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Lp Regularity of some weighted Bergman projections on the
unit disc

Yunus E. Zeytuncu

Abstract

We show that weighted Bergman projections, corresponding to weights of the form M(z)(1 − |z|2)α ,

where α > −1 and M(z) is a radially symmetric, strictly positive and at least C2 function on � , are Lp

regular.
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1. Introduction

Let D denote the unit disc in C1 and dA(z) denote the standard Lebesgue measure on C1 . Let λ(r)

be a strictly positive and continuous function on [0, 1). We consider λ(r) as a radially symmetric weight on D

by setting λ(z) := λ(|z|) and denote the space of square integrable functions with respect to the area element

λ(z)dA(z) by L2(λ). It is clear that L2(λ) is a Hilbert space with the inner product defined by

〈f, g〉λ =
∫

D

f(z)g(z)λ(z)dA(z)

and the norm defined by

||f ||2λ =
∫

D

|f(z)|2λ(z)dA(z).

The closed subspace of holomorphic functions in L2(λ) is denoted by A2(λ). The orthogonal projection
operator between these two spaces is called the weighted Bergman projection and denoted by Bλ , i.e.,

Bλ : L2(λ) → A2(λ).

The Riesz representation theorem indicates that Bλ is an integral operator. The kernel of this integral

operator is called the weighted Bergman kernel and denoted by Bλ(z, w), i.e. for any f ∈ L2(λ),

Bλf(z) =
∫

D

Bλ(z, w)f(w)λ(w)dA(w).
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The monomials {zn}∞n=0 form an orthogonal basis of A2(λ) and the weighted Bergman kernel is given
by the following sum:

Bλ(z, w) =
∞∑

n=0

an(zw̄)n, where an =
1∫

D
|z|2nλ(z)dA(z)

.

The coefficients an are called the Bergman coefficients of weight λ .

For 1 < p < ∞ , we use the standard notation Lp(λ) and Ap(λ) to denote the respective Banach spaces

of p-integrable functions on D and we use ||.||p,λ to denote the norm on these spaces.

Let us consider the weights defined by λα(r) = (1 − r2)α for α > −1, where we set z = reiθ . The

Bergman theory for this family of weights are well investigated and can be found in [4].

In particular, the Bergman coefficients of these weights are computed explicitly and the following explicit
expression for the weighted kernel is obtained:

Bλα(z, w) =
cα

(1 − zw)2+α ,

where cα is a constant that only depends on α .

Furthermore, this explicit expression for the kernel and Schur’s lemma together prove the following
theorem.

Theorem 1.1 For α > −1 , the weighted Bergman projection Bλα is bounded from Lp(λα) to Ap(λα) for any
1 < p < ∞ .

Proof. See page 12 of [4] and also [6] and [3].
�

The purpose of this note is to extend this theorem to more general weights in the following setup. Let

M(r) be a strictly positive and at least C2 function on [0, 1] . Without loss of generality, we assume that

M(1) = 1. Consider the radially symmetric weight defined by

μ(z) = M(|z|)(1 − |z|2)α

on D , for some α > −1. By the general theory (see [2] and [3]), there exists the weighted Bergman projection

operator Bμ : L2(μ) → A2(μ), which is an integral operator with the weighted Bergman kernel Bμ(z, w), where

Bμ(z, w) =
∞∑

n=0

bn(zw̄)n, and bn =
1∫

D
|z|2nμ(z)dA(z)

.

But in this case, it is not easy (unless M is a simple function) to compute the coefficients bn to get an explicit
expression for the weighted kernel and therefore, Schur’s lemma is not directly applicable in this case.

Nevertheless, we prove the analog of Theorem 1.1 for Bμ , without referring to an explicit expression for

the kernel or Schur’s lemma.

Theorem 1.2 The weighted Bergman projection Bμ is bounded from Lp(μ) to Ap(μ) for any 1 < p < ∞ .
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The proof is in two steps; first relating Bμ to Bλα by a coefficient multiplier operator and then showing

that this coefficient multiplier operator is bounded.

For the rest of the note, we denote the boundary of D by bD and we write A � B to mean A ≤ cB

for some constant c that is clear in context. We also use the Szegö projection T : L2(bD, dθ) → H2 , where dθ

is the arc length on the unit circle and Hp is the Hardy space of order p . We refer to [2] for definitions and
standard facts about the Szegö projection and Hardy spaces.

This article is a part of my Ph.D. dissertation at The Ohio State University. I thank J. D. McNeal, my
advisor, for introducing me to this field and helping me with various points. I also thank the anonymous referee
for helpful comments.

2. Coefficient multipliers and norm convergence

In this section, before giving the details of the proof of Theorem 1.2, we recall a few facts about coefficient
multipliers. See [1] and [2] for general account.

Let X be a Banach space of holomorphic functions on D . Any f ∈ X has Taylor series expansion

f(z) =
∞∑

n=0

fnzn.

Definition 2.1 A sequence of complex numbers {tn} is called a coefficient multiplier from X to X and denoted

by {tn} ∈ (X, X) if for any function f ∈ X ,

t(f)(z) :=
∞∑

n=0

tnfnzn is also in X.

It is a fairly general question to characterize the coefficient multipliers on an arbitrary Banach space X

and there is no full answer to this question.

Definition 2.2 For a holomorphic function f on D and N ∈ N , let SNf denote the Taylor polynomial of f

of degree N , i.e., SNf(z) =
∑N

n=0 fnzn.

If X has the property that for any f ∈ X the sequence of Taylor polynomials {SNf} converges to f ,
then a sufficient condition for coefficient multipliers can be formulated as follows.

Proposition 2.3 Let (X, ||.||) be a Banach space of holomorphic functions on D such that for every f ∈ X

the sequence {SNf} of Taylor polynomials converges to f in the norm of X . Then any sequence of bounded

variation is a coefficient multiplier from X to X .

Definition 2.4 A sequence of complex numbers {tn} is said to be of bounded variation if |t0| +
∑∞

n=1 |tn −
tn−1| is finite.
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Proposition 2.3 appears in [1, Proposition 3.7]. It follows from summation by parts and we repeat its
proof for completeness.

Proof. Since the Taylor polynomials converge, for any given f ∈ X and ε > 0 there exists an N such that
for any k > N ∣∣∣∣∣

∣∣∣∣∣
∞∑

n=k

fnzn

∣∣∣∣∣
∣∣∣∣∣ < ε.

Let {tn} be the sequence of bounded variation and |t0| +
∑∞

n=1 |tn − tn−1| ≤ K . Summation by parts and

bounded variation hypothesis give

∣∣∣∣∣
∣∣∣∣∣
∞∑

n=k

tnfnzn

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

n=k

(tn+1 − tn)
∞∑

j=n+1

fjz
j + tk

∞∑
n=k

fnzn

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
[
|tk| +

∞∑
n=k

|tn+1 − tn|
]

ε

≤ Kε.

This shows that t(f)(z) =
∑∞

n=0 tnfnzn is in X and finishes the proof. �

In order to use this proposition in the proof of Theorem 1.2, we have to check whether Taylor polynomials
converge in Ap(μ). This turns out to be true even in a more general form.

Proposition 2.5 For 1 < p < ∞ and any integrable radial weight λ(r) , the Taylor series of every function in

Ap(λ) converges in norm.

In particular, the claim is true for Ap(λα) and Ap(μ). The statement for Ap(λα) is in [5]. The general case is

obtained by just imitating the proof in [5].

Proof. This is done in three steps.

Step One. The holomorphic polynomials are dense in Ap(λ).

For any f ∈ Ap(λ) and for any 0 < ρ < 1, define fρ(z) = f(ρz). Each fρ is holomorphic in a larger disc and

the Taylor polynomials of each fρ converges uniformly on D and hence in Ap(λ). Therefore it is enough to

show that
lim

ρ→1−
||f − fρ||p,λ = 0.

For any holomorphic f , the averages

Mp
p (r, f) =

1
2π

∫ 2π

0

|f(reiθ)|pdθ

are well defined and non-decreasing functions of r (see [2, page 26]). Moreover

Mp
p (r, fρ) = Mp

p (ρr, f) ≤ Mp
p (r, f).
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Since f ∈ Ap(λ) and

||f ||pp,λ =
∫ 1

0

rλ(r)Mp
p (r, f)dr.

Mp
p (r, f) is integrable with respect to the weight rλ(r)dr .

On the other hand, fρ → f pointwise on D as ρ → 1− so by the Lebesgue dominated convergence theorem

limρ→1− Mp
p (r, f − fρ) = 0. We also have

Mp
p (r, f − fρ) ≤ 2p

(
Mp

p (r, f) + Mp
p (r, fρ

)
≤ 2p+1Mp

p (r, f).

Therefore again the Lebesgue dominated convergence theorem implies

lim
ρ→1−

||f − fρ||pp,λ = lim
ρ→1−

∫ 1

0

rλ(r)Mp
p (r, f − fρ)dr

=
∫ 1

0

rλ(r) lim
ρ→1−

Mp
p (r, f − fρ)dr

= 0.

This finishes the first step.

Step Two. We show that the operator norms of SN ’s (defined in Definition 2.2) are uniformly bounded. For this

we need a well-known result about the Szegö projection. Let T : L2(bD, dθ) → H2 denote the Szegö projection.

By using the fact that T is also bounded from Lp(bD, dθ) to Hp for any 1 < p < ∞ , one can prove (see [2,

page 27]) that there exists C > 0, independent of N and h , such that

∫ 2π

0

|SNh(eiθ)|pdθ ≤ C

∫ 2π

0

|h(eiθ)|pdθ (2.6)

for any h ∈ Hp . The proof is only to note that SNf(eiθ) = e−iNθT
(
eiNθf(eiθ)

)
which is clear for f a

polynomial, and follows in general since polynomials are dense in Hp .

Now we calculate the operator norms of SN ’s. For given f ∈ Ap(λ),

||SNf ||pp,λ =
∫

D

|SNf(z)|pλ(z)dA(z)

=
∫ 1

0

rλ(r)dr

∫ 2π

0

|SNf(reiθ)|pdθ

≤ C

∫ 1

0

rλ(r)dr

∫ 2π

0

|f(reiθ)|pdθ since fr ∈ Hp

= C

∫
D

|f(z)|pλ(z)dA(z)

= C||f ||pp,λ.
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This implies that supN ||SN ||op ≤ C and finishes the second step.

Step Three. Next, we show that limN→∞ ||SNf − f ||p,λ = 0 for any f ∈ Ap(λ).

Given f and ε > 0, by the first step there exists a polynomial Q such that ||Q− f ||pp,λ < ε . Then

||SNf − f ||pp,λ ≤ ||SNf − SNQ||pp,λ + ||SNQ − Q||pp,λ + ||Q− f ||pp,λ

≤ (C + 1)ε + ||SNQ − Q||pp,λ.

Note that SNQ = Q for large enough N and therefore for sufficiently large N ,

||SNf − f ||pp,λ ≤ (C + 1)ε.

Since this is true for any ε > 0 we get limN→∞ ||SNf − f ||p,λ = 0. This finishes the last step and the proof of

the proposition.
�

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by using Propositions 2.3 and 2.5. Recall that an ’s are the Bergman

coefficients of (1 − |z|2)α and bn ’s are the Bergman coefficients of μ . Let R denote the coefficient multiplier

operator for the sequence
{

bn

an

}
. The following identity relates the two Bergman projections:

Bμf(z) = R [Bλα (fM)] (z). (3.1)

Indeed, for any f ∈ L2(μ),

Bμf(z) =
∫

D

∞∑
n=0

bn(zw̄)nf(w)μ(w)dA(w) =
∞∑

n=0

bnzn

∫
D

w̄nf(w)μ(w)dA(w)

=
∞∑

n=0

anzn bn

an

∫
D

w̄nf(w)μ(w)dA(w)

=R
[ ∞∑

n=0

anzn

∫
D

w̄nf(w)μ(w)dA(w)

]

=R [Bλα (fM)] (z).

Here we change the order of integration and summation but this doesn’t cause any problems. We can truncate
the summation, which is equivalent to looking at the Taylor polynomials of Bμf and Bλα (fM) , and take limit

by using Proposition 2.5. Now, it suffices to prove that the multiplier operator R is bounded from Ap(μ) to

Ap(μ) (actually, we have to show that R is bounded from Ap(λα) to Ap(μ) but since M is of class C2 and

thus bounded; the inclusion map i : Ap(λα) → Ap(μ) is bounded). By the closed graph theorem it is enough
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to show that R (f) ∈ Ap(μ) for any f ∈ Ap(μ). Moreover, Proposition 2.3 implies that it is enough to show

that the sequence
{

bn

an

}
is of bounded variation.

It is immediate that the sequence
{

bn

an

}
is bounded from below and above. Moreover, a direct compu-

tation gives that

lim
n→∞

bn

an
= lim

n→∞

∫ 1

0 r2n+1(1 − r2)αdr∫ 1

0
r2n+1μ(r)dr

= M(1)−1.

We quantify this computation to get that the sequence
{

bn

an

}
is indeed of bounded variation.

Lemma 3.2
∣∣∣ bn

an
− bn−1

an−1

∣∣∣ � 1
n2 , i.e., the sequence

{
bn

an

}
is of bounded variation and therefore R is bounded

from Ap(μ) to Ap(μ) .

Proof.

First, we consider the difference between elements of the sequence
{

bn

an

}
. Here, all the integrals are taken

with respect to r and from 0 to 1.

bn

an
− bn−1

an−1
=

∫
r2n+1(1 − r2)α∫

r2n+1μ(r)
−

∫
r2n−1(1 − r2)α∫

r2n−1μ(r)

=
∫

r2n+1(1 − r2)α
∫

r2n−1μ(r) −
∫

r2n−1(1 − r2)α
∫

r2n+1μ(r)∫
r2n+1μ(r)

∫
r2n−1μ(r)

=:
B(n)
A(n)

.

We can rewrite the numerator as

B(n) =
∫

r2n+1(1 − r2)α

∫
r2n−1(1 − r2)μ(r) −

∫
r2n−1(1 − r2)α+1

∫
r2n+1μ(r)

=
∫

r2n+1
[
(1 − M(r)) (1 − r2)α

] ∫
r2n−1(1 − r2)μ(r)

−
∫

r2n−1
[
(1 − M(r)) (1 − r2)α+1

] ∫
r2n+1μ(r)

=: B1(n) − B2(n).
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Next, we integrate B1(n) and B2(n) by parts twice to obtain

B1(n) =
1

(2n + 2)2n

∫
r2n+2

[
(1 − M(r)) (1 − r2)α

]′ ∫
r2n

[
M(r)(1 − r2)α+1

]′
=:

1
(2n + 2)2n

C1(n)C2(n)

B2(n) =
1

2n(2n + 1)

∫
r2n+1

[
(1 − M(r)) (1 − r2)α+1

]′′ ∫
r2n+1

[
M(r)(1 − r2)α

]

=:
1

2n(2n + 1)
C3(n)C4(n).

Here, C1, C2, C3, C4 denote the respective integrals. Note that we don’t get any boundary terms after integra-

tion by parts since M is of class C2 on [0, 1] and M(1) = 1.

In order to finish the proof, it suffices to show that

sup
n

{
n2

∣∣∣∣B1(n)
A(n)

∣∣∣∣
}

and sup
n

{
n2

∣∣∣∣B2(n)
A(n)

∣∣∣∣
}

are finite.

Thus, it is enough to show that

sup
n

{∣∣∣∣C1(n)C2(n)
A(n)

∣∣∣∣
}

and sup
n

{∣∣∣∣C3(n)C4(n)
A(n)

∣∣∣∣
}

are finite.

We start with the first one.

C1(n)C2(n)
A(n)

=

∫
r2n+2

[
(1 − M(r)) (1 − r2)α

]′ ∫
r2n

[
M(r)(1 − r2)α+1

]′∫
r2n+1M(r)(1 − r2)α

∫
r2n−1M(r)(1 − r2)α

→
[
(1 − M(r)) (1 − r2)α

]′ [
M(r)(1 − r2)α+1

]′
M(r)(1 − r2)αM(r)(1 − r2)α

|r=1 as n → ∞

= 2(α + 1)2M ′(1).

This shows that the first supremum is indeed finite. Note that the condition M(1) = 1 is used here.

We argue the same way for the second one.

C3(n)C4(n)
A(n)

=

∫
r2n+1

[
(1 − M(r)) (1 − r2)α+1

]′′ ∫
r2n+1

[
M(r)(1 − r2)α

]∫
r2n+1M(r)(1 − r2)α

∫
r2n−1M(r)(1 − r2)α

→
[
(1 − M(r)) (1 − r2)α+1

]′′ [
M(r)(1 − r2)α

]
M(r)(1 − r2)αM(r)(1 − r2)α

|r=1 as n → ∞

= 2(α + 2)(α + 1)M ′(1) − 2(1 + α) (1 − M(1)) .

This shows that the second supremum is indeed finite. Again, note that the condition M(1) = 1 is used here.
This finishes the proof Lemma 3.2.
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�

Since Lemma 3.2 is established, we conclude the proof of Theorem 1.2.
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