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Abstract

Let K be a field, V a K -vector space with basis e1, . . . , en and let E be the exterior algebra of V .

We study the class of reverse lexicographic ideals in E . We analyze the behaviour of their Hilbert functions

and Betti numbers.
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1. Introduction

Let K be a field, V a K -vector space with basis e1, . . . , en and let E be the exterior algebra of V .
In [1, Theorem 4.4] Aramova, Herzog and Hibi proved that in the exterior algebra the lexicographic ideals
give the maximal Betti numbers among all graded ideals with a given Hilbert function. The result holds in
any characteristic. Such a result is the analogue of a result proved for graded ideals in a polynomial ring by
Bigatti [3] and Hulett [6] in characteristic zero, and by Pardue [7] in any characteristic. Afterwards, Deery [5]
has proved an analogue of Bigatti, Hulett and Pardue’s result about minimal Betti numbers. He showed that
revlex segment ideals give the lowest Betti numbers among all stable ideals with the same Hilbert function in
a polynomial ring. Our aim is to prove a similar result for graded ideals in the exterior algebra. We introduce
the reverse lexicographic ideals in the exterior algebra E, study their Hilbert functions and prove that the
reverse lexicographic ideals have minimal Betti numbers for given Hilbert functions. In this context the stable
ideals (see [1] and [2]) play an important role. In [1], Aramova, Herzog and Hibi gave an explicit minimal free

resolution for this class of monomial ideals and obtained a formula for their Betti numbers (Theorem 2.2). This
formula will be a fundamental tool in the article.

The paper is organized as follows.

Section 2 contains preliminary notions and results.

In Section 3 we introduce the reverse lexicographic segment and analyze its shadow (Definition 3.5). As
in the polynomial case the shadow of a reverse lexicographic segment is not necessarily a reverse lexicographic
segment. Therefore we determine the conditions under which this property holds (Theorem 3.6 and Corollary

3.8). We characterize sets of monomials of E that generates a reverse lexicographic ideal.
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Section 4 is devoted to the study of the behaviour of the Hilbert functions of reverse lexicographic ideals
(Propositions 4.2 and 4.3). In Section 5 we study the graded Betti numbers of reverse lexicographic ideals in
the exterior algebra E . The main statement is the following:

Theorem 1.1 Let I � E be a strongly stable ideal and J � E a reverse lexicographic ideal. Suppose that
HE/J(d) = HE/I(d) , for all d . Then βi,j(E/I) ≥ βi,j(E/J) , for all i and j .

The key result is Theorem 5.3, which is obtained by a certain decomposition of a subset of monomials of
the same degree in the exterior algebra.

2. Preliminaries and notation

Let K be a field. We denote by E = K 〈e1, ..., en〉 the exterior algebra of a K -vector space V with

basis e1, . . . , en . For any subset σ = {i1, . . . , id} of {1, . . . , n} with 1 ≤ i1 < i2 < . . . < id ≤ n we write
eσ = ei1 ∧ . . . ∧ eid and call eσ a monomial of degree d . The set of monomials in E forms a K -basis of E of
cardinality 2n .

In order to simplify the notation we put fg = f ∧ g for any two elements f and g in E. An element

f ∈ E is called homogeneous of degree j if f ∈ Ej, where Ej =
∧j

V. An ideal I is called graded if I is

generated by homogeneous elements. If I is graded, then I = ⊕j≥0Ij , where Ij is the K -vector space of all

homogeneous elements f ∈ I of degree j.

Let eσ = ei1ei2 · · ·eid be a monomial of degree d . We define

supp(eσ) = {i1, i2, . . . , id} = {i : ei divides eσ },

and we write
m(eσ) = max{i : i ∈ supp(eσ)} .

If I � E is a monomial ideal, we denote by G(I) the unique minimal set of monomial generators of I .

The function HE/I(j) = dimK(E/I)j , j = 0, 1, . . . is called the Hilbert function of E/I and the

polynomial HE/I =
∑

j≥0 HE/I(j)ti is called the Hilbert series of E/I.

The possible Hilbert functions of graded algebras of the form E/I are described by the Kruskal-Katona

Theorem [1, Theorem 4.1], which is the precise analogue to Macaulay’s theorem (see, e.g., [4]).

For later use we recall the next definitions, which are quoted from [1], [2].

Definition 2.1 Let I � E be a monomial ideal. I is called stable if for each monomial eσ ∈ I and each
j < m(eσ) one has ejeσ\{m(eσ)} ∈ I .

I is called strongly stable if for each monomial eσ ∈ I and each j ∈ σ one has that eieσ\{j} ∈ I for all

i < j .

Now let I be a graded ideal of E . Consider the minimal graded free resolution of E/I over E

F : . . . → F2
d2→ F1

d1→ F0 → E/I → 0.
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Each of the modules Fi is of the form ⊕jE(−j)βi,j(E/I) and the maps di are described by matrices with

homogeneous coefficients in E . Moreover, the resolution of E/I is always infinite, unless I = (0). Indeed

ker di 
= 0 for all i since the kernel of di contains the submodule (e1e2 · · · en)Fi . Viewing K as a left E -
module via the canonical epimorphism, we have that

βi,j(E/I) = dimK TorEi (E/I, K)j .

The numbers βi,j(E/I) are called the graded Betti numbers.

In [1], Aramova, Herzog and Hibi studied the minimal graded free resolution of E/I when I is a stable

ideal of E and proved a formula for computing the graded Betti numbers of E/I . More precisely [1, Corollary

3.3]:

Theorem 2.2 Let I � E be a stable ideal. Then

βi,j+i(E/I) =
∑

u∈G(I)j+1

(
m(u) + i − 2

m(u) − 1

)
, for all i ≥ 1.

3. Revlex ideals in the exterior algebra

In this section we introduce the reverse lexicographic ideals in the exterior algebra E = K 〈e1, ..., en〉 and
study some of their properties.

Let Md denote the set of all monomials of degree d ≥ 1 in E .

We write >revlex for the reverse lexicographic order (revlex for short) on the finite set Md, i.e., if
u = ei1ei2 · · ·eid and v = ej1ej2 · · ·ejd are monomials belonging to Md with 1 ≤ i1 < i2 < . . . < id ≤ n and

1 ≤ j1 < j2 < . . . < jd ≤ n , then

u >revlex v if id = jd, id−1 = jd−1, . . . , is+1 = js+1 and is < js for some 1 ≤ s ≤ d.

From now on, in order to simplify the notation, we will write > instead of >revlex .

Definition 3.1 A nonempty set M ⊆ Md is called a reverse lexicographic segment of degree d (revlex segment

of degree d , for short) if for all v ∈ M and all u ∈ Md such that u > v, we have that u ∈ M .

Example 3.2 Let E = K 〈e1, e2, e3, e4, e5〉 . The subset of M2

W = {e1e2, e1e3, e2e3, e1e4}

is a revlex segment of degree 2, whereas the subset of M4

W ′ = {e1e2e3e4, e1e2e4e5, e1e3e4e5}

is not a revlex segment, because e1e2e3e5 > e1e2e4e5 and e1e2e3e5 /∈ W ′.

Definition 3.3 Let I = ⊕j≥0Ij be a monomial ideal of E. We say that I is a reverse lexicographic ideal of E

if, for every j, Ij is spanned by a revlex segment (as K -vector space).
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Example 3.4 Let E = K 〈e1, e2, e3, e4〉 . The ideal I = (e1e2, e2e3e4) � E is not a revlex ideal since I3 =

〈e1e2e3, e1e2e4, e2e3e4〉 is not spanned as K -vector space by a revlex segment. In fact, e1e3e4 > e2e3e4 and

e1e3e4 /∈ I3 .

The ideal I = (e1e2, e1e3e4) � E is a revlex ideal. In fact

I2 = 〈e1e2〉

is spanned as K -vector space by a revlex segment of degree 2;

I3 = 〈e1e2e3, e1e2e4, e1e3e4〉

is spanned as K -vector space by a revlex segment of degree 3; and

I4 = 〈e1e2e3e4〉

is spanned as K -vector space by a revlex segment of degree 4.

It is clear that reverse lexicographic ⇒ strongly stable ⇒ stable.

From now on, for the sake of simplicity, given a monomial ideal I = ⊕j≥0Ij of E we will say that Ij is a

reverse lexicographic segment of degree j if Ij is spanned as K -vector space by a reverse lexicographic segment

of degree j.

Definition 3.5 Let M be a subset of monomials of E . Set ei = {e1, . . . , ei}. We define the set

eiM = {uej : u ∈ M , j /∈ supp(u) , j = 1, . . . , i}.

Note that eiM = ∅ if, for every monomial u ∈ M and for every j = 1, . . . , i , one has j ∈ supp(u).

If M is a set of monomial of degree d < n, enM is called the shadow of M and is denoted by Shad(M):

Shad(M) = {uej : u ∈ M, j /∈ supp(u), j = 1, . . . , n}.

Note that, if M is a revlex segment of degree d , then Shad(M) needs not be a revlex segment of degree
d + 1.

For example, if E = K 〈e1, e2, e3, e4, e5〉 and M = {e1e2, e1e3}, then

Shad(M) = {e1e2e3, e1e2e4, e1e3e4, e1e2e5, e1e3e5}

is not a revlex segment of degree 3. Infact e2e3e4 > e1e2e5 but e2e3e4 /∈ Shad(M).

Theorem 3.6 Let M be a revlex segment of degree d of E and let i be an integer such that n > i > d + 1 .
Suppose ei+1M 
= ∅ . The following conditions are equivalent:

(1) ei+1M is a revlex segment of degree d + 1 .

(2) ei−dei−(d−1) · · · ei−2ei−1 ∈ M .
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Proof. Set M ′ = ei+1M .

(1)⇒(2). Suppose that ei−dei−(d−1) · · · ei−2ei−1 /∈ M.

Let u be the smallest monomial that belongs to M. Then u > ei−dei−(d−1) · · ·ei−2ei−1 and m(u) ≤ i−1.

Let w be the greatest monomial of degree d such that u > w . It follows that w ≥ ei−dei−(d−1) · · ·ei−2ei−1

and m(w) ≤ i − 1. Therefore i /∈ supp(w) and so wei 
= 0.

Clearly, wei > uei+1 . Hence, since uei+1 ∈ M ′ and since M ′ is a revlex segment by assumption, we

have that wei ∈ M ′ . Therefore there exist v ≥ u and j ∈ {1, . . . , i + 1}, j /∈ supp(v), such that

wei = vej . (1)

Since v ≥ u , it follows that m(v) ≤ i − 1 and consequently i /∈ supp(v). Hence, from (1) we have i = j and
w = v . Then w = v ≥ u, which contradicts the choice of w .

Thus ei−dei−(d−1) · · ·ei−2ei−1 ∈ M .

(2)⇒(1). Let u be the smallest monomial that belongs to M ′ . We will show that every monomial w of

degree d + 1 such that w > u is an element of M ′ .

We have that u = ei1 · · ·eidei+1, with ei1 · · ·eid ∈ M . Let w = ej1 · · ·ejd+1 with w > u . Then

m(w) = jd+1 ≤ m(u) = i + 1.

(Case 1). Suppose m(w) = jd+1 = i + 1. We have

w = ej1 · · ·ejdei+1 > u = ei1 · · ·eidei+1 ⇒ ej1 · · ·ejd > ei1 · · · eid .

Since M is a revlex segment, it follows that ej1 · · · ejd ∈ M. Hence w = ej1 · · · ejdejd+1 ∈ M ′ and M ′ is a revlex

segment of degree d + 1.

(Case 2). Suppose m(w) = jd+1 < i + 1.

In this case ej1 · · ·ejd ≥ ei−dei−(d−1) · · · ei−2ei−1 . In fact jd < jd+1 ≤ i . Therefore, since M is a revlex

segment, ej1 · · ·ejd ∈ M and w ∈ M ′ . �

Remark 3.7 In Theorem 3.6 we may assume i > d + 1, since otherwise the problem is trivial.

As consequences of Theorem 3.6 we obtain the following corollaries.

Corollary 3.8 Let M be a revlex segment of degree d of E such that d < n− 2 . The following conditions are
equivalent:

(1) Shad(M) is a revlex segment of degree d + 1 .

(2) en−(d+1) · · · en−3en−2 ∈ M .

Corollary 3.9 Let M = {eσ1 , . . . , eσt} be a set of monomials of E and let d1 = min{deg(eσi ) : i = 1, . . . , t}
and d2 = max{deg(eσi ) : i = 1, . . . , t} , with d2 < n − 2 . Then I = (M) is a revlex ideal if and only if

(1) Ij is a revlex segment for d1 ≤ j ≤ d2 ;

(2) en−(d2+1) · · ·en−3en−2 ∈ M .
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4. Hilbert functions of revlex ideals

In this section we put our attention on the behaviour of the Hilbert functions of revlex ideals in the
exterior algebra E = K 〈e1, e2, . . . , en〉 .

For a finite subset S of E , we denote by M(S) the set of all monomials in S and we denote by |S| its
cardinality.

Proposition 4.1 Let M be a revlex segment of degree d < n− 2 of E . Then Shad(M) is a revlex segment if

and only if |M | ≥
(

n − 2
d

)
.

Proof. From Corollary 3.8, Shad(M) is a revlex segment if and only if the monomial en−(d+1) · · ·en−3en−2

belongs to M . Set u = en−(d+1) · · ·en−3en−2 . It follows that u ∈ M if and only if all the monomials ei1ei2 · · · eid

with 1 ≤ i1 < i2 < . . . < id ≤ n − 2 are in M .

Hence Shad(M) is a revlex segment if and only if |M | ≥
(
n−2

d

)
. �

Proposition 4.2 Let I � E be a graded ideal. Let d be a positive integer such that d < n − 2 . Suppose

(1) Id is a revlex segment,

(2) HE/I(d) ≤
(

n

d

)
−

(
n − 2

d

)
.

Then HE/I(d + 1) ≤ HE/I(d) .

Proof. Since HE/I(d) = dimK Ed − dimK Id =
(

n

d

)
− dimK Id, we have dimK Id ≥

(
n − 2

d

)
by the

assumption. It follows that Shad(Id) is a revlex segment (Proposition 4.1) and en−(d+1) · · ·en−3en−2 ∈ M(Id).

Let u = ei1 · · ·eid , 1 ≤ i1 < . . . < id ≤ n , be the smallest monomial in M(Id). Then u ≤
en−(d+1) · · · en−3en−2 and therefore m(u) ∈ {n − 2, n− 1, n}.

(Case 1). Suppose m(u) ∈ {n− 2, n− 1} . Then uen is the smallest monomial in M(Id+1) and all larger

monomials are in M(Id+1).

Set
A′ = {w ∈ Md+1 : w < uen}

and
A = {v ∈ Md : v < u}.

Note that |A| = HE/I(d).

If w = eτ < uen , then n ∈ supp(w) and consequently eτ\{n} < u . Therefore there is an injection from

A′ to A i.e. |A′| ≤ |A| . It follows that HE/I(d + 1) ≤ |A′| ≤ HE/I(d).

(Case 2). Suppose m(u) = n . Then Id+1 = 〈Md+1〉 , HE/I(d + 1) = 0 and the claim is trivially true. �

For a graded ideal I = ⊕j≥0Ij in E , the initial degree of I , denoted by indeg(I), is the minimum s

such that Is 
= 0.
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Proposition 4.3 Let I � E be a revlex ideal with initial degree d′ < n − 2 . Then

HE/I(d + 1) ≤ HE/I(d), for all d ≥ d′.

Proof. If d > d′ , then the claim follows from Proposition 4.1 and Proposition 4.2. So suppose d = d′.

If HE/I(d) ≤
(
n
d

)
−

(
n−2

d

)
, then HE/I(d + 1) ≤ HE/I(d) by Proposition 4.2. So assume HE/I(d) >(

n
d

)
−

(
n−2

d

)
. It follows that u = en−(d+1) · · ·en−3en−2 /∈ M(Id). Let v = ei1 · · · eid be the smallest monomial

in G(I) of degree d , then v > u implies m(v) ≤ m(u) and therefore m(v) /∈ {n− 1, n} .

Consider w ≥ ven . Since Id+1 is a revlex segment then w ∈ M(Id+1). Set

A′ = {u′ ∈ Md+1 : u′ < ven}.

We have that HE/I(d + 1) ≤ |A′| and if u′ ∈ A′ , then m(u′) = n . Set u′ = v′en. From u′ = v′en < ven it

follows that v′ < v and v′ ∈ Md \ M(Id). This shows that there is an injection from A′ to A = Md \ M(Id).

Hence HE/I(d + 1) ≤ |A′| ≤ |A| = HE/I(d). �

5. Graded Betti numbers

In this section we study the graded Betti numbers of revlex ideals in the exterior algebra E = K 〈e1, ..., en〉 .

Let I � E be a monomial ideal and 1 ≤ i ≤ n . We define the following sets:

G(I; i) = {u ∈ G(I) : m(u) = i}, mi(I) = |G(I; i)| , m≤i(I) =
∑
j≤i

mj(I).

With every subset of monomials of E we can associate a decomposition as follows.

Let M be a set of monomials of degree d of E . We have

M = M0 ∪M1en,

where M0 is the set of all monomials u ∈ M such that m(u) ≤ n − 1 and M1 is the set of all monomials

w ∈ E of degree d − 1 with m(w) ≤ n − 1 such that wen ∈ M . Such a decomposition will be called the

en−decomposition of M , and will be denoted by {M0,M1}.

Example 5.1 Let E = K 〈e1, e2, e3, e4, e5〉 . Let M = {e1e2e3, e1e2e4, e1e3e4, e2e3e4, e1e2e5, e1e3e5, e2e3e5}.
Then the e5 -decomposition of M is

M = M0 ∪M1e5

where M0 = {e1e2e3, e1e2e4, e1e3e4, e2e3e4} and M1 = {e1e2, e1e3, e2e3}.

Remark 5.2 Let M be a set of monomials of degree d of E and {M0,M1} be the en -decomposition of M.

We can observe that if i < n , then m≤i(M) = m≤i(M0) . In particular, m≤n−1(M) = |M0| . Moreover,

m≤n(M) = |M | . We also have m≤d(M) ∈ {0, 1}, since the only monomial u of degree d such that m(u) = d

is u = e1 · · ·ed . Moreover m≤i(M) = 0 , for i < d .
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Theorem 5.3 Let J � E be a revlex ideal generated in degree d and let I � E be a strongly stable ideal
generated in the same degree, such that dimK Jd ≥ dimK Id . Then

m≤i(J) ≥ m≤i(I) , for 1 ≤ i ≤ n .

Proof. The proof will proceed by induction on n .
Suppose n > 3 and assume that the assertion is true for n − 1. We have

m≤n(J) = dimK Jd ≥ dimK Id = m≤n(I).

So suppose i = n−1 and let {M0,M1} be the en−decomposition of G(J) and {N0,N1} the en−decomposition

of G(I).

If M1 = ∅ , then we have

|M0| = dimK Jd ≥ dimK Id ≥ |N0|

and so m≤n−1(J) = |M0| ≥ |N0| = m≤n−1(I).

If M1 
= ∅ , since J is a revlex ideal generated in degree d , then M0 contains all monomials w of degree
d such that m(w) ≤ n − 1. Hence |M0| ≥ |N0| and so m≤n−1(J) = |M0| ≥ |N0| = m≤n−1(I).

Suppose i < n − 1. From the n − 1 case we have |M0| ≥ |N0| . Since M0 is a revlex segment and N0

is strongly stable, by the induction hypothesis

m≤i(M0) ≥ m≤i(N0), for 1 ≤ i ≤ n − 1,

and therefore m≤i(J) = m≤i(M0) ≥ m≤i(N0) = m≤i(I). �

Example 5.4 Let E = K 〈e1, e2, e3, e4, e5〉 .

Let J = (e1e2e3, e1e2e4, e1e3e4, e2e3e4, e1e2e5, e1e3e5, e2e3e5) be a revlex ideal of degree 3, and

I = (e1e2e3, e1e2e4, e1e3e4, e1e2e5, e1e3e5) a strongly stable ideal generated in degree 3.

We have m≤i(J) = m≤i(I) = 0 , for i = 1, 2 ; m≤3(J) = 1 = m≤3(I) ; m≤4(J) = 4 ≥ m≤4(I) = 3 and

m≤5(J) = 7 ≥ m≤5(I) = 5 .

Lemma 5.5 Let I � E be a strongly stable ideal generated in degree d and let I〈d+1〉 be the ideal generated by

the elements of Id+1 . Then

mi(I〈d+1〉) = m≤i−1(I) , for all i.

Proof. See [1, Theorem 4.3]. �

Hence we can state the following theorem.

Theorem 5.6 Let I � E be a strongly stable ideal and J � E a revlex ideal. Suppose that HE/J(d) = HE/I(d) ,

for all d. Then

βi,j(E/I) ≥ βi,j(E/J) , for all i and j .
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Proof. The proof is similar to that of [1, Theorem 4.4].

Set G(I)d = {u ∈ G(I) : deg u = d} . From Theorem 2.2, we have

βi,j+i(E/I) =
∑

u∈G(I)j+1

(
m(u) + i − 2

m(u) − 1

)
, for all i ≥ 1.

Since G(I)j+1 = G(I〈j+1〉) − G(I〈j〉){e1, . . . , en} we may write the above sum as a difference βi,j+i(E/I) =

C − D , with

C =
∑

u∈G(I〈j+1〉)

(
m(u) + i − 2

m(u) − 1

)

=
n∑

t=1

∑
u∈G(I〈j+1〉:t)

(
t + i − 2

t − 1

)
=

n∑
t=1

mt(I〈j+1〉)
(

t + i − 2
t − 1

)

=
n∑

t=1

(m≤t(I〈j+1〉) − m≤t−1(I〈j+1〉))
(

t + i − 2
t − 1

)

= m≤n(I〈j+1〉)
(

n + i − 2
n − 1

)
+

+
n−1∑
t=1

(m≤t(I〈j+1〉))
[(

t + i − 2
t − 1

)
−

(
(t + 1) + i − 2

t

)]

= m≤n(I〈j+1〉)
(

n + i − 2
n − 1

)
−

n−1∑
t=1

(m≤t(I〈j+1〉))
(

t + i − 2
t

)

and

D =
∑

u∈G(I〈j〉){e1,...,en}

(
m(u) + i − 2

m(u) − 1

)

=
n−1∑
t=2

(m≤t−1(I〈j+1〉))
(

t + i − 2
t − 1

)
,

from Lemma 5.5. The number of generators of I〈j+1〉 and J〈j+1〉 are equal for all j , then m≤n(I〈j+1〉) =

m≤n(J〈j+1〉), and it follows from Theorem 5.3 that m≤i(J〈j+1〉) ≥ m≤i(I〈j+1〉) for all i. Therefore if we

compare the above expressions we have:
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βi,j+i(E/I) = m≤n(I〈j+1〉)
(

n + i − 2
n − 1

)
−

n−1∑
t=1

(m≤t(I〈j+1〉))
(

t + i − 2
t

)
+

−
n−1∑
t=2

(m≤t−1(I〈j+1〉))
(

t + i − 2
t − 1

)

≥ m≤n(J〈j+1〉)
(

n + i − 2
n − 1

)
−

n−1∑
t=1

(m≤t(J〈j+1〉))
(

t + i − 2
t

)
+

−
n−1∑
t=2

(m≤t−1(J〈j+1〉))
(

t + i − 2
t − 1

)
= βi,j+i(E/J).

The required inequality follows. �
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