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Flat surfaces in the Minkowski space E
3
1 with pointwise 1-type

Gauss map

Uğur Dursun and Emel Coşkun

Abstract

In this article, we obtain all nonplanar cylindrical surfaces in the Minkowski space �
3
1 with pointwise

1-type Gauss map of the second kind. We also prove that right circular cones and hyperbolic cones in �
3
1

are the only cones in �
3
1 with pointwise 1-type Gauss map of the second kind. We conclude that there is no

tangent developable surface fully lying in �
3
1 with pointwise 1-type Gauss map of the second kind.
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1. Introduction

In late 1970’s B.-Y. Chen introduced the notion of finite type submanifolds of Euclidean space [6]. Since
then many works were done to characterize or classify submanifolds of Euclidean space or pseudo-Euclidean
space in terms of finite type (cf. [7, 8, 12, 16]). Also, B.-Y. Chen and P. Piccinni extended the notion of

finite type to differentiable maps, in particular, to Gauss map of submanifolds in [9]. A smooth map φ of
a submanifold M of a Euclidean space or a pseudo-Euclidean space is said to be of finite type if φ can be

expressed as a finite sum of eigenfunctions of the Laplacian Δ of M , that is, φ = φ0 +
∑k

i=1 φi , where φ0 is a

constant map, φ1, . . . , φk nonconstant maps such that Δφi = λiφi, λi ∈ R , i = 1, . . . , k .

If a submanifold M of a Euclidean space or a pseudo-Euclidean space has 1-type Gauss map G , then
G satisfies ΔG = λ(G + C) for some λ ∈ R and some constant vector C . In [9], B.-Y. Chen and P. Piccinni
studied compact submanifolds of Euclidean spaces with finite type Gauss map. Several articles also appeared
on submanifolds with finite type Gauss map (cf. [2, 3, 4, 5, 24, 25]).

However, the Laplacian of the Gauss map of several surfaces and hypersurfaces, such as helicoids of the 1st,
2nd, and 3rd kind, conjugate Enneper’s surface of the second kind and B-scrolls in a 3-dimensional Minkowski

space E
3
1 [20], generalized catenoids, spherical n-cones, hyperbolical n-cones and Enneper’s hypersurfaces in

E
n+1
1 [14], take the form

ΔG = f(G + C) (1)

for some smooth function f on M and some constant vector C . A submanifold of a pseudo-Euclidean space is
said to have pointwise 1-type Gauss map if its Gauss map satisfies (1) for some smooth function f on M and
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some constant vector C . A submanifold with pointwise 1-type Gauss map is said to be of the first kind if the
vector C in (1) is the zero vector. Otherwise, a submanifold with pointwise 1-type Gauss map is said to be of

the second kind (cf. [1, 10, 11, 13, 19, 21, 22]).

Remark 1. The Gauss map G of a plane M in E
3
1 is a constant vector and ΔG = 0. For f = 0 if we

write ΔG = 0 · G , then M has pointwise 1-type Gauss map of the first kind. If we choose C = −G for any
nonzero smooth function f , then (1) holds. In this case M has pointwise 1-type Gauss map of the second kind.

Therefore we say that a plane in E
3
1 is a trivial surface with pointwise 1-type Gauss map of the first kind or

the second kind.
The complete classification of ruled surfaces in E

3
1 with pointwise 1-type Gauss map of the first kind

was obtained in [20]. Also, a complete classification of rational surfaces of revolution in E
3
1 satisfying (1) was

recently given in [19], and it was proved that a right circular cone and a hyperbolic cone in E
3
1 are the only

rational surfaces of revolution in E
3
1 with pointwise 1-type Gauss map of the second kind. The first author

described all nonplanar cylindrical surfaces in the Euclidean space E
3 with pointwise 1-type Gauss map of the

second kind [15].

In this article, we study nondegenerate flat surfaces in E
3
1 with pointwise 1-type Gauss map of the second

kind. We describe all nonplanar cylindrical surfaces with pointwise 1-type Gauss map of the second kind, and

we also show that right circular cones and hyperbolic cones in E
3
1 are the only cones in E

3
1 with pointwise

1-type Gauss map of the second kind. We conclude that there is no tangent developable surface in E
3
1 with

pointwise 1-type Gauss map of the second kind.

Throughout this paper, we assume that all the geometric objects are smooth and all surfaces are connected
unless otherwise stated.

2. Preliminaries

Let E
3
1 be a 3-dimensional Minkowski space with the Lorentz metric ds2 = −dx2

1 + dx2
2 + dx2

3 , where

(x1, x2, x3) denotes the standard coordinates of E
3
1 . A vector X ∈ E

3
1 is said to be space-like if 〈X, X〉 > 0 or

X = 0, time-like if 〈X, X〉 < 0, and light-like or null if 〈X, X〉 = 0 and X �= 0. A curve in E
3
1 is said to be

space-like, time-like or light-like (null) if its tangent vector is, respectively, space-like, time-like or light-like. A

time-like or light-like vector in E
3
1 is said to be causal. For the Lorentz vector space it is well known that there

are no causal vectors in E
3
1 orthogonal to a time-like vector [18].

For two vectors X = (x1, x2, x3), Y = (y1, y2, y3) ∈ E
3
1 , the Lorentz cross-product X × Y of X and Y

is defined by

X × Y = (−x2y3 + x3y2, x3y1 − x1y3, x1y2 − x2y1).

The properties that the Lorentz cross-product satisfies can be seen in [20].

Let M be a nondegenerate surface in E
3
1 . The map G : M → Q2(εG) ⊂ E

3
1 which sends each point of

M to the unit normal vector to M at the point is called the Gauss map of M , where εG(= ±1) denotes the

sign of the vector G and Q2(εG) is a 2-dimensional space form given by

Q2(εG) =
{

S
2
1(1) in E

3
1 if εG = 1

H
2(−1) in E

3
1 if εG = −1,
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where S
2
1(1) and H

2(−1) are, respectively, the de Sitter space and hyperbolic space in E
3
1 centered at the origin.

We denote by h, AG , ∇̃ and ∇ , the second fundamental form, the Weingarten map, the Levi-Civita

connection of E
3
1 and the induced Riemannian connection on M , respectively. We choose a local oriented

orthonormal moving frame {e1, e2, e3} on M in E
3
1 with εi = 〈ei, ei〉 (= ∓1), i = 1, 2, 3, such that e1 , e2 are

tangent to M and e3 = G is normal to M .

We denote by {ω1, ω2, ω3} the dual 1-forms to {e1, e2, e3} defined by ωA(eB ) = 〈eA, eB〉 = εAδAB and

by {ωAB}, A, B = 1, 2, 3, the connection 1-forms associated with {ω1, ω2, ω3} satisfying ωAB +ωBA = 0. Thus

we have ∇̃ekei =
∑2

j=1 εjωij(ek)ej + ε3hike3 , ∇̃eke3 =
∑2

j=1 εjω3j(ek)ej , where hik ’s are the coefficients of

the second fundamental form h . By Cartan’s Lemma, we also have ωj3 =
∑2

k=1 εkhjkωk , hjk = hkj .

The mean curvature H and the Gauss curvature K of M in E
3
1 are, respectively, defined by

H =
1
2
trAG =

1
2

2∑
i=1

εi 〈AG(ei), ei〉 and K = εGdetAG.

A nondegenerate surface in E
3
1 with zero Gauss curvature is called a developable surface. The developable

surfaces in Minkowski space E
3
1 are the same as in Euclidean space. In particular, they are plane, cone, cylinder

and tangent developable surfaces.

Let I and J be open intervals containing the origin in the real line. Let α = α(s) be a curve from J

into E
3
1 and β(s) a vector field along α(s) orthogonal to α(s). A ruled surface M in E

3
1 is defined as a semi-

Riemannian surface swept out by the vector β(s) along the curve α(s). Then M has always a parametrization

x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I.

The curve α = α(s) is called a base curve and β = β(s) is a director curve. If β is constant, then the ruled
surface is said to be cylindrical, and noncylindrical otherwise.

We consider the curve α is space-like or time-like. As it is explained in [20] we have five different ruled
surfaces according to the character of the base curve α and the director β as follows: If the curve α is space-like
or time-like, the ruled surface M is said to be of type M+ or type M− , respectively. Also the ruled surface of

type M+ is divided into three types. When β is space-like, it is said to be of type M1
+ or M2

+ if β′ is non-null

or light-like, respectively. When β is time-like, then β′ must be space-like because there is no causal vector in

E
3
1 orthogonal to a time-like vector. In this case, M is said to be of type M3

+ . On the other hand, for the ruled

surface M− it is said to be of type M1
− or M2

− if β′ is non-null or light-like, respectively. The ruled surface

type M1
+ or M2

+ (resp. M3
+, M1

− or M2
− ) is space-like (resp. time-like).

However if the base curve α is a light-like curve and the vector field β along α is a light-like vector

field, then the ruled surface is called a null scroll. A null scroll with zero Gauss curvature is a plane in E
3
1 . In

particular, a null scroll with Cartan frame is said to be a B-scroll [17] which is a time-like surface. It is known

that a B-scroll has 1-type Gauss map of the first kind [20].

For the Frenet equations of a space-like or time-like curve in E
3
1 we have the following theorem.

Theorem 2.1 [23] Let α be a space-like or time-like curve which we assume to be parametrized by arc length

and satisfies 〈α′′, α′′〉 �= 0 . Then this curve induces a Frenet 3-frame T = α′(s) , N = α′′(s)√
|〈α′′,α′′〉|

, B = T × N
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for which the following Frenet equations hold:

T ′(s) =εNk(s)N(s),

N ′(s) = − εT k(s)T − εT εN τ (s)B(s), (2)

B′(s) = − εN τ (s)N(s),

where k = 〈T ′, N〉 and τ = 〈N ′, B〉 are called the curvature and torsion of α , and εT = 〈T, T 〉 = ∓1 ,

εN = 〈N, N〉 = ∓1 .

Let M be an oriented nondegenerate surface (time-like or space-like) in E
3
1 with corresponding unit

normal field G , and let α be an arc length parametrized curve in M . Let V be a unit tangent vector field

along α(s) such that V (s) = G(α(s)) × α′(s) with εV =
〈
V, V

〉
= −εGεT . Then the functions

kn(s) =
〈
α′′(s), G(α(s))

〉
and kg(s) =

〈
α′′(s), V (s)

〉
are, respectively, called the normal curvature and the geodesic curvature of α(s) at s if α′′ is non-null. If α′′

is non-null, then we can write α′′(s) as follows

α′′(s) = εNk(s)N(s) = εV kg(s)V (s) + εGkn(s)G(α(s)),

where k(s) is the curvature of α′′(s), and thus we have

εNk2(s) = εG(−εT k2
g(s) + k2

n(s)). (3)

Note that there is no a definition of curvature when α′′(s) is null.

3. Cylindrical ruled surfaces with pointwise 1-type Gauss map

Considering Remark 1, a plane in the Minkowski space E
3
1 which is a cylinder has pointwise 1-type Gauss

map of the second kind. Here we determine nonplanar cylindrical ruled surfaces in E
3
1 with pointwise 1-type

Gauss map of the second kind. A cylindrical ruled surface M is only of type M1
+ , M1

− or M3
+ .

The following lemma is obtained in [14].

Lemma 3.1 Let Mq be a hypersurface with index q in a Lorentz-Minkowski space Ln+1 . Then the Laplacian

of the Gauss map G is given by

ΔG = εG‖AG‖2G + n∇H, (4)

where ‖AG‖2 = tr(AGAG) , εG = 〈G, G〉 and H is the mean curvature of Mq .

We prove the following lemma for later use.

Lemma 3.2 Let M be an oriented nondegenerate surface in the Minkowski space E
3
1 . Let {e1, e2} be a local

orthonormal tangent frame on M with εi =< ei, ei >, i = 1, 2 . If C is a constant vector in E
3
1 , then the

components of C = ε1C1 e1 + ε2C2e2 + εGC3G in the basis {e1, e2, G} of E
3
1 satisfy the following equations:

e1(C1) + ε2ω21(e1)C2 − εGh11 C3 = 0, (5)
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e1(C2) + ε1ω12(e1)C1 − εGh12 C3 = 0, (6)

e1(C3) + ε1h11 C1 + ε2h21 C2 = 0, (7)

e2(C1) + ε2ω21(e2)C2 − εGh21 C3 = 0, (8)

e2(C2) + ε1ω12(e2)C1 − εGh22 C3 = 0, (9)

e2(C3) + ε1h12 C1 + ε2h22 C2 = 0, (10)

where Ci = 〈C, ei〉 , i = 1, 2 and C3 = 〈C, G〉.
Proof. Taking derivative of the vector C in direction ek and using the formulas of Gauss and Weingarten,
we obtain

∇̃ekC =ε1[ek(C1) + ε2ω21(ek)C2 − εGhk1 C3]e1

+ ε2[ek(C2) + ε1ω12(ek)C1 − εGhk2 C3]e2

+ εG[ek(C3) + ε1h1k C1 + ε2h2k C2]G = 0

which produces equations (5)–(10) for k = 1, 2. �

Theorem 3.3 A nonplanar cylindrical ruled surface M in the Minkowski space E
3
1 has pointwise 1-type Gauss

map of the second kind if and only if M is congruent to an open part of the following surfaces:

1. the time-like cylinder M3
+ parametrized by

x(k, t) =
(
t, ±

( (k + k0)
√

R(k)
2c0k0k2

+
c0

2k0
arctan

( k − k0√
R(k)

))
, − k0

2c0k2

)
, (11)

where R(k) = c2
0k

2 − (k − k0)2 > 0 ;

2. the space-like cylinder M1
+ parametrized by

x(k, t) =
(
± ϕ(k),

k0

2c0k2
, t

)
; (12)

3. the space-like cylinder M1
+ parametrized by

x(k, t) =
( k0

2c0k2
,±ψ(k), t

)
; (13)

4. the space-like cylinder M1
+ parametrized by

x(k, t) =
(
± (

k0

4k2
− θ(k)),

k0

4k2
+ θ(k), t

)
; (14)
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5. the time-like cylinder M1
− parametrized by

x(k, t) =
(
± ψ(k),

k0

2c0k2
, t

)
; (15)

6. the time-like cylinder M1
− parametrized by

x(k, t) =
( k0

2c0k2
, ±ϕ(k), t

)
; (16)

7. the time-like cylinder M1
− parametrized by

x(k, t) =
( k0

4k2
+ θ(k), ±

( k0

4k2
− θ(k)

)
, t

)
; (17)

where

ϕ(k) =
(k + k0)
2c0k0k2

√
c2
0k

2 + (k − k0)2 −
c0

2k0
ln

∣∣∣k0 − k +
√

c2
0k

2 + (k − k0)2

k

∣∣∣,
ψ(k) =

(k + k0)
2c0k0k2

√
(k − k0)2 − c2

0k
2 +

c0

2k0
ln

∣∣∣k0 − k +
√

(k − k0)2 − c2
0k

2

k

∣∣∣,
with (k − k0)2 − c2

0k
2 > 0 ,

θ(k) =
1

2(k − k0)
− 1

2k0
ln

∣∣∣ k

k − k0

∣∣∣,
and, p0 , c0 and k0 are nonzero constants.

Proof. Suppose that M has pointwise 1-type Gauss map of the second kind. Then the gradient vector ∇H

of the mean curvature H is nonzero on M because of (3.1). If ∇H were zero, then the Gauss map would be
of pointwise 1-type of the first kind. So the mean curvature H is a nonconstant function on M .

Let {e1, e2} be a local orthonormal tangent frame on M with εi =< ei, ei > , i = 1, 2. By equations (1)

and (4), we have

εG‖AG‖2G + 2∇H = f(G + C) (18)

for some nonzero smooth function f on M and some nonzero constant vector C ∈ E
3
1 . In the basis {e1, e2, G}

we can write
C = ε1C1 e1 + ε2C2e2 + εGC3G,

where Ci = 〈C, ei〉 , i = 1, 2 and C3 = 〈C, G〉 which satisfy equations (5)–(10) in Lemma 3.2. Considering

∇H = ε1e1(H) e1 + ε2e2(H)e2 equation (18) implies

εG||AG||2 = f(1 + εGC3), (19)

e1(ε1h11 + ε2h22) = f C1, (20)

e2(ε1h11 + ε2h22) = f C2. (21)
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Since M is a cylindrical surface, then it is parametrized by

x(s, t) = α(s) + tβ, (22)

where the base curve α(s) which is a smooth time-like or space-like curve with the arc length parameter s lies
in a plane with a time-like or space-like unit normal vector β which is the director of the cylinder.

Now we take a local orthonormal tangent frame {e1, e2} on M as e1 = ∂
∂t and e2 = ∂

∂s with ε1 =

〈e1, e1〉 = 〈β, β〉 = ±1, ε2 = 〈e2, e2〉 = 〈α′(s), α′(s)〉 = ±1 and 〈e1, e2〉 = 〈β, α′(s)〉 = 0. By taking the Gauss

map G as G = e1 × e2 with εG = 〈G, G〉 = −ε1ε2 , then the Frenet 3-frame for the curve α and the frame

{e1, e2, G} on M in E
3
1 have the same orientation.

By a direct calculation we obtain ∇̃e2e2 = α′′(s) = εGk(s)G because α is a plane curve and the principal

normal vector of the curve α is the normal of the cylinder, and ∇̃e1e1 = ∇̃e1e2 = ∇̃e2e1 = 0, where k(s) is the

curvature of α(s). All these relations imply that ω21(e1) = ω21(e2) = 0, h11 = h12 = h21 = 0, and h22 = k(s).

Therefore the mean curvature is H = ε2k(s)/2 which is the function of s , and ‖AG‖2 = k2(s), where k(s) �= 0,

i.e. k(s) is strictly positive or strictly negative. Without losing generality we suppose that k(s) > 0. Thus

equations (20) and (21) give, respectively, C1 = 0 and C2 �= 0.

On the other hand it follows from equations (5)–(7) that C1, C2, and C3 are functions of s , and equations

(9) and (10) give, respectively

C ′
2(s) − εGk(s)C3(s) = 0 (23)

and

C ′
3(s) + ε2k(s)C2(s) = 0. (24)

It is seen from (21) that f is also a function of s . As the vector C is constant, we have

ε2C
2
2(s) − ε1ε2C

2
3(s) = 〈C, C〉 = εCc2

0, (25)

where c0 is a constant and εC = sgn(〈C, C〉).
Equations (19) and (21) yield

k′(s)
k2(s)

=
ε2εGC2

1 + εGC3
(26)

from which and equation (24) we obtain

k′(s)
k(s)

= − εGC ′
3

1 + εGC3
(27)

and from its solution we get

C3(s) = ε1ε2

(
1 − k0

k(s)

)
, (28)

where k0 is a nonzero constant. Also, by using (24) and (28)

C2(s) = −ε1
k0k

′(s)
k3(s)

. (29)
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Moreover, from (21) and (29) we obtain

f(s) = −ε1ε2
k3(s)
k0

. (30)

If C is a non-null vector, then using (28) and (29) equation (25) yields the differential equation

k2
0k

′2 = k4[ε2εCc2
0k

2 + ε1(k − k0)2]. (31)

For later use we need ∫
C2(s)ds = −ε1

∫
k0k

′

k3
ds + d2 = ε1

k0

2k2
+ d2 (32)

and by considering (31)

∫
C3(s)ds = ε1ε2

∫
k − k0

k
ds = ±ε1ε2k0

∫
(k − k0)dk

k3
√

ε2εCc2
0k

2 + ε1(k − k0)2
+ d3,

where d1 and d2 are integration constants. From the evaluation of the last integral for ε1 = 1 we have

∫
C3(s)ds = ±

(
ε2

(k + k0)
2k0k2

√
R(k) − εCc2

0

2k0
ln

(k0 − k +
√

R(k)
k

))
+ d3, (33)

where R(k) = ε2εCc2
0k

2 + (k − k0)2 , and for ε1 = −1 (in this case ε2 = εC = 1) we have

∫
C3(s)ds = ∓

( (k + k0)
2k0k2

√
R(k) +

c2
0

2k0
arctan

( k − k0√
R(k)

))
+ d3, (34)

where R(k) = c2
0k

2 − (k − k0)2 > 0.

A cylindrical ruled surface M is only of type M1
+ , M1

− or M3
+ .

Case 1. M is of type M3
+ , i.e., the vector β is time-like. Hence ε1 = −1 and ε2 = εG = εC = 1.

Considering equation (25), we may put

C2(s) = c0 sin λ(s), C3(s) = c0 cos λ(s), (35)

which satisfy equations (23) and (24) if λ′(s) = k(s), that is, λ(s) = λ0 +
∫

k(s)ds, where λ0 is an integration

constant. Thus we have

sin λ(s) =
C2

c0
=

k0k
′

c0k3
and cosλ(s) =

C3

c0
=

k0 − k

c0k
(36)

for later use.
Since α is a plane curve, acting a Lorentz transformation we can write

α(s) = (0, α2(s), α3(s)) and β = (1, 0, 0)

without loss of generality. Then the Gauss map of the cylinder M3
+ is

G = e1 × e2 = (0,−α′
3(s), α

′
2(s)),
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as e2 = α′(s) = (0, α′
2(s), α′

3(s)). Now we may put α′
2(s) = cosμ(s) and α′

3(s) = sin μ(s) because of

α′
2
2(s) + α′

3
2(s) = 1, where μ(s) is a differentiable function.

The equation α′′(s) = εGk(s)G implies that μ′(s) = k(s). For simplicity we take μ(s) = λ(s) =

λ0 +
∫

k(s)ds . In view of (32), (34) and (36) the base curve α(s) of the cylinder M3
+ is determined uniquely,

up to a rigid motion, by

α(s) = (0, d3 +
1
c0

∫
C3(s)ds, d2 +

1
c0

∫
C2(s)ds),

=
(
0, d3 ±

( (k + k0)
√

R(k)
2c0k0k2

+
c0

2k0
arctan

( k − k0√
R(k)

))
, d2 −

k0

2c0k2

)
, (37)

where R(k) = c2
0k

2 − (k − k0)2 > 0. It is seen that the base curve of the cylinder M3
+ can be parametrized

in terms of the curvature function k , that is, α = α(k). Therefore we obtain the parametrization (11) for the

cylinder M3
+ which has pointwise 1-type Gauss map of the second kind for f(k) = k3

k0
and C = (0, 0, c0).

Case 2. M is of type M1
+ , i.e., ε1 = ε2 = 1, (εG = −1). From equation (25), the vector C is space-like,

time-like or null.
Considering equation (25) we may put

C2(s) = c0 cosh λ(s), C3(s) = c0 sinh λ(s) for εC = 1

or
C2(s) = c0 sinh λ(s), C3(s) = c0 cosh λ(s) for εC = −1

which hold for equations (23) and (24) if λ′(s) = −k(s), that is, λ(s) = λ0−
∫

k(s)ds , where λ0 is an integration

constant. Thus we have

cosh λ(s) =
C2

c0
= − k0k

′

c0k3
and sinhλ(s) =

C3

c0
=

k0 − k

c0k
for εC = 1 (38)

or

cosh λ(s) =
C3

c0
=

k0 − k

c0k
and sinhλ(s) =

C2

c0
= − k0k

′

c0k3
for εC = −1. (39)

For the plane curve α , acting a Lorentz transformation we can write

α(s) = (α1(s), α2(s), 0) and β = (0, 0, 1)

without loss of generality. The Gauss map of the cylinder M1
+ is

G = e1 × e2 = (α′
2(s), α′

1(s), 0)

as e2 = α′(s) = (α′
1(s), α′

2(s), 0). Considering −α′
1
2(s) + α′

2
2(s) = 1, we may put α′

1(s) = sinhμ(s) and

α′
2(s) = cosh μ(s) to determine α(s), where μ is a differentiable function. From the equation α′′(s) = εGk(s)G

we obtain μ′(s) = −k(s). For simplicity we take μ(s) = λ(s) = λ0 −
∫

k(s)ds .
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Now we suppose that C is space-like, i.e., εC = 1. By using (32), (33) and (38) the base curve α(s) of

the cylinder M1
+ is determined uniquely, up to a rigid motion, by

α(s) = (d3 +
1
c0

∫
C3(s)ds, d2 +

1
c0

∫
C2(s)ds, 0),

=
(
d3 ±

((k + k0)
2c0k0k2

√
R(k) − c0

2k0
ln

∣∣∣k0 − k +
√

R(k)
k

∣∣∣), d2 +
k0

2c0k2
, 0

)
,

where R(k) = c2
0k

2 + (k − k0)2 . It is seen the base curve of the cylinder M1
+ can be parametrized in terms of

the curvature function k , that is, α = α(k).

Therefore we obtain the parametrization (12) for the cylinder M1
+ which has pointwise 1-type Gauss

map of the second kind for f(k) = −k3

k0
and C = (0, c0, 0 ).

If C is time-like, i.e., εC = −1, then by a similar argument we obtain the base curve of the cylinder M1
+

as

α(k) =
(
d2 +

k0

2c0k2
, d3 ±

( (k + k0)
2c0k0k2

√
R(k) +

c0

2k0
ln

∣∣∣k0 − k +
√

R(k)
k

∣∣∣), 0
)
,

where R(k) = (k−k0)2−c2
0k

2 > 0. So we get the parametrization (13) for the cylinder M1
+ which has pointwise

1-type Gauss map of the second kind for f(k) = −k3

k0
and C = (−c0, 0, 0).

Now let the vector C be null. From (25) we get C2(s) = ±C3(s). We will consider the case C2(s) = C3(s).

Hence, from (23) we get C2(s) = eμ(s) , where μ(s) = λ0 −
∫

k(s)ds , and then

α′
1(s) = sinhμ(s) =

1
2
(C2(s) −

1
C2(s)

)

and

α′
2(s) = cosh μ(s) =

1
2
(C2(s) +

1
C2(s)

).

Using (28) and (29) we obtain the first two components of α(s) as

αi(s) =
k0

4k2
+

(−1)i

2

( 1
k − k0

− 1
k0

ln
∣∣∣ k

k − k0

∣∣∣) + di, i = 1, 2. (40)

Similarly if we take C2(s) = −C3(s), then the first two components of α(s) are

αi(s) = (−1)i k0

4k2
+

1
2(k − k0)

− 1
2k0

ln
∣∣∣ k

k − k0

∣∣∣ + di, i = 1, 2. (41)

Therefore, considering (40) and (41) we obtain the parametrization (14) for cylinder M1
+ which has

pointwise 1-type Gauss map of the second kind for f(k) = −k3

k0
and C = (−1, 1, 0) if C2(s) = C3(s) or

C = (1, 1, 0) if C2(s) = −C3(s).

Case 3. M is of type M1
− , i.e., ε1 = 1, ε2 = −1, (εG = 1). From (25) the vector C is space-like, time-like

or null.
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Considering equation (25) we may put

C2(s) = c0 sinh λ(s), C3(s) = c0 cosh λ(s) for εC = 1

or
C2(s) = c0 cosh λ(s), C3(s) = c0 sinh λ(s) for εC = −1

which hold equations (23) and (24) if λ′(s) = k(s), that is, λ(s) = λ0 +
∫

k(s)ds , where λ0 is an integration

constant. Thus we have

sinh λ(s) =
C2

c0
= − k0k

′

c0k3
and cosh λ(s) =

C3

c0
=

k0 − k

c0k
for εC = 1 (42)

or

sinh λ(s) =
C3

c0
=

k0 − k

c0k
and cosh λ(s) =

C2

c0
= − k0k

′

c0k3
for εC = −1. (43)

For the plane curve α , acting a Lorentz transformation we can write

α(s) = (α1(s), α2(s), 0) and β = (0, 0, 1)

without loss of generality. The Gauss map of the cylinder M1
+ is

G = e1 × e2 = (α′
2(s), α′

1(s), 0)

as e2 = α′(s) = (α′
1(s), α′

2(s), 0). Considering −α′
1
2(s) + α′

2
2(s) = −1, we may put α′

1(s) = cosh μ(s)

and α′
2(s) = sinhμ(s) to determine α(s), where μ is a differentiable function of s . From the equation

α′′(s) = εGk(s)G we obtain μ′(s) = k(s). For simplicity we take μ(s) = λ(s) = λ0 +
∫

k(s)ds .

Now we suppose that C is space-like, i.e., εC = 1. By using (32), (33) and (42) the base curve α(s) of

the cylinder M1
− is determined uniquely, up to a rigid motion, by

α(s) =(d3 +
1
c0

∫
C3(s)ds, d2 +

1
c0

∫
C2(s)ds, 0),

=
(
d3 ±

(
− (k + k0)

2c0k0k2

√
R(k) − c0

2k0
ln

(k0 − k +
√

R(k)
k

))
,

d2 +
k0

2c0k2
, 0

)
,

where R(k) = (k − k0)2 − c2
0k

2 > 0. It is seen that the base curve of the cylinder M1
− can be parametrized

in terms of the curvature function k , that is, α = α(k). Therefore we obtain the parametrization (15) for the

cylinder M1
− which has pointwise 1-type Gauss map of the second kind for f(k) = k3

k0
and C = (0, c0, 0 ).

If C is time-like, i.e., εC = −1, then by a similar argument we obtain the base curve of the cylinder M1
−

as

α(k) =
(
d2 +

k0

2c0k2
,

d3 ±
(
− (k + k0)

2c0k0k2

√
R(k) +

c0

2k0
ln

(k0 − k +
√

R(k)
k

))
, 0

)
(44)
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where R(k) = c2
0k

2 + (k − k0)2 . So we have the parametrization (16) for the cylinder M1
+ which has pointwise

1-type Gauss map of the second kind for f(k) = k3

k0
and C = (0, −c0, 0).

Now let the vector C be null. From equation (25) we get C2(s) = ±C3(s). We will consider the case

C2(s) = C3(s). Hence, from (23) we get C2(s) = eμ(s) and then

α′
1(s) = cosh μ(s) =

1
2
(C2(s) +

1
C2(s)

)

and

α′
2(s) = sinhμ(s) =

1
2
(C2(s) −

1
C2(s)

).

Using (28) and (29) we obtain the first two components of α(s) as

αi(s) =
k0

4k2
+

(−1)i−1

2

( 1
k − k0

− 1
k0

ln
∣∣∣ k

k − k0

∣∣∣) + di, i = 1, 2. (45)

Similarly if we take C2(s) = −C3(s), then the first two components of α(s) are

αi(s) = (−1)i−1 k0

4k2
+

1
2(k − k0)

− 1
2k0

ln
∣∣∣ k

k − k0

∣∣∣ + di, i = 1, 2. (46)

Therefore, considering (45) and (46) we obtain the parametrization (17) for cylinder M1
− which has

pointwise 1-type Gauss map of the second kind for f(k) = k3

k0
and C = (−1, 1, 0) if C2(s) = C3(s) or

C = (−1,−1, 0) if C2(s) = −C3(s).

4. Noncylindrical flat surfaces with pointwise 1-type Gauss map of the second kind

In this section we study noncylindrical flat surfaces, i.e., cones and tangent developable surfaces with

pointwise 1-type Gauss map of the second kind in E
3
1 .

Theorem 4.1 Let M be a noncylindrical flat surface in the Minkowski space E
3
1 . Then, M has pointwise

1-type Gauss map of the second kind if and only if it is an open part of a right circular cone or a hyperbolic

cone in E
3
1 .

Proof. Suppose that M has pointwise 1-type Gauss map of the second kind. Since M is a regular noncylin-

drical flat surface in the Minkowski space E
3
1 , then M is an open part of a cone or an open part of a tangent

developable surface in E
3
1 . We consider two cases.

Case 1. M is an open part of a cone. Then, by an appropriate rigid motion, M can be parametrized
locally by

x(s, t) = α0 + tβ(s), t �= 0,

where 〈β(s), β(s)〉 = ±1, 〈β′(s), β′(s)〉 = ±1, and α0 is a constant vector. The coordinate vector fields

xs = tβ′(s) and xt = β(s) are orthogonal because of 〈β(s), β(s)〉 = ±1, and the surface M is regular if

tβ′(s) × β(s) �= 0. So we take the orthonormal tangent frame {e1, e2} on M as e1 = 1
t

∂
∂s and e2 = ∂

∂t with
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ε1 = 〈e1, e1〉 = ±1 and ε2 = 〈e2, e2〉 = ±1. The Gauss map of M is given by G = e1 × e2 = β′(s) × β(s) with

εG = 〈G, G〉 = −ε1ε2 .

By a straightforward calculation we obtain

∇̃e1e1 = −ε1ε2

t
e2 − εGkg(s)

t
G, ∇̃e1e2 =

1
t
e1, ∇̃e2e1 = ∇̃e2e2 = 0,

where kg(s) = 〈β′′(s), β(s) × β′(s)〉 �= 0 which is the geodesic curvature of β in the hyperbolic space H
2(−1)

or in the de Sitter space S
2
1(1). All these relations imply that

ω12(e1) = −ε1

t
, ω12(e2) = 0, h11 = −kg(s)

t
, h12 = h21 = h22 = 0,

and thus we have the mean curvature H = −ε1kg(s)
2t and ‖AG‖2 = k2

g(s)

t2 .

Now (8)–(10) imply that C1, C2 , and C3 are functions of s , and equations (5)–(7) become

C ′
1(s) + ε1ε2C2(s) + εGkg(s)C3(s) = 0, (47)

C ′
2(s) − C1(s) = 0, (48)

C ′
3(s) − ε1kg(s)C1(s) = 0. (49)

On the other hand, we have from (19), (20), and (21)

εG

k2
g(s)
t2

= f(1 + εGC3), (50)

−ε1

t2
dkg(s)

ds
= f C1, (51)

ε1kg(s)
t2

= f C2. (52)

It follows from (52) that C2 �= 0. Also equations (50) and (52) give

ε1kg(s)C2(s) − C3(s) = εG (53)

from which by taking derivative with respect to s , we get

ε1k
′
g(s)C2(s) + ε1kg(s)C ′

2(s) = C ′
3(s) (54)

that gives ε1k
′
g(s)C2(s) = 0 in view of (48) and (49). Hence we obtain k′

g(s) = 0 as C2 �= 0, that is, kg(s) is a

nonzero constant.
Now we assume that β′′ is non-null. By considering (3) for the curve β in the hyperbolic space H

2(−1)

(resp., in the de Sitter space S
2
1(1)) we have εNk2(s) = k2

g(s) − 1 ( resp., εNk2(s) = −ε1k
2
g(s) + 1), where

εN is the sign of the principal normal vector N of the curve β . Note that we take εG = −1 for H
2(−1) and
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εG = 1 for S
2
1(1) while we use formula (3). Thus, the curvature k of β is also constant, and k �= 0 because

if the curvature k were zero, then β would be a line, and M would be a part of plane which is a cylindrical
surface.

Therefore, taking the derivative of kg(s) = 〈β′′(s), β(s) × β′(s)〉 = const. �= 0, and using the Frenet

equations (2) it can be shown that the torsion of β is zero, that is, β is a plane curve with nonzero constant

curvature. A plane curve in E
3
1 with nonzero constant curvature is a part of a circle or a hyperbola. Thus

the curve β is a part of a circle or a hyperbola in H
2(−1) or in the de Sitter space S

2
1(1) such that the plane

containing the curve β does not pass through the origin. Therefore the ruled surface M is an open part of a

right circular cone or a hyperbolic cone in E
3
1 .

Moreover equation (51) implies C1 = 0, and equations (48) and (49) imply C ′
2 = 0 and C ′

3 = 0,

respectively, i.e., C2 and C3 are constants. Then we obtain from equations (47) and (53)

C2 =
ε1ε2kg

1 − ε1k2
g

and C3 =
ε1ε2

1 − ε1k2
g

.

Also, we get from (52) f =
ε2(1−ε1k2

g)

t2 . Therefore M has pointwise 1-type Gauss map of the second kind, that

is, equation (1) holds for f = ε2(1−ε1k2
g)

t2
and for the constant vector C = 1

1−ε1k2
g
(ε2kge2 − G).

Now let β′′ be null. If β lies in H
2(−1), we have k2

g = 1, and also ε2 = −1, ε1 = εG = 1. Then equation

(51) implies C1 = 0, and equations (50) and (52) imply kgC2 − C3 = 1. Also, from (47) we have C2 = kgC3 .

In view of the last two equations we obtain (k2
g − 1)C3 = 1, which is not valid as k2

g = 1. If β lies in S
2
1(1) we

have ε2 = 1 and k2
g = ε1 , which holds if ε1 = 1. By a similar argument given above we have (1 − k2

g)C3 = 1,

which is not valid as k2
g = 1. As a result, if β′′ is null, then the Gauss map of the cone M is not of pointwise

1-type of the second kind.

Case 2. M is an open part of a tangent developable surface fully lying in E
3
1 . We will show that there

is no tangent developable surface in E
3
1 with pointwise 1-type Gauss map of the second kind. The surface M

is locally parametrized by

x(s, t) = α(s) + tα′(s),

where α(s) is a unit speed curve with nonzero curvature k(s). Note that if α is a null curve or α′′ is null,

then the tangent surface is degenerate. We assume that the torsion τ (s) of α(s) is nonzero. If τ = 0, then the
tangent surface is a part of a plane which is a cylindrical.

Let T (s), N(s), and B(s) denote the unit tangent vector, principal normal vector and binormal vector
of the curve α with signatures εT , εN and εB = −εT εN , respectively. The coordinate vector fields of M

are xs = α′(s) + tα′′(s) = T (s) + εN tk(s)N(s) and xt = α′(s) = T (s) which are not orthogonal. The

parametrization x is regular if tk(s) �= 0. We take the orthonormal tangent frame {e1, e2} on M as e1 = ∂
∂t

and e2 = εN

tk(s)

(
∂
∂s − ∂

∂t

)
with ε1 = 〈e1, e1〉 = ±1 and ε2 = 〈e2, e2〉 = ±1. It is seen that e1 = T , e2 = N ,

ε1 = εT and ε2 = εN . Then the Gauss map of M is given by G = e1 × e2 = T × N = B with εG = −ε1ε2 .

By a direct calculation we obtain

∇̃e1e1 = ∇̃e1e2 = 0, ∇̃e2e1 =
1
t
e2, ∇̃e2e2 = −ε1ε2

t
e1 −

ε1τ (s)
tk(s)

G.
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So we have ω21(e1) = 0, ω21(e2) = −ε2
t
, h11 = h12 = h21 = 0 and h22 = ε2τ(s)

tk(s)
. Therefore the mean curvature

is H(s, t) = τ(s)
2tk(s), and ‖AG‖2 = ( τ(s)

tk(s))
2.

Now, it follows from equations (5)–(7) that C1, C2 , and C3 are functions of s , and thus equations (8)–(10)
become

C ′
1(s) − ε2k(s)C2(s) = 0, (55)

C ′
2(s) + ε1k(s)C1(s) + ε1ε2τ (s)C3(s) = 0, (56)

C ′
3(s) + ε2τ (s)C2(s) = 0. (57)

On the other hand, we have from (19), (20), and (21) that

εG
τ2

t2k2
= f(1 + εGC3), (58)

− τ

t2k
= f C1, (59)

ε2

t2k

( d

ds
(
τ

k
) +

τ

tk

)
= f C2. (60)

Equation (59) implies that C1 �= 0 as τ �= 0. Also, from (58) and (59) we obtain

τ (s)C1(s) + k(s)C3(s) = ε1ε2k(s) (61)

from which, by taking the derivative we get

τ ′(s)C1(s) + τ (s)C ′
1(s) + k′(s)C3(s) + k(s)C ′

3(s) = ε1ε2k
′(s). (62)

Using equations (55) and (57), equation (62) turns into

τ ′(s)C1(s) + k′(s)C3(s) = ε1ε2k
′(s). (63)

If τ ′(s)k(s) − k′(s)τ (s) �= 0, then equations (61) and (63) give C1 = 0 and C3 = −εG . Hence, we have

τ = 0 from (58) or (59), which is a contradiction.

Now suppose that τ ′(s)k(s) − k′(s)τ (s) = 0, which means that τ (s)/k(s) = r0 is a nonzero constant. In

this case, by (59) and (60) we get

tk(s)C2(s) + ε2C1(s) = 0

which implies that C1 = C2 = 0, that is, τ = 0 by (59). This is a contradiction. Therefore the torsion τ

is zero, and there is no tangent developable surface fully lying in E
3
1 with pointwise 1-type Gauss map of the

second kind.
The converse of the proof follows from a straightforward calculation. �

We then have the following.
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Corollary 4.2 Right circular cones and hyperbolical cones in Minkowski space E
3
1 are the only cones in E

3
1

with pointwise 1-type Gauss map of the second kind.

Corollary 4.3 There is no tangent developable surface fully lying in Minkowski space E
3
1 with pointwise 1-type

Gauss map of the second kind.

Combining Theorem 3.3 and Theorem 4.1 we have

Theorem 4.4 Let M be a flat ruled surface in the Minkowski space E
3
1 . Then, M has pointwise 1-type Gauss

map of the second kind if and only if it is a part of a plane, cylinders given by (11)–(17), a right circular cone
or a hyperbolic cone.
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