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Generalized Berwald metrics

Esmaeil Peyghan and Akbar Tayebi

Abstract

In this paper, we consider a class of Finsler metrics called generalized Berwald metrics which contains the

class of Berwald metrics as a special case. We prove that every generalized Berwald metrics with non-zero

scalar flag curvature or isotropic Berwald curvature is a Randers metric. Then we prove that on generalized

Berwald metrics, the notions of generalized Landsberg and Landsberg curvatures are equivalent.

Key Words: Berwald metric, landsberg metric, randers metric

1. Introduction

For a Finsler metric F = F (x, y), its geodesics curves are given by the system of differential equations

c̈i + 2Gi(ċ) = 0, where the local functions Gi = Gi(x, y) are called the spray coefficients. A Finsler metric is

called a Berwald metric if Gi are quadratic in y ∈ TxM for any x ∈ M . The Berwald spaces can be viewed as
Finsler spaces modeled on a single Minkowski space [6].

On the other hand, various interesting special forms of Cartan, Landsberg and Berwald tensors have
been obtained by some Finslerians. The Finsler spaces having such special forms have been called C-reducible,
isotropic Berwald curvature and isotropic Landsberg curvature, etc. [4][5][7][9][11][12][13]. In [8], Matsumoto
introduced the notion of C-reducible metrics and proved that any Randers metric is C-reducible. Later on,
Matsumoto-Hōjō proved that the converse is true, too [10]. A Randers metric F = α + β is just a Riemannian

metric α perturbated by a one-form β which has important applications both in mathematics and physics [14].

In [4], Shen-Chen by using the structure of Funk metric, introduce the notion of isotropic Berwald metrics. This
motivates us to study special forms of Berwald curvature for other important special Finsler metrics.

We call a Finsler metric F to be generalized Berwald metric if its Berwald curvature satisfies the relation

Bi
jkl = (μjhkl + μkhjl + μlhjk)yi + λ(hi

jhkl + hi
khjl + hi

lhjk), (1)

where μi = μi(x, y) and λ = λ(x, y) are homogeneous functions on TM of degrees -2 and -1 with respect

to y , respectively and hij := FFyiyj is the angular metric [18]. It is remarkable that every two-dimensional

Finsler metric is a generalized Berwald metric. The study on generalized Berwald metrics will enhance our
understanding on the two-dimensional Finsler metric and geometric meaning of non-Riemannian quantities.
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Example 1 Let (M, F ) be a two-dimensional Finsler manifold. We refer to the Berwald’s frame (�i, mi) where

�i = yi/F (y) , mi is the unit vector with �im
i = 0 , �i = gij�

j and gij is the fundamental tensor of Finsler

metric F . Then the Berwald curvature is given by

Bi
jkl = F−1(−2I,1�

i + I,2m
i)mjmkml ,

where I is 0-homogeneous function called the main scalar of Finsler metric and I2 = I,2 + I,1|2 (see page 689

in [1]). By the above relation, we have

Bi
jkl =

−2I,1

3F 2
(mjhkl + mkhjl + mlhjk)yi +

I2

3F
(hi

jhkl + hi
khjl + hi

lhjk),

where hij := mimj . Therefore, every two-dimensional Finsler metric is a generalized Berwald metric with

μi = −2
3 F−2I,1mi and λ = I2

3F .

Other than two-dimensional Finsler metrics, there are many generalized Berwald metrics. An example
follows.

Example 2 Consider following Finsler metric on the unit ball B
n ⊂ R

n ,

F (x, y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >

1 − |x|2 , y ∈ TxB
n = R

n,

where |.| and <, > denote the Euclidean norm and inner product in R
n , respectively. F is called the Funk

metric which is a Randers metric on B
n [15]. Then F is a generalized Berwald metric with λ = 1

2F
and

μi = Ii

(n+1)F .

For a Finsler manifold (M, F ), the flag curvature is a function K(P, y) of tangent planes P ⊂ TxM and

directions y ∈ P . F is said to be of scalar flag curvature if K(P, y) = K(x, y). One of the important problems
in Finsler geometry is to characterize Finsler manifolds of scalar flag curvature. In this paper, we study the
generalized Berwald metrics of non-zero scalar flag curvature and prove the following.

Theorem 1.1 Every generalized Berwald metric of non-zero scalar flag curvature with dimension n ≥ 3 is a
Randers metric.

A Finsler metric F is said to be isotropic Berwald metric if

Bi
jkl = c{Fyjyk δi

l + Fyjylδi
k + Fykylδi

j + Fyjykylyi},

where c = c(x) is a non-zero scalar function on M [4]. We show that a generalized Berwald metric with
isotropic Berwald curvature is a Randers metric.

Theorem 1.2 Every non-Berwaldian generalized Berwald metric of isotropic Berwald curvature with dimension
n ≥ 3 is a Randers metric.

A Finsler metric is called a generalized Landsberg metric if the Riemannian curvature of the Berwald and Chern
connections coincide. Landsberg metrics belong to this class of metrics. We prove that on generalized Berwald
manifolds, every generalized Landsberg metric reduce to a Landsberg metric.
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Theorem 1.3 Let (M, F ) be a generalized Berwald manifold with dimension n ≥ 3 . Then F is a generalized
Landsberg metric if and only if it is a Landsberg metric.

There are many connections in Finsler geometry [16][17]. In this paper, we use the Berwald connection and the

h- and v - covariant derivatives of a Finsler tensor field are denoted by symbols “ |” and “,” respectively.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M , by TM =
∪x∈MTxM the tangent bundle of M , and by TM0 = TM \ {0} the slit tangent bundle on M . A Finsler

metric on M is a function F : TM → [0,∞) which has the following properties: (i) F is C∞ on TM0 ; (ii)

F is positively 1-homogeneous on the fibers of tangent bundle TM , and (iii) for each y ∈ TxM , the following
quadratic form gy on TxM is positive definite,

gy(u, v) :=
1
2

∂2

∂s∂t

[
F 2(y + su + tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx , define Cy : TxM×TxM×TxM → R

by

Cy(u, v, w) :=
1
2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that C = 0 if and only if F is

Riemannian. For y ∈ TxM0 , define mean Cartan torsion Iy by Iy(u) := Ii(y)ui , where Ii := gjkCijk and

u = ui ∂
∂xi |x . By Deicke’s Theorem, F is Riemannian if and only if Iy = 0 [15].

Let (M, F ) be a Finsler manifold. For y ∈ TxM0 , define the Matsumoto torsion My : TxM ⊗ TxM ⊗
TxM → R by My(u, v, w) := Mijk(y)uivjwk where

Mijk := Cijk − 1
n + 1

{Iihjk + Ijhik + Ikhij},

and hij := FFyiyj = gij − 1
F2 gipy

pgjqy
q is the angular metric. A Finsler metric F is said to be C-reducible

metric if My = 0. This quantity is introduced by Matsumoto [7]. Matsumoto proves that every Randers metric

satisfies that My = 0. Later on, Matsumoto-Hōjō proves that the converse is true too. A Randers metric

F = α + β is just a Riemannian metric α =
√

aij(x)yiyj perturbated by a one form β = bi(x)yi on M such

that ‖β‖α :=
√

aijbibj < 1.

Lemma 2.1 ([10]) A positive-definite Finsler metric F on a manifold of dimension n ≥ 3 is a Randers metric
if and only if My = 0, ∀y ∈ TM0 .

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg curvature Ly :

TxM × TxM × TxM → R defined by

Ly(u, v, w) := Lijk(y)uivjwk,
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where Lijk := Cijk|sy
s , u = ui ∂

∂xi |x , v = vi ∂
∂xi |x and w = wi ∂

∂xi |x . The family L := {Ly}y∈TM0 is called the

Landsberg curvature. A Finsler metric is called a Landsberg metric if L=0. The horizontal covariant derivatives

of I along geodesics give rise to the mean Landsberg curvature Jy(u) := Ji(y)ui , where Ji := gjkLijk . A Finsler

metric is said to be weakly Landsbergian if J = 0.

Define M̄y : TxM ⊗ TxM ⊗ TxM → R by M̄y(u, v, w) := M̄ijk(y)uivjwk , where

M̄ijk := Lijk − 1
n + 1

{Jihjk + Jjhik + Jkhij}.

A Finsler metric F is said to be P-reducible if M̄y = 0. The notion of P-reducibility was given by Matsumoto-

Shimada [9]. It is obvious that every C-reducible metric is a P-reducible metric.

Given a Finsler manifold (M, F ), then a global vector field G is induced by F on TM0 , which in a

standard coordinate (xi, yi) for TM0 is given by

G = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi(x, y) :=
1
4
gil(y)

{ ∂2[F 2]
∂xk∂yl

(x, y)yk − ∂[F 2]
∂xl

(x, y)
}
, y ∈ TxM

are local functions on TM . G is called the spray associated to (M, F ). In local coordinates, a curve c(t) is a

geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

For a tangent vector y ∈ TxM0 , define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey : TxM ⊗ TxM → R by

By(u, v, w) := Bi
jkl(y)ujvkwl ∂

∂xi |x and Ey(u, v) := Ejk(y)ujvk where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Ejk :=

1
2
Bm

jkm.

The B and E are called the Berwald curvature and mean Berwald curvature, respectively. Then F is called a
Berwald metric and weakly Berwald metric if B = 0 and E = 0 , respectively [15].

In [4], Shen-Chen by using the structure of Funk metric, introduce the notion of isotropic Berwald metrics.
A Finsler metric F is said to be isotropic Berwald metric if

Bi
jkl = c{Fyjykδi

l + Fyjylδi
k + Fykylδi

j + Fyjykylyi},

where c = c(x) is a scalar function on M [4][19].

The Riemann curvature Ry = Ri
kdxk ⊗ ∂

∂xi |x : TxM → TxM is a family of linear maps on tangent

spaces, defined by

Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
.

The flag curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian geometry
was first introduced by L. Berwald [3]. For a flag P = span{y, u} ⊂ TxM with flagpole y , the flag curvature

K = K(P, y) is defined by

K(P, y) :=
gy(u, Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
.
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When F is Riemannian, K = K(P ) is independent of y ∈ P , and is the sectional curvature of P . We say

that a Finsler metric F is of scalar curvature if for any y ∈ TxM , the flag curvature K = K(x, y) is a scalar
function on TM0 .

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. To do this, we need the following lemma.

Lemma 3.1 Every generalized Berwald metric is a P-reducible metric.

Proof. By assumption, we have

Bi
jkl = (μjhkl + μkhjl + μlhjk)yi + λ(hi

jhkl + hi
khjl + hi

lhjk), (2)

where μi = μi(x, y) and λ = λ(x, y) are homogeneous functions of degrees -2 and -1 with respect to y ,

respectively. Multiplying (2) with yj and using yjBi
jkl = 0 and yjhi

j = yj(δi
j − F−2yiyj) = 0 implies that

yiμi = 0. Contracting (2) with yi yields

yiB
i
jkl = F 2(μjhkl + μkhjl + μlhjk) + λyi(hi

jhkl + hi
khjl + hi

lhjk). (3)

Using yiB
i
jkl = −2Ljkl and yih

i
m = 0, equation (3) reduces to

Ljkl = −1
2
F 2{μjhkl + μkhjl + μlhjk}. (4)

Contracting (4) with gkl yields

Jj = −1
2
(n + 1)F 2μj. (5)

Putting (5) in (4), we get

Ljkl =
1

n + 1
{Jjhkl + Jkhjl + Jlhjk}. (6)

It means that F is a P-reducible metric. �

There is a straightforward relation between the Landsberg curvature and Riemannian curvature as follows.

Lemma 3.2 ([15]) The Landsberg and Riemann Curvatures are related by

Lijk|mym + CijmRm
k = −1

6
{
gim(2Rm

k,j + Rm
j,k) + gjm(2Rm

k,i + Rm
i,k)

}
. (7)

Using the relation between the Landsberg curvature and Riemannian curvature mentioned in lemma 3.2, we
prove the following lemma.

Lemma 3.3 Let (M, F ) be a P-reducible manifold. Suppose that F is of non-zero scalar flag curvature. Then
F is a C-reducible metric.
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Proof. Contracting (7) with gij gives

Jk|mym + ImRm
k = −1

3

{
2Rm

k,m + Rm
m,k

}
. (8)

Let F is of scalar curvature K = K(x, y). This is equivalent to

Ri
k = KF 2 hi

k, (9)

where hi
k := gijhjk . Differentiating (9) yields

Ri
k,l = K,lF

2 hi
k + K

{
2glpy

pδi
k − gkpy

pδi
l − gkly

i
}

. (10)

By (7), (8) and (10), we obtain

Lijk|mym = −1
3
F 2

{
K,ihjk + K,jhik + K,khij + 3KCijk

}
, (11)

Jk|mym = −1
3
F 2

{
(n + 1)K,k + 3KIk

}
. (12)

Taking a horizontal derivation of P-reducibility yields

Lijk|mym =
1

n + 1

{
Ji|mhjk + Jj|mhik + Jk|mhij

}
ym . (13)

By plugging (11) and (12) into (13) we get

KF 2Mijk = 0.

Since K �= 0, thus Mijk = 0, and this means that F is a C-reducible metric. �

Proof of Theorem 1.1: By Lemmas 2.1, 3.1 and 3.3, we get the proof. �

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. First, we remark the following.

Lemma 4.1 ([18]) Let the Cartan tensor of Finsler metric F satisfies in relation Cijk = Bihjk +Bjhik +Bkhij

with yiBi = 0. Then F is a C-reducible metric.

Theorem 4.2 A two-dimensional Finsler metric is Berwaldian if and only if it is weakly Landsbergian and
weakly Berwaldian.

Proof. By (5) we have

μi =
−2

(n + 1)F 2
Ji. (14)
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Equation (14) implies that F is a weakly Landsbergian if and only if μi = 0. Contracting i and l in the
definition of generalized Berwald metric yields

2Eij = (n + 1)λhij . (15)

The equation (15) implies that F is a weakly Berwald metric if and only if λ = 0. Plugging (14) and (15) in

(1) yields

Bi
jkl =

2
(n + 1)

{
(Eklh

i
j + Ejlh

i
k + Ejkhi

l) − (Jjhkl + Jkhjl + Jlhjk)F−2yi
}

. (16)

By (16), we conclude that for every two-dimensional Finsler metric, B = 0 if and only if E = 0 and J = 0. �

Corollary 4.1 Let (M, F ) be a generalized Berwald manifold. Suppose that F is a weakly Berwald metric.
Then the following are equivalent:

1. F is a Berwald metric,

2. F is a Landsberg metric,

3. F is a weakly Landsberg metric.

Proof. By Lemma 3.1, F is a P-reducible metric. Then J = 0 if and only if L = 0. By Theorem 4.2, the
proof is complete. �

Proof of Theorem 1.2: Let F be a isotropic Berwald metric

Bi
jkl = cF−1(hi

jhkl + hi
khjl + hi

lhjk + 2Cjkly
i). (17)

We remark that since F is non-Berwaldian metric then c �= 0. Then we obtain

Ejk =
1
2
Bm

jkm =
1
2
(n + 1)cF−1hjk. (18)

Comparing (15) with (18) yields

λ = cF−1. (19)

Putting (19) in (1) implies that

Bi
jkl = (μjhkl + μkhjl + μlhjk)yi + cF−1(hi

jhkl + hi
khjl + hi

lhjk). (20)

By (17) and (20) we have

Bi
jkl = cF−1{hi

jhkl + hi
khjl + hi

lhjk + (μjhkl + μkhjl + μlhjk)c−1Fyi}

= cF−1{hi
jhkl + hi

khjl + hi
lhjk + 2Cjkly

i}. (21)

Comparing the above two identities yields

Cjkl =
1
2c

(μjhkl + μkhjl + μlhjk)F. (22)

By Lemmas 4.1 and 2.1, F is a Randers metric. �
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5. Proof of Theorem 1.3

A Finsler manifold is called a Landsberg manifold if the Berwald connection coincides with the Chern
connection. With this definition of the Landsberg manifolds in mind, we may introduce a new class of Finsler
manifolds, as follows. The relation between Riemannian curvatures of Berwald and Chern connections is given
by

Hi
jkl = Ri

jkl + [Li
jl|k − Li

jk|l + Li
skLs

jl − Li
slL

s
jk], (23)

where Hi
jkl and Ri

jkl denote the Riemannian curvatures of Berwald and Chern connections, respectively. We

say that a Finsler metric F is a generalized Landsberg metric if Hi
jkl = Ri

jkl [2]. By definition of generalized

Landsberg metric we have

Li
jl|k − Li

jk|l + Li
skLs

jl − Li
slL

s
jk = 0. (24)

Lemma 5.1 Let (M, F ) be a Finsler manifold. Then F is a generalized Landsberg metric if and only if the
following equations hold:

LiskLs
jl − LislL

s
jk = 0, (25)

Lijl|k − Lijk|l = 0. (26)

Proof. Fix k and l and put

Qij := Lijl|k − Lijk|l + LiskLs
jl − LislL

s
jk.

One can write
Qij := Qs

ij + Qa
ij,

where

Qs
ij :=

1
2
(Qij + Qji),

Qa
ij :=

1
2
(Qij − Qji).

It is easy to see that Qij = 0 if and only if Qs
ij = 0 and Qa

ij = 0. On the other hand, we have

Qji = Ljil|k − Ljik|l + LjskL
s
il − L jslL

s
ik

= Lijl|k − Lijk|l + Ls
jkLsil − Ls

jlLsik.

Hence
Qs

ij = Ljil|k − Ljik|l,

and consequently

Qa
ij = LiskLs

jl − LislL
s
jk.

This proves the Lemma. �
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Lemma 5.2 Let (M, F ) be a P-reducible manifold. Then F is a generalized Landsberg metric if and only if F

is a Landsberg metric.

Proof. It is sufficient to prove that every P-reducible generalized Landsberg metric is a Landsberg metric.
Let F be a generalized Landsberg metric. Then by Lemma 5.1, we have

Li
skLs

jl − Li
slL

s
jk = 0, (27)

Li
jl|k − Li

jk|l = 0. (28)

On the other hand, we have:

hij = hirhjsg
rs, (29)

Ji = gsrhriJs. (30)

F is a P-reducible metric

Lijk =
1

1 + n
{hijJk + hjkJi + hkiJj}. (31)

By using (29), (30) and (31) in (27), we get

{hijhlk + hikhlj}JsJs + {hlkJj + hljJk}Ji + {hijJk + hikJj}Jl = 0. (32)

Contracting (32) with gijgtk and using (29), (30) and gijhij = n − 1, we obtain

(n + 1)(n − 2)JsJs = 0. (33)

Since F is a positive definite metric and n > 2, then we have Js = 0. By considering (31), we conclude that
F is a Landsberg metric. �

Proof of Theorem 1.3: By Lemma 3.1 and Lemma 5.2, we get the proof. �

References

[1] Antonelli, P. L.: Handbook of Finsler Geometry, Kluwer Academic Publishers, 2005.

[2] Bejancu, A., Farran, H.: Generalized Landsberg Manifolds of scalar curvature, Bull. Korean Math. Soc. 37(3),

543–550 (2000).
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