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doi:10.3906/mat-0907-115

Best constants in second-order Sobolev inequalities on compact
Riemannian manifolds in the presence of symmetries

Mohammed Ali

Abstract

Let (M, g) be a smooth compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the

isometry group of (M, g) . We establish the best constants in second-order for a Sobolev inequality when

the functions are G -invariant.
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1. Introduction

Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the isometry

group Is(M, g). Assume that l is the minimum orbit dimension of G , and V is the minimum of the volume of

the l -dimensional orbits. If 1 < q1 < n , 1 < p1 < (n − l), q̃1 = nq1
n−q1

, and p̃1 = (n−l)p1
n−l−p1

, then the embeddings

W 1,q1 (M) ⊂ Lr (M) and W 1,p1
G (M) ⊂ Ld

G (M) are compact for any r ∈ [1, q̃1) and d ∈ [1, p̃1), respectively,

where

W k,p
G (M) =

{
f ∈ W k,p (M) | f ◦ σ = f for all σ ∈ G

}
,

for any 1 ≤ p < ∞ and k ∈ N . However, the embeddings W 1,q1 (M) ⊂ Lq̃1 (M) and W 1,p1
G (M) ⊂ Lp̃1

G (M) are

only continuous. Hence, there exist real constants A1, B1, Ã1, and B̃1 so that for all f ∈ W 1,q1 (M),

‖f‖Lq̃1(M) ≤ A1 ‖∇gf‖Lq1(M) + B1 ‖f‖Lq1(M) , (I
1

q1,gen)

and for all f ∈ W 1,p1
G (M),

‖f‖
L

p̃1
G (M)

≤ Ã1 ‖∇gf‖L
p1
G (M) + B̃1 ‖f‖L

p1
G (M) . (I

1

p1,G,gen)

These inequalities are equivalent to the existence of constants Aq1 , Bq1 , Ãp1 , and B̃p1 such that the following

inequalities hold:

‖f‖
q1

Lq̃1(M) ≤ Aq1 ‖∇gf‖
q1

Lq1(M) + Bq1 ‖f‖
q1

Lq1(M) (I
q1

q1,gen)
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for all f ∈ W 1,q1 (M), and for all f ∈ W 1,p1
G (M),

‖f‖
p1

L
p̃1
G (M)

≤ Ãp1 ‖∇gf‖
p1

L
p1
G (M) + B̃p1 ‖f‖

p1

L
p1
G (M) . (I

p1

p1,G,gen)

For s ∈ {1, q1} , set

As

q1
= inf

{
As ∈ R : there exists Bs ∈ R such that (I

s

q1,gen) is satisfied
}

(1.1)

and

Bs

q1
= inf

{
Bs ∈ R : there exists As ∈ R such that (I

s

q1,gen) is satisfied
}

. (1.2)

If the best constant As

q1
is attained, then there exists Bs such that for any f ∈ W 1,q1 (M),

‖f‖
s

Lq̃1(M) ≤ As

q1
‖∇gf‖

s

Lq1(M) + Bs ‖f‖
s

Lq1(M) . (I
s

q1,opt)

Similarly, if the best constant Bs

q1
(M) is attained, then a real constant As exists such that for any f ∈

W 1,q1 (M),

‖f‖
s

Lq̃1(M) ≤ Bs ‖∇gf‖
s

Lq1(M) + Bs

q1
‖f‖

s

Lq1(M) . (J
s

q1,opt)

In the same manner, we define (I
s

p1,G,opt) and (J
s

p1,G,opt) for all f ∈ W 1,p1
G (M).

It is obvious that the validity of (I
q1

q1,opt) implies the validity of (I
1

q1,opt), and the validity of (J
q1

q1,opt)

implies the validity of (J
1

q1,opt). However, the converse is generally not true (see [2] and [6]).

The best constants in Sobolev inequalities play an important role in many fields such as analysis and
partial differential equations. They have received much attention from many authors (we refer the readers, in

particular, to [7] and [10]). For example, when (M, g) is without boundary, it was proved that the best constant

A1

q1
is the same as the best constant for the Sobolev embedding for R

n under the Euclidean metric [2], which

equals J (n, p), where

1
J (n, q1)

= inf
f∈Lq̃1 (Rn)\{0},∇f∈Lq1(Rn)

‖∇f‖Lq1(Rn)

‖f‖Lq̃1(Rn)

.

Independently, Aubin [1] and Talenti [16] explicitly computed that

1
J (n, 1)

=
1

n
n−1

n ω
1/n

n−1

,

1
J (n, q1)

=
q1 − 1
n − q1

(
n − q1

n(q1 − 1)

)1/q1
(

Γ(n + 1)
ωn−1Γ(n/q1)Γ(n + 1 − (n/q1))

)1/n

,

where ωn−1 is the volume of the unit sphere in R
n . The same result is still true for any f ∈ W 1,q1

c (M), and

(M, g) has no boundary. Furthermore, Cherrier [4] established that the same best constant equals 21/nJ (n, q1)

if f ∈ W 1,q1 (M), and the compact manifold has a boundary.
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For any compact 3 ≤ n-dimensional Riemannian manifold (M, g), with or without boundary, Ilias [14]

proved the validity of (J
1

q1,opt). Moreover, he found that B1

q1
= V ol

−1/n

(M,g)
for any f ∈ W 1,q1 (M). Further, he

showed that this best constant mainly depends on an upper bound for the diameter, a lower bound for the Ricci
curvature, and the lower bound for the volume.

Concerning the best constants of the inequality (I
p1

p1,G,gen), Faget [9] found that the best constant in

the front of the gradient term is J p1 (n−l,p1)

V
p1/(n−l) . Hebey and Vaugon [12] showed that if the compact manifold is

without boundary, and G possesses at least one finite orbit, then this best constant is J p1(n,p1)

V
p1/n . Furthermore,

they proved that the inequality (I
2

2,G,opt) is achieved under the above conditions.

Although some open problems related to the best constants in Sobolev inequalities of first order remain
open, the investigation to determine the best constants in second-order Sobolev inequalities has been started
(see for instance [3], [5], and [11]).

Throughout this work, we consider for 1 < p < (n − l)/2 the Sobolev spaces

F 1,p
G (M) = W 2,p

G (M)

if M has no boundary, and

F 2,p
G (M) = W 2,p

c,G (M) , F 3,p
G (M) = W 2,p

G (M) ∩ W 1,p
c,G (M)

if M has boundary.

The Sobolev embedding theorem ensures that the inclusion F i,p
G (M) ⊂ Lp∗

(M) is continuous for

p∗ = p(n − l)/(n − l − 2p). Thus, two real constants Am, Bm exist such that for any f ∈ F i,p
G (M) and

m ∈ {1, p},

‖f‖
m

Lp∗
G (M)

≤ Am ‖
gf‖
m

Lp
G(M) + Bm ‖f‖

m

Lp
G(M) . (I

m

p,G,gen)

Similar to what we did before, we define

αm
p = inf

{
Am ∈ R : there exists Bm ∈ R such that inequality (I

m

p,G,gen) holds
}

and

βm
p = inf

{
Bm ∈ R : there exists Am ∈ R such that inequality (I

m

p,G,gen) holds
}

.

We denoted the inequality (I
m

p,G,gen) by (I
m

p,G,opt) and (J
m

p,G,opt) if the best constants α
m

p and β
m

p are

achieved, respectively.

For 1 < p < n/2, and (M, g) is a Riemannian manifold, with or without boundary, and the functions

are not G - invariant Biezuner and Montenegro [3] determined for any f ∈ F i,p(M) that α
p

p equals Kp

(n, p),

where

1
K(n, p)

= inf
f∈E2,p(Rn)\{0}

‖
f‖Lp(Rn)

‖f‖Lp∗(Rn)

,
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and E2,p (Rn) is the completion of C∞
c (Rn) with respect to the norm

‖f‖E2,p(Rn) =

⎛
⎝ ∫

Rn

|
f |p dx

⎞
⎠

1
p

.

In addition, it was computed in [8] and [15] that

K(n, 2) =
16

n(n − 4)(n2 − 4)ω4/n

n−1

.

In view of the results in the first and second orders in Sobolev inequalities, a question naturally arises:

For any f ∈ F i,p
G (M), 1 < p < (n − l)/2, and p∗ = p(n − l)/(n − l − 2p), can we obtain the best constants in

second-order for a Sobolev inequality when the functions are G - invariant?

The next sections provide an affirmative answer to this question.

2. Establishing the best constant α
p

p(M)

In this section, we find the best constant α
p

p(M), and prove some lemmas used in the sequel. The

following theorem is the main result of this section.

Theorem 2.1 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, with or without boundary,

and G be a subgroup of the isometry group Is(M, g) . Assume that l is the minimum orbit dimension of G ,

and V is the minimum of the volume of the l -dimensional orbits ( if G has finite orbits, then l = 0 and

V = min
x∈M

Card(Ox
G)) . Let 1 < p < (n − l)/2 , and q = (n−l)p

n−l−2p
. Then

α
p

p(M) = Kp

G =
Kp

(n − l, p)
V 2p/(n−l)

for any f ∈ F i,p
G (M) .

Following the arguments used in [9] and [13], we achieve the following lemma.

Lemma 2.2 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold without boundary, and G a

compact subgroup of the isometry group Is(M, g) . Let x be in M with orbit of dimension N < n . Then there

exists a chart (Ω, Ψ) around x such that the following properties are valid:

(1) Ψ(Ω) = U1 × U2 , where U1 ∈ R
N and U2 ∈ R

n−N .

(2) Ψ = Ψ1 × Ψ2 and Ψ1 , Ψ2 can be chosen in the following way:

Ψ1 = Φ1 ◦ γ ◦ Γ1 , γ defined from a neighborhood of Id in G to Ox
G , and γ ◦ Γ1(Ω) =

Vx , where Vx is an open neighborhood of x in Ox
G .

Ψ2 = Φ2 ◦ Γ2 with Γ2(Ω) = Wx , where Wx is a submanifold of dimension n − N
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orthogonal to Ox
G at x .

(3) (Ω, Ψ) is a normal chart of M around x , (Vx, Φ1) is a normal chart around

x of the submanifold Ox
G , (Wx, Φ2) is a geodesic normal chart around x of the

submanifold Wx . In particular, for any ε > 0 , (Ω, Ψ) can be chosen such that:

(i)
∣∣(gij) − (δij)

∣∣ ≤ ε,
∣∣Γl

ij

∣∣ ≤ ε ,

and

1 − ε ≤
√

det(gij) ≤ 1 + ε on Ω, for 1 ≤ i, j ≤ n,

(ii)
∣∣(g̃ij) − (δij)

∣∣ ≤ ε,
∣∣Γl

ij

∣∣ ≤ ε ,

and

1 − ε ≤
√

det(g̃ij) ≤ 1 + ε on Vx, for 1 ≤ i, j ≤ N,

where g̃ is the metric induced by g on Ox
G .

Furthermore, (1 − ε)(δij ) ≤ (gij) ≤ (1 + ε)(δij ) as bilinear forms.

(4) For any f ∈ F i,p
G , f ◦ Ψ−1 depends only on U2 variables.

In order to prove Theorem 2.1, it suffices to prove the following lemmas.

Lemma 2.3 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the

isometry group Is(M, g) . Suppose that l is the minimum orbit dimension of G , and V is the minimum of the

volume of the l -dimensional orbits. Assume that for any 1 < p < (n − l)/2 there exist real numbers A and B

such that

‖f‖
p

Lp∗
G (M)

≤ A ‖
gf‖
p

Lp
G(M) + B ‖f‖

p

Lp
G(M) (2.1)

for all f ∈ F i,p
G (M) , then A ≥ Kp

G.

Proof. Suppose by contradiction that real numbers A , B exist with A < Kp

G such that (2.1) holds for any

f ∈ F i,p
G (M). Fix x0 ∈ M \ ∂M . Given ε > 0, let B(x0, δ) be a geodesic ball of radius δ and center x0 such

that in normal coordinators of B(x0, δ), the properties of Lemma 2.2 are verified.

For any f ∈ C∞
c (B

δ
) and ε small enough, there exist two real numbers A, B with A < Kp

(n − l, p)
such that

‖f‖
p

Lp∗
G (B

δ
)
≤ (1 + ε1)A ‖
gf‖

p

Lp
G(B

δ
) + B ‖f‖

p

Lp
G(B

δ
) , (2.2)

where ε1 = O (ε), and B
δ

is the Euclidean ball with radius δ and center 0.

Using the inequality ∫
B

δ

|∂f |p dx ≤ α

∫
B

δ

∣∣∂2f
∣∣p dx + Cα,δ

∫
B

δ

|f |p dx (2.3)

with α > 0 and C
α,δ

= O (δ
−p

), plus the inequalities

∫
B

δ

∣∣∂2f
∣∣p dx ≤ Cn,p

∫
B

δ

|
f |p dx, (2.4)
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(x + y)p ≤ (1 + ε2)xp + Cε2y
p (2.5)

with ε2 = O (ε), implies that there exists A′ < Kp

(n − l, p) such that

‖f‖
p

Lp∗
G (Bδ)

≤ A′ ‖
f‖
p

Lp
G(B

δ
) + C1,δ ‖f‖

p

Lp
G(B

δ
) .

Applying Hölder’s inequality, and choosing δ small enough so that C1,δ

(
|B

δ
|2p/(n−l)

)
is small enough, we

obtain that

‖f‖
p

Lp∗
G (Bδ)

≤ A′ ‖
f‖
p

Lp
G(B

δ
) + C1,δ

(
|B

δ
|2p/(n−l) ‖f‖

p

Lp∗
G (B

δ
)

)

≤ A
′
1 ‖
f‖

p

Lp
G(B

δ
)

for some real number A
′
1 < Kp

(n − l, p).

For any f ∈ C∞
c (Rn−l), we define f

ν

= ν
(l−n)/p∗

f(x/ν). Then, choosing ν small enough such that

f
ν ∈ C∞

c (Bδ ), we get

‖f‖
Lp∗

G (Rn−l)
=

∥∥∥f
ν
∥∥∥

Lp∗
G (Rn−l)

< a
′
1

∥∥∥
f
ν
∥∥∥

Lp
G(Rn−l)

= A
′
1 ‖
f‖Lp

G(Rn−l) ,

which contradicts the definition of K(n − l, p). �

Lemma 2.4 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian, and (Oj, ηj) a partition of unity of M .

Assume that for any f ∈ F i,p
G (M) , |ηj|1/p

f is in F i,p
c,G(Oj) . Suppose that Kp

G exists such that for any j there

exists Cj such that

∥∥∥η
1/p
j f

∥∥∥
p

Lp∗
G (M)

≤
(
Kp

G + ε
) ∥∥∥
g(η

1/p
j f)

∥∥∥
p

Lp
G(M)

+ Cj

∥∥∥η
1/p
j f

∥∥∥
p

Lp
G(M)

, (2.6)

where p and q are as in the above lemma, then for any ε∗ > 0 there exists real constant Cε∗ such that for all

f ∈ F i,p
G (M) ,

‖f‖
p

Lp∗
G (M)

≤ (Kp

G + ε∗) ‖
gf‖
p

Lp
G(M) + Cε∗ ‖f‖

p

Lp
G(M) . (2.7)

Proof. For any f ∈ F i,p
G (M), Minkowski’s inequality with (2.6) yields that

‖f‖
p

Lp∗
G (M)

=

⎛
⎜⎝

∫
M

⎛
⎝∑

j

(
η

1/p

j |f |
)p

⎞
⎠

p∗/p

dv(g)

⎞
⎟⎠

p/p∗

≤
∑

j

∥∥∥η
1/p

j f
∥∥∥

p

Lp∗
G (M)

≤ (Kp

G + ε1)
∑

j

∥∥∥
g(η
1/p

j f)
∥∥∥

p

Lp
G(M)

+ C ‖f‖
p

Lp
G(M)

≤ (Kp

G + ε2) ‖
gf‖
p

Lp
G(M) + Cε,δ ‖∇gf‖

p

Lp
G(M) + Cε,δ ‖f‖

p

Lp
G(M) ,
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where ε1 = O (ε) and ε2 = O (ε).

Using the Lp -theory of linear elliptic operations, the interpolation inequality of lower-order derivatives,
and Lemma 2.2, we find that

‖∇gf‖
p

Lp
G(M) =

∑
j

∥∥∥η
1/p

j
∇gf

∥∥∥
p

L
p
G(M)

≤ (1 + ε)
(p+1) ∑

j

∫
Oj

∣∣∣η1/p

j
∂f

∣∣∣p dx

≤ (1 + ε3)
∑

j

⎛
⎜⎝

∫
Oj

∣∣∣∂ (
η

1/p

j
f
)∣∣∣p dx + Cε

∫
Oj

∣∣∣f∂η
1/p

j

∣∣∣p dx

⎞
⎟⎠

≤ α (1 + ε3)
∑

j

(∥∥∥∂2
(
η

1/p

j
f
)∥∥∥

p

Lp
G(Oj)

+ C
ε,α,δ

‖f‖
p

Lp
G(Oj)

)

≤ α (1 + ε3)Cδ

1 − ε
‖
gf‖

p

Lp
G(M) + C

ε,α,δ
‖∇gf‖

p

Lp
G(M) + C

ε,α,δ
‖f‖

p

Lp
G(M) ,

with ε3 = O (ε). Choosing ε and α sufficiently small implies

‖∇gf‖
p

Lp
G(M) ≤ αC̃ε,δ ‖
gf‖

p

Lp
G(M) + C ‖f‖

p

Lp
G(M) . (2.8)

We finish the proof by choosing αC
ε,δ

C̃
ε,δ

< ε2 < ε∗/2. �

Lemma 2.5 Let (M, g) and G be as in Theorem 2.1. Suppose that l is the minimum orbit dimension of G ,
and V is the minimum of the volume of the l -dimensional orbits. Then for any ε > 0 there exists real constant
B = Bε,M,g such that for any 1 < p < (n − l)/2 ,

‖f‖
p

Lp∗
G (M)

≤
(
Kp

G + ε
)
‖
gf‖

p

Lp
G(M) + B ‖f‖

p

Lp
G(M)

for all f ∈ F i,p
G (M) .

Proof. The proof depends on the proof of [9, Theorem 1] and the approaches used in [13]. Given ε > 0.

Let δ > 0 be taken as small as we need. Fix x ∈ M ; let Ox
G be its G -orbit, and (Ω, Ψ) be a chart around x

such that the above properties are satisfied. Let y ∈ Ox
G , σ ∈ G be such that σ(x) = y , and (σ(Ω), Ψ ◦ σ−1)

be a chart around y isometric to (Ω, Ψ). Then, Ox
G is covered by such charts. From that and due to the

compactness of Ox
G , we say that {Ωm}L

1 is a finite extract covering. Choose δ > 0, depending on ε and x ,

small enough such that
(Ox

G)δ = {y ∈ M | dg(y, Ox
G) < δ}

is covered by {Ωm}L
1 , d2(., Ox

G) is a C∞ function on (Ox
G)

δ
, and (Ox

G)
δ

is a submanifold of M with bound-

ary. Obviously, the manifold M is covered by
⋃

x∈M

(Ox
G)

δ
; therefore, there exists a finite extract cover; say

{
(Ox

G)i,δ

}J

1
. Assume that (ηi) is a partition of unity relative to (Ox

G)i,δ such that ηi ∈ C∞
G

(
(Ox

G)i,δ

)
for any

i . Hence, ηif has a compact support in (Ox
G)i,δ for any f ∈ W k,p

G (M).
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Furthermore, for each m we let αm = βm◦Ψm
L�

m=1
(βm◦Ψm)

, where βm ∈ C∞
c (U1m) and βm ≥ 0. Thus, (αm)

is a partition of unity relative to Ωm ’s, which covers (Ox
G)

i,δ
. As βm is a function, defined on U1m × U2m ,

depending only on U1m variables, αm ◦ Ψ−1
m is depending only on U1m variables.

For any integer 1 ≤ i ≤ J , and for any f ∈ F i,p
c,G((Ox

G)i,δ), we have that

∫
M

fdv(g) =
∑
m

∫
Ωm

αmfdv(g) =
∑
m

∫
U1m×U2m

√
det(gij)αmf ◦ Ψ−1

m dxdy

≤ (1 + ε)
∑
m

∫
U1m

αm ◦ Ψ−1
m dx

∫
U2m

f ◦ Ψ−1
m dy. (2.9)

For each m , let α1m = αm ◦ Ψ−1
m , which is independent of U2m variables, and f2m = f ◦ Ψ−1

m , which is
independent of U1m variables.

As f is G -invariant, and as (Ωm, Ψm) are isometric to each other, we conclude that
∫

U2m

f2 does not

depend on m . From this and the inequality (2.9), we obtain that

∫
M

fdv(g) ≤ (1 + ε)
∫
U2

f2dy
∑
m

∫
U1m

α1mdx

≤ (1 + ε)
∫
U2

f2dy
∑
m

1
1 − ε

∫
U1m

α1m

√
det(g̃ij)dx

=
1 + ε

1 − ε

∫
U2

f2dy

∫
Ox

G

∑
m

α1m ◦ Φ1mdv(g̃).

Thus,
∫
M

fdv(g) ≤ (1 + ε1)V ol(Ox
G)

∫
U2

f2dy (2.10)

with ε1 = O (ε). In the same manner, we derive

∫
M

|f |p dv(g) ≥ C

∫
U2

|f2|p dy (2.11)

and ∫
M

|
f |p dv(g) ≥ C

∫
U2

|
f2|p dy. (2.12)
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Lemma 2.2 and the techniques used in the proof of Lemma 2.4 imply that for any f ∈ F i,p
c,G((Ox

G)
i,δ

),

V ol(Ox
G) ‖
f2‖

p

Lp(U2)
≤ (1 + ε2)

∑
m

∫
Ox

G

α1m ◦ Φ1mdv(g̃)
∫

U2m

|
f2m|p dy

≤ (1 + ε3)
∑
m

∫
U1m

α1mdx

∫
U2m

|
f |p ◦ Ψ−1
m dy

≤ (1 + ε4)
∑
m

∫
U1m

α1mdx

∫
U2m

|
gf |p ◦ Ψ−1
m dy

+ Cε

∑
m

∫
U1m

α1mdx

∫
U2m

|f |p ◦ Ψ−1
m dy

≤ 1 + ε4

1 − ε

∑
m

∫
U1m×U2m

√
det(gm

ij )αm |
gf |p ◦ Ψ−1
m dxdy

+
Cε

1 − ε

∑
m

∫
U1m×U2m

√
det(gm

ij )αm |f |p ◦ Ψ−1
m dxdy

≤ (1 + ε5) ‖
gf‖
p

Lp
G(M) + Cε ‖f‖

p

Lp
G(M) (2.13)

with εi = O (ε) for i = 2, 3, 4, 5. Thus, by using [3, Lemma 1] plus the inequalities (2.10) and (2.13), we
conclude that

‖f‖
p

Lp∗
G (M)

≤ (1 + ε6) (V ol(Ox
G))p/p∗

‖f2‖
p

Lp∗
(U2)

≤
[
(V ol(Ox

G))p/p∗
Kp

(n − l, p) + ε6

]
‖
f2‖

p

Lp(U2)

≤
[
(V ol(Ox

G))(p−p∗)/p∗
Kp

(n − l, p) + ε7

]
‖
gf‖

p

Lp
G(M) + Cε ‖f‖

p

Lp
G(M) ,

where ε6 = O (ε), and ε7 = O (ε).

On one hand, if Ox
G is of minimum dimension V , then

‖f‖
p

Lp∗
G (M)

≤
(
Kp

G + ε
)
‖
gf‖

p

Lp
G(M) + Cε ‖f‖

p

Lp
G(M) . (2.14)

On the other hand, if Ox
G is of minimum dimension Ṽ > V , let U2 be an open set of dimension

n − Ṽ ; hence, the compactness of the embedding F i,p
G (U2) ⊂ Lp∗

(U2) plus the inequalities (2.7)-(2.9), gives,

by applying the approach used in the proof of Lemma 2.4, that for any ε0 > 0 there exist C, C1, C2 ∈ R such
that

⎛
⎝ ∫

M

|f |p
∗
dv(g)

⎞
⎠

p/p∗

≤ ε0C

∫
M

|
f |p dv(g) + C

∫
M

|f |p dv(g)

≤ ε0C1

∫
M

|
gf |p dv(g) + C2

∫
M

|f |p dv(g).
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We finish the proof by choosing ε0 small enough such that

‖f‖
p

Lp∗
G (M)

≤
(
Kp

G + ε
)
‖
gf‖

p

Lp
G(M) + C ‖f‖

p

Lp
G(M) (2.15)

for any f ∈ F i,p
c,G ((Ox

G)i,δ). �

As an immediate consequence of Lemmas 2.3-2.5, we obtain that the best constant α
p

p(M) = Kp
(n−l,p)

V
2p/(n−l) .

3. Establishing the best constant β
p

p (M)

The goal of this section is to determine the best constant β
p

p (M). More precisely, we prove the following

theorem.

Theorem 3.1 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the

isometry group Is(M, g) . Let l be the minimum orbit dimension of G , V be the minimum of the volume of

the l -dimensional orbits, and 1 < p < (n − l)/2 . Then for any f ∈ F i,p
G (M) ,

β
p

p (M) =
(
V ol(M,g)

)−2p/(n−l)
.

To achieve this result, we need the following lemma.

Lemma 3.2 Let (M, g) be a compact 3 ≤ n-dimensional Riemannian manifold, and G a subgroup of the

isometry group Is(M, g) . Then there exists C ∈ R such that for any f ∈ F i,p
G (M) with ‖
gf‖Lp

G(M) �= 0 one

has
‖f − (f)M ‖Lp

G(M) ≤ C ‖
gf‖Lp
G(M) , (3.1)

where (f)M = 1
V ol

(M,g)

∫
M

fdυ(g) .

Proof. To prove (3.1), it is enough to show

inf
f∈Hi,p

G (M)
‖
gf‖Lp

G(M) > 0, (3.2)

where

Hi,p
G (M) =

{
f ∈ F i,p

G (M) : ‖f‖Lp
G(M) = 1 and (f)M = 0

}
.

Let {fj} ⊂ Hi,p
G (M) be such that

lim
j→∞

‖
gfj‖
p

Lp
G(M) = inf

f∈Hi,p(M)
‖
gf‖

p

Lp
G(M) .

The Rellich-Kondrakov theorem (see, for instance, [10]) with the reflexivity of F i,p
G (M), implies that there

exists a subsequence {fjm} of {fj} such that fjm ⇀ h in F i,p
G (M), and fjm → h in Lp

G (M)∩L1
G (M). Hence,

h ∈ Hi,p
G (M) and then

inf
f∈Hi,p

G (M)
‖
gf‖Lp

G(M) ≥ ‖
gh‖Lp
G(M) > 0.
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This completes the proof of the lemma. �

Proof of Theorem 3.1. We prove Theorem 3.1 by applying the same approaches that Hebey [12] used. On one

hand, suppose ‖
gf‖Lp(M) > 0, then by using Minkowski’s inequality, Hölder’s inequality, Lemma 2.5, and

Lemma 3.1, we find A, B, C ∈ R so that

‖f‖
Lp∗

G (M)
≤ ‖f − (f)M ‖

Lp∗
G (M)

+ ‖(f)M ‖
Lp∗

G (M)

≤ A ‖f − (f)M ‖L
p
G(M) + B ‖
gf‖Lp

G(M) + ‖(f)M ‖
Lp∗

G (M)

≤ C ‖
gf‖Lp
G(M) +

(
V ol(M,g)

)1/p∗−1/p ‖f‖Lp
G(M)

= C ‖
gf‖L
p
G(M) +

(
V ol(M,g)

)−2/(n−l) ‖f‖Lp
G(M) . (3.3)

Consequently, for any ε > 0, there exists a real number B1 such that

‖f‖
p

Lp∗
G (M)

≤
((

V ol(M,g)

)−2p/(n−l) + ε
)
‖f‖

p

Lp
G(M) + B1 ‖
gf‖

p

Lp
G(M) . (3.4)

On the other hand, setting f = 1 in (I
p

p,G,gen) gives that A ≥
(
V ol(M,g)

)−2p/(n−l) . Therefore,

β
p

p (M) ≥
(
V ol(M,g)

)−2p/(n−l)
. (3.5)

In particular, this proof showed more than what we desire; it proved that (I
1

p,G,opt) is attained for all 1 < p <

(n − l)/2.
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