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Flat surfaces in the Minkowski space E? with pointwise 1-type
Gauss map

Ugur Dursun and Emel Cogkun

Abstract
In this article, we obtain all nonplanar cylindrical surfaces in the Minkowski space E3 with pointwise
1-type Gauss map of the second kind. We also prove that right circular cones and hyperbolic cones in [F3
are the only cones in F3 with pointwise 1-type Gauss map of the second kind. We conclude that there is no

tangent developable surface fully lying in F3 with pointwise 1-type Gauss map of the second kind.
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1. Introduction

In late 1970’s B.-Y. Chen introduced the notion of finite type submanifolds of Euclidean space [6]. Since
then many works were done to characterize or classify submanifolds of Euclidean space or pseudo-Euclidean
space in terms of finite type (cf. [7, 8, 12, 16]). Also, B.-Y. Chen and P. Piccinni extended the notion of
finite type to differentiable maps, in particular, to Gauss map of submanifolds in [9]. A smooth map ¢ of
a submanifold M of a Euclidean space or a pseudo-Euclidean space is said to be of finite type if ¢ can be
expressed as a finite sum of eigenfunctions of the Laplacian A of M, that is, ¢ = ¢g + Zle ¢;, where ¢g is a
constant map, ¢1, ..., ¢, nonconstant maps such that A¢; = \jg;, A eR, i=1,... k.

If a submanifold M of a Euclidean space or a pseudo-Euclidean space has 1-type Gauss map G, then
G satisfies AG = A(G + C) for some A € R and some constant vector C'. In [9], B.-Y. Chen and P. Piccinni
studied compact submanifolds of Euclidean spaces with finite type Gauss map. Several articles also appeared
on submanifolds with finite type Gauss map (cf. [2, 3, 4, 5, 24, 25]).

However, the Laplacian of the Gauss map of several surfaces and hypersurfaces, such as helicoids of the 1st,
2nd, and 3rd kind, conjugate Enneper’s surface of the second kind and B-scrolls in a 3-dimensional Minkowski

space E? [20], generalized catenoids, spherical n-cones, hyperbolical n-cones and Enneper’s hypersurfaces in

E" ! [14], take the form
AG = f(G+0O) (1)

for some smooth function f on M and some constant vector C. A submanifold of a pseudo-Euclidean space is

said to have pointwise 1-type Gauss map if its Gauss map satisfies (1) for some smooth function f on M and
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some constant vector C'. A submanifold with pointwise 1-type Gauss map is said to be of the first kind if the
vector C' in (1) is the zero vector. Otherwise, a submanifold with pointwise 1-type Gauss map is said to be of
the second kind (cf. [1, 10, 11, 13, 19, 21, 22]).

Remark 1. The Gauss map G of a plane M in E} is a constant vector and AG = 0. For f = 0 if we
write AG = 0-G, then M has pointwise 1-type Gauss map of the first kind. If we choose C = —G for any
nonzero smooth function f, then (1) holds. In this case M has pointwise 1-type Gauss map of the second kind.

Therefore we say that a plane in E$ is a trivial surface with pointwise 1-type Gauss map of the first kind or
the second kind.

The complete classification of ruled surfaces in E} with pointwise 1-type Gauss map of the first kind
was obtained in [20]. Also, a complete classification of rational surfaces of revolution in E$ satisfying (1) was
recently given in [19], and it was proved that a right circular cone and a hyperbolic cone in E} are the only
rational surfaces of revolution in E} with pointwise 1-type Gauss map of the second kind. The first author
described all nonplanar cylindrical surfaces in the Euclidean space E3 with pointwise 1-type Gauss map of the
second kind [15].

In this article, we study nondegenerate flat surfaces in E} with pointwise 1-type Gauss map of the second
kind. We describe all nonplanar cylindrical surfaces with pointwise 1-type Gauss map of the second kind, and
we also show that right circular cones and hyperbolic cones in E? are the only cones in E3 with pointwise
1-type Gauss map of the second kind. We conclude that there is no tangent developable surface in E3 with
pointwise 1-type Gauss map of the second kind.

Throughout this paper, we assume that all the geometric objects are smooth and all surfaces are connected

unless otherwise stated.

2. Preliminaries

Let E? be a 3-dimensional Minkowski space with the Lorentz metric ds* = —dx? + dz3 + dz3, where
(71,79, w3) denotes the standard coordinates of E3. A vector X € E is said to be space-like if (X, X) >0 or
X =0, time-like if (X, X) < 0, and light-like or null if (X, X) =0 and X # 0. A curve in E$ is said to be
space-like, time-like or light-like (null) if its tangent vector is, respectively, space-like, time-like or light-like. A
time-like or light-like vector in E? is said to be causal. For the Lorentz vector space it is well known that there
are no causal vectors in E3 orthogonal to a time-like vector [18].

For two vectors X = (21,22,73), Y = (y1,¥2,y3) € E3, the Lorentz cross-product X x Y of X and Y
is defined by

X XY = (—xay3 + T3y2, T3Y1 — T1Y3, T1Y2 — T2Y1)-

The properties that the Lorentz cross-product satisfies can be seen in [20].

Let M be a nondegenerate surface in E$. The map G : M — Q%*(eg) C E$ which sends each point of
M to the unit normal vector to M at the point is called the Gauss map of M, where eg(= £1) denotes the

sign of the vector G and Q?(e¢) is a 2-dimensional space form given by

Si(1)  inE} ifeg =1
2 — 1 1 G
@ (ea) = { H?*(—1) inE} ifeg=—1,
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where S?(1) and H?(—1) are, respectively, the de Sitter space and hyperbolic space in E$ centered at the origin.

We denote by h, Ag, V and V, the second fundamental form, the Weingarten map, the Levi-Civita
connection of E? and the induced Riemannian connection on M, respectively. We choose a local oriented
orthonormal moving frame {ej, ez, e3} on M in E$ with &; = (e;, e;) (= F1), i = 1,2,3, such that e;, ey are
tangent to M and ez = G is normal to M .

We denote by {w1,ws,ws} the dual 1-forms to {e1,e2,e3} defined by wa(ep) = (ea,ep) = cadap and
by {wap}, A, B =1,2,3, the connection 1-forms associated with {wy,ws, w3} satisfying wap +wpa = 0. Thus

we have V., e; = Z?Zl gjwijler)e; +eshiges, Ve, ez = Z?Zl gjwsj(er)e;, where h;p’s are the coefficients of
2
the second fundamental form h. By Cartan’s Lemma, we also have wj3 = Y7 exhjrwi, hjr = hij.

The mean curvature H and the Gauss curvature K of M in E$ are, respectively, defined by

2
H = %trAG = %i_zlai (Ac(ei),e;) and K =egdetAg.
A nondegenerate surface in E? with zero Gauss curvature is called a developable surface. The developable
surfaces in Minkowski space E3 are the same as in Euclidean space. In particular, they are plane, cone, cylinder
and tangent developable surfaces.
Let I and J be open intervals containing the origin in the real line. Let a = a(s) be a curve from J
into E$ and f(s) a vector field along «(s) orthogonal to a(s). A ruled surface M in E$ is defined as a semi-

Riemannian surface swept out by the vector 3(s) along the curve a(s). Then M has always a parametrization
x(s,t) = a(s) +t0(s), sed tel

The curve a = a(s) is called a base curve and § = [(s) is a director curve. If 3 is constant, then the ruled
surface is said to be cylindrical, and noncylindrical otherwise.

We consider the curve « is space-like or time-like. As it is explained in [20] we have five different ruled
surfaces according to the character of the base curve « and the director 8 as follows: If the curve « is space-like

or time-like, the ruled surface M is said to be of type M, or type M_, respectively. Also the ruled surface of
type M, is divided into three types. When [ is space-like, it is said to be of type M}r or MJQr if 4’ is non-null
or light-like, respectively. When £ is time-like, then 3 must be space-like because there is no causal vector in
E? orthogonal to a time-like vector. In this case, M is said to be of type Mi . On the other hand, for the ruled
surface M_ it is said to be of type ML or M2 if ' is non-null or light-like, respectively. The ruled surface
type M} or M? (resp. M3, M or M?) is space-like (resp. time-like).

However if the base curve « is a light-like curve and the vector field 8 along « is a light-like vector
field, then the ruled surface is called a null scroll. A null scroll with zero Gauss curvature is a plane in E$. In
particular, a null scroll with Cartan frame is said to be a B-scroll [17] which is a time-like surface. It is known
that a B-scroll has 1-type Gauss map of the first kind [20].

For the Frenet equations of a space-like or time-like curve in E$ we have the following theorem.
Theorem 2.1 [253] Let a be a space-like or time-like curve which we assume to be parametrized by arc length
and satisfies (o, a”) # 0. Then this curve induces a Frenet 3-frame T = &/(s), N = % , B=TxN
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for which the following Frenet equations hold:
T'(s) =enk(s)N(s),
N'(s) = —erk(s)T — eren(s)B(s), (2)
B'(s) = —enT(s)N(s),

where k = (T',N) and 7 = (N',B) are called the curvature and torsion of «, and er = (T,T) = F1,

EN=<N,N>=$1.

Let M be an oriented nondegenerate surface (time-like or space-like) in E$ with corresponding unit
normal field G, and let o be an arc length parametrized curve in M. Let V be a unit tangent vector field
along a(s) such that V(s) = G(a(s)) x o/(s) with ey = (V,V) = —eger. Then the functions

kn(s) = (" (s), G(a(s))) and ky(s) = (a(s), V(s))

are, respectively, called the normal curvature and the geodesic curvature of a(s) at s if o” is non-null. If o

is non-null, then we can write o’/(s) as follows
a(s) =enk(s)N(s) = evkg(s)V(s) + eckn(s)G(a(s)),
where k(s) is the curvature of a”(s), and thus we have
enFE(s) = cal—erk(s) + K2(s)). (3)

Note that there is no a definition of curvature when o’’(s) is null.

3. Cylindrical ruled surfaces with pointwise 1-type Gauss map

Considering Remark 1, a plane in the Minkowski space E3 which is a cylinder has pointwise 1-type Gauss
map of the second kind. Here we determine nonplanar cylindrical ruled surfaces in E} with pointwise 1-type
Gauss map of the second kind. A cylindrical ruled surface M is only of type M}r, M! or Mi

The following lemma is obtained in [14].

Lemma 3.1 Let M, be a hypersurface with index q in a Lorentz-Minkowski space L"'. Then the Laplacian

of the Gauss map G is given by
AG =eg||Ac|?*G +nVH, (4)

where ||Ag||* = tr(AcAc), ec = (G,G) and H is the mean curvature of M.

We prove the following lemma for later use.

Lemma 3.2 Let M be an oriented nondegenerate surface in the Minkowski space E$. Let {e1,ea} be a local
orthonormal tangent frame on M with g; =< e;,e; >, i = 1,2. If C is a constant vector in E}, then the

components of C = e1C1 e1 + £2Cae2 + egC3G in the basis {e1,ea, G} of E} satisfy the following equations:
e1(Ch) + eawai(e1) Ca —eghi1 C3 =0, (5)
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e1(C2) + erwiz(er) Cr —eghi2C3 =0, (6)
e1(C3) +e1h11 C1 4+ e2h21 Co = 0, (7)
e2(Ch) + eawai(e2) Ca — egho1 C3 =0, (8)
e2(C) + eqwia(e2) C1 — egho2 C3 =0, 9)
e2(C3) +e1h12 C1 4+ e2ha2 Cy = 0, (10)

where C; = (C,e;), i =1,2 and C5 = (C,G).

Proof. Taking derivative of the vector C' in direction e, and using the formulas of Gauss and Weingarten,

we obtain
Ve, C =¢1[en(Ch) + eawan (ex) Ca — eghiy Csle
+ e2[ex(Cy) + e1wiz(er) C1 — eghiz Csles
+eqler(C3) + e1hiyp C1 + e2hoi, C2]G =0
which produces equations (5)—(10) for k=1, 2. 0

Theorem 3.3 A nonplanar cylindrical ruled surface M in the Minkowski space E} has pointwise 1-type Gauss

map of the second kind if and only if M is congruent to an open part of the following surfaces:

1. the time-like cylinder Mi parametrized by

w(k,t) = (t, i(%Jr %arctan(k_ko )), o ), (11)

where R(k) = c2k? — (k — ko)? > 0;

2. the space-like cylinder M_|1r parametrized by

w(k,t) = (j: o(k), % t); (12)

3. the space-like cylinder M_|1r parametrized by

ko
200]€2,

a(k,t) = ( (k) t); (13)

4. the space-like cylinder ML parametrized by
+

(k) = (i(m —0(k)), o5 +0(k), t);
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5. the time-like cylinder ML parametrized by

a(k,t) = (iw(k), Ko t); (15)

200/€2,

6. the time-like cylinder ML parametrized by

ko
2k, 1) = (5rgm: £0(h). 1) (16)
7. the time-like cylinder MY parametrized by
2k, t) = (g5 +00k), (g — 0(R)). ); (17)

where

(]C + ko) 2 Co ko -k + Cng + (]C — ko)z
k)= TR0 fe2pn 4 g 2——1‘ v ‘
) = Seakgrz V08 + (= ko)® = 5p-In k

(k4 ko) co ko —k+ /(k — ko)? — c3k?
k) = w2k — k)2 — c2k2 _1‘ 0 ‘
Vik) = Sz V(= Ro)® —cok® + 5 In 2
with (k — ko) — c3k® > 0,
1 1 k
o= L k|
5 = 2 —he) ~ 2k e

and, po, co and ko are nonzero constants.
Proof. Suppose that M has pointwise 1-type Gauss map of the second kind. Then the gradient vector VH
of the mean curvature H is nonzero on M because of (3.1). If VH were zero, then the Gauss map would be
of pointwise 1-type of the first kind. So the mean curvature H is a nonconstant function on M .

Let {e1,ea} be a local orthonormal tangent frame on M with ¢; =< e;,e; >, i = 1,2. By equations (1)

and (4), we have
ecllAc|?G +2VH = f(G + C) (18)

for some nonzero smooth function f on M and some nonzero constant vector C' € E3. In the basis {e1, e2, G}
we can write

C =¢e1C1e1 + 20260 + ecCsG,
where C; = (C,e;), i = 1,2 and C5 = (C,G) which satisfy equations (5)—(10) in Lemma 3.2. Considering
VH =c¢cie1(H)er + e2e2(H)es equation (18) implies

eallAcl)? = f(1+ecCs), (19)
e1(ethi1 +e2hag) = fCh, (20)
ez(e1hiir +e2hag) = f Co. (21)
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Since M is a cylindrical surface, then it is parametrized by
z(s,t) = a(s) + tj, (22)

where the base curve a(s) which is a smooth time-like or space-like curve with the arc length parameter s lies
in a plane with a time-like or space-like unit normal vector 8 which is the director of the cylinder.

Now we take a local orthonormal tangent frame {e;,es} on M as e; = % and ey = % with &1 =
(e1,e1) = (B,8) = 1, €2 = (ea,e2) = (&/(s),a/(s)) = £1 and (e1,ez) = (B,a'(s)) = 0. By taking the Gauss
map G as G = e; X e3 with e¢ = (G,G) = —¢1£2, then the Frenet 3-frame for the curve o and the frame

{e1,e2,G} on M in E3 have the same orientation.
By a direct calculation we obtain V,,es = o/(s) = egk(s)G because « is a plane curve and the principal

normal vector of the curve « is the normal of the cylinder, and 66161 = 66162 = 662 e1 = 0, where k(s) is the
curvature of a(s). All these relations imply that wei(e1) = wai(e2) =0, hi1 = hia = ho1 =0, and hoe = k(s).
Therefore the mean curvature is H = e2k(s)/2 which is the function of s, and ||Ag|* = k%(s), where k(s) # 0,
ie. k(s) is strictly positive or strictly negative. Without losing generality we suppose that k(s) > 0. Thus
equations (20) and (21) give, respectively, C; = 0 and Cs # 0.

On the other hand it follows from equations (5)—(7) that Cq, Cs, and C3 are functions of s, and equations

(9) and (10) give, respectively

Ch(s) —eck(s) Cs(s) =0 (23)

and

C}(s) + e2k(s) Ca(s) = 0. (24)
It is seen from (21) that f is also a function of s. As the vector C is constant, we have
£9C3(s) — £16203(s) = (C, C) = eccp, (25)

where ¢y is a constant and ec = sgn((C,C)).

Equations (19) and (21) yield

= 26
k2(s) 14egCs (26)
from which and equation (24) we obtain
K(s)  ecCj (27)
k(s) 1+¢egCs
and from its solution we get
ko
Cs(s) = (1 _ —) 28
3(s) =162 7o) (28)
where kg is a nonzero constant. Also, by using (24) and (28)
kok’(s)
C =—€1—— 29
2(s) = —e1 55(s) (29)
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Moreover, from (21) and (29) we obtain

k3 (s
f(s) = —e1e9 ( ) (30)

ko

If C is a non-null vector, then using (28) and (29) equation (25) yields the differential equation
k2" = k*[esecc2k? + &1 (k — ko). (31)
For later use we need
/C (s)ds = —¢ / Fol” ds+dy =¢ Ko +d (32)
2 = —€1 3 2= Clgrs 2

and by considering (31)

k—Fk k — ko)dk
/CS(S)dS = 5152/ OdS = :|25152]€0/ ( O) + dg,
k k3\/eaec@k? + e1(k — ko)?

where d; and dy are integration constants. From the evaluation of the last integral for e = 1 we have

/Cg(s)ds - :I:(EQM R(F) — cce (ko _]“];‘/W )) +ds, (33)

2kok? 2ko
where R(k) = eacccdk?® + (k — ko)?, and for e; = —1 (in this case €2 = ¢ = 1) we have
]{ + ko k— ko
Cs(s)ds = — arctan ( —— d 34
/ 5(s)ds = ( T \/ )+ 3 - arc an( R(k)))+ 3, (34)

where R(k) = cgk? — (k — ko)?
A cylindrical ruled surface M is only of type M_ilr, M! or Mi
Case 1. M is of type Mi, i.e., the vector 3 is time-like. Hence ¢1 = —1 and g5 = g = e¢c = 1.

Considering equation (25), we may put
Ca(s) = cosin A(s), Cs(s) = cocos A(s), (35)

which satisfy equations (23) and (24) if X'(s) = k(s), that is, A(s) = Xo + [ k(s)ds, where ¢ is an integration
constant. Thus we have
Cy  kok

Cs ko—k
sin)\(s):E:CO? and Cos)\(s)zc—j: Ocok

(36)

for later use.
Since « is a plane curve, acting a Lorentz transformation we can write

a(s) = (0, as(s), as(s)) and = (1,0,0)
without loss of generality. Then the Gauss map of the cylinder M_:’; is

G=e; Xey = (0, _ag(s)a aIQ(S))a
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as es = o/(s) (0,a4(s),a%(s)). Now we may put ab(s) = cosu(s) and of(s) = sinpu(s) because of
2 2

ay”(s) + a3 (s)

The equation o’(s) = egk(s)G implies that p'(s) = k(s). For simplicity we take u(s) = A(s) =

Ao + [k(s)ds. In view of (32), (34) and (36) the base curve a(s) of the cylinder M? is determined uniquely,

1, where u(s) is a differentiable function.

up to a rigid motion, by

a(s) = (0, dg—i-%/Cg(s)ds, ds + %/cg(s)ds),

(s (R () ) o

where R(k) = c§k* — (k — ko)? > 0. It is seen that the base curve of the cylinder M? can be parametrized

in terms of the curvature function &, that is, & = a(k). Therefore we obtain the parametrization (11) for the
cylinder M3 which has pointwise 1-type Gauss map of the second kind for f(k) = % and C' = (0, 0, ¢).
Case 2. M is of type M}r, ie, g1 =e2 =1, (e = —1). From equation (25), the vector C' is space-like,

time-like or null.
Considering equation (25) we may put

Ca(s) = cocosh A(s), Cs(s) =cosinhA(s) for ec =1

or

Ca(s) = cosinh A(s), Cs5(s) =cpcoshA(s) for ec=-—-1

which hold for equations (23) and (24) if X'(s) = —k(s), that is, A(s) = A\o— [ k(s)ds, where )¢ is an integration

constant. Thus we have

Cs kok! . Cs  ko—k
=—"==— =—=——f =1
cosh A(s) o o and sinh A(s) ” ok or ¢ (38)
or
Cs  ko—k ) Cy kok!
=="_" =—=- f =—1.
cosh A(s) - ok and sinh \(s) o e or ec (39)

For the plane curve «, acting a Lorentz transformation we can write
a(s) = (a1(s), az(s),0) and 8= (0,0,1)
without loss of generality. The Gauss map of the cylinder M_|1r is
G =e1 X eg = (ah(s), a(s), 0)

as e3 = o/(s) = (& (s),aly(s),0). Considering —a}*(s) + ab’(s) = 1, we may put o/ (s) = sinhu(s) and
a(s) = cosh u(s) to determine «(s), where p is a differentiable function. From the equation o/ (s) = egk(s)G

we obtain /(s) = —k(s). For simplicity we take u(s) = A(s) = Ao — [ k(s)ds.
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Now we suppose that C' is space-like, i.e., ec = 1. By using (32), (33) and (38) the base curve «a(s) of

the cylinder M_|1r is determined uniquely, up to a rigid motion, by

a(s) = (ds + %/Cg(s)ds, do + %/Cg(s)ds, 0),
:(dgj:((k+k0) RO — <0, ‘ko k—i-\/—D

d 0),
200]60/{2 2/€0 2t 53 2¢ k2

where R(k) = c§k? + (k — ko)?. It is seen the base curve of the cylinder M} can be parametrized in terms of
the curvature function k, that is, a = a(k).

Therefore we obtain the parametrization (12) for the cylinder M}r which has pointwise 1-type Gauss
map of the second kind for f(k) = —% and C = (0, ¢y,0).

If C is time-like, i.e., ec = —1, then by a similar argument we obtain the base curve of the cylinder M}r

as

ko (k4 ko) ko —k ++/R(k)
B) = (dot oy ds % (5 V/R(E —1‘ ). 0).
b =\t g 0 s = (G V) T 57 k
where R(k) = (k—ko)? —ck* > 0. So we get the parametrization (13) for the cylinder M} which has pointwise
1-type Gauss map of the second kind for f(k) = —% and C = (—¢,0, 0).
Now let the vector C' be null. From (25) we get Cs(s) = £C5(s). We will consider the case Ca(s) = C5(s).
Hence, from (23) we get Ca(s) = e#(®), where u(s) = Ao — [ k(s)ds, and then

1
/ s _ 1t o
04 (s) = sinlu(s) = 3(Co(s) ~ o)
and
4(5) = cosh ) = 5(Cals) + )
az(s) = cosh p(s) = 5(Ca(s o0
Using (28) and (29) we obtain the first two components of a(s) as
ko (1), 1 k _
i(s) = —% S ) +di i=1.2. 10
o) = a3 (o R Rl T (40)
Similarly if we take Cy(s) = —C3(s), then the first two components of «(s) are

ko 1

()= (1) y ) ‘—‘ i, i=1,2. A1
ails) = U g 5Ty 2k M E Tl T (41)

Therefore, considering (40) and (41) we obtain the parametrization (14) for cylinder M7 which has
pointwise 1-type Gauss map of the second kind for f(k) = —% and C = (—1,1,0) if Ca(s) = Cs(s) or
C =(1,1,0) if Ca(s) = —Cjs(s).

Case 3. M isof type M! ie., g1 =1,60 = —1,(eg = 1). From (25) the vector C is space-like, time-like

or null.
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Considering equation (25) we may put
Ca(s) = cosinh A(s), C3(s) =cocoshA(s) for ec =1

or

Ca(s) = cpcosh A(s), Cs5(s) =cosinhA(s) for ec=-1

which hold equations (23) and (24) if X(s) = k(s), that is, A(s) = Ao + [k(s)ds, where g is an integration

constant. Thus we have

C kok' C ko — k
sinh A(s) = 2 =2 and cosh As) = =3 forec =1 (42)
Co Cok3 Co Co
or
Cs _ko—k Ca kok’
=2 - =— f =-1 4
sinh A(s) = ” ok and cosh A(s) = - ol orec (43)

For the plane curve «, acting a Lorentz transformation we can write
a(s) = (a1(s), as(s),0) and B = (0,0,1)
without loss of generality. The Gauss map of the cylinder M_|1r is
G = e1 X e3 = (aj(s), a/(s), 0)

as ey = o/(s) = (a(s),ab(s),0). Considering —a’*(s) + ab’(s) = —1, we may put o (s) = cosh u(s)
and ab(s) = sinhp(s) to determine «(s), where p is a differentiable function of s. From the equation
o''(s) = eck(s)G we obtain yi/(s) = k(s). For simplicity we take u(s) = A(s) = Ao + [ k(s)ds

Now we suppose that C' is space-like, i.e., ec = 1. By using (32), (33) and (42) the base curve «a(s) of

the cylinder M! is determined uniquely, up to a rigid motion, by
1 1
a(s) =(ds + —/Cg(s)ds, ds + —/Cg(s)ds, 0),
Co Co
k+k ko —k+ /R(k
:(dgj:(—i( ko) Ra - o 1n(—0 4}; ())),

QCokokQ 2]€0

ko
do + 0 o),
2+ Seol?

where R(k) = (k — ko)? — c2k? > 0. It is seen that the base curve of the cylinder M! can be parametrized

in terms of the curvature function k, that is, & = a(k). Therefore we obtain the parametrization (15) for the

cylinder M1 which has pointwise 1-type Gauss map of the second kind for f(k) = % and C' = (0, ¢(,0).

If C is time-like, i.e., ec = —1, then by a similar argument we obtain the base curve of the cylinder M
as
ko
k —(d _fo_
CY( ) 2+ 200]62

dsi( 2’1;{532 VR + 2 ! (M )) 0) (44)
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where R(k) = c3k*+ (k — ko)?. So we have the parametrization (16) for the cylinder M} which has pointwise
1-type Gauss map of the second kind for f(k) = % and C' = (0, —cp, 0).

Now let the vector C be null. From equation (25) we get Cy(s) = £C5(s). We will consider the case
Cy(s) = C3(s). Hence, from (23) we get Cy(s) = e#(*) and then

1
ay(s) = coshp(s) = 5(02(5) + m)
and
ay(s) = sinh pu(s) = 1(0 (s) — ! )
218 = SRS = 92 T B s)
Using (28) and (29) we obtain the first two components of a(s) as
ko (=1)i1 1 1 k ,
(s)=—0 7 (- | ) +d;, i=1,2 45
o) = gt (i h R iRl T (45)
Similarly if we take Cy(s) = —C3(s), then the first two components of «(s) are
1 k 1 1 k
—1 MO .
() = () s — oI+ =12 46
ails) = U E F 5m TRy 2k PRl T (46)

Therefore, considering (45) and (46) we obtain the parametrization (17) for cylinder M which has
pointwise 1-type Gauss map of the second kind for f(k) = % and C = (—1,1,0) if Ca(s) = Cs(s) or
C = (-1,-1,0) if Ca(s) = —Cjs(s).

4. Noncylindrical flat surfaces with pointwise 1-type Gauss map of the second kind

In this section we study noncylindrical flat surfaces, i.e., cones and tangent developable surfaces with

pointwise 1-type Gauss map of the second kind in E3.

Theorem 4.1 Let M be a noncylindrical flat surface in the Minkowski space E3. Then, M has pointwise
1-type Gauss map of the second kind if and only if it is an open part of a right circular cone or a hyperbolic
cone in E3.

Proof. Suppose that M has pointwise 1-type Gauss map of the second kind. Since M is a regular noncylin-
drical flat surface in the Minkowski space E?, then M is an open part of a cone or an open part of a tangent
developable surface in E$. We consider two cases.

Case 1. M is an open part of a cone. Then, by an appropriate rigid motion, M can be parametrized

locally by

z(s,t) = ap+tB(s), t#0,
where (3(s),(s)) = £1, ((s),3(s)) = £1, and «p is a constant vector. The coordinate vector fields
xs = tf'(s) and z; = [(s) are orthogonal because of (5(s),3(s)) = =£1, and the surface M is regular if
tB'(s) x B(s) # 0. So we take the orthonormal tangent frame {e;,es} on M as e; = +4 and e; = 2 with
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g1 = (e1,e1) = 1 and &3 = (e9,e2) = £1. The Gauss map of M is given by G = e; x ea = 3'(s) x ((s) with
eq = (G,G) = —e1e5.
By a straightforward calculation we obtain
~ €162 eckg(s) ~ 1 ~ ~

Ve, €1 = €2 " G, Veea=—e1, Veer =Veer =0,

where ky(s) = (3" (s), B(s) x #'(s)) # 0 which is the geodesic curvature of 3 in the hyperbolic space H?(—1)
or in the de Sitter space S?(1). All these relations imply that

€ kq(s
wiz(er) = —?1, wiz2(e2) =0, hiy = —#, hia = ha1 = has =0,
e1ky(s) 2 k2 (s)
and thus we have the mean curvature H = —=52> and ||Ag|]® = 4.

Now (8)—(10) imply that C7,Cs, and C3 are functions of s, and equations (5)—(7) become

C1(s) 4 12202(5) + ecky(s)C5(s) = 0, (47)
C4(s) — Cu(s) =0, (48)
C4(s) — e1ky(s)C1(s) = 0. (49)

On the other hand, we have from (19), (20), and (21)

ky(s)
Eq Atz = f(l + EGcg), (50)
b e, (51)
Elig(s) = fCs. (52)

It follows from (52) that Cy # 0. Also equations (50) and (52) give
e1kg(s)Ca(s) — Cs(s) = eq (53)
from which by taking derivative with respect to s, we get
e1kiy(s)Ca(s) + £1kq(s)C5(s) = C(s) (54)

that gives €1k (s)Ca(s) = 0 in view of (48) and (49). Hence we obtain k;(s) = 0 as Cy # 0, that is, k,(s) is a
nonzero constant.

Now we assume that 3” is non-null. By considering (3) for the curve 3 in the hyperbolic space H?(—1)
(resp., in the de Sitter space Si(1)) we have enk?(s) = k2(s) — 1 ( resp., enk?(s) = —e1k2(s) + 1), where

en is the sign of the principal normal vector N of the curve 3. Note that we take e = —1 for H?(—1) and
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eg = 1 for S#(1) while we use formula (3). Thus, the curvature k of 3 is also constant, and k # 0 because
if the curvature k were zero, then 8 would be a line, and M would be a part of plane which is a cylindrical
surface.

Therefore, taking the derivative of k4(s) = (8"(s), 3(s) x #'(s)) = const. # 0, and using the Frenet
equations (2) it can be shown that the torsion of (3 is zero, that is, § is a plane curve with nonzero constant
curvature. A plane curve in E? with nonzero constant curvature is a part of a circle or a hyperbola. Thus
the curve 3 is a part of a circle or a hyperbola in H?(—1) or in the de Sitter space S?(1) such that the plane
containing the curve 3 does not pass through the origin. Therefore the ruled surface M is an open part of a
right circular cone or a hyperbolic cone in E3.

Moreover equation (51) implies C; = 0, and equations (48) and (49) imply C} = 0 and C} = 0,

respectively, i.e., Co and Cj are constants. Then we obtain from equations (47) and (53)

5152]{9
- _ 2
1 Elkg

€1€2

C e
2 1—51]€§

and C3 =

82(1—81]63)
t2
2
e2(l—e1ky)
12

Also, we get from (52) f = . Therefore M has pointwise 1-type Gauss map of the second kind, that

is, equation (1) holds for f = and for the constant vector C = (e2kges — G).

Now let 3” be null. If 3 lies in H?(—1), we have kg =1, and also s = —1,e1 = e¢ = 1. Then equation
(51) implies C7 = 0, and equations (50) and (52) imply k,Cy — C3 = 1. Also, from (47) we have Cy = k,Cs.
In view of the last two equations we obtain (k2 — 1)C3 = 1, which is not valid as k2 = 1. If § lies in S§}(1) we
have e =1 and kg = &1, which holds if &1 = 1. By a similar argument given above we have (1 — k3)03 =1,
which is not valid as kg = 1. As a result, if 5" is null, then the Gauss map of the cone M is not of pointwise
1-type of the second kind.

Case 2. M is an open part of a tangent developable surface fully lying in E3. We will show that there

is no tangent developable surface in E$ with pointwise 1-type Gauss map of the second kind. The surface M

is locally parametrized by
x(s,t) = a(s) + ta'(s),

where «(s) is a unit speed curve with nonzero curvature k(s). Note that if « is a null curve or o’ is null,
then the tangent surface is degenerate. We assume that the torsion 7(s) of «(s) is nonzero. If 7 =0, then the
tangent surface is a part of a plane which is a cylindrical.

Let T'(s), N(s), and B(s) denote the unit tangent vector, principal normal vector and binormal vector
of the curve a with signatures ep,eny and ep = —eren, respectively. The coordinate vector fields of M
are x5 = o'(s) +ta”(s) = T(s) + entk(s)N(s) and z; = o'(s) = T(s) which are not orthogonal. The

parametrization x is regular if tk(s) # 0. We take the orthonormal tangent frame {ej,e2} on M as e; = %

and ey = %(% — %) with €1 = (e1,e1) = £1 and e3 = (e3,e2) = +1. It is seen that e; =T, ea = N,
€1 =er and e = ey . Then the Gauss map of M is given by G =¢€; X ex =T x N = B with eg = —¢1¢65.
By a direct calculation we obtain
~ ~ 1 ~ €162 e17(s)

Ve, e1 = Ve ea =0, Vg = 762 Ve,e2 = — el T (s)
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ea7(s)
tk(s)

So we have wai(e1) =0, woi(e2) = —22, hiy = h1a = ho; =0 and hoy = . Therefore the mean curvature

t
is H(s,t) = %; and [|Ag|]* = (tTk((ss)))Q'

Now, it follows from equations (5)—(7) that Cy, C2, and C5 are functions of s, and thus equations (8)—(10)

become
C1(s) — e2k(s)C2(s) = 0, (55)
C5(s) + e1k(8)C1 () + €1627(5)C3(s) = 0, (56)
C4(s) 4+ 27(s)C2(s) = 0. (57)

On the other hand, we have from (19), (20), and (21) that

2
EG# = f(1 +ecCs), (58)

T

€y ,d T T

i las )t ap) =7 (00

Equation (59) implies that C; # 0 as 7 # 0. Also, from (58) and (59) we obtain
7(5)C1(s) + k(s)C3(s) = e12k(s) (61)
from which, by taking the derivative we get
7'(8)C1(s) + 7(8)C1(8) + k' (8)C3(5) + k(s)C5(s) = e162k (5). (62)
Using equations (55) and (57), equation (62) turns into
7/(5)C1(5) + K'(5)C5(s) = €162k (5). (63)

If 7/(s)k(s) — k'(s)7(s) # 0, then equations (61) and (63) give C; =0 and C3 = —e¢ . Hence, we have
7 =0 from (58) or (59), which is a contradiction.
Now suppose that 7/(s)k(s) — k’(s)7(s) = 0, which means that 7(s)/k(s) = ro is a nonzero constant. In
this case, by (59) and (60) we get
tk(s)Ca(s) +e2C1(s) =0

which implies that C; = Cy = 0, that is, 7 = 0 by (59). This is a contradiction. Therefore the torsion 7
is zero, and there is no tangent developable surface fully lying in E3 with pointwise 1-type Gauss map of the

second kind.
The converse of the proof follows from a straightforward calculation. O

We then have the following.
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Corollary 4.2 Right circular cones and hyperbolical cones in Minkowski space E3 are the only cones in E3

with pointwise 1-type Gauss map of the second kind.

Corollary 4.3 There is no tangent developable surface fully lying in Minkowski space E} with pointwise 1-type

Gauss map of the second kind.

Combining Theorem 3.3 and Theorem 4.1 we have

Theorem 4.4 Let M be a flat ruled surface in the Minkowski space E$. Then, M has pointwise 1-type Gauss
map of the second kind if and only if it is a part of a plane, cylinders given by (11)—(17), a right circular cone

or a hyperbolic cone.
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