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Best constants in second-order Sobolev inequalities on compact
Riemannian manifolds in the presence of symmetries

Mohammed Ali

Abstract

Let (M,g) be a smooth compact 3 < m-dimensional Riemannian manifold, and G a subgroup of the
isometry group of (M, g). We establish the best constants in second-order for a Sobolev inequality when

the functions are G-invariant.

Key Words: Best constants, compact Riemannian manifolds, Sobolev inequalities, isometries

1. Introduction

Let (M, g) be a compact 3 < n-dimensional Riemannian manifold, and G a subgroup of the isometry

group Is(M,g). Assume that [ is the minimum orbit dimension of G, and V' is the minimum of the volume of

the [-dimensional orbits. If 1 < ¢; <n, 1 <p; < (n—1), 1 = =2  and p; = (n=0P1 then the embeddings

n—q T n—l-p1
wha (M) c L™ (M) and Wé’pl (M) C L% (M) are compact for any r € [1,G1) and d € [1, 1), respectively,

where

WEP (M) = {f e WEP (M) | foo = fforall o € G},

for any 1 < p < oo and k € N. However, the embeddings W% (M) C L% (M) and Wé’pl (M) C Lgl (M) are

only continuous. Hence, there exist real constants A, By, fh, and B so that for all fewha (M),
HfHLél (M) <A vafHLm(M) + B HfHqu(M) ) (Iql,gen)

and for all f € Wi (M),

161 oy < A3 16812y + B 161122 oy - (I, 6 gon)

These inequalities are equivalent to the existence of constants Ag,, By,, Ap,, and B,, such that the following

inequalities hold:

q1 a1 a1 1
HfHL‘il(M) < AQ1 Hv(]fHqu(M) + Bth HfHL‘ll(M) (Isl,gen)
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for all f € Wha (M), and for all f € Wi (M),

A2z oy < Ao IV F Wz ary + Bon 1121 agy - (s G gen)
For s € {1,¢1}, set
A; = inf {As € R : there exists Bs € R such that (It;,gen) is satisﬁed} (1.1)
and
B; = inf {Bs € R : there exists A; € R such that (I;,gen) is satisﬁed} . (1.2)

If the best constant A; is attained, then there exists B, such that for any f € Wha (M),

|‘fHLI,<31(M) < 'A; Hv!]fH:LQl(M) + Bs |‘f|‘L91(M) ) (It;,opt)

Similarly, if the best constant B; (M) is attained, then a real constant Ay exists such that for any f €
wha (M),

1) 2ar ary < Bs IV F N s (ary + By 11l zas cary - (Jg1 opt)
In the same manner, we define (I;17G70pt) and (J;17G70pt) for all f € Wé’pl (M).
It is obvious that the validity of (I, ;11701%) implies the validity of (I, ;hopt), and the validity of (J:;Lopt)

implies the validity of (J;I,opt

). However, the converse is generally not true (see [2] and [6]).
The best constants in Sobolev inequalities play an important role in many fields such as analysis and
partial differential equations. They have received much attention from many authors (we refer the readers, in

particular, to [7] and [10]). For example, when (M, g) is without boundary, it was proved that the best constant
A;I is the same as the best constant for the Sobolev embedding for R™ under the Euclidean metric [2], which

equals J(n,p), where

1 0 IVl Lo @y
J(n,q)  fern@nfoy,viern®) | fllpa gy

Independently, Aubin [1] and Talenti [16] explicitly computed that

1 B 1
J(n,1) s

1 q1—1< n—aq >1/q1< T(n+1) >1/"
Jn,q1)  n—q \nlg—1) wpal(n/q)T(n+1— (n/q1)) ’

where w,,_1 is the volume of the unit sphere in R™. The same result is still true for any f € W5 (M), and

(M, g) has no boundary. Furthermore, Cherrier [4] established that the same best constant equals 21/ 7 (n, q1)
if f € Wha (M), and the compact manifold has a boundary.
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For any compact 3 < n-dimensional Riemannian manifold (M, g), with or without boundary, Ilias [14]
1

proved the validity of (J,, ot

). Moreover, he found that B:h =Vol " for any f € Wha (M). Further, he

(M, g)
showed that this best constant mainly depends on an upper bound for the diameter, a lower bound for the Ricci

curvature, and the lower bound for the volume.

Concerning the best constants of the inequality (I, pi7G7gen), Faget [9] found that the best constant in

P
the front of the gradient term is %. Hebey and Vaugon [12] showed that if the compact manifold is
without boundary, and G possesses at least one finite orbit, then this best constant is %. Furthermore,

they proved that the inequality (I;7G70pt) is achieved under the above conditions.

Although some open problems related to the best constants in Sobolev inequalities of first order remain
open, the investigation to determine the best constants in second-order Sobolev inequalities has been started
(see for instance [3], [5], and [11]).

Throughout this work, we consider for 1 < p < (n —1)/2 the Sobolev spaces
Fg" (M) = W (M)
if M has no boundary, and
FEP (M) = WG (M), Fg? (M) = Wg" (M) N W g (M)

if M has boundary.

The Sobolev embedding theorem ensures that the inclusion ng (M) C LP (M) is continuous for
p* = p(n—1)/(n—1—2p). Thus, two real constants A,,, By, exist such that for any f € ng (M) and
m € {L,p},

m

105 ary < Am 1289155 ary + B £ oy (I gon)

Similar to what we did before, we define

a," = inf {Am € R : there exists B, € R such that inequality (I:Qgen) holds}
and
B," = inf {Bm € R : there exists A,, € R such that inequality (I:Qgen) holds} .

m m m

We denoted the inequality (I, ¢ gen) bY (I, gopt) @a0d (J), g opt) if the best constants a;n and B;n are

achieved, respectively.

For 1 < p < n/2, and (M,g) is a Riemannian manifold, with or without boundary, and the functions

are not G- invariant Biezuner and Montenegro [3] determined for any f € F“P(M) that a; equals K" (n,p),
where

1 : 1A Loy

K(n,p) femRrE\ (0} m

)

603



ALI

and E?P (R") is the completion of C2° (R™) with respect to the norm

1
3

TP / ASIP d

R
In addition, it was computed in [§] and [15] that
16
K(na 2) = 5 i/ "
nn—4)(n? — 4w,

In view of the results in the first and second orders in Sobolev inequalities, a question naturally arises:

For any f € ng (M), 1<p<(n—1)/2,and p* =p(n—1)/(n —1 — 2p), can we obtain the best constants in

second-order for a Sobolev inequality when the functions are G- invariant?

The next sections provide an affirmative answer to this question.

2. Establishing the best constant a;(M)

In this section, we find the best constant a;(M ), and prove some lemmas used in the sequel. The

following theorem is the main result of this section.

Theorem 2.1 Let (M,g) be a compact 3 < n-dimensional Riemannian manifold, with or without boundary,

and G be a subgroup of the isometry group Is(M,g). Assume that I is the minimum orbit dimension of G,

and V' is the minimum of the volume of the l-dimensional orbits (if G has finite orbits, then | = 0 and

. T n—I
V:;renj\r} Card(O%)). Let 1 <p < (n—1)/2, and q¢= éT_);;. Then

le(n —1,p)
W

P

a,(M)=Kg =

for any f € ng (M).

Following the arguments used in [9] and [13], we achieve the following lemma.

Lemma 2.2 Let (M,g) be a compact 3 < n-dimensional Riemannian manifold without boundary, and G a

compact subgroup of the isometry group Is(M,g). Let x be in M with orbit of dimension N <mn. Then there

exists a chart (Q, V) around x such that the following properties are valid:

(1) ¥(Q) =Uy x Uy, where Uy € RN and Uy e R"V.
(2) O =0y x Uy and ¥y, ¥y can be chosen in the following way:

Uy =®10v0T, v defined from a neighborhood of Id in G to OF%, and voT'1(Q) =

V. , where V, is an open neighborhood of = in OF .

Uy = &y 0y with I'y(2) = W, where Wy is a submanifold of dimension n — N
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orthogonal to OF at x.
(8) (,9) is a normal chart of M around =, (Vy, ®1) is a normal chart around
x of the submanifold OF, W,, ®2) is a geodesic normal chart around x of the

submanifold W, . In particular, for any € >0, (2, V) can be chosen such that:

(4) (9) = (07)] <, Tyl <e.
and
1—e<y/det(gij) <14+e onQ, for 1 <i,j<n,
(id) (@7) = (67)| e Dyl <e,
and

1—e</det(gij) <14+e onV,, for 1 <i,j<N,

where § is the metric induced by g on OF.
Furthermore, (1 —¢€)(d,,) < (g9i5) < (1+¢€)(0,;) as bilinear forms.

(4) For any f € Fé;’p, foW™! depends only on Us variables.

In order to prove Theorem 2.1, it suffices to prove the following lemmas.

Lemma 2.3 Let (M,g) be a compact 3 < n-dimensional Riemannian manifold, and G a subgroup of the
isometry group 1s(M,g). Suppose that [ is the minimum orbit dimension of G, and V is the minimum of the
volume of the l-dimensional orbits. Assume that for any 1 <p < (n —1)/2 there exist real numbers A and B
such that
P P P
Hf”ch*(M) SAHA!]JPHLPG(M)'i'BHfHLPG(M) (2-1)

for all f € F5P (M), then A > K.

Proof. Suppose by contradiction that real numbers A, B exist with A < ng such that (2.1) holds for any
fe ng (M). Fix &g € M\ OM . Given ¢ > 0, let B(zg,d) be a geodesic ball of radius § and center xy such

that in normal coordinators of B(zg,d), the properties of Lemma 2.2 are verified.

For any f € C2°(B,) and ¢ small enough, there exist two real numbers A, B with A < K"(n — 1, p)
such that
P P P
11 ) < Ut e AN 20,y + B, 22)

where €1 = O (¢), and B, is the Euclidean ball with radius 6 and center 0.

Using the inequality
/|6f|pd:c§a/|62f|pdx+0a15/|f|pdx (2.3)

B; B; B;

with & >0 and C_, = O (5 "), plus the inequalities

/|62f|pdx§0n7p/|Af|pdx, (2.4)
BJ BJ
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(z+y)" < (1+e2)a” + Cepyf (2.5)

with g5 = O (¢), implies that there exists A’ < K"(n — I, p) such that
P / P P
1l gy < ANAI g, + Cos Ml o,y

Applying Holder’s inequality, and choosing ¢ small enough so that C, ; (|BJ|2p / ("_l)) is small enough, we

obtain that

IN

P P 2p/(n—l1 P
I sy S ANA L, + Cos (1B DN 5,))

IN

’ P
A Al e, s,

for some real number A} < K" (n —1,p).

For any f € C®(R"!), we define f = AR f(z/v). Then, choosing v small enough such that
fu € 0 (B,), we get

v

f

o]

11 gty = | = A 1A o gy

LPG* (]Rnfl) ch(]Rnfl)

which contradicts the definition of (n —1,p). O

Lemma 2.4 Let (M, g) be a compact 3 < n-dimensional Riemannian, and (O;,n;) a partition of unity of M .

Assume that for any f € Fé;’p(M), |77j|1/pf s in FZg(OJ) Suppose that K, exists such that for any j there

exists C; such that

P P P

< (K& +e) HAg(n;/p f) +C; n)/7f

1/p
N f L)

(2.6)

L2 (M) Lr(M)’

where p and q are as in the above lemma, then for any €* > 0 there exists real constant Ce+ such that for all

feFPM),

P % P P
10, cary < OC% +€) 18 £ ary + Con g - (2.7)

Proof. Forany f € ng (M), Minkowski’s inequality with (2.6) yields that

*/p p/p”
p 1/p p e "
o = | [(Z @) aw] <],
M J J
P
1/ P
< Kate) 2|26 D, 0y +C M0
j G
<

P P P
(’Cg +e2) ||Agf||LPG(M) +Ces vafHch(M) +Ces HfHch(M) ’
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where g1 =0 (g) and €2 = O (¢).
Using the LP-theory of linear elliptic operations, the interpolation inequality of lower-order derivatives,
and Lemma 2.2, we find that

P 1/ P (p+1) 1/ p
IVollzgon = 2 |n"vul],, ,, <0 +0) Z/m *ofl” de
J ¢ o,
1 p 1 P
< (14e)) /‘a(nj/”f)‘ d:c—i—Cg/‘anj/p dz
i \o, S,
<

a(l+e3) Z <H62 (n;/pf)‘ »

; LE(0y)

a(l+e3)Cs
1—¢

P
+ Cs,a,é |f|ch(O])>

P P P
18083 01y + Cor s IV o a1y + Cos 1t
with e5 = O (). Choosing ¢ and « sufficiently small implies
P ~ P P
IVafllLe ary < @Cos 186 f Lo ary + C AN Lo ary - (2.8)

We finish the proof by choosing aCsyééM <eg < e¥/2. O

Lemma 2.5 Let (M,g) and G be as in Theorem 2.1. Suppose that 1 is the minimum orbit dimension of G,
and V' is the minimum of the volume of the l-dimensional orbits. Then for any € > 0 there exists real constant
B = B. g such that for any 1 <p < (n—1)/2,

P P P
115 ary < (K6 ) 180 £y + B I ary

for all f € F5P (M).
Proof.  The proof depends on the proof of [9, Theorem 1] and the approaches used in [13]. Given ¢ > 0.

Let § > 0 be taken as small as we need. Fix z € M; let O% be its G-orbit, and (2, ¥) be a chart around =
such that the above properties are satisfied. Let y € O%, o € G be such that o(z) =y, and (o(Q), ¥ oo™!)
be a chart around y isometric to (€, ¥). Then, OF is covered by such charts. From that and due to the
compactness of Of, we say that {Qm}lL is a finite extract covering. Choose 6 > 0, depending on ¢ and x,
small enough such that

(0); ={y € M | dy(y,0¢) < 4}

is covered by {Qm}lL, d*(.,0%) is a C* function on (O%),, and (O%,)

ary. Obviously, the manifold M is covered by |J (O%),; therefore, there exists a finite extract cover; say
zeM

is a submanifold of M with bound-

5 s

{(Og)ﬂs}l‘] Assume that (1) is a partition of unity relative to (O%), ; such that n; € C& ((O%), ;) for any

i. Hence, 7;f has a compact support in (O%), ;, for any f € Wé’p(M).
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Furthermore, for each m we let ay, = —222¥n__ where 8, € C>°(Uim) and Bn > 0. Thus, (o)
E (BW‘LO\I]W‘L)

m=1

is a partition of unity relative to €Q,,’s, which covers (O%) As [,, is a function, defined on Uy, X Usy,,

i,8 "

depending only on Uy, variables, a,, o ¥, is depending only on Uy, variables.

For any integer 1 <1i¢ < J, and for any f € FZg((Og)M), we have that

/fdv(g) = Z /amfdv Z / \/ det(gij)amf o U, tdxdy
M

U17n><U27n
< (1+e) Z /amo\I/ 1dx/fo\I/ Ldy. (2.9)
Uhn U27n

For each m, let a1, = iy 0 W1, which is independent of Us,, variables, and fa,, = f o \I/;Ll, which is

m

independent of Uy, variables.

As f is G-invariant, and as (Q,,, ¥,,) are isometric to each other, we conclude that f f2 does not

U27n
depend on m. From this and the inequality (2.9), we obtain that
[fitg) < e / fady Y [ s
M m U17n
< (1+¢) /fzdyz — / Q1my/det(gi;)d
U17n
1+e .
= 1 _E/fzdy/z 1m0 P1mdv(7).
Uz og ™
Thus,
/fdv (I +e€1)Vol(Og) /fgdy (2.10)
Uz
with £1 = O (¢). In the same manner, we derive
/Iflp dv(g) > C/ |f2|” dy (2.11)
M Us
and
/IAflp dv(g) = C/IAlep dy. (2.12)
M U
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Lemma 2.2 and the techniques used in the proof of Lemma 2.4 imply that for any f € FZ,’%((OZJ)ML

VollOR) 5 elliny < (422 3 [ o @unde(@) [ 1Sl dy

" Og U27n
< (l+eg) )y / Qmdz / IASP 0 W dy
m Uim Uam
< tre) X [aumde [iousrowiay
m Uim Uam
+ CEZ/ a1mdT / |f|po\I/;ley
m Uim Uam
1+ ¢4 m _
= 1—¢ Z / det (977 )aum | D g f|7 o W, tdady

Uim xXUszm

Ce m P g-1
+ 1_52 / \/m%ﬂﬂ oW, “dxdy

m
Uim XUz2m

P P
< (1 + 55) HAngLPG(M) +C. ||f||LPG(M) (2-13)

with &; =0 () for i = 2,3,4,5. Thus, by using [3, Lemma 1] plus the inequalities (2.10) and (2.13), we

conclude that
P T * P
I ary < (L +26) (VOlOEN" I fall e o
x \\p/P" P P
< [VolOg) K (n = 1,p) + 2] 18 Lol
x —p* * P P
< |Vol(0E) K (n = 1p) + 27 180 f 1 cany + Ce M2
where g6 = O (¢), and e7 = O (¢).
On one hand, if Of is of minimum dimension V', then

P P P
11 any < (K +€) 1801z ) + Ce Il 000) - (2.14)

On the other hand, if Of is of minimum dimension V > V, let U, be an open set of dimension

n — V; hence, the compactness of the embedding ng (Uy) € LP"(Us) plus the inequalities (2.7)-(2.9), gives,
by applying the approach used in the proof of Lemma 2.4, that for any ¢y > 0 there exist C,C7,Cs € R such
that

*

p/p

IN

f17" du(g) eoC [ |AfPdu(g) +C [ |fIP dv(g)
/ / /

IN

2o / 8, 71F dulg) + Cs / |17 du(g).
M M
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We finish the proof by choosing g small enough such that
P p P P
110 cany < (K +€) 1801 ) + C 170 2 (2.15)

for any f € Fc”g; ((O%)is)- -

P
As an immediate consequence of Lemmas 2.3-2.5, we obtain that the best constant a;(M )= % .

3. Establishing the best constant ﬁ; (M)

The goal of this section is to determine the best constant B; (M). More precisely, we prove the following

theorem.

Theorem 3.1 Let (M,g) be a compact 3 < n-dimensional Riemannian manifold, and G a subgroup of the

isometry group Is(M,g). Let | be the minimum orbit dimension of G, V be the minimum of the volume of

the 1-dimensional orbits, and 1 <p < (n—1)/2. Then for any f € ng (M),
—2p/(n—1)
By (M) = (Vol,,, )" :
To achieve this result, we need the following lemma.

Lemma 3.2 Let (M,g) be a compact 3 < n-dimensional Riemannian manifold, and G a subgroup of the
isometry group 1s(M,g). Then there exists C € R such that for any f € ng (M) with HAngLpG(M) #0 one
has

If = (Daellze,oary < CNAGF M e ary - (3.1)

where (f)M = m]\i fdv(g)'

Proof. To prove (3.1), it is enough to show

inf  ||Agf >0, 3.2
o 12l an (3.2)

where
He (M) = {f € F§" (M) £l gy ar) = 1 and (f),, =0}

Let {f;} C HZP (M) be such that

. p . P
Jlggo HAgfjHLPG(M) = feHliIvlg(M) HA!]JCHLPG(M) .

The Rellich-Kondrakov theorem (see, for instance, [10]) with the reflexivity of ng (M), implies that there
exists a subsequence {f;,.} of {f;} such that f;, — hin F5” (M), and f;, — hin L% (M)N L (M). Hence,
h e HZP (M) and then

inf )HAngLPG(M) 2 [18ghl e () > O-

FEHZP (M
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This completes the proof of the lemma. O

Proof of Theorem 8.1. We prove Theorem 3.1 by applying the same approaches that Hebey [12] used. On one

hand, suppose [|[Agf]| Lo(ary > 0, then by using Minkowski’s inequality, Holder’s inequality, Lemma 2.5, and
Lemma 3.1, we find A, B,C € R so that

HfHLpG*(M) < Hf_(f)MHLPG*(M)+H(f)MHLPG*(M)

< 4 Hf - (f)IWHch(M) + B HAngLPG(M) + H(f)MHch* (M)

IN

1/p*—1/p
CllAgfl e ary) + (Voli,q) 10 g, ary

~2/(n~1)
= C HAngLPG(M) + (VOZ(ALQ)) Hf”LpG(M) : (3-3)

Consequently, for any € > 0, there exists a real number B; such that

v —2p/(n~1) v v
10, < (Vo) +2) Uy + B 1208 o - (3.4
On the other hand, setting f =1 in (I, g ,,) gives that A > (Vol(Mﬂg))_Qp/(n_l)- Therefore,
» —2p/(n—1)
By(M) > (Vol,, )" : (3.5)

In particular, this proof showed more than what we desire; it proved that (I 17G70pt) is attained for all 1 < p <

(n—1)/2.
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