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Bruhat-Chevalley order on the rook monoid

Mahir Bilen Can, Lex E. Renner

Abstract

The rook monoid Rn is the finite monoid whose elements are the 0-1 matrices with at most one nonzero

entry in each row and column. The group of invertible elements of Rn is isomorphic to the symmetric group

Sn . The natural extension to Rn of the Bruhat-Chevalley ordering on the symmetric group is defined in

[1]. In this paper, we find an efficient, combinatorial description of the Bruhat-Chevalley ordering on Rn .

We also give a useful, combinatorial formula for the length function on Rn .
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1. Introduction

Let GLn be the general linear group over an algebraically closed field F . There is a much-studied

decomposition of GLn into double cosets of the Borel subgroup B ⊂ GLn of invertible upper triangular

matrices

GLn =
⋃

w∈Sn

BwB, (1.1)

where the union is indexed by the symmetric group Sn . Elements of Sn are identified with 0-1 matrices with

exactly one nonzero entry in each row and column.

The decomposition in (1.1) is often referred to as the Bruhat decomposition and it holds, more generally,

for reductive groups and reductive monoids (see [3, 1]). In the case of the monoid Mn of n × n matrices, the

Bruhat decomposition is given by

Mn =
⋃

σ∈Rn

BσB, (1.2)

where the union is indexed by the rook monoid Rn . The elements of Rn are identified with 0-1 matrices which

have at most one nonzero entry in each row and column.
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The Bruhat-Chevalley order on Sn is defined in terms of the inclusion relationships between double cosets

in (1.1). Namely, if v, w ∈ Sn , then

v ≤ w ⇐⇒ BvB ⊆ BwB, (1.3)

where the overline stands for the Zariski closure in GLn .

There is a natural extension of this partial order on the rook monoid Rn (see [3, 1] for details)

σ ≤ τ ⇐⇒ BσB ⊆ BτB, (1.4)

for σ, τ ∈ Rn .

For computational purposes, one would like to have a combinatorial characterization of the Bruhat-

Chevalley ordering (on both Sn and Rn ). This characterization, for the symmetric group Sn , has been

explained to us by V. Deodhar.

Deodhar’s characterization For an integer valued vector a = (a1, ..., an) ∈ Zn , let ã = (aα1 , ...., aαn) be

the rearrangement of the entries a1, ..., an of a in a non-increasing fashion;

aα1 ≥ aα2 ≥ · · · ≥ aαn .

The containment ordering, “≤c ,” on Zn is then defined by

a = (a1, ..., an) ≤c b = (b1, ..., bn) ⇐⇒ aαj ≤ bαj for all j = 1, ..., n.

where ã = (aα1 , ...., aαn), and b̃ = (bα1 , ...., bαn).

Example 1.1 Let x = (4, 0, 2, 3, 1) , and let y = (4, 3, 0, 5, 1) . Then x ≤c y , because

x̃ = (4, 3, 2, 1, 0) and ỹ = (5, 4, 3, 1, 0).

Let k ∈ {1, ..., n}. The k -th truncation, a(k) of a = (a1, ..., an) is defined to be

a(k) = (a1, a2, ..., ak).

We represent the elements of the symmetric group Sn by n-tuples; for v ∈ Sn let (v1, ..., vn) be the

sequence where vj is the row index of the nonzero entry in the j ’th column of the matrix v . For example, the

4-tuple associated with the permutation matrix

v =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ is (3142). (1.5)

In general, we write v = (v1, ..., vn) for the corresponding permutation matrix.
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Definition 1.2 The Deodhar ordering, ≤D on Sn is defined by

v = (v1, ..., vn) ≤D w = (w1, ..., wn) ⇐⇒ ṽ(k) ≤c w̃(k) for all k = 1, ..., n. (1.6)

Example 1.3 Let x = (4, 1, 2, 3, 5) , and let y = (4, 3, 2, 5, 1) . Then x ≤D y , because

x̃(1) = (4) ≤c ỹ(1) = (4),

x̃(2) = (4, 1) ≤c ỹ(2) = (4, 3),

x̃(3) = (4, 2, 1) ≤c ỹ(3) = (4, 3, 2),

x̃(4) = (4, 3, 2, 1) ≤c ỹ(4) = (5, 4, 3, 2),

x̃(5) = (5, 4, 3, 2, 1) ≤c ỹ(5) = (5, 4, 3, 2, 1).

Remark 1.4 The Deodhar ordering, ≤D is equivalent to the Bruhat-Chevalley ordering on Sn . Although there

seems to be no published proof of this fact, it follows as a corollary of our main theorem, Theorem 1.8.

For the rook monoid Rn , a combinatorial description of the Bruhat-Chevalley ordering is given in [3].

We summarize it here.

We represent the elements of Rn by n-tuples of nonnegative integers, called one line representations.

Given x = (xij) ∈ Rn , let (a1, ..., an) be the sequence defined by

aj =

⎧⎪⎨
⎪⎩

0, if the jth column consists of zeros;

i, if xij = 1.
(1.7)

For example, the one line representation associated with the matrix

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

is (3040).

Theorem 1.5 [3] Let x = (a1, ..., an) , y = (b1, ..., bn) ∈ Rn . Then the Bruhat-Chevalley order on Rn is the

smallest partial order on Rn generated by declaring x ≤ y if either

1. there exists an 1 ≤ i ≤ n such that bi > ai and bj = aj for all j 	= i, or

2. there exist 1 ≤ i < j ≤ n such that bi = aj , bj = ai with bi > bj , and for all k /∈ {i, j} , bk = ak .

For the sake of notation, the partial ordering defined by the Theorem 1.5 is denoted by “≤PPR ,” and

referred to as the “Pennell-Putcha-Renner” ordering on Rn .
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Example 1.6 Let x = (21403) and y = (35201) in R5 . Then x ≤PPR y because

(21403) ≤PPR (31402) by Theorem 1.5 part 2

≤PPR (34102) by Theorem 1.5 part 2

≤PPR (35102) by Theorem 1.5 part 1

≤PPR (35201) by Theorem 1.5 part 2.

Notice that the Deodhar’s ordering (1.6) on Sn can be defined on the rook monoid. The main theorem

of this article is that this Deodhar ordering, defined to Rn , and the Pennell-Putcha-Renner ordering on Rn ,

are identical.

Organization of the rest of this paper is as follows. In Section 2, we study the length function on Rn .

We show that

Theorem 1.7 Let x = (a1, ..., an) ∈ Rn . Then, the dimension �(x) = dim(BxB) of the orbit BxB , is given

by

�(x) = (
n∑

i=1

a∗
i ) − coinv(x), where a∗

i =

⎧⎪⎨
⎪⎩

ai + n − i, if ai 	= 0,

0, if ai = 0,
(1.8)

and coinv(x) is the number of pairs of indices (i, j) such that 1 ≤ i < j ≤ n , 0 < ai < aj .

In Section 3, we prove two lemmas, which sharpen the theorem of Pennel, Putcha and Renner. In Section

4, we find an equivalent description of the Deodhar’s ordering. Finally, in Section 5, we prove that

Theorem 1.8 The Deodhar ordering ≤D on Rn is the same as the Pennell-Putcha-Renner ≤PPR ordering

on Rn .

2. The length function

It is well known that the symmetric group Sn is a graded poset, grading given by the length function

�(w) = dim(BwB) = inv(w) + dim(B) = inv(w) +
(

n + 1
2

)
, (2.1)

where w ∈ Sn , and

inv(w) = |{(i, j) : 1 ≤ i < j ≤ n, wi > wj}|. (2.2)

In [1], it is shown that the rook monoid is a graded poset, with respect to the length function

�(σ) = dim(BσB), σ ∈ Rn. (2.3)

In this section we give a combinatorial formula, similar to (2.1), for the length function on Rn .
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Let R1
n be the set of all rank one elements of Rn . We denote the elements of R1

n by Eij = (ers) ∈ Rn ,

where

ers =

⎧⎪⎨
⎪⎩

1, if r = i, and s = j,

0, otherwise.

Let Tn be the set of all upper triangular matrices in Mn .

Lemma 2.1 Let B be the Borel subgroup of invertible upper triangular matrices, and let x = (xrs) be an

element of Rn . Then, the dimension dim(Bx) is equal to the the dimension of the linear subspace Tnx of

Mn , which is spanned by the following set:

{Eij ∈ R1
n : there exists a nonzero entry xrs of x with s = j and r ≥ i}.

Proof. The linearity of Tnx ⊂ Mn is clear. Since Bx = Bx = Tnx , and since the geometric dimension of a

linear space is the same as its vector space dimension, dim(Bx) = dim(Bx) = dim(Tnx). It is easy to see that

Tnx is spanned by R1
n ∩ Tnx . Matrix multiplication shows that Ei,j ∈ R1

n ∩ Tnx if and only if there exists a

nonzero entry xrs of x with r ≥ i and s = j . �

Lemma 2.2 Let B be the Borel subgroup of invertible upper triangular matrices, and let x = (xrs) be an

element of Rn . Then, the dimension dim(xB) is equal to the the dimension of the linear subspace xTn of

Mn , which is spanned by the set:

{Eij ∈ R1
n : there exists a nonzero entry xrs of x with r = i and s ≤ j}.

Proof. Identical to the proof of Lemma 2.1. �

Example 2.3 Let x ∈ R4 be given by the matrix

x =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Then, a generic element of T4x is of the form

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a14 0 a12 a13

a24 0 a22 a23

a34 0 0 a33

a44 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,
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for some aij ∈ F. Therefore, dim(T4x) = 9 . Similarly, an arbitrary element of xT4 is of the form

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 b33 b34

0 0 0 b44

b11 b12 b13 b14

⎞
⎟⎟⎟⎟⎟⎠ ,

for some bij ∈ F. Thus dim(xT4) = 7 .

Remark 2.4 Let x = (a1, ..., an) be the one line representation for x = (xrs) ∈ Rn , as in 1.7. If ai 	= 0 for

some i ∈ {1, ..., n} , then ai is the row index of a nonzero entry xaii of x . Therefore, Er,s ∈ R1
n ∩ Tnx if and

only if there exists a nonzero entry of x at the position (ai, i) with s = i and r ≥ ai . Similarly, Er,s ∈ R1
n∩xTn

if and only if there exists a nonzero entry of x at the position (aj, j) with r = aj and s ≤ j .

Definition 2.5 Let x = (a1, ...., an) ∈ Rn . A pair (i, j) of indices 1 ≤ i < j ≤ n is called a coinversion pair

for x , if 0 < ai < aj . By abuse of notation, we use coinv for both the set of coinversion pairs of x , as well as

its cardinality.

Example 2.6 Let x = (4, 0, 2, 3) . Then, the only coinversion pair for x is (3, 4) . Therefore, coinv(x) = 1 .

Theorem 2.7 Let x = (a1, ..., an) ∈ Rn . Then, the dimension, �(x) = dim(BxB) of the orbit BxB is given

by

�(x) = (
n∑

i=1

a∗
i ) − coinv(x), where a∗

i =

⎧⎪⎨
⎪⎩

ai + n − i, if ai 	= 0

0, if ai = 0.
(2.4)

Proof. Recall from [2] that the dimension of the orbit BxB can be calculated by

dim(BxB) = dim(Bx) + dim(xB) − dim(Bx ∩ xB). (2.5)

By Lemma 2.1, dim(Bx) is the number of positions on or above some nonzero entry of the matrix x ∈ Rn . In

other words, by the Remark 2.4, if x = (a1, ..., an), then
∑n

i=1 ai is equal to dim(Br).

Similarly, by Lemma 2.2, dim(xB) is the number of positions on or to the right of some nonzero entry

of x . The number of positions on and to the right of the nonzero entry at the (ai, i)’th position of the matrix

x is equal to n − i + 1. This shows that

dim(Bx) + dim(xB) =
n∑

i=1

ai,

where

ai =

⎧⎪⎨
⎪⎩

ai + n − i + 1, if ai 	= 0,

0, if ai = 0.
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The number of nonzero entries of x is denoted by rank(x). Thus, we have

dim(Bx) + dim(xB) =
n∑

i=1

a∗
i + rank(x),

where

a∗
i =

⎧⎪⎨
⎪⎩

ai + n − i, if ai 	= 0,

0, if ai = 0.

Therefore, it is enough to prove that

dim(Bx ∩ xB) = rank(x) + coinv((a1, ...., an)).

By a similar argument as in the proof of Lemma 2.1, the dimension of Bx∩xB is equal to dim(Tnx∩xTn),

which is equal to the cardinality of the set R1
n ∩ Tnx ∩ xTn .

Let Ers ∈ R1
n ∩ Tnx ∩ xTn be a rank 1 element whose nonzero entry is at the (r, s)’th position. By

the Remark 2.4, Ers ∈ R1
n ∩ Tnx ∩ xTn if and only if there exist nonzero entries of x at the positions (ai, i)

and (aj, j) such that r ≥ ai, s = i and r = aj, s ≤ j . We have two possibilities. Either (ai, i) = (aj , j), or

not. Clearly, the number of times that the equality (ai, i) = (aj, j) holds true is equal to the rank(x). On the

other hand, if (ai, i) 	= (aj, j), then we see that i < j and 0 < ai < aj . Therefore, the number of times that

(ai, i) 	= (aj, j) is equal to the number of coinversions of the sequence (a1, ..., an). Therefore,

dim(Bx ∩ xB) = |R1
n ∩ Tnx ∩ xTn| = rank(x) + coinv((a1, ...., an)).

�

Remark 2.8 Let x = (a1, ..., an) ∈ Rn be a permutation. Then

�(x) = (
n∑

i=1

ai + n − i) − coinv(x)

=
(

n + 1
2

)
+

(
n

2

)
− coinv(x)

=
(

n + 1
2

)
+ inv(x),

which agrees with the formula (2.1).

Example 2.9 We continue with the notation of the example 2.3. The generic element of T4x ∩ xT4 has the

form
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⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 ∗ ∗
0 0 0 ∗
∗ 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where ∗ denotes an arbitrary element of F. Therefore, dim(T4x ∩ xT4) = 4 , and by formula 2.5 we have

dim(BxB) = 9 + 7− 4 = 12 . On the other hand, x is represented in “one line” notation by (4, 0, 2, 3) , and by

Theorem 1.7 we have

�(x) = (4 + 4 − 1) + (2 + 4 − 3) + (3 + 4 − 4) − 1 = 12.

3. Two important lemmas

Recall that we denote the Bruhat-Chevalley ordering on Rn , as in Theorem 1.5, by ≤PPR . The following

two lemmas are critical for deciding if x ≤PPR y is a covering relation.

Lemma 3.1 Let x = (a1, ..., an) and y = (b1, ..., bn) be elements of Rn . Suppose that ak = bk for all

k = {1, ..., î, ..., n} and ai < bi . Then, �(y) = �(x) + 1 if and only if either

1. bi = ai + 1 , or

2. there exists a sequence of indices 1 ≤ j1 < · · · < js < i such that the set {aj1, ..., ajs} is equal to

{ai + 1, ..., ai + s} , and bi = ai + s + 1 .

Proof. Note that by the hypotheses of the lemma, Theorem 1.5 implies that x ≤PPR y . We first show that

if (1) or (2) holds, then �(y) = �(x) + 1, in other words y covers x .

If bi = ai +1, then by the Theorem 2.7 the lemma follows. So, we assume that there exists a sequence of

indices 1 ≤ j1 < · · · < js < i such that the set {aj1 , ..., ajs} is equal to {ai + 1, ..., ai + s} , and bi = ai + s + 1.

Then,

�(y) =
n∑

j=1

b∗j − coinv(y)

= (
n∑

j=1,j �=i

a∗
j ) + b∗i − coinv(y)

= (
n∑

j=1,j �=i

a∗
j ) + ai + s + 1 + n − i − coinv(y)

= (
n∑

j=1

a∗
j ) + s + 1 − coinv(y).
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Now it suffices to show that coinv(y) = s + coinv(x). Observe that, when we replace ai by bi , the

following set of pairs, which are not coinversion pairs for x ,

{(jk, i)| k = 1, ...., s},

become coinversion pairs for y . Also, upon replacing the entry ai by bi , a coinversion pair of x of the form

(l, i) or (i, l) (where l 	= jk ) stays to be a coinversion pair for y . Therefore,

coinv(y) = s + coinv(x),

and hence �(y) = �(x) + 1.

We proceed to prove the converse statement. Assume that �(y) = �(x) + 1. Since bi > ai , there exists

d > 0 such that bi = ai + d . Without loss of generality we may assume that d > 1. Then the length of y can

be computed as follows.

�(y) =
n∑

j=1

b∗j − coinv(y)

= (
n∑

j=1,j �=i

a∗
j ) + b∗i − coinv(y)

= (
n∑

j=1,j �=i

a∗
j ) + ai + d + n − i − coinv(y)

= (
n∑

j=1

a∗
j ) + d − coinv(y)

= �(x) + d + coinv(x) − coinv(y).

Hence d+coinv(x)−coinv(y) = 1, or coinv(y)−coinv(x) = d−1. We inspect the difference coinv(x)−coinv(y)

more closely. If (k, i) with k < i is a coinversion for x , then it stays to be a coinversion for y , as well. Clearly

this is also true for the pairs of the form (k, l) where k < i < l , or i < k < l , or k < l < i .

Therefore, the difference between coinv(y) and coinv(x) occurs at the pairs of the form

1. (k, i), k < i such that ai < ak < bi , or

2. (i, l), i < l , such that ai < al < bi .

In the first case, some new coinversions are added, and in the second case some coinversions are deleted.

Let us call the number of pairs of the first type n1 and the number of pairs of the second type n2 . Then,

coinv(y) = coinv(x) + n1 − n2 , or coinv(y) − coinv(x) = n1 − n2 . Obviously 0 ≤ n1, n2 ≤ d − 1 (because

bi = ai + d). Hence, we have that n1 = d − 1, and that n2 = 0. Therefore, the following is true: any ak

between ai and ai + d = bi appears before the i ’th position. This completes the proof. �
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Example 3.2 Let x = (4, 0, 5, 0, 3, 1) , and let y = (4, 0, 5, 0, 6, 1) . Then �(x) = 21 , and �(y) = 22 . Let

z = (6, 0, 5, 0, 3, 1) . Then �(z) = 23 .

Lemma 3.3 Let x = (a1, ..., an) and y = (b1, ..., bn) be two elements of Rn . Suppose that aj = bi, ai = bj and

bj < bi where i < j . Furthermore, suppose that for all k ∈ {1, ...̂i, ..., ĵ, ..., n} , ak = bk . Then, �(y) = �(x) + 1

if and only if for s = i + 1, ..., j − 1 , either aj < as , or as < ai .

Proof. Suppose that x and y are as in the hypothesis. Also suppose also that �(y) = �(x) + 1. We proceed

to show that for s = i + 1, ..., j − 1, either aj < as , or as < ai . Clearly, the sets {a1, ..., an} and {b1, ..., bn}
are equal, hence

∑n
t=1 at =

∑n
t=1 bt . Therefore, the difference between �(x) and �(y) is determined by the

associated coinversion sets of x and y .

Assume that there exists an s ∈ {i + 1, ..., j − 1} such that ai < as < aj . Then, upon interchanging ai

with aj to get y from x , the pairs (i, s), (s, j) and (i, j) are no longer coinversions for y . This shows that for

every s = i + 1, ..., j − 2 with ai < as < aj , we obtain that �(y) ≥ �(x) + 2. This contradicts the assumption

that �(y) = �(x) + 1. Therefore, there exists no s ∈ {i + 1, ..., j − 1} such that ai < as < aj .

Conversely, assume that for every s = i + 1, ..., j − 1, we have ai > as or as > aj . If ai > as , then the

pair (s, j) is a coinversion pair for both x and y . On the other hand, the pair (i, s) is neither a coinversion

for x nor for y . Similarly, if (as > aj), then the pair (i, s) is a coinversion pair for both x and y . Also, the

pair (s, j) is not a coinversion pair for x and neither for y . Therefore, we conclude that at any pair of the

form (k, l) with i ≤ k < l ≤ j , the coinversion is not affected. It remains to check pairs of the form (k, l) with

either k < i , or j < k . In the first case, i.e., k < i , as ai is interchanged with aj , the contribution of (k, l) to

the coinversion situation does not change, since relative positions of ak and al do not alter. Similarly, in the

second case, i.e., j < k , since the relative positions of ak and al do not alter, their contribution to coinversion

do not change. Therefore, the only coinversion change occurs at the pair (i, j), and hence, �(y) = �(x) + 1.

This completes the proof. �

Example 3.4 Let x = (2, 6, 5, 0, 4, 1, 7) , and let y = (4, 6, 5, 0, 2, 1, 7) . Then �(x) = 35 , and �(y) = 36 . Let

z = (7, 6, 5, 0, 4, 1, 2) . Then �(z) = 42 .

4. Another characterization of ≤D

As mentioned in the introduction, our goal is to show that the ≤D ordering on Rn is the same as to the

≤PPR ordering. In this section, we find another, useful characterization of the Deodhar ordering.

Definition 4.1 Let x = (a1, ...., an) ∈ Rn , and let r ∈ {1, ..., n}, and finally let a ∈ Z . We define

Γ(x, a) = {ai ∈ x| ai > a}.
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Remark 4.2 Let ai be a nonzero entry of x = (a1, ...., an) ∈ Rn . Then, |Γ(x, ai)| + 1 is the position of

ai in the reordering x̃ = (aα1 ≥ · · · ≥ aαn) of the entries of x . For example, if x = (3, 0, 5, 1, 0, 4) , then

x̃ = (5, 4, 3, 1, 0, 0) , and |Γ(x, 1)|+ 1 = 4 .

Proposition 4.3 Let x = (a1, ...., an) and y = (b1, ..., bn) be two elements from Rn . Then x ≤c y if and only

if |Γ(x, ak)| ≤ |Γ(y, ak)| for all k = 1, ...., n.

Proof.

Let ỹ = (bα1 ≥ · · · ≥ bαn) and x̃ = (aα1 ≥ · · · ≥ aαn) be the reorderings of the entries of y and of

x , respectively. Then, by the Remark 4.2, aαs+1 is the entry ak of x for which |Γ(x, ak)| = s . Therefore,

bαs+1 ≥ aαs+1 if and only if the number of entries of y which are larger than ak is more than the number of

entries of x which are larger than ak . In other words, bαs+1 ≥ aαs+1 if and only if |Γ(x, ak)| ≤ |Γ(y, ak)| . Thus

x ≤c y if and only if |Γ(x, ak)| ≤ |Γ(y, ak)| , for all k = 1, ...., n. �

As a corollary of the Proposition 4.3, we have

Corollary 4.4 Let x = (a1, ...., an), and y = (b1, ..., bn) be two elements of Rn . Then y ≥D x if and only if

for all 1 ≤ k ≤ n and for all m ≤ k , |Γ(x(k), am)| ≤ |Γ(y(k), am)| .

Proof. Immediate from Proposition 4.3, and the definition of the Deodhar ordering. �

Example 4.5 Let x = (a1, a2, a3) = (1, 0, 3) and let y = (b1, b2, b3) = (3, 0, 2) . Then

|Γ(x(1), a1)| = 0 ≤ |Γ(y(1), a1)| = 1,

|Γ(x(2), a1)| = 0 ≤ |Γ(y(2), a1)| = 1,

|Γ(x(2), a2)| = 1 ≤ |Γ(y(2), a2)| = 2,

|Γ(x(3), a1)| = 1 ≤ |Γ(y(3), a1)| = 2,

|Γ(x(3), a2)| = 2 ≤ |Γ(y(3), a2)| = 2,

|Γ(x(3), a3)| = 0 ≤ |Γ(y(3), a3)| = 0.

Therefore, x ≤D y .

Remark 4.6 It follows from the definition of the Deodhar ordering that if (a1, ...., an) ≤D (b1, ...., bn) , then

(a1, ..., ak) ≤D (b1, ..., bk) for any k ∈ {1, ...., n} . Also, by repeated application of Proposition 4.3, it follows that

(a1, ...., ak, ck+1, ..., cm) ≤D (b1, ...., bk, ck+1, ..., cm)

for any set {ck+1, ...., cm} of nonnegative integers.
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5. The main theorem

We show in this section that the covering relation for the ordering ≤PPR on Rn is the same as the

covering relation for the ordering ≤D on Rn . Our notation for these covering relations is “y →D x ,” and

“y →PPR x ,” respectively.

Lemma 5.1 Let x = (a1, ...., an), y = (b1, ..., bn) and z = (c1, ..., cn) be three elements from Rn such that

ak = bk for all k ∈ {1, ..., î, ..., n} and ai < bi . Furthermore, suppose that ck = ak for k = 1, ..., i. If

x ≤D z ≤D y and �(y) = �(x) + 1 , then z = x .

Proof. Assume otherwise that z 	= x . Let j > i be the smallest number such that ck = ak for k < j but

cj 	= aj . Since x ≤D z , it cannot be true that cj < aj . So, we have that aj < cj . This, in particular, implies

that cj is nonzero.

We now compare cj with ai . Observe that cj = ai is not possible. Thus, there are two cases: either

cj < ai or ai < cj .

We proceed with the first case. Then, we have aj = bj < cj < ai = ci < bi . Recall that Γ(z(j), bj) =

{ck| bj < ck, k = 1, ..., j} , and that Γ(y(j), bj ) = {bk| bj < bk, k = 1, ..., j} .

Since,

{b1, ..., bj} \ {bi, bj} = {c1, ..., cj} \ {cj, ci}.

and since bj < cj < ci , we see that |Γ(z(j), bj)| = |Γ(y(j), bj)|+ 1. By Remark 4.2, this is equal to the position

of bj in ỹ(j) . In other words, the position of bj in ỹ(j) is αs = |Γ(z(j), bj)| .
On the other hand, |Γ(z(j), bj)| is equal to the number of entries of z(j) which are larger than bj .

Therefore, in cαs > bαs = bj , But this is a contradiction to z(j) ≤c y(j). Therefore, the first case, cj < ai is

not possible.

We assume that ai < cj . Since aj = bj , and since by our initial assumption aj < cj , we have that

bj < cj . Since i < j , and since �(y) = �(x) + 1, Lemma 3.1 implies that bi ≤ cj .

Assume for a second that bi < cj . Let αs be the position of cj in z̃(j) . Since,

{b1, ..., bj} \ {bi, bj} = {c1, ..., cj} \ {cj, ci},

and since, ci < cj , bi < cj , and bj < cj , we see that |Γ(z(j), cj)| = |Γ(y(j), cj)| . Therefore, bαs < cαs = ci .

But this contradicts the fact that z(j) ≤c y(j).

Therefore, we assume that bi = cj . Since bj = aj < cj = bi , and since �(y) = �(x) + 1, Lemma 3.1

implies that bj ≤ ci = ai < cj . We look at the position αs of ci in z̃(j) . Since,

{b1, ..., bj} \ {bi, bj} = {c1, ..., cj} \ {cj, ci},

we see that |Γ(z(j), ci)| = |Γ(y(j), ci)| . Therefore, bαs < cαs = ci . This contradicts the fact that z(j) ≤c y(j).

We have handled all the cases, and the proof is complete. �
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Lemma 5.2 Let x = (a1, ...., an), y = (b1, ..., bn) and z = (c1, ..., cn) be three elements from Rn such that

ak = bk for all k ∈ {1, ..., î, ..., n} and ai < bi . Furthermore, ck = bk for k = 1, ..., i. If x ≤D z ≤D y and

�(y) = �(x) + 1 , then z = y .

Proof. We proceed as in the proof of Lemma 5.1. Assume otherwise that z 	= y , and let j > i be the first

position where z differs from y . Hence, there are now two subcases: either cj < bj or else bj < cj .

In the second case, with bj < cj , we see that y(j) <c z(j), which contradicts the fact that z ≤D y .

Therefore, we assume that cj < bj = aj . There are now two subcases; either cj < ai , or else ai < cj .

We first treat the case cj < ai .

Recall that Γ(z(j), cj) = {ck| cj < ck, k = 1, ..., j} , and that Γ(x(j), cj) = {ak| cj < ak, k = 1, ..., j} .

Then, since

{a1, ..., aj} \ {ai, aj} = {c1, ..., cj} \ {cj , ci},

and cj < ai, aj , we see that |Γ(z(j), cj)| + 1 = |Γ(x(j), cj)| . This shows the following; if the position of cj in

z̃(j) is αs , then aαs > cαs = cj , a contradiction to x(j) ≤c z(j).

We proceed with the case that ai < cj . Since �(y) = �(x) + 1, and z(j − 1) = y(j − 1), we see that cj

must be larger than ci = bi = ai + s+1 (or larger than ci = bi = ai +1). Therefore, similar to the above, since

{a1, ..., an} \ {ai, aj} = {c1, ..., cn} \ {cj, ci},

and ai < cj < aj , and ci < cj , we see that |Γ(z(j), cj)| + 1 = |Γ(x(j), cj)| . This shows the following; if the

position of cj in z̃(j) is αs , then aαs > cαs = cj , a contradiction to x(j) ≤c z(j).

Therefore, we conclude that z = y . �

Lemma 5.3 Let x = (a1, ...., an) and z = (c1, ..., cn) be two elements from Rn . Suppose that ci = ar and

cr = ai , with i < r . Furthermore, suppose that ck = ak , for k /∈ {i, r} . If ar > ai , then z �D x .

Proof. This follows directly from Corollary 4.4. �

Proposition 5.4 Let x = (a1, ...., an) and y = (b1, ..., bn) be two two elements from Rn such that ak = bk for

all k ∈ {1, ..., î, ..., n} and ai < bi . Then �(y) = �(x) + 1 if and only if y →D x .

Proof. It is clear from the hypotheses that x <PPR y , and that x <D y . We first show that if �(y) = �(x)+1,

then y →D x . Let z = (c1, ..., cn) ∈ Rn be such that x ≤D z ≤D y . Then, since ak = bk for k = 1, ..., i− 1,

we must have ck = ak , for k = 1, ..., i− 1. In other words, x(k) = z(k) = y(k) for k = 1, ..., i− 1. Since

x(i) ≤c z(i) ≤c y(i), we must also have ai ≤ ci ≤ bi . Therefore, either ai = ci , or ai < ci . In the former case,

by the Lemma 5.1, z is identically equal to x . Therefore, we have ai < ci ≤ bi , so that x <D z ≤D y . We are

going to show that z = y .
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As in the notation of Lemma 3.1, if bi = ai + s + 1 for some s ≥ 0, then we must have ci = bi . This is

because ci cannot be strictly larger than bi (otherwise z(i) > y(i) ), and ci cannot less than bi (otherwise ci

has to be one of {aj1, ..., ajs} , which contradicts the fact that z(k) = y(k) for all k = 1, ...., i− 1). Therefore,

ck = bk for k = 1, ..., i . By the Lemma 5.2, we see that z = y . Therefore, �(y) = �(x)+1 implies that y →D x .

Conversely, assume that y →D x . If bi = ai +1, then it is clear that �(y) = �(x)+1. So, we assume that

bi = ai + s + 1, for some s > 0. To finish the proof, by the Lemma 3.1, it is enough to show that there exists a

sequence of indices 1 ≤ j1 < · · · < js < i such that {aj1 , ..., ajs} = {ai + 1, ..., ai + s} , and bi = ai + s + 1.

Let d be a number such that 1 ≤ d ≤ s . If ai+d does not appear in y , then we define z = (c1, ..., cn) ∈ Rn

to be the sequence such that ck = ak for k ∈ {1, ...., î, ..., n} and ci = ai + d . It is clear that x �D z �D y .

But this contradicts the hypotheses that y →D x . Therefore, the number ai + d is an entry of y . Assume

for a second that ai + d = bt = at for some t > i . Then we define z = (c1, ..., cn) ∈ Rn to be the element

such that ck = ak for k ∈ {1, ...., î, ..., t̂, ..., n} and ci = ai + d, ct = ai . Then, using the Lemma 5.3, it

is easy to check that x �D z �D y , which is a contradiction. Therefore, t < i . In other words, for any

1 ≤ d < s , the number ai + d is an entry of x , with the index < i . This shows that there exists a sequence of

indices 1 ≤ j1 < · · · < js < i such that the set {aj1, ..., ajs} is equal to {ai +1, ..., ai+s} , and bi = ai +s+1. �

Lemma 5.5 Let x = (a1, ..., an), y = (b1, ..., bn) and z = (c1, .., cn) be three element of Rn , such that x̃ = ỹ .

If x ≤D z ≤D y , then z̃ = x̃ = ỹ .

Proof. By definition of the Deodhar ordering, x ≤D z ≤D y is true if and only if x(k) ≤c z(k) ≤c y(k),

for all k = 1, ...., n . Recall that z̃ denotes reordering, from the largest to smallest entries of z . Therefore, if

z̃ 	= x̃ , then there exits 1 ≤ αr ≤ n such that aαr < cαr . But since z(n) ≤c y(n), we see that cαr ≤ bαr = aαr ,

a contradiction. Therefore z̃ = x̃. �

Lemma 5.6 Let x = (a1, ...., an), y = (b1, ..., bn) and z = (c1, ..., cn) be three elements from Rn such that

˜x(n − 1) = ˜y(n − 1) = ˜z(n − 1) , an = bn and x ≤D z ≤D y . Then, cn = an = bn .

Proof. Since ˜x(n − 1) = ˜y(n − 1), and since an = bn , we see, by the Lemma 5.5, that z̃ = x̃ = ỹ . This,

together with the fact that ˜z(n − 1) = ˜x(n − 1) = ˜y(n − 1), forces the equality cn = an = bn . �

Proposition 5.7 Let x = (a1, ..., an) and y = (b1, ..., bn) be two elements of Rn . Suppose that for some

1 ≤ i < j ≤ n , aj = bi, ai = bj and bj < bi , and ak = bk for all k ∈ {1, ...̂i, ..., ĵ, ..., n} . Then, �(y) = �(x) +1

if and only if y →D x .

Proof. It is clear from Lemma 5.3 that x <D y . Also, we know from Lemma 3.3 that �(y) = �(x) + 1 if and

only if for each s ∈ {i + 1, ..., j − 1} , either aj < as , or as < ai . Throughout the proof, we shall make use of

this.
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Suppose first that y →D x . Assume that there exists s ∈ {i+1, ..., j−1} such that ai < as < aj . Then,

define z = (c1, ..., cn) ∈ Rn such that ck = ak for all k /∈ {s, j} , and, cs = aj , cj = as . Then, by the repeated

applications of Lemma 5.3, it is easy to see that x �D z �D y . But this implies that y does not cover x in the

Deodhar ordering, which is a contradiction. Therefore, �(y) = �(x) + 1.

Conversely, suppose that �(y) = �(x)+1. There are two cases; j = i+1, or j > i+1. Suppose first that

j = i + 1. Notice that by the Lemma 5.5, the set of the entries of z is equal to the set of entries of x , which

is also equal to the set of entries of y . Clearly, for k = 1, ...., i− 1, we have that x(k) = z(k) = y(k). Since

j = i + 1, we see that x̃(j) = ỹ(j) . Thus, by Lemma 5.5, we see that z̃(j) = x̃(j) = ỹ(j) . This shows that

either ci = ai and cj = aj , or ci = bi and cj = bj . Finally, for k > j , Lemma 5.6 shows that ck = ak = bk .

Therefore, we conclude, in the case of j = i + 1, that either z = x , or z = y .

We proceed with the case that j > i + 1. By Lemma 3.3, we know that for s = i + 1, ..., j − 1, either

aj < as , or as < ai . Let z = (c1, ..., cn) ∈ Rn be such that x ≤D z ≤D y . Notice that by Lemma 5.5,

the set of the entries of z is equal to the set of entries of x . Furthermore, for k = 1, ...., i− 1, we have that

x(k) = z(k) = y(k). Also, since x(i) ≤c z(i) ≤c y(i), we must have ai ≤ ci ≤ bi . We proceed to show that for

s = i + 1, ..., j − 1, j + 1, ..., n , cs = as = bs . Once we show this, the proof is finished as follows. By Lemma

5.5, we know that z̃ = x̃ = ỹ . Since cs = as = bs for all s ∈ {1, ..., î, ..., ĵ, ..., n} , we either have ci = ai and

cj = aj , or ci = bi and cj = bj , in other words, either z = x , or z = y .

We start by showing that ci+1 = ai+1 = bi+ . By Lemma 3.3, we know that one of the following is true.

Case 1. bi+1 = ai+1 < ai , or

Case 2. bi+1 = ai+1 > bi = aj .

We start with the first case that ai+1 < ai ≤ ci , and we look at the following two subcases: ci+1 < ai+1

or ci+1 > ai+1 .

Case 1.1. ci+1 < ai+1 = bi+1 , or

Case 1.2 ci+1 > ai+1 = bi+1 .

We first deal with the Case 1.1.. Let Γ(x(i + 1), ci+1) = {ak| ci+1 < ak, k = 1, ..., i + 1} , and let

Γ(z(i + 1), ci+1) = {ck| ci+1 < ck, k = 1, ..., i+ 1} . Since

{a1, ...., ai+1} \ {ai, ai+1} = {c1, ...., ci+1} \ {ci, ci+1},

if ci+1 < ai+1 , then |Γ(x(i+1), ci+1)| = |Γ(z(i+1), ci+1)|+1. Hence, if the position of ci+1 in ˜z(i + 1) is cαs ,

then aαs > cαs . This is a contradiction with x(i + 1) ≤c z(i + 1).

Case 1.2. is similar; if ci+1 > ai+1 = bi+1 , then let Γ(y(i + 1), bi+1) = {bk| bi+1 < bk, k = 1, ..., i+ 1}
and Γ(z(i + 1), bi+1) = {ck| bi+1 < ck, k = 1, ..., i+ 1} . Since

{b1, ...., bi+1} \ {bi, bi+1} = {c1, ...., ci+1} \ {ci, ci+1},

|Γ(z(i+1), bi+1)| = |Γ(y(i+1), bi+1)|+1. Therefore, if the position of bi+1 in ˜y(i + 1) is bαs′ , then cαs′ > bαs′ .

This is a contradiction with z(i + 1) ≤c y(i + 1).
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We proceed with Case 2. that bi+1 = ai+1 > bi = aj . Once again, there are two subcases:

Case 2.1. ci+1 < ai+1 = bi+1 , or

Case 2.2. ci+1 > ai+1 = bi+1 .

We continue with Case 2.1. Since,

{a1, ...., ai+1} \ {ai, ai+1} = {c1, ...., ci+1} \ {ci, ci+1}.

we have that |Γ(x(i + 1), ai+1)| ≥ |Γ(z(i + 1), ai+1)| + 1. So, if the position of ai+1 in ˜x(i + 1) is aαs , then

aαs > cαs . This is a contradiction with x(i + 1) ≤c z(i + 1).

Finally, we look at Case 2.2. Since

{b1, ...., bi+1} \ {bi, bi+1} = {c1, ...., ci+1} \ {ci, ci+1},

and since, ci ≤ bi < bi+1 we see that |Γ(z(i + 1), bi+1)| = |Γ(y(i + 1), bi+1)| + 1. Therefore, if the position of

bi+1 in y(i + 1) is bαs′ , then cαs′ > bαs′ . This is a contradiction with z(i + 1) ≤c y(i + 1).

We have dealt with all of the cases. We conclude that ci+1 = ai+1 = bi+1 . Notice that, as long as ak = bk

and i < k < j , the same arguments above work. Therefore, for any k = i + 1, ..., j − 1 we have ck = ak = bk .

Note also that x̃(j) = ỹ(j) . By Remark 4.6, we know that x(j) ≤D z(j) ≤D y(j). Hence, by Lemma

5.5, x̃(j) = ỹ(j) = z̃(j) . Since ck = ak = bk for k /∈ {i, j} , we either have that ci = ai, cj = aj , or that

ci = aj , cj = ai . Therefore, we either have that z(j) = y(j), or that z(j) = x(j).

Finally, for k > j , Lemma 5.6 shows that ck = ak = bk . This shows that z = y or z = x , hence y covers

x , and hence the proof is complete. �

Remark 5.8 Propositions 5.4 and 5.7 show that a covering for the Pennell-Putcha-Renner ordering is a

covering for the Deodhar ordering. Proposition 5.11 below shows that the converse is also true.

Lemma 5.9 Let x = (a1, ..., an), y = (b1, ..., bn) ∈ Rn . Suppose that there exists i ∈ {1, ..., n− 1} such that

1. ak = bk for k = 1, ..., i− 1 , and bi > ai ,

2. bi = ar for some r > i.

Then, y →D x implies that y →PPR x .

Proof. Our strategy for proving that y →D x implies y →PPR x is as follows. We construct an element

z ∈ Rn , such that x �D z ≤D y and the pair x, z ∈ Rn satisfy the hypothesis of the Proposition 5.7. Thus,

z →D x implies that �(z) = �(x) + 1, and this, by Lemma 3.3, implies that z →PPR x . First, assume that

ai = 0. Let r′ be the smallest index such that i < r′ ≤ r , and ar′ is nonzero. Define z = (c1, ..., cn) by setting

ck = ak if k /∈ {i, r′} , and ci = ar′ , cr′ = ai . It is easy to check that (see the proof of case ai > 0, below)

x �D z ≤D y , and that the pair x, z satisfy the hypothesis of Proposition 5.7. Therefore, we are done in the

case that ai = 0. We proceed with the assumption that ai > 0.
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Let r′ be the smallest integer such that

1. i < r′ ≤ r ,

2. ai < ar′ .

Therefore,

if i < s < r′, then as < ai. (5.1)

We define z = (c1, ..., cn) ∈ Rn as follows. Let k ∈ {1, ..., î, ..., r̂′, ...., n}. Set ck = ak . Also, set ci = ar′ ,

and cr′ = ai . It is easy to check that x �D z . We are going to show that z ≤D y . Note the following:

1. x(k) = y(k) = z(k) for k = 1, ..., i− 1.

2. x̃(i) ≤c z̃(i) ≤c ỹ(i) .

3. z̃(k) = x̃(k) ≤c ỹ(k) for k = r′, ..., n .

Therefore, it is enough to prove that z(k) ≤c y(k) for k = i+1, ..., r′−1. To this end, k ∈ {i+1, ..., r′−1} ,

and let 1 ≤ m ≤ k . We are going to show that |Γ(z(k), cm)| ≤ |Γ(y(k), cm)| .
There are two cases: cm < ai , or cm ≥ ai . We start with the first one.

Since cm < ai , m /∈ {i, r} , hence am = cm . The set of entries of z(k) that are larger than cm = am is

equal to the set of entries of x(k) which are larger than am . Therefore

|Γ(z(k), cm)| = |Γ(x(k), cm)| ≤ |Γ(y(k), cm)|, if cm < ai. (5.2)

The next case we check is that cm ≥ ai = cr′ . By the observation (5.1) above,

|Γ(z(k), cm)| = |Γ(z(i), cm)|. (5.3)

On the other hand, since z(i) ≤c y(i),

|Γ(z(i), cm)| ≤ |Γ(y(i), cm)|,

and since i < k , we have

|Γ(y(i), cm)| ≤ |Γ(y(k), cm)|.

Therefore,

|Γ(z(k), cm)| ≤ |Γ(y(k), cm)|, if cm ≥ ai. (5.4)

Hence, (5.2) and (5.4) shows that z(k) ≤c y(k) for k ≤ r′ − 1. Having constructed z ∈ Rn , such that

x �D z ≤D y , since y covers x (in the Deodhar ordering), we have that z = y . Thus, we are exactly as in the

hypotheses of the Proposition 5.7. Therefore, we have that �(y) = �(x) + 1, and that y →PPR x .

�
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Lemma 5.10 Let x = (a1, ..., an), y = (b1, ..., bn) ∈ Rn . Suppose that there exists i ∈ {1, ..., n− 1} such that

1. ak = bk for k = 1, ..., i− 1 , and bi > ai ,

2. bi /∈ {a1, ..., an} .

Then, y →D x implies that y →PPR x .

Proof. We make use of the following set

γ(x, i) = {at : t > i ai > at}.

There are two cases; γ(x, i) = ∅ , o r γ(x, i) 	= ∅ . We start with the first case that γ(x, i) = ∅ .

Define z = (c1, ..., cn) as follows. Let ck = ak for k 	= i , and let ci = bi . Clearly x �D z . We are going

to show that z ≤c y .

It is enough to show that

|Γ(z(k), cm)| ≤ |Γ(y(k), cm)|,

for k > i , and 1 ≤ m ≤ k .

To this end, let 1 ≤ m ≤ k , and i < k . If cm ≥ ai , then

|Γ(z(k), cm)| = |Γ(z(i), cm)| = |Γ(y(i), cm)| ≤ |Γ(y(k), cm)|.

If cm < ai , then cm = am , and

|Γ(z(k), cm)| = |Γ(x(k), am)| ≤ |Γ(y(k), am)| = |Γ(y(k), cm)|.

Therefore, if γ(x, i) = ∅ , then z ≤D y .

Having constructed z ∈ Rn , such that x �D z ≤D y , since y covers x (in the Deodhar ordering), we

have that z = y . Thus, we are exactly as in the hypotheses of the Proposition 5.7. Therefore, we have that

�(y) = �(x) + 1, and that y →PPR x .

We continue with the case where γ(x, i) 	= ∅ . Once again, there are two subcases; either there exists

at ∈ γ(x, i) such that bi > at , or for every at ∈ γ(x, i), at > bi .

We proceed with the first one. Then, there exists at ∈ γ(x, i) such that bi > at . Let t′ be the smallest

number such that

1. i < t′ ,

2. ai < at′ < bi .

Therefore, if i < s < t′ , then

ai > as. (5.5)

Define z = (c1, ..., cn) as follows. If k /∈ {i, t′} , then ck = ak , and ci = at′ , ct′ = ai . Clearly x �D z .

We are going to show that z ≤c y . It is enough to show that
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1. x(k) = y(k) = z(k) for k = 1, ..., i− 1.

2. x̃(i) ≤c z̃(i) ≤c ỹ(i) .

3. z̃(k) = x̃(k) ≤c ỹ(k) for k = t′, ..., n .

Therefore, it is enough to prove that z(k) ≤c y(k) for k = i+1, ..., t′−1. To this end, k ∈ {i+1, ..., t′−1} ,

and let 1 ≤ m ≤ k . We are going to show that |Γ(z(k), cm)| ≤ |Γ(y(k), cm)| .
There are two cases; cm < ai , or cm ≥ ai . We start with the first one.

Since cm < ai , m /∈ {i, t′} , hence am = cm . The set of entries of z(k) that are larger than cm = am is

equal to the set of entries of x(k) which are larger than am . Therefore,

|Γ(z(k), cm)| = |Γ(x(k), cm)| ≤ |Γ(y(k), cm)|, if cm < ai. (5.6)

To deal with the other case we check that cm ≥ ai = ct′ . By the observation (5.5) above,

|Γ(z(k), cm)| = |Γ(z(i), cm)|. (5.7)

On the other hand, since z(i) ≤c y(i),

|Γ(z(i), cm)| ≤ |Γ(y(i), cm)|,

and since i < k , we have

|Γ(y(i), cm)| ≤ |Γ(y(k), cm)|.

Therefore,

|Γ(z(k), cm)| ≤ |Γ(y(k), cm)|, if cm ≥ ai. (5.8)

Hence, (5.6) and (5.8) show that z(k) ≤c y(k) for k ≤ t′ − 1.

We proceed with the case that γ(x, i) 	= ∅ , and at > bi , for all at ∈ γ(x, i).

Define z = (c1, ..., cn) as follows. If k 	= i , then ck = ak , and ci = bi . Clearly x �D z . We are going to

show that z ≤c y .

It is enough to show that

|Γ(z(k), cm)| ≤ |Γ(y(k), cm)|,

for k > i , and 1 ≤ m ≤ k .

To this end, let 1 ≤ m ≤ k , and i < k . If cm ≥ bi , then

|Γ(z(k), cm)| = |Γ(x(k), cm)| ≤ |Γ(y(i), cm)|.

If cm < bi , then m < i , and cm = am = bm . Note that the following. If t > i , then bt > bi . Assume

otherwise. Let i < t be the smallest number such that bi > bt . Then,

|Γ(y(t), bi)| < |Γ(x(k), bi)|,
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which is a contradiction. Hence,

|{cs : i < s ≤ k, cs > bi}| = |{bs : i < s ≤ k, bs > bi}| = k − i + 1

Therefore,

|Γ(z(k), cm)| = |{cs : i ≥ s, cs > cm}|+ |{cs : i < s ≤ k, cs > cm}|

= |{bs : i ≥ s, bs > cm}|+ |{bs : i < s ≤ k, bs > bi}|

= |{bs : i ≥ s, bs > cm}|+ |{bs : i < s ≤ k, bs > cm}|

= |Γ(y(k), cm)|.

Therefore, if γ(x, i) 	= ∅ , then z ≤D y . Having constructed z ∈ Rn , such that x �D z ≤D y , since

y covers x (in the Deodhar ordering), we have that z = y . Thus, we are exactly as in the hypotheses of the

Proposition 5.7. Therefore, we have that �(y) = �(x) + 1, and that y →PPR x .

We have handled all the cases, and the proof is complete.

�

Proposition 5.11 Let x = (a1, ..., an) and y = (b1, ..., bn) be two elements from Rn . Suppose that y →D x .

Then y →PPR x .

Proof. Let i ∈ {1, ...., n− 1} be the smallest index such that k = 1, ..., i− 1, ak = bk and bi > ai .

Then we have either

Case 1. bi = ar for some r > i , or

Case 2. bi /∈ {a1, ..., an} .

Then, in the Case 1, the Lemma 5.9 shows that y →PPR x , and similarly, in the Case 2., the Lemma

5.10 shows that y →PPR x . �

Theorem 5.12 The Deodhar ordering ≤D on Rn is the same as Pennell-Putcha-Renner ordering ≤PPR on

Rn .

Proof. By the Proposition 5.4, and the Proposition 5.7 we know that y →PPR x implies y →D x . Con-

versely, by the Proposition 5.11, if y →D x , then y →PPR x . Therefore, the two orderings have the same

covering relations, hence they are the same order. �

Corollary 5.13 (Deodhar) Let x = (a1, ...., an) and y = (b1, ..., bn) be two permutations. Then, x ≤ y in the

Bruhat ordering ≤ on Sn if and only if x ≤D y in the Deodhar ordering on Sn .
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