Value distribution of meromorphic functions and their differences*

Ranran Zhang and Zongxuan Chen

Abstract

Let $f(z)$ be a transcendental meromorphic function. Results are proved concerning the value distribution of the n 'th forward difference $\Delta^{n} f(z)$, in terms of Borel exceptional values of $f(z)$. The results may be partly viewed as discrete analogues of a classical theorem of Hayman dealing with the possible relationships between Picard exceptional values of $f(z)$ and its derivatives.

Key words and phrases: Complex difference; value distribution; Borel exceptional value

1. Introduction and results

Let $f(z)$ be a meromorphic function in the plane. We assume that the reader is familiar with the basic notions of Nevanlinna's theory (see [10]). We use $\sigma(f)$ to denote the order of growth of $f(z)$; and $\lambda(f)$ and $\lambda(1 / f)$ to denote, respectively, the exponents of convergence of zero and pole sequences of $f(z)$. Moreover, we use $\delta(a, f)$ to denote the Nevanlinna deficiency of $f(z)$. For a nonzero constant c, the forward differences $\Delta^{n} f$ are defined (see [1]) by

$$
\Delta f(z)=f(z+c)-f(z), \Delta^{n+1} f(z)=\Delta^{n} f(z+c)-\Delta^{n} f(z), n=1,2, \ldots
$$

Throughout this paper, we denote by $S(r, f)$ any function satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of r of finite logarithmic measure. A meromorphic function $\alpha(z)$ is said to be a small function of $f(z)$, if $T(r, \alpha)=S(r, f)$.

Recently, there is substantial interest in difference analogues of Nevanlinna's theory, as well as difference equations. The papers [1, 2] investigated the zeros of $\Delta^{n} f(z)$ under the assumption that $f(z)$ is of small growth order, and obtained many profound results. These results may be viewed as discrete analogues of the following existing theorem on the zeros of $f^{\prime}(z)$.

Theorem A $[4,11]$ Let $f(z)$ be transcendental and meromorphic in the plane with

$$
\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r}=0
$$

[^0]Then $f^{\prime}(z)$ has infinitely many zeros.
Hayman [9] investigated the possible relationships between Picard exceptional values of $f(z)$ and its derivatives, and obtained the following classical theorem.

Theorem B [9] If $f(z)$ is transcendental and meromorphic in the plane, then either $f(z)$ assumes every finite value infinitely often, or every derivative of $f(z)$ assumes every finite value except possibly zero infinitely often.

In this paper, we investigate the value distribution of meromorphic functions and their differences. First we observe that for a general meromorphic function, the difference counterpart of Theorem B doesn't exist, see the following Example 1.1.

Example 1.1 Let $f(z)=z e^{z} /\left(2 \pi i\left(e^{z}+1\right)\right)$ and $c=2 \pi i$. Then

$$
\Delta f(z)=f(z+2 \pi i)-f(z)=\frac{e^{z}}{e^{z}+1}
$$

We see that $f(z)$ assumes 0 finitely often and $\Delta f(z)$ cannot assume 1 .
Example 1.1 shows that if $f(z)$ has only one Borel exceptional value, then $\Delta f(z)$ may not assume some finite nonzero value. In this paper, we prove that if $f(z)$ has two Borel exceptional values and if $f(z)$ is not of period c, then $\Delta f(z)$ assumes every finite value except possibly zero infinitely often. Actually, we get the following Theorem, which may be partly viewed as discrete analogues of Theorem B.

Theorem 1.1 Let $f(z)$ be a finite order transcendental meromorphic function with two Borel exceptional values a, b. Let $c \in C \backslash\{0\}$ and let $s(z)$ be a nonzero small function of $f(z)$. For every positive integer n, set

$$
F_{n}(z)=\Delta^{n} f(z)-s(z)
$$

Suppose that one of the following two conditions holds:
(i) $a, b \in C$ and $c, 2 c, \ldots, n c$ are not periods of $f(z)$;
(ii) $a \in C, b=\infty$ and $\Delta^{n} f(z) \not \equiv 0$.

Then $F_{n}(z)$ is transcendentally meromorphic and $\delta\left(0, F_{n}\right) \leq n /(n+1)$.
Remark The following Examples, 1.2-1.4, show that Theorem 1.1 is false, if $f(z)$ has at most one Borel exceptional value. So the requirement " $f(z)$ has two Borel exceptional values" in Theorem 1.1 cannot be weakened.

Example 1.2 Let $f(z)$ and c be as in Example 1.1, and let $s(z)=1$. Then $f(z)$ has only one Borel exceptional value 0 , and

$$
F_{1}(z)=\Delta f(z)-s(z)=\frac{e^{z}}{e^{z}+1}-1=\frac{-1}{e^{z}+1}
$$

has no zeros.
Example 1.3 Let $f(z)=e^{z}+z, c=2 \pi i$ and $s(z)=\pi i$. Then $f(z)$ has only one Borel exceptional value ∞, and

$$
F_{1}(z)=\Delta f(z)-s(z)=f(z+2 \pi i)-f(z)-\pi i=\pi i
$$

has no zeros.

Example 1.4 Let $f(z)=\Gamma^{\prime}(z) / \Gamma(z), c=1$ and $s(z)=1$. Then $f(z)$ has no Borel exceptional values, and

$$
F_{1}(z)=\Delta f(z)-s(z)=f(z+1)-f(z)-1=\frac{1}{z}-1
$$

has only one zero.
We give the following two corollaries. Corollary 1.1 is obtained directly from Theorem 1.1. Corollary 1.2 cannot be obtained directly from Theorem 1.1, since the condition " $N(r, 1 /(f-a))+N(r, f)=S(r, f)$ " in Corollary 1.2 dose not imply that a and ∞ are Borel exceptional values. However, using the same method as in Part II of proof of Theorem 1.1, we can easily prove Corollary 1.2.

Corollary 1.1 Let $f(z)$ be a finite order transcendental meromorphic function with two Borel exceptional values, and let $c \in C \backslash\{0\}$. For every positive integer n, if $\Delta^{n} f(z) \not \equiv 0$ and $c, 2 c, \ldots, n c$ are not periods of $f(z)$, then $\Delta^{n} f(z)$ assumes every finite value except possibly zero infinitely often.

Corollary 1.2 Let $c \in C \backslash\{0\}$ and $a \in C$. Let $f(z)$ be a transcendental meromorphic function of finite order such that

$$
N(r, 1 /(f-a))+N(r, f)=S(r, f) .
$$

For every positive integer n, if $\Delta^{n} f(z) \not \equiv 0$, then $\Delta^{n} f(z)$ assumes every finite value except possibly zero infinitely often.

Next we give the conditions under which $\Delta^{n} f(z)$ assumes every finite value (including zero) infinitely often.

Theorem 1.2 Let $f(z)$ be a transcendental meromorphic function with $1<\sigma(f)<\infty$. Let $c \in C \backslash\{0\}$ and $a \in C$. Suppose that

$$
\max \{\lambda(f-a), \lambda(1 / f)\}<\sigma(f)-1 .
$$

Then for every positive integer $n, \Delta^{n} f(z)$ assumes every finite value infinitely often.

2. Lemmas for the proofs of theorems

Lemma 2.1[6] Let $f(z)$ be a nonconstant meromorphic function of finite order, and let η_{1}, η_{2} be two arbitrary complex numbers. Then

$$
m\left(r, \frac{f\left(z+\eta_{1}\right)}{f\left(z+\eta_{2}\right)}\right)=S(r, f) .
$$

Lemma $2.2[7,8]$ Let $f(z)$ be a nonconstant finite order meromorphic function and let $c \neq 0$ be an arbitrary complex number. Then

$$
\begin{aligned}
& T(r+|c|, f)=T(r, f)+S(r, f), \\
& N(r+|c|, f)=N(r, f)+S(r, f) .
\end{aligned}
$$

It is shown in [5, p. 66], that for an arbitrary $c \neq 0$, the following inequalities

$$
(1+o(1)) T(r-|c|, f(z)) \leq T(r, f(z+c)) \leq(1+o(1)) T(r+|c|, f(z))
$$

hold as $r \rightarrow \infty$ for a general meromorphic function. From the proof we see that the above relations are also true for $N(r, f(z+c))$. So by these relations and Lemma 2.2, we get the following lemma.

Lemma 2.3 Let $f(z)$ be a nonconstant finite order meromorphic function and let $c \neq 0$ be an arbitrary complex number. Then

$$
\begin{aligned}
& T(r, f(z+c))=T(r, f)+S(r, f) \\
& N(r, f(z+c))=N(r, f)+S(r, f)
\end{aligned}
$$

Remark Chiang and Feng [3] have obtained some results similar to the above Lemmas 2.1-2.3, and their work is independent from [6, 7, 8].

Lemma $2.4[13]$ Let $f(z)$ be a transcendental meromorphic function. Let $P(f)$ be a polynomial in $f(z)$ of the form

$$
P(f)=a_{n}(z) f(z)^{n}+a_{n-1}(z) f(z)^{n-1}+\cdots+a_{0}(z),
$$

where all coefficients $a_{j}(z)$ are small functions of $f(z)$ and $a_{n}(z) \not \equiv 0$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

Lemma 2.5 [12] Let $f(z)$ be a nonconstant meromorphic function, and suppose that

$$
\Psi(z)=a_{n}(z) f(z)^{n}+a_{n-1}(z) f(z)^{n-1}+\cdots+a_{0}(z)
$$

has small meromorphic coefficients $a_{j}(z), a_{n}(z) \not \equiv 0$. Then either

$$
T(r, f) \leq \bar{N}(r, 1 / \Psi)+\bar{N}(r, f)+S(r, f)
$$

or

$$
\Psi(z)=a_{n}\left(f+\frac{a_{n-1}}{n a_{n}}\right)^{n}
$$

Lemma 2.5 is a version of Tumura-Clunie type theorems. Next we will establish a difference analogue of Lemma 2.5. To this end, we introduce some notations. The difference polynomial $H(z, f)$ is defined by

$$
\begin{equation*}
H(z, f)=\sum_{\lambda \in J} a_{\lambda}(z) \prod_{j=1}^{\tau_{\lambda}} f\left(z+\delta_{\lambda, j}\right)^{\mu_{\lambda, j}} \tag{2.1}
\end{equation*}
$$

where J is an index set, $\delta_{\lambda, j}$ are complex constants, $\mu_{\lambda, j}$ are nonnegative integers, and $a_{\lambda}(z)(\not \equiv 0)$ are small meromorphic functions of $f(z)$. The maximal total degree of $H(z, f)$ in $f(z)$ and the shifts of $f(z)$ is defined by

$$
\operatorname{deg}_{f} H=\max _{\lambda \in J} \sum_{j=1}^{\tau_{\lambda}} \mu_{\lambda, j}
$$

For $l=0,1, \ldots, \operatorname{deg}_{f} H$, we define

$$
\begin{equation*}
J_{l}=\left\{\lambda \in J \mid \sum_{j=1}^{\tau_{\lambda}} \mu_{\lambda, j}=l\right\} . \tag{2.2}
\end{equation*}
$$

Lemma 2.6 Let $f(z)$ be a transcendental meromorphic function of finite order such that

$$
\begin{equation*}
N(r, 1 / f)+N(r, f)=S(r, f) \tag{2.3}
\end{equation*}
$$

Suppose that the difference polynomial (2.1) in $f(z)$ with small meromorphic coefficients is of maximal total degree $\operatorname{deg}_{f} H \geq 1$. If there exist two different integers $m, k \in\left\{0,1, \ldots, \operatorname{deg}_{f} H\right\}$ such that

$$
\begin{equation*}
\sum_{\lambda \in J_{m}} a_{\lambda}(z) \prod_{j=1}^{\tau_{\lambda}} f\left(z+\delta_{\lambda, j}\right)^{\mu_{\lambda, j}} \not \equiv 0, \quad \sum_{\lambda \in J_{k}} a_{\lambda}(z) \prod_{j=1}^{\tau_{\lambda}} f\left(z+\delta_{\lambda, j}\right)^{\mu_{\lambda, j}} \not \equiv 0 \tag{2.4}
\end{equation*}
$$

where J_{m}, J_{k} are defined by (2.2), then $H(z, f)$ is transcendentally meromorphic and

$$
T(r, f) \leq \bar{N}(r, 1 / H)+S(r, f)
$$

Proof. Since there exist two different integers $m, k \in\left\{0, \ldots, \operatorname{deg}_{f} H\right\}$ satisfying (2.4), we may assume, without losing generality, that $m>k$ and

$$
\sum_{\lambda \in J_{s}} a_{\lambda}(z) \prod_{j=1}^{\tau_{\lambda}} f\left(z+\delta_{\lambda, j}\right)^{\mu_{\lambda, j}} \equiv 0
$$

for $s=m+1, \ldots, \operatorname{deg}_{f} H$, where J_{s} are defined by (2.2). Thus, $H(z, f)$ takes the form

$$
\begin{equation*}
H(z, f)=\sum_{i=0}^{m} b_{i}(z) f(z)^{i} \tag{2.5}
\end{equation*}
$$

where for $i=0, \ldots, m$,

$$
b_{i}(z)=\sum_{\lambda \in J_{i}} a_{\lambda}(z) \prod_{j=1}^{\tau_{\lambda}}\left(\frac{f\left(z+\delta_{\lambda, j}\right)}{f(z)}\right)^{\mu_{\lambda, j}}, \quad J_{i}=\left\{\lambda \in J \mid \sum_{j=1}^{\tau_{\lambda}} \mu_{\lambda, j}=i\right\} .
$$

In particular, $b_{m}(z) \not \equiv 0$ and $b_{k}(z) \not \equiv 0$.
Since the coefficients $a_{\lambda}(z)$ of $H(z, f)$ are small functions of $f(z)$, we have $T\left(r, a_{\lambda}\right)=S(r, f)$. So by Lemma 2.1, we get

$$
m\left(r, b_{i}\right)=S(r, f)
$$

for $i=0,1, \ldots, m$. Moreover, by (2.3) and Lemma 2.3, we have

$$
N\left(r, b_{i}\right) \leq \sum_{\lambda \in J_{i}}\left(N\left(r, a_{\lambda}\right)+\sum_{j=1}^{\tau_{\lambda}} \mu_{\lambda, j}\left(N\left(r, f\left(z+\delta_{\lambda, j}\right)\right)+N(r, 1 / f)\right)\right)+O(1)=S(r, f) .
$$

So

$$
\begin{equation*}
T\left(r, b_{i}\right)=S(r, f) \tag{2.6}
\end{equation*}
$$

for $i=0, \ldots, m$. By $(2.5),(2.6), b_{m}(z) \not \equiv 0$ and Lemma 2.4, we see that $H(z, f)$ is transcendentally meromorphic.

Applying Lemma 2.5 to (2.5), we get either

$$
\begin{equation*}
T(r, f) \leq \bar{N}(r, 1 / H)+S(r, f) \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
H(z, f)=b_{m}\left(f+\frac{b_{m-1}}{m b_{m}}\right)^{m} \tag{2.8}
\end{equation*}
$$

If (2.7) holds, there is nothing to prove. So in the following discussion, we assume that (2.8) holds. First we affirm that $b_{m-1} \not \equiv 0$. Otherwise, (2.8) yields

$$
H(z, f)=b_{m}(z) f(z)^{m}
$$

and so by (2.5), we have

$$
\sum_{i=0}^{m-1} b_{i}(z) f(z)^{i} \equiv 0
$$

By this equality and Lemma 2.4, we get $b_{i}(z) \equiv 0$ for $i=0, \ldots, m-1$. This contradicts $b_{k}(z) \not \equiv 0, k<m$. Thus, $b_{m-1} \not \equiv 0$, and by (2.6) we have

$$
T\left(r, \frac{b_{m-1}}{m b_{m}}\right)=S(r, f)
$$

Applying the second main theorem for small target functions and noting (2.3), we get

$$
\begin{aligned}
T(r, f) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f+\frac{b_{m-1}}{m b_{m}}}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f+\frac{b_{m-1}}{m b_{m}}}\right)+S(r, f) .
\end{aligned}
$$

Moreover, by (2.8) and $T\left(r, b_{m}\right)=S(r, f)$, we have

$$
\bar{N}\left(r, \frac{1}{f+\frac{b_{m-1}}{m b_{m}}}\right)=\bar{N}\left(r, \frac{1}{H}\right)+S(r, f) .
$$

Therefore

$$
T(r, f) \leq \bar{N}(r, 1 / H)+S(r, f)
$$

3. Proof of Theorem 1.1

Part I We assume that the condition (i) in Theorem 1.1 holds. Set $g(z)=1 /(f(z)-b)$. Then $g(z)$ has two Borel exceptional values $1 /(a-b), \infty$. Let $1 /(a-b)=d$. By Hadamard's factorization theory, $g(z)$ takes the form

$$
\begin{equation*}
g(z)=h(z) e^{p(z)}+d, \tag{3.1}
\end{equation*}
$$

where $p(z)$ is a polynomial and $h(z)$ is a meromorphic function satisfying $\sigma(h)<\sigma(g)$. So $\sigma(g)=\operatorname{deg} p \geq 1$, and $g(z)$ is of regular growth, i.e.,

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log T(r, g)}{\log r}=\liminf _{r \rightarrow \infty} \frac{\log T(r, g)}{\log r}=\sigma(g) . \tag{3.2}
\end{equation*}
$$

By (3.2) and the fact that ∞ is a Borel exceptional value of $g(z)$, we get

$$
\begin{equation*}
N(r, g)=S(r, g) . \tag{3.3}
\end{equation*}
$$

Observe that

$$
\begin{gather*}
\Delta^{n} f(z)=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} f(z+j c), \tag{3.4}\\
\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j}=(1-1)^{n}=0 \tag{3.5}
\end{gather*}
$$

where $\binom{n}{j}$ are the binomial coefficients. Substituting $f(z)=1 / g(z)+b$ into (3.4) and noting (3.5), we get

$$
\Delta^{n} f(z)=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j}\left(\frac{1}{g(z+j c)}+b\right)=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} \frac{1}{g(z+j c)} .
$$

So

$$
\begin{equation*}
F_{n}(z)=\Delta^{n} f(z)-s(z)=\frac{E_{1}(z)-s(z) \prod_{j=0}^{n} g(z+j c)}{\prod_{j=0}^{n} g(z+j c)} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{1}(z)=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} \prod_{\substack{i=0 \\ i \neq j}}^{n} g(z+i c) . \tag{3.7}
\end{equation*}
$$

Let $g_{1}(z)=g(z)-d$. Then $g_{1}(z)$ has two Borel exceptional values $0, \infty$, and $g_{1}(z)$ is of regular growth. So

$$
N\left(r, g_{1}\right)=S\left(r, g_{1}\right), \quad N\left(r, 1 / g_{1}\right)=S\left(r, g_{1}\right)
$$

Set

$$
E_{2}(z)=E_{1}(z)-s(z) \prod_{j=0}^{n} g(z+j c)
$$

Substituting (3.7) into $E_{2}(z)$ and then replacing $g(z)$ by $g(z)=g_{1}(z)+d$, we get

$$
\begin{equation*}
E_{2}(z)=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} \prod_{\substack{i=0 \\ i \neq j}}^{n}\left(g_{1}(z+i c)+d\right)-s(z) \prod_{j=0}^{n}\left(g_{1}(z+j c)+d\right) \tag{3.8}
\end{equation*}
$$

By calculation, we obtain

$$
\begin{equation*}
-s(z) \prod_{j=0}^{n}\left(g_{1}(z+j c)+d\right)=-s(z) \prod_{j=0}^{n} g_{1}(z+j c)+P\left(z, g_{1}\right)-s(z) d^{n+1} \tag{3.9}
\end{equation*}
$$

and for $j=0, \ldots, n$,

$$
\begin{equation*}
\prod_{\substack{i=0 \\ i \neq j}}^{n}\left(g_{1}(z+i c)+d\right)=P_{j}\left(z, g_{1}\right)+d^{n} \tag{3.10}
\end{equation*}
$$

where $P\left(z, g_{1}\right)$ and $P_{j}\left(z, g_{1}\right)$ are difference polynomials in $g_{1}(z)$ and its shifts such that the degree of every term in $P\left(z, g_{1}\right)$ and $P_{j}\left(z, g_{1}\right)$ is at most n and at least 1. By (3.8)-(3.10) and noting (3.5), we get

$$
E_{2}(z)=-s(z) \prod_{j=0}^{n} g_{1}(z+j c)+P\left(z, g_{1}\right)+\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} P_{j}\left(z, g_{1}\right)-s(z) d^{n+1}
$$

Since $s(z) \not \equiv 0$ and $d=1 /(a-b) \neq 0$, we have $-s(z) \prod_{j=0}^{n} g_{1}(z+j c) \not \equiv 0$ and $-s(z) d^{n+1} \not \equiv 0$. So by Lemma 2.6, we get $E_{2}(z) \not \equiv 0$ and

$$
T\left(r, g_{1}\right) \leq \bar{N}\left(r, 1 / E_{2}\right)+S\left(r, g_{1}\right)
$$

By the above results and noting that $F_{n}(z)=E_{2}(z) / \prod_{j=0}^{n} g(z+j c)$ and $g_{1}(z)=g(z)-d$, we obtain

$$
F_{n}(z) \not \equiv 0
$$

and

$$
\begin{equation*}
T(r, g) \leq \bar{N}\left(r, 1 / E_{2}\right)+S(r, g) \tag{3.11}
\end{equation*}
$$

In order to estimate the zeros of $F_{n}(z)$, we proceed to discuss the common zeros of $E_{2}(z)$ and $\prod_{j=0}^{n} g(z+$ $j c)$. Let z_{0} be such a common zero. Then z_{0} is a zero of $E_{1}(z)$ or a pole of $s(z)$. Assume that z_{0} is a zero of $E_{1}(z)$ and that

$$
\begin{equation*}
g\left(z_{0}+j c\right) \neq \infty \tag{3.12}
\end{equation*}
$$

for $j=0, \ldots, n$. Since $\prod_{j=0}^{n} g\left(z_{0}+j c\right)=0$, there exists an integer $l \in\{0, \ldots, n\}$ such that $g\left(z_{0}+l c\right)=0$. By $(3.7),(3.12)$ and the fact that $g\left(z_{0}+l c\right)=0, E_{1}\left(z_{0}\right)=0$, we get

$$
\binom{n}{l}(-1)^{n-l} \prod_{\substack{i=0 \\ \neq l}}^{n} g\left(z_{0}+i c\right)=0
$$

This equality shows that there exists an integer $s \in\{0, \ldots, n\} \backslash\{l\}$ such that $g\left(z_{0}+s c\right)=0$. So we have

$$
g\left(z_{0}+l c\right)-g\left(z_{0}+s c\right)=0
$$

Since $g(z)=1 /(f(z)-b)$ and $c, 2 c, \ldots, n c$ are not periods of $f(z)$, we have

$$
g(z+l c)-g(z+s c) \not \equiv 0
$$

Thus, the integrated counting function of the common zeros of $E_{2}(z)$ and $\prod_{j=0}^{n} g(z+j c)$, denoted by $N_{1}(r)$, satisfies

$$
N_{1}(r) \leq N(r, s)+\sum_{j=0}^{n} N(r, g(z+j c))+\sum_{\substack{l \neq s \\ l, s \in\{0, \ldots, n\}}} N\left(r, \frac{1}{g(z+l c)-g(z+s c)}\right)
$$

By (3.3), Lemma 2.3 and $T(r, s)=S(r, g)$, the above inequality becomes

$$
\begin{equation*}
N_{1}(r) \leq S(r, g)+\sum_{\substack{l \neq s \\ l, s \in\{0, \ldots, n\}}} N\left(r, \frac{1}{g(z+l c)-g(z+s c)}\right) \tag{3.13}
\end{equation*}
$$

Since $p(z)$ in (3.1) is a polynomial of degree $\operatorname{deg} p=\sigma(g) \geq 1$, we have

$$
p(z)=a_{m} z^{m}+p_{1}(z)
$$

where $a_{m}(\neq 0)$ is a constant, $m=\sigma(g) \geq 1$, and $p_{1}(z)$ is a polynomial of degree at most $m-1$. For $l \neq s$,

$$
\begin{equation*}
p(z+l c)-p(z+s c)=c m(l-s) a_{m} z^{m-1}+\ldots=p_{l, s}(z) \tag{3.14}
\end{equation*}
$$

where $p_{l, s}(z)$ are polynomials of degree $m-1$. By (3.1) and (3.14), we have

$$
g(z+l c)-g(z+s c)=\left(h(z+l c) e^{p_{l, s}(z)}-h(z+s c)\right) e^{p(z+s c)}
$$

Since $\sigma(h)<\sigma(g)$ and $\sigma\left(e^{p_{l, s}(z)}\right)<\sigma(g)$, it follows by (3.2) and Lemma 2.3 that

$$
T\left(r, h(z+l c) e^{p_{l, s}(z)}-h(z+s c)\right)=S(r, g)
$$

So for $l, s \in\{0, \ldots, n\}, l \neq s$, we have

$$
\begin{equation*}
N\left(r, \frac{1}{g(z+l c)-g(z+s c)}\right)=S(r, g) \tag{3.15}
\end{equation*}
$$

By (3.13) and (3.15), we get

$$
\begin{equation*}
N_{1}(r) \leq S(r, g) \tag{3.16}
\end{equation*}
$$

Since $N_{1}(r)$ denotes the common zeros of $E_{2}(z)$ and $\prod_{j=0}^{n} g(z+j c)$, it follows from (3.6) that

$$
N\left(r, 1 / F_{n}\right) \geq N\left(r, 1 / E_{2}\right)-N_{1}(r)
$$

Combining this inequality with (3.11) and (3.16), we get

$$
T(r, g) \leq N\left(r, 1 / F_{n}\right)+S(r, g)
$$

Moreover, $g(z)=1 /(f(z)-b)$. So

$$
\begin{equation*}
T(r, f) \leq N\left(r, 1 / F_{n}\right)+S(r, f) \tag{3.17}
\end{equation*}
$$

By (3.17), $F_{n}(z) \not \equiv 0$ and noting that $f(z)$ is a transcendental meromorphic function, we see that $F_{n}(z)$ is transcendentally meromorphic.

By $F_{n}(z)=\Delta^{n} f(z)-s(z)$ and (3.4), we get

$$
T\left(r, F_{n}\right) \leq \sum_{j=0}^{n} T(r, f(z+j c))+S(r, f)
$$

So by Lemma 2.3, $T\left(r, F_{n}\right)$ satisfies

$$
\begin{equation*}
T\left(r, F_{n}\right) \leq(n+1) T(r, f)+S(r, f) \tag{3.18}
\end{equation*}
$$

Combining (3.17) and (3.18), we get

$$
\delta\left(0, F_{n}\right)=1-\limsup _{r \rightarrow \infty} \frac{N\left(r, 1 / F_{n}\right)}{T\left(r, F_{n}\right)} \leq n /(n+1)
$$

Part II We assume that the condition (ii) in Theorem 1.1 holds. Set $g_{2}(z)=f(z)-a$. Then $0, \infty$ are Borel exceptional values of $g_{2}(z)$, and

$$
N\left(r, g_{2}\right)=S\left(r, g_{2}\right), \quad N\left(r, 1 / g_{2}\right)=S\left(r, g_{2}\right)
$$

Substituting $f(z)=g_{2}(z)+a$ into $F_{n}(z)$, we get

$$
F_{n}(z)=\Delta^{n}\left(g_{2}(z)+a\right)-s(z)=\Delta^{n} g_{2}(z)-s(z)
$$

Since $\Delta^{n} g_{2}(z)=\Delta^{n} f(z) \not \equiv 0$ and $s(z) \not \equiv 0$, by Lemma 2.6, it follows that $F_{n}(z)$ is transcendentally meromorphic and

$$
T\left(r, g_{2}\right) \leq \bar{N}\left(r, 1 / F_{n}\right)+S\left(r, g_{2}\right)
$$

and so

$$
\begin{equation*}
T(r, f) \leq \bar{N}\left(r, 1 / F_{n}\right)+S(r, f) \tag{3.19}
\end{equation*}
$$

Moreover, we still have (3.18). By (3.18) and (3.19), we get

$$
\delta\left(0, F_{n}\right) \leq n /(n+1)
$$

4. Proof of Theorem 1.2

Since $\max \{\lambda(f-a), \lambda(1 / f)\}<\sigma(f)-1$ and $1<\sigma(f)<\infty$, we have

$$
\begin{equation*}
f(z)=a+h(z) e^{q(z)} \tag{4.1}
\end{equation*}
$$

where $q(z)$ is a polynomial of degree $\operatorname{deg} q=\sigma(f)>1$, and $h(z)$ is a nonzero meromorphic function satisfying $\sigma(h)<\sigma(f)-1$. Let

$$
q(z)=d_{k} z^{k}+\widetilde{q}(z)
$$

where $d_{k}(\neq 0)$ is a constant, $k=\sigma(f)>1$, and $\widetilde{q}(z)$ is a polynomial of degree at most $k-1$. For $j=1, \ldots, n$,

$$
\begin{equation*}
q(z+j c)-q(z)=j k d_{k} c z^{k-1}+q_{j}(z) \tag{4.2}
\end{equation*}
$$

where $q_{j}(z)$ are polynomials of degree at most $k-2$. Let $q_{0}(z) \equiv 0$. By (3.4), (3.5), (4.1) and (4.2), we have

$$
\begin{aligned}
\Delta^{n} f(z) & =\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} f(z+j c) \\
& =\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j}\left(a+h(z+j c) e^{q(z+j c)}\right) \\
& =e^{q(z)} \sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} h(z+j c) e^{q_{j}(z)} e^{j k d_{k} c z^{k-1}} .
\end{aligned}
$$

Set

$$
T(z)=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} h(z+j c) e^{q_{j}(z)} e^{j k d_{k} c z^{k-1}}, \quad t(z)=e^{k d_{k} c z^{k-1}}
$$

Then we have

$$
\begin{equation*}
T(z)=\sum_{j=0}^{n} \alpha_{j}(z) t^{j}(z) \tag{4.3}
\end{equation*}
$$

where for $j=0, \ldots, n$,

$$
\begin{equation*}
\alpha_{j}(z)=\binom{n}{j}(-1)^{n-j} h(z+j c) e^{q_{j}(z)} \not \equiv 0 . \tag{4.4}
\end{equation*}
$$

Since $t(z)$ is of regular growth $\sigma(t)=k-1>0$ and noting that $\sigma(h)<k-1$ and $\sigma\left(e^{q_{j}(z)}\right) \leq k-2$, we get

$$
\begin{equation*}
T\left(r, \alpha_{j}\right)=S(r, t) \tag{4.5}
\end{equation*}
$$

for $j=0, \ldots, n$. By Lemma 2.4 and (4.3)-(4.5), we get $T(z) \not \equiv 0$. So $\Delta^{n} f(z)=e^{q(z)} T(z) \not \equiv 0$ and the condition (ii) in Theorem 1.1 holds. Thus, $\Delta^{n} f(z)$ assumes every nonzero finite value infinitely often. Moreover, applying Lemma 2.6 to (4.3), we get

$$
T(r, t) \leq \bar{N}(r, 1 / T)+S(r, t)=\bar{N}\left(r, 1 / \Delta^{n} f\right)+S(r, t)
$$

Therefore, $\Delta^{n} f(z)$ assumes every finite value infinitely often.

Acknowledgement

The authors are very grateful to the referee for valuable comments and suggestions.

References

[1] Bergweiler, W. and Langley, J.K.: Zeros of differences of meromorphic functions. Math. Proc. Cambridge Philos. Soc. 142, 133-147 (2007).
[2] Chen, Z.X. and Shon, K.H.: On zeros and fixed points of differences of meromorphic functions. J. Math. Anal. Appl. 344, 373-383 (2008).
[3] Chiang, Y.M. and Feng, S.J.: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16, 105-129 (2008).
[4] Eremenko, A., Langley, J. and Rossi, J.: On the zeros of meromorphic functions of the form $f(z)=\sum_{k=1}^{\infty} \frac{a_{k}}{z-z_{k}}$. J. Anal. Math. 62, 271-286 (1994).
[5] Goldberg, A.A. and Ostrovskii, I.V.: Distribution of Values of Meromorphic Functions. Nauka, Moscow, 1970.
[6] Halburd, R.G. and Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477-487 (2006).
[7] Halburd, R.G. and Korhonen, R.J.: Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations. J. Phys. A 40, 1-38 (2007).
[8] Halburd, R.G. and Korhonen, R.J.: Finite-order meromorphic solutions and the discrete Painlevé equations. Proc. Lond. Math. Soc. (3) 94, 443-474 (2007).
[9] Hayman, W.K.: Picard values of meromorphic functions and their derivatives. Ann. of Math. (2) 70, 9-42 (1959).
[10] Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford, 1964.
[11] Hinchliffe, J.D.: The Bergweiler-Eremenko theorem for finite lower order. Results Math. 43, 121-128 (2003).
[12] Weissenborn, G.: On the theorem of Tumura and Clunie. Bull. Lond. Math. Soc. 18, 371-373 (1986).
[13] Yang, C.C.: On deficiencies of differential polynomials, II. Math. Z. 125, 107-112 (1972).

Ranran ZHANG, Zongxuan CHEN
Received: 21.01.2011
School of Mathematical Sciences,
South China Normal University,
Guangzhou 510631, People's Republic of CHINA
e-mails: zhrr19820315@163.com, chzx@vip.sina.com

[^0]: 2000 AMS Mathematics Subject Classification: 30D35, 39A10.
 *This project was supported by the National Natural Science Foundation of China (10871076) and by the Tianyuan Fund for Mathematics (11026096).

