Contact CR-warped product submanifolds in generalized Sasakian space forms

Sibel Sular and Cihan Özgür

Abstract

We consider a contact CR-warped product submanifold $M=M_{\top} \times{ }_{f} M_{\perp}$ of a trans-Sasakian generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. We show that M is a contact CR-product under certain conditions.

Key words and phrases: Warped product manifold, contact CR-warped product submanifold, transSasakian manifold, generalized Sasakian space form

1. Introduction

The notion of a CR-warped product manifold was introduced by B. Y. Chen (see [6] and [7]). He established a sharp relationship between the warping function f of a warped product CR-submanifold of a Kaehler manifold and the squared norm of the second fundamental form. Later, I. Hasegawa and I. Mihai found a similar inequality for contact CR-warped product submanifolds of Sasakian manifolds in [8]. Moreover, I. Mihai [11] improved the same inequality for contact CR-warped products in Sasakian space forms and he gave some applications. A classification of contact CR-warped products in spheres, which satisfy the equality case, identically, was also given.

Furthermore, in [2], K. Arslan, R. Ezentas, I. Mihai and C. Murathan considered contact CR-warped product submanifolds in Kenmotsu space forms and they obtained sharp estimates for the squared norm of the second fundamental form in terms of the warping function for contact CR-warped products isometrically immersed in Kenmotsu space forms.

Recently, in [3], M. Atçeken studied on the contact CR-warped product submanifolds of a cosymplectic space form and obtained a necessary and sufficient condition for a contact CR-product.

Motivated by the studies of the above authors, in the present study, we consider contact CR-warped product submanifolds of a trans-Sasakian generalized Sasakian space forms and obtain a necessary and sufficient condition for a contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian space form to be a contact CR-product.

The paper is organized as follows: In Section 2, we give a brief information about almost contact metric manifolds. Moreover, in this section the definitions of a generalized Sasakian space form and a contact CR-warped product submanifold are given. In Section 3, warped product manifolds are introduced. In the

[^0]last section, we establish a sharp relationship between the warping function f and the squared norm of the second fundamental form σ of a contact CR-warped product submanifold of a trans-Sasakian manifold and give characterizations for a contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian space form to be a contact CR-product submanifold.

2. Preliminaries

An odd-dimensional Riemannian manifold \widetilde{M} is called an almost contact metric manifold if there exist on \widetilde{M} a $(1,1)$-tensor field φ, a vector field ξ (called a structure vector field), a 1-form η and the Riemannian metric g on \widetilde{M} such that

$$
\begin{gather*}
\varphi^{2}=-I+\eta \otimes \xi, \quad \varphi \xi=0, \quad \eta(\xi)=1, \quad \eta \circ \varphi=0, \tag{1}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2}\\
\eta(X)=g(X, \xi), \quad g(\varphi X, Y)=-g(X, \varphi Y), \tag{3}
\end{gather*}
$$

for all vector fields on \widetilde{M} [4].
Such a manifold is said to be a contact metric manifold if $d \eta=\Phi$, where $\Phi(X, Y)=g(X, \varphi Y)$ is called the fundamental 2 -form of \widetilde{M}.

On the other hand, the almost contact metric structure of \widetilde{M} is said to be normal if $[\varphi, \varphi](X, Y)=$ $-2 d \eta(X, Y) \xi$ for any X, Y on \widetilde{M}, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ, given by

$$
[\varphi, \varphi](X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]
$$

A normal contact metric manifold is called a Sasakian manifold [4]. It is easy to see that an almost contact metric manifold is Sasakian if and only if

$$
\left(\widetilde{\nabla}_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X
$$

for any X, Y on \widetilde{M}.
In [13], A. Oubiña introduced the notion of a trans-Sasakian manifold. An almost contact metric manifold \widetilde{M} is said to be a trans-Sasakian manifold if there exist two functions α and β on \widetilde{M} such that

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \varphi\right) Y=\alpha[g(X, Y) \xi-\eta(Y) X]+\beta[g(\varphi X, Y) \xi-\eta(Y) \varphi X] \tag{4}
\end{equation*}
$$

for all vector fields on \widetilde{M}. If $\beta=0$ (resp. $\alpha=0$), then \widetilde{M} is said to be an α-Sasakian manifold (resp. β-Kenmotsu manifold). Sasakian manifolds (resp. Kenmotsu manifolds) appear as examples of α-Sasakian manifolds (resp. β-Kenmotsu manifolds), with $\alpha=1$ (resp. $\beta=1$).

From the above equation, for a trans-Sasakian manifold we also have

$$
\begin{equation*}
\widetilde{\nabla}_{X} \xi=-\alpha \varphi X+\beta[X-\eta(X) \xi] \tag{5}
\end{equation*}
$$

A plane section in the tangent space $T_{x} \widetilde{M}$ at $x \in \widetilde{M}$ is called a φ-section if it is spanned by a vector X orthogonal to ξ and φX. The sectional curvature $K(X \wedge \varphi X)$ with respect to a φ-section denoted by a vector X is called a φ-sectional curvature. A Sasakian manifold with constant φ-sectional curvature c is a Sasakian space form [4] and its Riemannian curvature tensor is given by

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & \frac{1}{4}(c+3)\{g(Y, Z) X-g(X, Z) Y\} \\
& +\frac{1}{4}(c-1)\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \tag{6}\\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi \\
& +g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z\}
\end{align*}
$$

Given an almost contact metric manifold \widetilde{M}, it is said to be a generalized Sasakian space form [1] if there exist three functions f_{1}, f_{2} and f_{3} on \widetilde{M} such that

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z\} \tag{7}\\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{align*}
$$

for any vector fields X, Y, Z on \widetilde{M}, where \widetilde{R} denotes the curvature tensor of \widetilde{M}. If $f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4}$, then \widetilde{M} is a Sasakian space form [4], if $f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4}$, then \widetilde{M} is a Kenmotsu space form [9], if $f_{1}=f_{2}=f_{3}=\frac{c}{4}$, then \widetilde{M} is a cosymplectic space form [10].

Let $f: M \longrightarrow \widetilde{M}$ be an isometric immersion of an n-dimensional Riemannian manifold M into an $(n+d)$-dimensional Riemannian manifold \widetilde{M}. We denote by ∇ and $\widetilde{\nabla}$ the Levi-Civita connections of M and \widetilde{M}, respectively. Then we have the Gauss and Weingarten formulas

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{9}
\end{equation*}
$$

where ∇^{\perp} denotes the normal connection on $T^{\perp} M$ of M and A_{N} is the shape operator of M, for $X, Y \in \chi(M)$ and a normal vector field N on M. We call σ the second fundamental form of the submanifold M. If $\sigma=0$ then the submanifold is said to be totally geodesic. The second fundamental form σ and A_{N} are related by

$$
g\left(A_{N} X, Y\right)=g(\sigma(X, Y), N)
$$

for any vector fields X, Y tangent to M.
The equation of Gauss and Codazzi are defined by

$$
\begin{equation*}
(\widetilde{R}(X, Y) Z)^{\top}=R(X, Y) Z+A_{\sigma(X, Z)} Y-A_{\sigma(Y, Z)} X \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
(\widetilde{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)-\left(\bar{\nabla}_{Y} \sigma\right)(X, Z) \tag{11}
\end{equation*}
$$

for all vector fields X, Y, Z on \widetilde{M}, where $(\widetilde{R}(X, Y) Z)^{\top}$ and $(\widetilde{R}(X, Y) Z)^{\perp}$ denote the tangent and normal components of $\widetilde{R}(X, Y) Z$, respectively.

Moreover, the first derivative $\bar{\nabla} \sigma$ of the second fundamental form σ is given by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) \tag{12}
\end{equation*}
$$

where $\bar{\nabla}$ is called the van der Waerden-Bortolotti connection of M [5].
An m-dimensional Riemannian submanifold M of a trans-Sasakian manifold \widetilde{M}, where ξ is tangent to M, is called a contact $C R$-submanifold if it admits an invariant distribution D whose orthogonal complementary distribution D^{\perp} is anti-invariant, that is

$$
T M=D \oplus D^{\perp} \oplus s p\{\xi\}
$$

with $\varphi D_{x} \subseteq D_{x}$ and $\varphi D_{x}^{\perp} \subseteq T_{x}^{\perp} M$ for each $x \in M$, where $s p\{\xi\}$ denotes 1-dimensional distribution which is spanned by ξ.

Let us denote the orthogonal complementary of φD^{\perp} in $T^{\perp} M$ by v. Then we have

$$
T^{\perp} M=\varphi D^{\perp} \oplus v
$$

It is obvious that $\varphi v=v$.
For any vector field X tangent to M, we can write

$$
\varphi X=T X+N X
$$

where $T X$ (resp. $N X$) denotes tangential (resp. normal) component of φX.
Similarly, for any vector field N normal to M, we put

$$
\varphi N=B N+C N
$$

where $B N$ (resp. $C N$) denotes the tangential (resp. normal) component of φN.

3. Warped product manifolds

Let $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ be two Riemannian manifolds and f is a positive differentiable function on B. Consider the product manifold $B \times F$ with its projections $\pi: B \times F \rightarrow B$ and $\sigma: B \times F \rightarrow F$. The warped product $B \times{ }_{f} F$ is the manifold $B \times F$ with the Riemannian structure such that

$$
\|X\|^{2}=\left\|\pi^{*}(X)\right\|^{2}+f^{2}(\pi(p))\left\|\sigma^{*}(X)\right\|^{2}
$$

for any vector field X on M. Thus we have

$$
\begin{equation*}
g=g_{B}+f^{2} g_{F}, \tag{13}
\end{equation*}
$$

holds on M. The function f is called the warping function of the warped product [12].
We need the following lemma from [12], for later use :

Lemma 3.1 Let us consider $M=B \times{ }_{f} F$ and denote by $\nabla,{ }^{B} \nabla$ and ${ }^{F} \nabla$ the Riemannian connections on M, B and F, respectively. If X, Y are vector fields on B and V, W on F, then:
(i) $\nabla_{X} Y$ is the lift of ${ }^{B} \nabla_{X} Y$,
(ii) $\nabla_{X} V=\nabla_{V} X=(X f / f) V$,
(iii) The component of $\nabla_{V} W$ normal to the fibers is $-(g(V, W) / f)$ gradf,
(iv) The component of $\nabla_{V} W$ tangent to the fibers is the lift of ${ }^{F} \nabla_{V} W$.

Let we chose a local orthonormal frame e_{1}, \ldots, e_{n} such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to B and $e_{n_{1}+1}, \ldots, e_{n}$ are tangent to F. The gradient and Hessian form of f are defined by

$$
\begin{equation*}
X(f)=g(\operatorname{grad} f, X) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{f}(X, Y)=X(Y(f))-\left(\nabla_{X} Y\right) f=g\left(\nabla_{X} \operatorname{grad} f, Y\right) \tag{15}
\end{equation*}
$$

for any vector fields X, Y on M, respectively.
Moreover, the Laplacian of f is given by

$$
\begin{equation*}
\Delta f=\sum_{i=1}^{n}\left\{\left(\nabla_{e_{i}} e_{i}\right) f-e_{i}\left(e_{i}(f)\right)\right\}=-\sum_{i=1}^{n} g\left(\nabla_{e_{i}} \operatorname{grad} f, e_{i}\right) \tag{16}
\end{equation*}
$$

(see [12]).
From the Green Theory for compact orientable Riemannian manifolds without boundary, it is well-known that

$$
\begin{equation*}
\int_{M} \Delta f d V=0 \tag{17}
\end{equation*}
$$

where $d V$ denotes the volume element of M.

4. Contact CR-warped product submanifolds

In this section, we establish a sharp relationship between the warping function f and the squared norm of the second fundamental form σ of a contact CR-warped product submanifold of a trans-Sasakian manifold and give characterizations for a contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian space form to be a contact CR-product submanifold.

Now, let's begin with the following lemma.
Lemma 4.1 Let $M=M_{\top} \times_{f} M_{\perp}$ be a contact CR-warped product submanifold of a trans-Sasakian manifold \widetilde{M}. Then we have

$$
\begin{align*}
& g(\sigma(\varphi X, Y), \varphi Y)=X(\ln f) g(Y, Y) \tag{18}\\
& g(\sigma(X, Y), \varphi Y)=-\varphi X(\ln f) g(Y, Y) \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
g(\sigma(\varphi X, Z), \varphi Y)=0 \tag{20}
\end{equation*}
$$

for any vector fields X, Z on M_{\top} and Y on M_{\perp}.

Proof. Assume that M is a contact CR-warped product submanifold of a trans-Sasakian manifold \widetilde{M}. From the Gauss formula we can write

$$
\begin{equation*}
\tilde{\nabla}_{Y} \varphi X=\nabla_{Y} \varphi X+\sigma(\varphi X, Y) \tag{21}
\end{equation*}
$$

for vector fields X on M_{\top} and Y on M_{\perp}. Taking the inner product of the above equation with φY we get

$$
\begin{equation*}
g(\sigma(\varphi X, Y), \varphi Y)=g\left(\widetilde{\nabla}_{Y} \varphi X, \varphi Y\right) \tag{22}
\end{equation*}
$$

Since \widetilde{M} is a trans-Sasakian manifold, from (4) we have

$$
\begin{equation*}
\left(\widetilde{\nabla}_{Y} \varphi\right) X=\alpha[g(X, Y) \xi-\eta(X) Y]+\beta[g(\varphi Y, X) \xi-\eta(X) \varphi Y] \tag{23}
\end{equation*}
$$

By the use of M is a contact CR-warped product submanifold, the equation (23) reduces to

$$
\left(\widetilde{\nabla}_{Y} \varphi\right) X=0
$$

which implies that

$$
\begin{equation*}
\tilde{\nabla}_{Y} \varphi X=\varphi \widetilde{\nabla}_{Y} X \tag{24}
\end{equation*}
$$

In view of (24) in (22), we obtain

$$
g(\sigma(\varphi X, Y), \varphi Y)=g\left(\varphi \widetilde{\nabla}_{Y} X, \varphi Y\right)
$$

Using (2), the last equation turns into

$$
g(\sigma(\varphi X, Y), \varphi Y)=g\left(\widetilde{\nabla}_{Y} X, Y\right)
$$

By making use of the Gauss equation again, we get

$$
g(\sigma(\varphi X, Y), \varphi Y)=g\left(\nabla_{Y} X, Y\right)
$$

Since $\nabla_{X} Y-\nabla_{Y} X=[X, Y]=0$ for vector fields X on M_{\top} and Y on M_{\perp}, from [12], the above equation can be written as

$$
\begin{equation*}
g(\sigma(\varphi X, Y), \varphi Y)=g\left(\nabla_{X} Y, Y\right) \tag{25}
\end{equation*}
$$

So by virtue of the Lemma 3.1, (25) gives us (18).
Similarly by the use of the Gauss formula we can write

$$
g(\sigma(X, Y), \varphi Y)=g\left(\widetilde{\nabla}_{Y} X, \varphi Y\right)
$$

From (3), the last equation shows us

$$
g(\sigma(X, Y), \varphi Y)=-g\left(\varphi \widetilde{\nabla}_{Y} X, Y\right)
$$

In view of (24), we get

$$
g(\sigma(X, Y), \varphi Y)=-g\left(\widetilde{\nabla}_{Y} \varphi X, Y\right)
$$

Then, by the use of the Gauss formula and Lemma 3.1 we obtain (19).

Similar to the proof of (18) and (19) we can easily show that

$$
g(\sigma(\varphi X, Z), \varphi Y)=g\left(\nabla_{Z} X, Y\right)
$$

for any vector fields X, Z on M_{\top} and Y on M_{\perp}. Since M_{\top} is totally geodesic in M, the above equation gives us (20). Hence, we finish the proof of the lemma.

Lemma 4.2 Let $M=M_{\top} \times_{f} M_{\perp}$ be a contact CR-warped product submanifold of a trans-Sasakian manifold \widetilde{M}. Then we have

$$
\begin{equation*}
g(\sigma(\varphi X, Y), \varphi \sigma(X, Y))=\|\sigma(X, Y)\|^{2}-[\varphi X(\ln f)]^{2}\|Y\|^{2} \tag{26}
\end{equation*}
$$

for any vector fields X on M_{\top} and Y on M_{\perp}.
Proof. Taking the inner product of (21) with $\varphi \sigma(X, Y)$ we get

$$
g(\sigma(\varphi X, Y), \varphi \sigma(X, Y))=g\left(\widetilde{\nabla}_{Y} \varphi X-\nabla_{Y} \varphi X, \varphi \sigma(X, Y)\right)
$$

for any vector fields X on M_{\top} and Y on M_{\perp}.
Since the ambient space \widetilde{M} is trans-Sasakian, by the use of (24) and Lemma 3.1 we find

$$
\begin{equation*}
g(\sigma(\varphi X, Y), \varphi \sigma(X, Y))=g\left(\varphi \widetilde{\nabla}_{Y} X, \varphi \sigma(X, Y)\right)-g(\varphi X(\ln f) Y, \varphi \sigma(X, Y)) \tag{27}
\end{equation*}
$$

In view of (2) and (3), the equation (27) reduces to

$$
g(\sigma(\varphi X, Y), \varphi \sigma(X, Y))=g\left(\widetilde{\nabla}_{Y} X, \sigma(X, Y)\right)+\varphi X(\ln f) g(\varphi Y, \sigma(X, Y))
$$

Then, from the Gauss formula and the equation (19) we obtain

$$
g(\sigma(\varphi X, Y), \varphi \sigma(X, Y))=g(\sigma(X, Y), \sigma(X, Y))-[\varphi X(\ln f)]^{2} g(Y, Y)
$$

which gives us (26). Thus, the proof of the lemma is completed.

Lemma 4.3 Let $M=M_{\top} \times_{f} M_{\perp}$ be a contact CR-warped product submanifold of a trans-Sasakian generalized
Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then we have

$$
\begin{align*}
2\|\sigma(X, Y)\|^{2}= & \left\{H^{\ln f}(X, X)+H^{\ln f}(\varphi X, \varphi X)\right. \tag{28}\\
& \left.+2[\varphi X(\ln f)]^{2}+2 f_{2}\|X\|^{2}\right\}\|Y\|^{2}
\end{align*}
$$

for any vector fields X on M_{\top} and Y on M_{\perp}.
Proof. In view of the equation (11), we can write

$$
\begin{equation*}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)=g\left(\left(\bar{\nabla}_{X} \sigma\right)(\varphi X, Y)-\left(\bar{\nabla}_{\varphi X} \sigma\right)(X, Y), \varphi Y\right) \tag{29}
\end{equation*}
$$

for any vector fields X on M_{\top} and Y on M_{\perp}. Then, by the use of (12) the equation (29) reduces to

$$
\begin{aligned}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & g\left(\nabla_{X}^{\perp} \sigma(\varphi X, Y)-\sigma\left(\nabla_{X} \varphi X, Y\right)-\sigma\left(\nabla_{X} Y, \varphi X\right), \varphi Y\right) \\
& -g\left(\nabla_{\varphi X}^{\perp} \sigma(X, Y)+\sigma\left(\nabla_{\varphi X} X, Y\right)+\sigma\left(\nabla_{\varphi X} Y, X\right), \varphi Y\right)
\end{aligned}
$$

By making use of the Weingarten formula in the above equation, we get

$$
\begin{aligned}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & g\left(\widetilde{\nabla}_{X} \sigma(\varphi X, Y), \varphi Y\right)-g\left(\sigma\left(\nabla_{X} \varphi X, Y\right), \varphi Y\right) \\
& -g\left(\sigma\left(\nabla_{X} Y, \varphi X\right), \varphi Y\right)-g\left(\widetilde{\nabla}_{\varphi X} \sigma(X, Y), \varphi Y\right) \\
& +g\left(\sigma\left(\nabla_{\varphi X} X, Y\right), \varphi Y\right)+g\left(\sigma\left(\nabla_{\varphi X} Y, X\right), \varphi Y\right)
\end{aligned}
$$

By virtue of the properties of the Levi-Civita connection $\widetilde{\nabla}$, the above equation can be written as follows

$$
\begin{aligned}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & X[g(\sigma(\varphi X, Y), \varphi Y)]-g\left(\sigma(\varphi X, Y), \widetilde{\nabla}_{X} \varphi Y\right) \\
& -g\left(\sigma\left(\nabla_{X} \varphi X, Y\right), \varphi Y\right)-g\left(\sigma\left(\nabla_{X} Y, \varphi X\right), \varphi Y\right) \\
& -\varphi X[g(\sigma(X, Y), \varphi Y)]+g\left(\sigma(X, Y), \widetilde{\nabla}_{\varphi X} \varphi Y\right) \\
& +g\left(\sigma\left(\nabla_{\varphi X} X, Y\right), \varphi Y\right)+g\left(\sigma\left(\nabla_{\varphi X} Y, X\right), \varphi Y\right)
\end{aligned}
$$

Then, in view of Lemma 3.1, Lemma 4.1 and (24), the last equation turns into

$$
\begin{align*}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & X[X(\ln f) g(Y, Y)]-g\left(\sigma(\varphi X, Y), \varphi \widetilde{\nabla}_{X} Y\right) \\
& +\varphi \nabla_{X} \varphi X(\ln f) g(Y, Y)-X(\ln f) g(\sigma(\varphi X, Y), \varphi Y) \\
& +\varphi X[\varphi X(\ln f) g(Y, Y)]+g\left(\sigma(X, Y), \varphi \widetilde{\nabla}_{\varphi X} Y\right) \\
& -\varphi \nabla_{\varphi X} X(\ln f) g(Y, Y)+\varphi X(\ln f) g(\sigma(X, Y), \varphi Y) \tag{30}
\end{align*}
$$

Taking into account of the covariant derivative and the Gauss formula in (30) we obtain

$$
\begin{aligned}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & X(X(\ln f)) g(Y, Y)+2 X(\ln f) g\left(\nabla_{X} Y, Y\right) \\
& -g\left(\sigma(\varphi X, Y), \varphi \nabla_{X} Y\right)-g(\sigma(\varphi X, Y), \varphi \sigma(X, Y)) \\
& +\varphi \nabla_{X} \varphi X(\ln f) g(Y, Y)-X(\ln f) g(\sigma(\varphi X, Y), \varphi Y) \\
& +\varphi X(\varphi X(\ln f)) g(Y, Y)+2 \varphi X(\ln f) g\left(\nabla_{\varphi X} Y, Y\right) \\
& +g\left(\sigma(X, Y), \varphi \nabla_{\varphi X} Y\right)+g(\sigma(X, Y), \varphi \sigma(X, Y)) \\
& -\varphi \nabla_{\varphi X} X(\ln f) g(Y, Y)+\varphi X(\ln f) g(\sigma(X, Y), \varphi Y)
\end{aligned}
$$

By the use of Lemma 3.1, Lemma 4.1 and Lemma 4.2 in the above equation we get

$$
\begin{align*}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & \left\{X(X(\ln f))+\varphi \nabla_{X} \varphi X(\ln f)\right. \\
& -\varphi \nabla_{\varphi X} X(\ln f)+\varphi X(\varphi X(\ln f)) \\
& \left.+2[\varphi X(\ln f)]^{2}\right\} g(Y, Y)-2\|\sigma(X, Y)\|^{2} \tag{31}
\end{align*}
$$

Since M_{\top} is totally geodesic in M and it is an invariant submanifold of a trans-Sasakian manifold \widetilde{M}, from (4) we have

$$
\begin{equation*}
\varphi \nabla_{X} \varphi X=-\nabla_{X} X \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi \nabla_{\varphi X} X=\nabla_{\varphi X} \varphi X+\beta g(X, X) \xi \tag{33}
\end{equation*}
$$

By making use of (32) and (33) in (31), we obtain

$$
\begin{aligned}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & \left\{X(X(\ln f))-\nabla_{X} X(\ln f)-\nabla_{\varphi X} \varphi X(\ln f)\right. \\
& -\beta g(X, X) \xi(\ln f)+\varphi X(\varphi X(\ln f)) \\
& \left.+2[\varphi X(\ln f)]^{2}\right\} g(Y, Y)-2\|\sigma(X, Y)\|^{2}
\end{aligned}
$$

Since $\xi(\ln f)=0$, the above equation reduces to

$$
\begin{aligned}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & \left\{X(X(\ln f))-\nabla_{X} X(\ln f)\right. \\
& +\varphi X(\varphi X(\ln f))-\nabla_{\varphi X} \varphi X(\ln f) \\
& \left.+2[\varphi X(\ln f)]^{2}\right\} g(Y, Y)-2\|\sigma(X, Y)\|^{2}
\end{aligned}
$$

which gives us

$$
\begin{align*}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)= & \left\{H^{\ln f}(X, X)+H^{\ln f}(\varphi X, \varphi X)\right. \tag{34}\\
& \left.+2[\varphi X(\ln f)]^{2}\right\} g(Y, Y)-2\|\sigma(X, Y)\|^{2}
\end{align*}
$$

On the other hand, since \widetilde{M} is a generalized Sasakian space form, in view of (7) we get

$$
\begin{equation*}
g(\widetilde{R}(X, \varphi X) Y, \varphi Y)=-2 f_{2} g(X, X) g(Y, Y) \tag{35}
\end{equation*}
$$

Hence, comparing the right hand sides of the equations (34) and (35) we can write

$$
\begin{aligned}
2\|\sigma(X, Y)\|^{2}= & \left\{H^{\ln f}(X, X)+H^{\ln f}(\varphi X, \varphi X)\right. \\
& \left.+2[\varphi X(\ln f)]^{2}+2 f_{2} g(X, X)\right\} g(Y, Y)
\end{aligned}
$$

Thus, the proof of the lemma is completed.

Theorem 4.4 Let $M=M_{\top} \times_{f} M_{\perp}$ be a compact contact CR-warped product submanifold of a trans-Sasakian generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then M is a contact CR-product if

$$
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2} \geq f_{2} \cdot p \cdot q
$$

where σ_{v} denotes the component of σ in $v,(2 p+1)-\operatorname{dim}\left(T M_{\top}\right)$ and $q-\operatorname{dim}\left(T M_{\perp}\right)$.

Proof. Let $\left\{e_{0}=f, e_{1}, e_{2}, \ldots, e_{p}, \varphi e_{1}, \varphi e_{2}, \ldots, \varphi e_{p}, e^{1}, e^{2}, \ldots, e^{q}\right\}$ be an orthonormal basis of $\chi(M)$ such that $e_{0}, e_{1}, e_{2}, \ldots, e_{p}, \varphi e_{1}, \varphi e_{2}, \ldots, \varphi e_{p}$ are tangent to M_{\top} and $e^{1}, e^{2}, \ldots, e^{q}$ are tangent to M_{\perp}. Similarly, let $\left\{\varphi e^{1}, \varphi e^{2}, \ldots, \varphi e^{q}, N_{1}, N_{2}, \ldots, N_{2 r}\right\}$ be an orthonormal basis of $\chi^{\perp}(M)$ such that $\varphi e^{1}, \varphi e^{2}, \ldots, \varphi e^{q}$ are tangent to $\varphi\left(T\left(M_{\perp}\right)\right)$ and $N_{1}, N_{2}, \ldots, N_{2 r}$ are tangent to $\chi(v)$.

In view of (16), we can write

$$
\begin{aligned}
\Delta \ln f= & -\sum_{i=1}^{p} g\left(\nabla_{e_{i}} \operatorname{grad} \ln f, e_{i}\right)-\sum_{i=1}^{p} g\left(\nabla_{\varphi e_{i}} \operatorname{grad} \ln f, \varphi e_{i}\right) \\
& -\sum_{j=1}^{q} g\left(\nabla_{e^{j}} \operatorname{grad} \ln f, e^{j}\right)-g\left(\nabla_{\xi} \operatorname{grad} \ln f, \xi\right)
\end{aligned}
$$

Since \widetilde{M} is trans-Sasakian, the induced connection is Levi-Civita and grad $f \in \chi\left(M_{\top}\right)$ we have $g\left(\nabla_{\xi} \operatorname{grad} \ln f, \xi\right)=$ 0 . Hence, by the use of (15), the above equation can be written as

$$
\Delta \ln f=-\sum_{i=1}^{p}\left\{H^{\ln f}\left(e_{i}, e_{i}\right)+H^{\ln f}\left(\varphi e_{i}, \varphi e_{i}\right)\right\}-\sum_{j=1}^{q} g\left(\nabla_{e^{j}} \operatorname{grad} \ln f, e^{j}\right)
$$

Then, similar to the proof of the Theorem 3.4 in [3] we get

$$
\begin{aligned}
\Delta \ln f= & -\sum_{i=1}^{p}\left\{H^{\ln f}\left(e_{i}, e_{i}\right)+H^{\ln f}\left(\varphi e_{i}, \varphi e_{i}\right)\right\} \\
& -\sum_{j=1}^{q}\left\{e^{j}\left(\frac{g\left(\operatorname{grad} f, e^{j}\right)}{f}\right)-\frac{1}{f} g\left(\nabla_{e^{j}} e^{j}, \operatorname{grad} f\right)\right\} .
\end{aligned}
$$

By the use of Lemma 3.1, since $\operatorname{grad} f \in \chi\left(M_{\top}\right)$, we obtain

$$
\begin{equation*}
\Delta \ln f=-\sum_{i=1}^{p}\left\{H^{\ln f}\left(e_{i}, e_{i}\right)+H^{\ln f}\left(\varphi e_{i}, \varphi e_{i}\right)\right\}-q\|\operatorname{grad} \ln f\|^{2} \tag{36}
\end{equation*}
$$

On the other hand, taking $X=e_{i}$ and $Y=e^{j}$ in (28), where $1 \leq i \leq p$ and $1 \leq j \leq q$, we can write

$$
\begin{align*}
2 \sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma\left(e_{i}, e^{j}\right)\right\|^{2}= & q\left\{\sum _ { i = 1 } ^ { p } \left\{H^{\ln f}\left(e_{i}, e_{i}\right)+H^{\ln f}\left(\varphi e_{i}, \varphi e_{i}\right)\right.\right. \tag{37}\\
& \left.+2 \sum_{i=1}^{p}\left[\varphi e_{i}(\ln f)\right]^{2}+2 f_{2} \cdot p\right\}
\end{align*}
$$

Comparing the equations (36) and (37), it can be easily seen that

$$
\begin{equation*}
-\Delta \ln f=\frac{2}{q} \sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma\left(e_{i}, e^{j}\right)\right\|^{2}-2 \sum_{i=1}^{p}\left[\varphi e_{i}(\ln f)\right]^{2}+q\|\operatorname{grad} \ln f\|^{2}-2 f_{2} \cdot p \tag{38}
\end{equation*}
$$

Furthermore, we can write the second fundamental form σ as follows

$$
\sigma\left(e_{i}, e^{j}\right)=\sum_{k=1}^{q} g\left(\sigma\left(e_{i}, e^{j}\right), \varphi e^{k}\right) \varphi e^{k}+\sum_{l=1}^{2 r} g\left(\sigma\left(e_{i}, e^{j}\right), N_{l}\right) N_{l}
$$

for each $1 \leq i \leq p$ and $1 \leq j \leq q$. Taking the inner product of the above equation with $\sigma\left(e_{i}, e^{j}\right)$ we get

$$
\sum_{i=1}^{p} \sum_{j=1}^{q} g\left(\sigma\left(e_{i}, e^{j}\right), \sigma\left(e_{i}, e^{j}\right)\right)=\sum_{i=1}^{p} \sum_{j, k=1}^{q} g\left(\sigma\left(e_{i}, e^{j}\right), \varphi e^{k}\right)^{2}+\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{l=1}^{2 r} g\left(\sigma\left(e_{i}, e^{j}\right), N_{l}\right)^{2} .
$$

Then by making use of Lemma 4.1, the last equation turns into

$$
\begin{equation*}
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma\left(e_{i}, e^{j}\right)\right\|^{2}=q \sum_{i=1}^{p}\left[\varphi e_{i}(\ln f)\right]^{2}+\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2} \tag{39}
\end{equation*}
$$

So, comparing the equations (38) and (39) we obtain

$$
-\Delta \ln f=\frac{2}{q} \sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}+q\|\operatorname{grad} \ln f\|^{2}-2 f_{2} \cdot p
$$

Since M is a compact submanifold, by virtue of (17) we can write

$$
\begin{equation*}
\int_{M}\left\{\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}+\frac{q^{2}}{2}\|\operatorname{grad} \ln f\|^{2}-f_{2} \cdot p \cdot q\right\} d V=0 \tag{40}
\end{equation*}
$$

If

$$
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2} \geq f_{2} \cdot p \cdot q
$$

then (40) gives us $\operatorname{grad} f=0$, which means that f is a constant on M. So, M is a contact CR-product. Hence, we finish the proof of the theorem.

Proposition 4.5 Let $M=M_{\top} \times_{f} M_{\perp}$ be a compact contact CR-warped product submanifold of a transSasakian generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then M is a contact CR-product if and only if

$$
\begin{equation*}
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}=f_{2} \cdot p \cdot q \tag{41}
\end{equation*}
$$

Proof. Assume that M is a compact contact CR-warped product submanifold of trans-Sasakian generalized Sasakian space form \widetilde{M} satisfying

$$
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}=f_{2} \cdot p \cdot q
$$

Then, from (40) it is easy to see that f is a constant on M, which implies that M is a contact CR-product. Conversely, if M is a contact CR-product, then f is a constant on M. So we get

$$
g(\sigma(X, Y), \varphi Y)=-\varphi X(\ln f) g(Y, Y)=0
$$

for any vector fields X on M_{\top} and Y on M_{\perp}. So, the last equation can be written as

$$
g(\varphi \sigma(X, Y), Y)=0
$$

which gives us $B \sigma(X, Y)=0$, i. e. $\sigma(X, Y) \in \chi(v)$. Hence, we obtain (41).
As a consequence of the above proposition, we can give the following corollaries.
Corollary 4.6 [8] Let $M=M_{\top} \times_{f} M_{\perp}$ be a compact contact CR-warped product submanifold of a Sasakian space form $\widetilde{M}(c)$. Then M is a contact CR-product if and only if

$$
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}=\frac{(c-1)}{4} p . q .
$$

Corollary 4.7 [2] Let $M=M_{\top} \times_{f} M_{\perp}$ be a compact contact CR-warped product submanifold of a Kenmotsu space form $\widetilde{M}(c)$. Then M is a contact CR-product if and only if

$$
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}=\frac{(c+1)}{4} p . q .
$$

Corollary 4.8 [3] Let $M=M_{\top} \times_{f} M_{\perp}$ be a compact contact CR-warped product submanifold of a cosymplectic space form $\widetilde{M}(c)$. Then M is a contact CR-product if and only if

$$
\sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\sigma_{v}\left(e_{i}, e^{j}\right)\right\|^{2}=\frac{c}{4} p \cdot q .
$$

References

[1] Alegre, P., Blair, D. E., Carriazo, A.: Generalized Sasakian space forms, Israel J. Math. 141, 157-183 (2004).
[2] Arslan, K., Ezentaş, R., Mihai, I., Murathan, C.: Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math. Soc. 42, 1101-1110 (2005).
[3] Atçeken, M.: Contact CR-warped product submanifolds in cosymplectic space forms, to appear in Collect. Math.
[4] Blair, D. E.: Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
[5] Chen, B. Y.: Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo, 1981.
[6] Chen, B. Y.: Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math. 133, 177-195 (2001).
[7] Chen, B. Y.: Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math. 134, 103-119 (2001).
[8] Hasegawa, I., Mihai, I.: Contact CR-warped product submanifolds in Sasakian manifolds, Geom. Dedicata 102, 143-150 (2003).
[9] Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tôhoku Mathematical Journal 24, 93-103 (1972).
[10] Ludden, G. D.: Submanifolds of cosymplectic manifolds, Journal of Differential Geometry 4, 237-244 (1970).
[11] Mihai, I.: Contact CR-warped product submanifolds in Sasakian space forms, Geom. Dedicata, 109, 165-173, (2004).
[12] O'Neill, B.: Semi-Riemannian geometry with applications to relativity, Academic Press, N-Y, London 1983.
[13] Oubina, J. A.: New classes of almost contact metric structures, Publications Mathematicae Debrecen 32, 187-193 (1985).

Sibel SULAR, Cihan ÖZGÜR
Received: 22.02.2010
Department of Mathematics,
Balıkesir University,
10145, Balıkesir-TURKEY
e-mails: csibel@balikesir.edu.tr, cozgur@balikesir.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 53C40, 53C25.

