1 and Cϕ2 commute then they have the same

interior fixed points. For α ∈ D , consider an automorphism of D defined by ψα(z) = α−z
1−αz

, (z ∈ D). Some

spaces such as the Hardy, Bergman and Dirichlet spaces contain ψα for every α ∈ D .

Theorem 2 Suppose that H contains ψα for every α ∈ D . Let ϕ1 and ϕ2 be two elliptic automorphisms
with an interior fixed point a such that (∗) holds. If the sets A and B in Theorem 1 have limits in D , then

(C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is hypercyclic.

Proof. First, assume that a = 0. Then ϕ1(z) = eiθ1z and ϕ2(z) = eiθ2z for some θ1, θ2 ∈ [0, 2π] . Thus, for

z ∈ D , {(ϕ2)n ◦ (ϕ1)n(z) : n ∈ Z} ⊆ z∂D . But z∂D is a compact subset of D and so for f ∈ H the continuity
of f implies that

(f((ϕ2)n ◦ (ϕ1)n(z)))n∈Z

is a bounded sequence; this along with the principle of uniform boundedness shows that for every z ∈ D

(K(ϕ2)n◦(ϕ1)n(z))n∈Z

458



SOLTANI, ROBATI, HEDAYATIAN

is also bounded. Hence, by applying Theorem 1, (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is hypercyclic.

Now, for the general case put K = {f ◦ ψ−1
a : f ∈ H} endowed with inner product

〈f, g〉K = 〈f ◦ ψa, g ◦ ψa〉H.

Then K is a Hilbert space of analytic functions on D and Cψa : K −→ H defined by Cψaf = f ◦ ψa is a linear

isometric isomorphism. Furthermore, ϕ̃1 = ψa ◦ ϕ1 ◦ ψ−1
a and ϕ̃2 = ψa ◦ ϕ2 ◦ ψ−1

a are automorphisms with the

interior fixed point zero, and ω̃1 = ω1 ◦ ψ−1
a and ω̃2 = ω2 ◦ ψ−1

a are in M(K). Finally, since by the first step

(C∗
ω̃1,ϕ̃1

, C∗
ω̃2,ϕ̃2

) is hypercyclic and Cω̃i,ϕ̃i = C−1
ψa

◦ Cωi,ϕi ◦ Cψa for i = 1, 2, one can see that (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

)

is also hypercyclic. �

Example 2 Consider ϕ1(z) = iz, ϕ2(z) = −iz, ω1(z) = z4 and ω2(z) = z4 + 3 . Then the sets A and B

mentioned in Theorem 1 are
A = {z ∈ D : lim

n−→+∞
z4n(z4 + 3)n = 0}

and

B = {z ∈ D : lim
n−→+∞

1
z4n(z4 + 3)n

= 0}.

It is easily seen that [0, 1
2 ) ⊆ A and ( 1

4√2
, 1) ⊆ B. Hence, (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is hypercyclic.

Proposition 6 Let ϕ1 and ϕ2 be two elliptic automorphisms with an interior fixed point a and ω1, ω2 : D −→
C satisfy the inequality

|ω1(a)ω2(a)| < 1 < lim inf
|z|−→1−

|ω1(z)ω2(z)|.

If (∗) holds then (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is a hypercyclic pair.

Proof. As it is seen in the preceding theorem, we can assume that a = 0 and ϕ1(z) = eiθ1z and ϕ2(z) = eiθ2z

for some θ1, θ2 ∈ [0, 2π] . Therefore, (ϕ2)n◦(ϕ1)n(z) = einθ2einθ1z for every n ∈ Z . This along with the principle

of uniform boundedness implies that sup
n∈Z

‖K(ϕ2)n◦(ϕ1)n(z)‖ < ∞ for every z ∈ D . On the other hand, since

|ω1(0)ω2(0)| < 1 there exist a constant λ1 and a positive number δ1 such that |ω1(z)ω2(z)| < λ1 < 1 whenever

|z| < δ1 . This, in turn, implies that if |z| < δ1 then

|
n−1∏
j=0

ω1((ϕ1)j(z))ω2((ϕ2)j(z))| < λn
1 −→ 0

as n −→ +∞ . Consequently, {z : |z| < δ1} is a subset of the set A in Theorem 1. Moreover, since

1 < lim inf
|z|−→1−

|ω1(z)ω2(z)| there exist a constant λ2 and a positive number δ2 < 1 such that |ω1(z)ω2(z)| > λ2 > 1

when |z| > 1 − δ2 . Therefore, if |z| > 1 − δ2 then

n∏
j=1

|(ω1 ◦ (ϕ1)−j)(z)(ω2 ◦ (ϕ2)−j)(z)|−1 <
1
λn

2

−→ 0
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as n −→ +∞ . Thus, {z : |z| > 1 − δ2} is a subset of the set B in Theorem 1. Hence (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is

hypercyclic. �

Example 3 Consider ϕ1(z) = iz, ϕ2(z) = ei π
4 z, ω1(z) = z8 and ω2(z) = z4 + c where |c| > 2 . Since

|ω1(0)ω2(0)| < 1 < lim inf
|z|−→1−

|ω1(z)ω2(z)|

(C∗
ω1,ϕ1

, C∗
ω2,ϕ2

), is a hypercyclic pair.

Proposition 7 Suppose that there are positive integers m1 and m2 such that (ϕ1)m1 (z) = z and (ϕ2)m2 (z) = z

for all z ∈ D . If

∂D

⋂
ran(

m1m2−1∏
j=0

(ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j) 
= ∅,

and (∗) holds then (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is hypercyclic.

Proof. We observe that {(ϕ1)n ◦ (ϕ2)n(z) : n ∈ Z} is a subset of {(ϕ1)j ◦ (ϕ2)k(z) : j = 0, . . . , m1 − 1, k =

0, . . . , m2 − 1} . So the sequence (K(ϕ1)n◦(ϕ2)n(z))n∈Z is bounded for every z in D . Furthermore, since the

function

(
m1m2−1∏

j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j)(z)

is analytic on D , the open mapping theorem implies that

U = {z ∈ D : |(
m1m2−1∏

j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j)(z)| < 1}

and

V = {z ∈ D : |(
m1m2−1∏

j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j)(z)| > 1}

are non-empty open sets. Fix z ∈ U , and let Pn = (
n−1∏
j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j)(z) for n ∈ N . For ε > 0, since

Qk = (
m1m2−1∏

j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j(z))k −→ 0

as k −→ ∞ , one can choose k > 0 such that M |Qk| < ε , in which

M = max{|(
i∏

j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j)(z)| : i = 0, 1, ...,m1m2 − 1}.
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Now, if n > km1m2 then |Pn| ≤ M |Qk| < ε which implies that Pn −→ 0 as n −→ ∞ . Moreover, since for
every z ∈ D

(
m1m2−1∏

j=0

ω1 ◦ (ϕ1)−j · ω2 ◦ (ϕ2)−j)(z) = (
m1m2−1∏

j=0

ω1 ◦ (ϕ1)j · ω2 ◦ (ϕ2)j)(z)

by a similar method one can see that

n−1∏
j=0

[ω1 ◦ (ϕ1)−j · ω2 ◦ (ϕ2)−j)(z)]−1 −→ 0

as n −→ ∞ for every z ∈ V . Hence, the result follows using Theorem 1. �

Corollary 4 If ran(ω1.ω2)
⋂

∂D 
= ∅, then (M∗
ω1

, M∗
ω2

) is hypercyclic.

Proof. Let ϕ1(z) = z and ϕ2(z) = z for all z ∈ D in above proposition. �

Taking ω2(z) ≡ 1 in the above corollary, we get the following result from [8], as a special case.

Corollary 5 ([8]) If ran(ω1)
⋂

∂D 
= ∅, then M∗
ω1

is hypercyclic.

Remark. By analogous proofs we can show that the results in this paper are also valid for n-tuples of the
adjoint of the weighted composition operators on H .
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