

Simultaneous proximinality of vector valued function spaces

Mona Khandaqji, Fadi Awawdeh, Jamila Jawdat

Abstract

A characterization of best simultaneous approximation of Köthe spaces of vector-valued functions is given. This characterization is a generalization of some analogous theorems for Orlicz Bochner spaces.

Key words and phrases: Simultaneous approximation; Köthe Bochner function space

1. Introduction

Through this paper, let (T, \sum, μ) be a finite complete measure space and $L^0 = L^0(T)$ denote the space of all (equivalence classes) of Σ -measurable real valued functions. For $f, g \in L^0$, $f \leq g$ means that $f(t) \leq g(t)$ μ -almost every where $t \in T$. A Banach space $(E, \|\cdot\|_E)$ is said to be a Köthe space if

- (1) for $f, g \in L^0$, $|f| \leq |g|$ and $g \in E$ imply $f \in E$ and $||f||_E \leq ||g||_E$;
- (2) for each $A \in \Sigma$, if $\mu(A)$ is finite then $\chi_A \in E$. See [7, p. 28].

A Köthe space E has absolutely continuous norm if for each $f \in E$ and each decreasing sequence (A_n) converges to 0, then $\|\chi_{A_n} f\|_E \to 0$. A Köthe space E is said to be strictly monotone if $x \ge y \ge 0$ and $\|x\|_E = \|y\|_E$ imply x = y. Let E be a Köthe space on the measure space (T, \sum, μ) and $(X, \|\cdot\|_X)$ be a real Banach space then E(X) is the space (of all equivalence classes) of strongly measurable functions $f: T \to X$ such that $\|f(\cdot)\|_X \in E$ equipped with the norm

$$||f||| = |||f(\cdot)||_X||_E.$$

The space $(E(X), ||| \cdot |||_E)$ is a Banach space called the Köthe Bochner function space [7]. For a function $F = (f_1, f_2, \ldots, f_n) \in (E(X))^n$, we define the norm of F by

$$|||F||| = \left\| \sum_{i=1}^{n} ||f_i(\cdot)||_X \right\|_E.$$

²⁰⁰⁰ AMS Mathematics Subject Classification: 41A50, 41A28, 46E40.

KHANDAQJI, AWAWDEH, JAWDAT

The most important classes of Köthe Bochner function spaces are the Lebesgue Bochner spaces $L^{p}(X)$, $(1 \le p < \infty)$ and their generalization the Orlicz-Bochner spaces $L^{\Phi}(X)$. These spaces have been studied by many authors, cf. [2], [4], [5], [6], [8], [10].

Let Y be a closed subspace of X. For a set of elements $x_1, x_2, \ldots, x_n \in X$, define

dist
$$(x_1, x_2, \dots, x_n, Y) = \inf_{z \in Y} \left\{ \sum_{i=1}^n \|x_i - z\| \right\}.$$

We say that $y_0 \in Y$ is a best simultaneous approximation to the set of elements $x_1, x_2, \ldots, x_n \in X$ if, for every $z \in Y$, we have

$$\sum_{i=1}^{n} \|x_i - y_0\| \le \sum_{i=1}^{n} \|x_i - z\|.$$

If every set of elements $x_1, x_2, \ldots, x_n \in X$ admits a best simultaneous approximation in Y, then Y is said to be simultaneously proximinal in X. In case when n = 1, we get the usual proximinality.

In this paper, for a given closed subspace Y of X and $F = (f_1, f_2, \ldots, f_n) \in (E(X))^n$, we are interested in the existence of n-tuples $G_0 = (g_0, g_0, \ldots, g_0) \in (E(Y))^n$ such that

$$|||F - G_0||| = \inf_{g \in E(Y)} ||F - (g, g, \dots, g)||.$$

If such a function g_0 exists, it is called a best simultaneous approximation of $F = (f_1, f_2, \ldots, f_n)$. The problem of best simultaneous approximation can be viewed as a special case of vector valued approximation. Recent results in this area are due to Pinkus [9]. Results on best simultaneous approximation in general Banach spaces can also be found in [1], [11], [12].

It is the aim of this work to write and prove a formula for the distance $dist_E(f_1, f_2, \ldots, f_n, E(Y))$, where $f_1, f_2, \ldots, f_n \in E(X)$, similar to that of best approximation. This allows us to generalize some recent results in [3].

2. Distance formula

Through this section, X is a real Banach space and E(X) is a Köthe Bochner function space. For $f_1, f_2, \ldots, f_n \in E(X)$, we define $dist_E(f_1, \ldots, f_n, E(Y))$ by

$$dist_{E}(f_{1}, f_{2}, \dots, f_{n}, E(Y)) = \inf_{g \in E(Y)} |||(f_{1}, f_{2}, \dots, f_{n}) - (g, g, \dots, g)|||$$
$$= \inf_{g \in E(Y)} \left\| \sum_{i=1}^{n} ||f_{i}(\cdot) - g(\cdot)||_{X} \right\|_{E}.$$

We also define $B(f_1, f_2, \ldots, f_n, E(Y))$ by the set

$$\{g \in E(Y) : \left\|\sum_{i=1}^{n} \|f_{i}(\cdot) - g(\cdot)\|_{X}\right\|_{E} = dist_{E}(f_{1}, f_{2}, \dots, f_{n}, E(Y))\}$$

Lemma 1 Let $f_1, f_2, \ldots, f_n \in E(X)$, Y a closed subspace of X and $g: T \to Y$ be a strongly measurable function with $g(t) \in B(f_1(t), f_2(t), \ldots, f_n(t), Y)$ for almost all $t \in T$. Then $g \in E(Y) \cap B(f_1, f_2, \ldots, f_n, E(Y))$. **Proof.** Since $g(t) \in B(f_1(t), f_2(t), \ldots, f_n(t), Y)$, for almost all $t \in T$, we have

$$|||g||| \le \frac{2}{n} \sum_{i=1}^{n} |||f_i|||,$$

which shows that $g \in E(Y)$. Also, for any $h \in E(Y)$, we have

$$\left\|\sum_{i=1}^{n}\left\|f_{i}\left(\cdot\right)-g\left(\cdot\right)\right\|_{X}\right\|_{E} \leq \left\|\sum_{i=1}^{n}\left\|f_{i}\left(\cdot\right)-h\left(\cdot\right)\right\|_{X}\right\|_{E},$$

thus $g \in B(f_1, f_2, ..., f_n, E(Y)).$

We can now state and prove the main result.

Theorem 2 Let Y be a closed subspace of the real Banach space X and E(X) be a Köthe Bochner function space with absolutely continuous norm. If $f_1, f_2, \ldots, f_n \in E(X)$, then the distance function $dist(f_1(\cdot), f_2(\cdot), \ldots, f_n(\cdot))$ belongs to E and

$$\|dist(f_1(\cdot), f_2(\cdot), \dots, f_n(\cdot), Y)\|_E = dist_E(f_1, f_2, \dots, f_n, E(Y))$$

Proof. Let $f_1, f_2, \ldots, f_n \in E(X)$, then there exist sequences $(f_{n,i}), 1 \le i \le n$, of simple functions in E(X) such that

$$||f_{n,i}(t) - f_i(t)|| \rightarrow 0, \quad i = 1, 2, \dots, n, \text{ for almost all } t \text{ in } T$$

The continuity of the distance function implies that

$$dist(f_{n,1}(t), f_{n,2}(t), \dots, f_{n,n}(t), Y) - dist(f_1(t), f_2(t), \dots, f_n(t), Y)| \to 0.$$

Set

$$H_{n}(t) = dist(f_{n,1}(t), f_{n,2}(t), \dots, f_{n,n}(t), Y),$$

then H_n is a measurable function. Therefore the $dist(f_1(\cdot), \ldots, f_n(\cdot), Y)$ is measurable and

$$dist(f_1(t), f_2(t), \dots, f_n(t), Y) \le \sum_{i=1}^n \|f_i(t) - z\|_X, \text{ for all } z \in Y.$$

As a consequence we can write

dist
$$(f_1(t), f_2(t), \dots, f_n(t), Y) \le \sum_{i=1}^n ||f_i(t) - g(t)||_X$$
, for all $g \in E(Y)$,

and we obtain, for all $g \in E(Y)$,

$$\|dist(f_1(\cdot), f_2(\cdot), \dots, f_n(\cdot), Y)\|_E \le \left\| \sum_{i=1}^n \|f_i(\cdot) - g(\cdot)\|_X \right\|_E$$

439

Thus, $dist(f_1(\cdot), f_2(\cdot), \ldots, f_n(\cdot), Y) \in E$ and

$$\|dist(f_1(\cdot), f_2(\cdot), \dots, f_n(\cdot), Y)\|_E \le dist_E(f_1, f_2, \dots, f_n, E(Y)).$$
 (1)

Fix $\varepsilon > 0$. Since E(X) is a Köthe Bochner function space with absolutely continuous norm, the simple functions are dense in E(X), [7]. That is, there exist simple functions f_i^* in E(X) such that

$$|||f_i - f_i^*||| < \frac{\varepsilon}{n}$$
, for $i = 1, ..., n$.

Assume that

$$f_i^*(t) = \sum_{k=1}^m x_k^i \ \chi_{A_k}(t),$$

where the A_k 's are pairwise disjoint measurable sets of T with $\bigcup_{k=1}^m A_k = T$, χ_{A_k} 's are the characteristic functions related to the A_k 's and $x_k^i \in X$, for k = 1, 2, ..., m and i = 1, ..., n. Since $\mu(T)$ is finite, we can put $\alpha = |||\chi_T|||$. For each k = 1, 2, ..., m, let $y_k \in Y$ satisfy

$$\sum_{i=1}^{n} \left\| x_{k}^{i} - y_{k} \right\|_{X} \leq dist\left(x_{k}^{1}, x_{k}^{2}, ..., x_{k}^{n}, Y \right) + \frac{\varepsilon}{\alpha}$$

By setting $g(t) = \sum_{k=1}^{m} y_k \chi_{A_k}(t)$, we obtain the inequalities

$$\left\| \sum_{i=1}^{n} \|f_{i}^{*}\left(\cdot\right) - g\left(\cdot\right)\|_{X} \right\|_{E} = \left\| \sum_{k=1}^{m} \chi_{A_{k}}(\cdot) \left[\sum_{i=1}^{n} \|x_{k}^{i} - y_{k}\|_{X} \right] \right\|_{E}$$

$$\leq \left\| \sum_{k=1}^{m} \chi_{A_{k}}(\cdot) \left[dist\left(x_{k}^{1}, x_{k}^{2}, ..., x_{k}^{n}, Y\right) + \frac{\varepsilon}{\alpha} \right] \right\|_{E}$$

$$\leq \left\| dist\left(f_{1}^{*}\left(\cdot\right), f_{2}^{*}\left(\cdot\right), ..., f_{n}^{*}\left(\cdot\right), Y\right) \right\|_{E} + \left\| \left\| \sum_{k=1}^{m} \chi_{A_{k}} \right\| \left| \frac{\varepsilon}{\alpha} \right| \right\|_{E}$$

$$\leq \left\| dist\left(f_{1}^{*}\left(\cdot\right), f_{2}^{*}\left(\cdot\right), ..., f_{n}^{*}\left(\cdot\right), Y\right) \right\|_{E} + \frac{\varepsilon}{\alpha} \left\| \chi_{T} \right\|$$

$$= \left\| dist\left(f_{1}^{*}\left(\cdot\right), f_{2}^{*}\left(\cdot\right), ..., f_{n}^{*}\left(\cdot\right), Y\right) \right\|_{E} + \varepsilon.$$

This also gives the following inequalities:

$$\begin{aligned} dist_{E}\left(f_{1},...,f_{n},E\left(Y\right)\right) &\leq dist_{E}\left(f_{1}^{*},...,f_{n}^{*},E\left(Y\right)\right) + \sum_{i=1}^{n} |\|f_{i} - f_{i}^{*}\|| \\ &< \left\|\sum_{i=1}^{n} \|f_{i}^{*}\left(\cdot\right) - g\left(\cdot\right)\|_{X}\right\|_{E} + \varepsilon \\ &\leq \|dist\left(f_{1}^{*}\left(\cdot\right),...,f_{n}^{*}\left(\cdot\right),Y\right)\|_{E} + 2\varepsilon \\ &\leq \|dist\left(f_{1}\left(\cdot\right),...,f_{n}\left(\cdot\right),Y\right)\|_{E} + \sum_{i=1}^{n} |\|f_{i} - f_{i}^{*}\|| + 2\varepsilon \\ &< \|dist\left(f_{1}\left(\cdot\right),...,f_{n}\left(\cdot\right),Y\right)\|_{E} + 3\varepsilon. \end{aligned}$$

Thus, we have

$$dist_{E}(f_{1}, f_{2}, \dots, f_{n}, E(Y)) < \|dist(f_{1}(\cdot), f_{2}(\cdot), \dots, f_{n}(\cdot), Y)\|_{E} + 3\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, it holds that

$$dist_{E}(f_{1}, f_{2}, \dots, f_{n}, E(Y)) \leq \|dist(f_{1}(\cdot), f_{2}(\cdot), \dots, f_{n}(\cdot), Y)\|_{E}.$$
 (2)

Using inequalities (1) and (2) we get the required results.

A direct consequence of the previous is the following result

Corollary 3 Let Y be a closed subspace of the real Banach space X and E(X) be a Köthe Bochner function space with absolutely continuous and strictly monotone norm. For $f_1, \ldots, f_n \in E(X)$ and $g \in B(f_1, \ldots, f_n, E(Y))$ it is necessary and sufficient that $g(t) \in B(f_1(t), \ldots, f_n(t), Y)$ for almost all $t \in T$.

Next, we give the simultaneous proximinality of E(Y) in E(X):

Theorem 4 If Y is simultaneously proximinal in the real Banach space X, then $B(f_1, f_2, ..., f_n, E(Y)) \neq \emptyset$, for every set of simple functions $f_1, f_2, ..., f_n$ in E(X).

Proof. Let $f_i (1 \le i \le n)$ be simple functions in E(X). Then $f_i (1 \le i \le n)$ can be written as

$$f_i(t) = \sum_{k=1}^m u_k^i \chi_{A_k}(t), \quad i = 1, \dots, n,$$

where A_k 's are pairwise disjoint measurable sets of T with $\bigcup_{k=1}^m A_k = T$. Also, we may take $\mu(A_k) > 0$, for each k = 1, 2, ..., m. By assumption we know that for each k = 1, 2, ..., m, there exists a best simultaneous approximation w_k in Y of the *n*-tuples $(u_k^1, u_k^2, ..., u_k^n) \in X^n$ such that

$$dist(x_k^1, x_k^2, ..., x_k^n, Y) = \sum_{i=1}^n \|u_k^i - w_k\|_X.$$

441

Set

$$g(t) = \sum_{k=1}^{n} w_k \ \chi_{A_k}(t),$$

then for any $\alpha > 0$ and $h \in E(Y)$, we obtain that

$$\left\| \sum_{i=1}^{n} \|f_{i}(\cdot) - h(\cdot)\|_{X} \right\|_{E}$$

$$\geq \left\| \sum_{k=1}^{m} \chi_{A_{k}}(\cdot) \left[\sum_{i=1}^{n} \|u_{k}^{i} - w_{k}\|_{X} \right] \right\|_{E}$$

$$= \left\| \sum_{i=1}^{m} \|f_{i}(\cdot) - g(\cdot)\|_{X} \right\|_{E}.$$

By taking infimum over all $h \in E(Y)$, it results that

$$dist_E(f_1, f_2, \dots, f_n, E(Y)) = \left\| \sum_{i=1}^n \|f_i(\cdot) - g(\cdot)\|_X \right\|_E.$$

This implies that the set of simple functions f_1, f_2, \ldots, f_n in E(X) admits a best simultaneous approximation.

Theorem 5 Let Y be a closed subspace of the real Banach space X and E(X) be a Köthe Bochner function space with absolutely continuous and strictly monotone norm. If E(Y) is simultaneous proximinal in E(X), then Y is simultaneous proximinal in X.

Proof. Let $x_1, x_2, \ldots, x_n \in X$. Set $f_i(t) = x_i$ $(1 \le i \le n)$ for almost all $t \in T$. Since

$$|||f_i||| = ||||f_i(\cdot)||_X||_E = ||||x_i\chi_T(\cdot)||_X||_E$$
$$= ||x_i||_X |||\chi_T|||, \text{ for } 1 \le i \le n,$$

which is finite, then $f_i \in E(X)$, $(1 \le i \le n)$. By assumption there exists $g \in E(Y)$ such that

$$\left\|\sum_{i=1}^{n} \|f_{i}(\cdot) - g(\cdot)\|_{X}\right\|_{E} < \left\|\sum_{i=1}^{n} \|f_{i}(\cdot) - h(\cdot)\|_{X}\right\|_{E}, \text{ for all } h \in E(Y)$$

Because E(X) is a Köthe Bochner function space with a strictly monotone norm, for almost $t \in T$, we thus have

$$\sum_{i=1}^{n} \|f_i(t) - g(t)\|_X \le \sum_{i=1}^{n} \|f_i(t) - h(t)\|_X.$$

Fix $t_0 \in T$ and $y = g(t_0)$, then $y \in Y$ and

$$\sum_{i=1}^{n} \|x_{i} - y\|_{X} \le \sum_{i=1}^{n} \|x_{i} - h(t)\|_{X}, \text{ for all } h \in E(Y).$$

Since Y is embedded isometrically into E(Y), we obtain

$$\sum_{i=1}^{n} \|x_i - y\|_X \le \sum_{i=1}^{n} \|x_i - z\|_X, \text{ for all } z \in Y.$$

Theorem 6 Let Y be a closed separable subspace of the real Banach space X and E(X) be a Köthe Bochner function space with absolutely continuous and strictly monotone norm. Then E(Y) is simultaneous proximinal in E(X) if and only if Y is simultaneous proximinal in X.

Proof. The necessity is included in Theorem 5. Now for sufficiency suppose that Y is simultaneous proximinal in X and let f_1, f_2, \ldots, f_n be a set of functions in E(X), then Theorem 3.4 in [1] guarantees that there exists a measurable function $g: T \to X$ such that $g(t) \in B(f_1(t), f_2(t), \ldots, f_n(t), Y)$ for almost all $t \in T$. We conclude that E(Y) is simultaneous proximinal in E(X) on account of Lemma 1. Thus

$$g \in B(f_1, f_2, \ldots, f_n, E(Y)),$$
 for almost all $t \in T$,

thereby completing the proof of the theorem.

Acknowledgement

The authors would like to thank the referees for their valuable comments.

References

- Al-Sharif, Sh.: Best Simultaneous Approximation in Metric Spaces. Jordan Journal of Mathematics and Statistics(JJMS), 1(1), 69–80 (2008).
- [2] Khalil, R.: Best Approximation in $L^{p}(I, X)$, Math. Proc. Camb. Phil. Soc., 94, 277–279 (1983).
- [3] Khandaqji, M. and Al-Sharif, Sh.: Best Simultaneous Approximation in Orlicz Spaces. International Journal of Mathematics and Mathematical Sciences, Article ID 68017 (2007).
- [4] Khandaqji, M., Khalil, R. and Hussein, D.: Proximinality in Orlicz-Bochner Function Spaces. Tamkang J. of Math., 34(1), (2003).
- [5] Khandaqji, M., Shatanawi, W. and Mustafa, Z.: Approximation in Köthe Bochner Function Space. International Journal of Applied Mathematics, 20(7), 937–942 (2007).
- [6] Light, W. A. and Cheney, E.W.: Approximation Theory in Tensor Product Spaces, Lecture Notes in Mathematics, Volume 1169, Springer Verlag, Heidelberg (1985).
- [7] Lin, P. K.: Köthe Bochner Function Space, Springer Verlag (2004).
- [8] Lindenstrauss, L. and Tzafriri, L.: Classical Banach Spaces II, Function Spaces, Springer Verlag, New York (1979).

KHANDAQJI, AWAWDEH, JAWDAT

- [9] Pinkus, A.: Uniqueness in Vector Valued Approximation. Journal of Approximation Theory, 73(2), 17–92 (1993).
- [10] Shatanawi, W., Khandaqii, M. and Al-Sharif, Sh.: Proximity Maps and Chebyshev Subspaces. International Journal of Applied Mathematics, 20(5), 655–660 (2007).
- [11] Tanimoto, S.: On Best Simultaneous Approximation. Mathematica Japonica, 84(2), 275–279 (1998).
- [12] Watson, G. A.: A characterization of Best Simultaneous Approximations. Journal of Approximation Theory, 75(2), 175–182 (1993).

Received: 15.03.2010

Mona KHANDAQJI, Fadi AWAWDEH Department of Mathematics, Hashemite University, Jordan-AL-ZARQA e-mails: mkhan@hu.edu.jo, awawdeh@hu.edu.jo Jamila JAWDAT Department of Mathematics, Zarqa University, Jordan-AL-ZARQA e-mail: jm_jawdat@yahoo.com