
Turk J Math
36 (2012) , 395 – 406.
c© TÜBİTAK
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Value distribution of meromorphic functions and their differences∗

Ranran Zhang and Zongxuan Chen

Abstract

Let f(z) be a transcendental meromorphic function. Results are proved concerning the value distribution

of the n ’th forward difference Δnf(z) , in terms of Borel exceptional values of f(z) . The results may be

partly viewed as discrete analogues of a classical theorem of Hayman dealing with the possible relationships

between Picard exceptional values of f(z) and its derivatives.
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1. Introduction and results

Let f(z) be a meromorphic function in the plane. We assume that the reader is familiar with the basic

notions of Nevanlinna’s theory (see [10]). We use σ(f) to denote the order of growth of f(z); and λ(f) and

λ(1/f) to denote, respectively, the exponents of convergence of zero and pole sequences of f(z). Moreover, we

use δ(a, f) to denote the Nevanlinna deficiency of f(z). For a nonzero constant c , the forward differences Δnf

are defined (see [1]) by

Δf(z) = f(z + c) − f(z), Δn+1f(z) = Δnf(z + c) − Δnf(z), n = 1, 2, . . . .

Throughout this paper, we denote by S(r, f) any function satisfying S(r, f) = o(T (r, f)) as r → ∞ ,

possibly outside a set of r of finite logarithmic measure. A meromorphic function α(z) is said to be a small

function of f(z), if T (r, α) = S(r, f).

Recently, there is substantial interest in difference analogues of Nevanlinna’s theory, as well as difference
equations. The papers [1, 2] investigated the zeros of Δnf(z) under the assumption that f(z) is of small growth
order, and obtained many profound results. These results may be viewed as discrete analogues of the following
existing theorem on the zeros of f ′(z).

Theorem A [4, 11] Let f(z) be transcendental and meromorphic in the plane with

lim inf
r→∞

T (r, f)
r

= 0.
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Then f ′(z) has infinitely many zeros.

Hayman [9] investigated the possible relationships between Picard exceptional values of f(z) and its
derivatives, and obtained the following classical theorem.

Theorem B [9] If f(z) is transcendental and meromorphic in the plane, then either f(z) assumes every

finite value infinitely often, or every derivative of f(z) assumes every finite value except possibly zero infinitely
often.

In this paper, we investigate the value distribution of meromorphic functions and their differences. First
we observe that for a general meromorphic function, the difference counterpart of Theorem B doesn’t exist, see
the following Example 1.1.

Example 1.1 Let f(z) = zez/(2πi(ez + 1)) and c = 2πi. Then

Δf(z) = f(z + 2πi) − f(z) =
ez

ez + 1
.

We see that f(z) assumes 0 finitely often and Δf(z) cannot assume 1 .

Example 1.1 shows that if f(z) has only one Borel exceptional value, then Δf(z) may not assume some

finite nonzero value. In this paper, we prove that if f(z) has two Borel exceptional values and if f(z) is not

of period c , then Δf(z) assumes every finite value except possibly zero infinitely often. Actually, we get the
following Theorem, which may be partly viewed as discrete analogues of Theorem B.

Theorem 1.1 Let f(z) be a finite order transcendental meromorphic function with two Borel exceptional

values a , b . Let c ∈ C \ {0} and let s(z) be a nonzero small function of f(z) . For every positive integer n , set

Fn(z) = Δnf(z) − s(z).

Suppose that one of the following two conditions holds:

(i) a, b ∈ C and c, 2c, . . ., nc are not periods of f(z) ;

(ii) a ∈ C , b = ∞ and Δnf(z) �≡ 0 .

Then Fn(z) is transcendentally meromorphic and δ(0, Fn) ≤ n/(n + 1).

Remark The following Examples, 1.2–1.4, show that Theorem 1.1 is false, if f(z) has at most one Borel

exceptional value. So the requirement “f(z) has two Borel exceptional values” in Theorem 1.1 cannot be
weakened.

Example 1.2 Let f(z) and c be as in Example 1.1, and let s(z) = 1 . Then f(z) has only one Borel
exceptional value 0 , and

F1(z) = Δf(z) − s(z) =
ez

ez + 1
− 1 =

−1
ez + 1

has no zeros.

Example 1.3 Let f(z) = ez + z , c = 2πi and s(z) = πi. Then f(z) has only one Borel exceptional value
∞ , and

F1(z) = Δf(z) − s(z) = f(z + 2πi) − f(z) − πi = πi

has no zeros.
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Example 1.4 Let f(z) = Γ′(z)/Γ(z) , c = 1 and s(z) = 1 . Then f(z) has no Borel exceptional values, and

F1(z) = Δf(z) − s(z) = f(z + 1) − f(z) − 1 =
1
z
− 1

has only one zero.

We give the following two corollaries. Corollary 1.1 is obtained directly from Theorem 1.1. Corollary 1.2

cannot be obtained directly from Theorem 1.1, since the condition “N
(
r, 1/(f − a)

)
+ N(r, f) = S(r, f)” in

Corollary 1.2 dose not imply that a and ∞ are Borel exceptional values. However, using the same method as
in Part II of proof of Theorem 1.1, we can easily prove Corollary 1.2.

Corollary 1.1 Let f(z) be a finite order transcendental meromorphic function with two Borel exceptional

values, and let c ∈ C \ {0} . For every positive integer n , if Δnf(z) �≡ 0 and c, 2c, . . . , nc are not periods of

f(z) , then Δnf(z) assumes every finite value except possibly zero infinitely often.

Corollary 1.2 Let c ∈ C \ {0} and a ∈ C . Let f(z) be a transcendental meromorphic function of finite order
such that

N
(
r, 1/(f − a)

)
+ N(r, f) = S(r, f).

For every positive integer n , if Δnf(z) �≡ 0 , then Δnf(z) assumes every finite value except possibly zero
infinitely often.

Next we give the conditions under which Δnf(z) assumes every finite value (including zero) infinitely
often.

Theorem 1.2 Let f(z) be a transcendental meromorphic function with 1 < σ(f) < ∞ . Let c ∈ C \ {0} and
a ∈ C . Suppose that

max{λ(f − a), λ(1/f)} < σ(f) − 1.

Then for every positive integer n , Δnf(z) assumes every finite value infinitely often.

2. Lemmas for the proofs of theorems

Lemma 2.1 [6] Let f(z) be a nonconstant meromorphic function of finite order, and let η1, η2 be two
arbitrary complex numbers. Then

m

(
r,

f(z + η1)
f(z + η2)

)
= S(r, f).

Lemma 2.2 [7, 8] Let f(z) be a nonconstant finite order meromorphic function and let c �= 0 be an arbitrary
complex number. Then

T (r + |c|, f) = T (r, f) + S(r, f),

N(r + |c|, f) = N(r, f) + S(r, f).

It is shown in [5, p. 66], that for an arbitrary c �= 0, the following inequalities(
1 + o(1)

)
T

(
r − |c|, f(z)

)
≤ T

(
r, f(z + c)

)
≤

(
1 + o(1)

)
T

(
r + |c|, f(z)

)
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hold as r → ∞ for a general meromorphic function. From the proof we see that the above relations are also
true for N(r, f(z + c)). So by these relations and Lemma 2.2, we get the following lemma.

Lemma 2.3 Let f(z) be a nonconstant finite order meromorphic function and let c �= 0 be an arbitrary
complex number. Then

T
(
r, f(z + c)

)
= T (r, f) + S(r, f),

N
(
r, f(z + c)

)
= N(r, f) + S(r, f).

Remark Chiang and Feng [3] have obtained some results similar to the above Lemmas 2.1–2.3, and their work

is independent from [6, 7, 8].

Lemma 2.4 [13] Let f(z) be a transcendental meromorphic function. Let P (f) be a polynomial in f(z) of
the form

P (f) = an(z)f(z)n + an−1(z)f(z)n−1 + · · ·+ a0(z),

where all coefficients aj(z) are small functions of f(z) and an(z) �≡ 0 . Then

T
(
r, P (f)

)
= nT (r, f) + S(r, f).

Lemma 2.5 [12] Let f(z) be a nonconstant meromorphic function, and suppose that

Ψ(z) = an(z)f(z)n + an−1(z)f(z)n−1 + · · ·+ a0(z)

has small meromorphic coefficients aj(z) , an(z) �≡ 0 . Then either

T (r, f) ≤ N(r, 1/Ψ) + N(r, f) + S(r, f)

or

Ψ(z) = an

(
f +

an−1

nan

)n

.

Lemma 2.5 is a version of Tumura-Clunie type theorems. Next we will establish a difference analogue of
Lemma 2.5. To this end, we introduce some notations. The difference polynomial H(z, f) is defined by

H(z, f) =
∑
λ∈J

aλ(z)
τλ∏

j=1

f(z + δλ,j)μλ,j , (2.1)

where J is an index set, δλ,j are complex constants, μλ,j are nonnegative integers, and aλ(z)(�≡ 0) are small

meromorphic functions of f(z). The maximal total degree of H(z, f) in f(z) and the shifts of f(z) is defined
by

degf H = max
λ∈J

τλ∑
j=1

μλ,j.
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For l = 0, 1, . . . , degf H , we define

Jl =
{

λ ∈ J
∣∣∣ τλ∑

j=1

μλ,j = l

}
. (2.2)

Lemma 2.6 Let f(z) be a transcendental meromorphic function of finite order such that

N(r, 1/f) + N(r, f) = S(r, f). (2.3)

Suppose that the difference polynomial (2.1) in f(z) with small meromorphic coefficients is of maximal total

degree degf H ≥ 1 . If there exist two different integers m, k ∈ {0, 1, . . . , degf H} such that

∑
λ∈Jm

aλ(z)
τλ∏

j=1

f(z + δλ,j)μλ,j �≡ 0,
∑
λ∈Jk

aλ(z)
τλ∏

j=1

f(z + δλ,j)μλ,j �≡ 0, (2.4)

where Jm , Jk are defined by (2.2), then H(z, f) is transcendentally meromorphic and

T (r, f) ≤ N(r, 1/H) + S(r, f).

Proof. Since there exist two different integers m, k ∈ {0, . . . , degf H} satisfying (2.4), we may assume,

without losing generality, that m > k and

∑
λ∈Js

aλ(z)
τλ∏

j=1

f(z + δλ,j)μλ,j ≡ 0

for s = m + 1, . . . , degf H , where Js are defined by (2.2). Thus, H(z, f) takes the form

H(z, f) =
m∑

i=0

bi(z)f(z)i, (2.5)

where for i = 0, . . . , m ,

bi(z) =
∑
λ∈Ji

aλ(z)
τλ∏

j=1

(
f(z + δλ,j)

f(z)

)μλ,j

, Ji =
{

λ ∈ J
∣∣∣ τλ∑

j=1

μλ,j = i

}
.

In particular, bm(z) �≡ 0 and bk(z) �≡ 0.

Since the coefficients aλ(z) of H(z, f) are small functions of f(z), we have T (r, aλ) = S(r, f). So by
Lemma 2.1, we get

m(r, bi) = S(r, f)

for i = 0, 1, . . . , m . Moreover, by (2.3) and Lemma 2.3, we have

N(r, bi) ≤
∑
λ∈Ji

(
N(r, aλ) +

τλ∑
j=1

μλ,j

(
N

(
r, f(z + δλ,j)

)
+ N(r, 1/f)

))
+ O(1) = S(r, f).
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So
T (r, bi) = S(r, f) (2.6)

for i = 0, . . . , m . By (2.5), (2.6), bm(z) �≡ 0 and Lemma 2.4, we see that H(z, f) is transcendentally
meromorphic.

Applying Lemma 2.5 to (2.5), we get either

T (r, f) ≤ N(r, 1/H) + S(r, f) (2.7)

or

H(z, f) = bm

(
f +

bm−1

mbm

)m

. (2.8)

If (2.7) holds, there is nothing to prove. So in the following discussion, we assume that (2.8) holds. First

we affirm that bm−1 �≡ 0. Otherwise, (2.8) yields

H(z, f) = bm(z)f(z)m ,

and so by (2.5), we have
m−1∑
i=0

bi(z)f(z)i ≡ 0.

By this equality and Lemma 2.4, we get bi(z) ≡ 0 for i = 0, . . . , m − 1. This contradicts bk(z) �≡ 0, k < m .

Thus, bm−1 �≡ 0, and by (2.6) we have

T

(
r,

bm−1

mbm

)
= S(r, f).

Applying the second main theorem for small target functions and noting (2.3), we get

T (r, f) ≤ N

(
r,

1
f

)
+ N(r, f) + N

(
r,

1

f + bm−1
mbm

)
+ S(r, f)

= N

(
r,

1

f + bm−1
mbm

)
+ S(r, f).

Moreover, by (2.8) and T (r, bm) = S(r, f), we have

N

(
r,

1

f + bm−1
mbm

)
= N

(
r,

1
H

)
+ S(r, f).

Therefore

T (r, f) ≤ N(r, 1/H) + S(r, f).

�
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3. Proof of Theorem 1.1

Part I We assume that the condition (i) in Theorem 1.1 holds. Set g(z) = 1/(f(z)− b). Then g(z) has

two Borel exceptional values 1/(a− b), ∞ . Let 1/(a− b) = d . By Hadamard’s factorization theory, g(z) takes
the form

g(z) = h(z)ep(z) + d, (3.1)

where p(z) is a polynomial and h(z) is a meromorphic function satisfying σ(h) < σ(g). So σ(g) = deg p ≥ 1,

and g(z) is of regular growth, i.e.,

lim sup
r→∞

logT (r, g)
log r

= lim inf
r→∞

log T (r, g)
log r

= σ(g). (3.2)

By (3.2) and the fact that ∞ is a Borel exceptional value of g(z), we get

N(r, g) = S(r, g). (3.3)

Observe that

Δnf(z) =
n∑

j=0

(
n

j

)
(−1)n−jf(z + jc), (3.4)

n∑
j=0

(
n

j

)
(−1)n−j = (1 − 1)n = 0, (3.5)

where
(
n
j

)
are the binomial coefficients. Substituting f(z) = 1/g(z) + b into (3.4) and noting (3.5), we get

Δnf(z) =
n∑

j=0

(
n

j

)
(−1)n−j

(
1

g(z + jc)
+ b

)
=

n∑
j=0

(
n

j

)
(−1)n−j 1

g(z + jc)
.

So

Fn(z) = Δnf(z) − s(z) =
E1(z) − s(z)

∏n
j=0 g(z + jc)∏n

j=0 g(z + jc)
, (3.6)

where

E1(z) =
n∑

j=0

(
n

j

)
(−1)n−j

n∏
i=0
i�=j

g(z + ic). (3.7)

Let g1(z) = g(z)−d . Then g1(z) has two Borel exceptional values 0, ∞ , and g1(z) is of regular growth.
So

N(r, g1) = S(r, g1), N(r, 1/g1) = S(r, g1).

Set

E2(z) = E1(z) − s(z)
n∏

j=0

g(z + jc).

401



ZHANG, CHEN

Substituting (3.7) into E2(z) and then replacing g(z) by g(z) = g1(z) + d , we get

E2(z) =
n∑

j=0

(
n

j

)
(−1)n−j

n∏
i=0
i�=j

(
g1(z + ic) + d

)
− s(z)

n∏
j=0

(
g1(z + jc) + d

)
. (3.8)

By calculation, we obtain

−s(z)
n∏

j=0

(
g1(z + jc) + d

)
= −s(z)

n∏
j=0

g1(z + jc) + P (z, g1) − s(z)dn+1, (3.9)

and for j = 0, . . . , n ,
n∏

i=0
i�=j

(
g1(z + ic) + d

)
= Pj(z, g1) + dn, (3.10)

where P (z, g1) and Pj(z, g1) are difference polynomials in g1(z) and its shifts such that the degree of every

term in P (z, g1) and Pj(z, g1) is at most n and at least 1. By (3.8)–(3.10) and noting (3.5), we get

E2(z) = −s(z)
n∏

j=0

g1(z + jc) + P (z, g1) +
n∑

j=0

(
n

j

)
(−1)n−jPj(z, g1) − s(z)dn+1.

Since s(z) �≡ 0 and d = 1/(a − b) �= 0, we have −s(z)
∏n

j=0 g1(z + jc) �≡ 0 and −s(z)dn+1 �≡ 0. So by Lemma

2.6, we get E2(z) �≡ 0 and

T (r, g1) ≤ N(r, 1/E2) + S(r, g1).

By the above results and noting that Fn(z) = E2(z)/
∏n

j=0 g(z + jc) and g1(z) = g(z) − d , we obtain

Fn(z) �≡ 0

and
T (r, g) ≤ N(r, 1/E2) + S(r, g). (3.11)

In order to estimate the zeros of Fn(z), we proceed to discuss the common zeros of E2(z) and
∏n

j=0 g(z+

jc). Let z0 be such a common zero. Then z0 is a zero of E1(z) or a pole of s(z). Assume that z0 is a zero of

E1(z) and that

g(z0 + jc) �= ∞ (3.12)

for j = 0, . . . , n . Since
∏n

j=0 g(z0 + jc) = 0, there exists an integer l ∈ {0, . . . , n} such that g(z0 + lc) = 0. By

(3.7), (3.12) and the fact that g(z0 + lc) = 0, E1(z0) = 0, we get

(
n

l

)
(−1)n−l

n∏
i=0
i�=l

g(z0 + ic) = 0.

This equality shows that there exists an integer s ∈ {0, . . . , n} \ {l} such that g(z0 + sc) = 0. So we have

g(z0 + lc) − g(z0 + sc) = 0.
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Since g(z) = 1/(f(z) − b) and c, 2c, . . . , nc are not periods of f(z), we have

g(z + lc) − g(z + sc) �≡ 0.

Thus, the integrated counting function of the common zeros of E2(z) and
∏n

j=0 g(z + jc), denoted by N1(r),

satisfies

N1(r) ≤ N(r, s) +
n∑

j=0

N
(
r, g(z + jc)

)
+

∑
l �=s

l,s∈{0,...,n}

N

(
r,

1
g(z + lc) − g(z + sc)

)
.

By (3.3), Lemma 2.3 and T (r, s) = S(r, g), the above inequality becomes

N1(r) ≤ S(r, g) +
∑
l �=s

l,s∈{0,...,n}

N

(
r,

1
g(z + lc) − g(z + sc)

)
. (3.13)

Since p(z) in (3.1) is a polynomial of degree deg p = σ(g) ≥ 1, we have

p(z) = amzm + p1(z),

where am(�= 0) is a constant, m = σ(g) ≥ 1, and p1(z) is a polynomial of degree at most m − 1. For l �= s ,

p(z + lc) − p(z + sc) = cm(l − s)amzm−1 + . . . = p
l,s

(z), (3.14)

where pl,s(z) are polynomials of degree m − 1. By (3.1) and (3.14), we have

g(z + lc) − g(z + sc) =
(
h(z + lc)ep

l,s
(z) − h(z + sc)

)
ep(z+sc).

Since σ(h) < σ(g) and σ(ep
l,s

(z)) < σ(g), it follows by (3.2) and Lemma 2.3 that

T
(
r, h(z + lc)ep

l,s
(z) − h(z + sc)

)
= S(r, g).

So for l, s ∈ {0, . . . , n} , l �= s , we have

N

(
r,

1
g(z + lc) − g(z + sc)

)
= S(r, g). (3.15)

By (3.13) and (3.15), we get

N1(r) ≤ S(r, g). (3.16)

Since N1(r) denotes the common zeros of E2(z) and
∏n

j=0 g(z + jc), it follows from (3.6) that

N(r, 1/Fn) ≥ N(r, 1/E2) − N1(r).

Combining this inequality with (3.11) and (3.16), we get

T (r, g) ≤ N(r, 1/Fn) + S(r, g).
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Moreover, g(z) = 1/(f(z) − b). So

T (r, f) ≤ N(r, 1/Fn) + S(r, f). (3.17)

By (3.17), Fn(z) �≡ 0 and noting that f(z) is a transcendental meromorphic function, we see that Fn(z) is
transcendentally meromorphic.

By Fn(z) = Δnf(z) − s(z) and (3.4), we get

T (r, Fn) ≤
n∑

j=0

T
(
r, f(z + jc)

)
+ S(r, f).

So by Lemma 2.3, T (r, Fn) satisfies

T (r, Fn) ≤ (n + 1)T (r, f) + S(r, f). (3.18)

Combining (3.17) and (3.18), we get

δ(0, Fn) = 1 − lim sup
r→∞

N(r, 1/Fn)
T (r, Fn)

≤ n/(n + 1).

Part II We assume that the condition (ii) in Theorem 1.1 holds. Set g2(z) = f(z) − a . Then 0, ∞ are

Borel exceptional values of g2(z), and

N(r, g2) = S(r, g2), N(r, 1/g2) = S(r, g2).

Substituting f(z) = g2(z) + a into Fn(z), we get

Fn(z) = Δn
(
g2(z) + a

)
− s(z) = Δng2(z) − s(z).

Since Δng2(z) = Δnf(z) �≡ 0 and s(z) �≡ 0, by Lemma 2.6, it follows that Fn(z) is transcendentally
meromorphic and

T (r, g2) ≤ N(r, 1/Fn) + S(r, g2),

and so
T (r, f) ≤ N(r, 1/Fn) + S(r, f). (3.19)

Moreover, we still have (3.18). By (3.18) and (3.19), we get

δ(0, Fn) ≤ n/(n + 1).

4. Proof of Theorem 1.2

Since max{λ(f − a), λ(1/f)} < σ(f) − 1 and 1 < σ(f) < ∞ , we have

f(z) = a + h(z)eq(z), (4.1)

where q(z) is a polynomial of degree deg q = σ(f) > 1, and h(z) is a nonzero meromorphic function satisfying

σ(h) < σ(f) − 1. Let

q(z) = dkzk + q̃(z),
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where dk(�= 0) is a constant, k = σ(f) > 1, and q̃(z) is a polynomial of degree at most k−1. For j = 1, . . . , n ,

q(z + jc) − q(z) = jkdkczk−1 + qj(z), (4.2)

where qj(z) are polynomials of degree at most k − 2. Let q0(z) ≡ 0. By (3.4), (3.5), (4.1) and (4.2), we have

Δnf(z) =
n∑

j=0

(
n

j

)
(−1)n−jf(z + jc)

=
n∑

j=0

(
n

j

)
(−1)n−j

(
a + h(z + jc)eq(z+jc)

)

= eq(z)
n∑

j=0

(
n

j

)
(−1)n−jh(z + jc)eqj(z)ejkdkczk−1

.

Set

T (z) =
n∑

j=0

(
n

j

)
(−1)n−jh(z + jc)eqj (z)ejkdkczk−1

, t(z) = ekdkczk−1
.

Then we have

T (z) =
n∑

j=0

αj(z)tj(z), (4.3)

where for j = 0, . . . , n ,

αj(z) =
(

n

j

)
(−1)n−jh(z + jc)eqj (z) �≡ 0. (4.4)

Since t(z) is of regular growth σ(t) = k − 1 > 0 and noting that σ(h) < k − 1 and σ(eqj (z)) ≤ k − 2, we get

T (r, αj) = S(r, t) (4.5)

for j = 0, . . . , n . By Lemma 2.4 and (4.3)–(4.5), we get T (z) �≡ 0. So Δnf(z) = eq(z)T (z) �≡ 0 and the condition

(ii) in Theorem 1.1 holds. Thus, Δnf(z) assumes every nonzero finite value infinitely often. Moreover, applying

Lemma 2.6 to (4.3), we get

T (r, t) ≤ N(r, 1/T ) + S(r, t) = N(r, 1/Δnf) + S(r, t).

Therefore, Δnf(z) assumes every finite value infinitely often.
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