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Pointwise slant submanifolds in almost Hermitian manifolds

Bang-Yen Chen and Oscar J. Garay

Abstract

An interesting class of submanifolds of almost Hermitian manifolds (M̃ , g̃, J) is the class of slant

submanifolds. Slant submanifolds were introduced by the first author in [6] as submanifolds M of (M̃, g̃, J)

such that, for any nonzero vector X ∈ TpM, p ∈ M , the angle θ(X) between JX and the tangent space

TpM is independent of the choice of p ∈ M and X ∈ TpM . The first results on slant submanifolds were

summarized in the book [7]. Since then slant submanifolds have been studied by many geometers. Many

nice results on slant submanifolds have been obtained during the last two decades. The main purpose

of this paper is to study pointwise slant submanifolds in almost Hermitian manifolds which extends slant

submanifolds in a very natural way. Several basic results in this respect are proved in this paper.

Key Words: Slant submanifold, pointwise slant submanifold, slant function, conformal mapping, cohomo-
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1. Introduction

Let M be an n-manifold immersed in an almost Hermitian manifold (M̃, J, g̃) with an almost complex
structure J and an almost Hermitian metric g̃ , i.e., g̃ is a Riemannian metric satisfying

g̃(JX, JY ) = g̃(X, Y ) (1.1)

for X, Y lying in the tangent bundle TM̃ of M̃ .

For any vector X tangent to M we put

JX = PX + FX, (1.2)

where PX and FX are the tangential and normal components of JX , respectively. Thus P is an endomorphism
of the tangent bundle TM of M and F a normal-bundle-valued 1-form on TM .

For any nonzero vector X ∈ TpM, p ∈ M, the angle θ(X) between JX and the tangent space TpM is

called the Wirtinger angle of X . The Wirtinger angle gives rise to a real-valued function θ : T ∗M → R , called
the Wirtinger function, defined on the set T ∗M consisting of all nonzero tangent vectors on M .
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Definition 1.1 An immersion φ : M → M̃ of a manifold M into an almost Hermitian manifold M̃ is called
pointwise slant if, at each given point p ∈ M , the Wirtinger angle θ(X) is independent of the choice of the
nonzero tangent vector X ∈ T ∗

p M . In this case, θ can be regarded as a function on M , which is called the

slant function of the pointwise slant submanifold.

Remark 1.1 Pointwise slant submanifolds have been studied in [17] by Etayo under the name of quasi-slant

submanifolds. It was proved in [17] that a complete, totally geodesic quasi-slant submanifold of a Kähler manifold
is a slant submanifold.

Clearly, every 2-dimensional submanifold (or simply, a surface) in an almost Hermitian manifold is always
pointwise slant.

Definition 1.2 A point p in a pointwise slant submanifold is called a totally real point if its slant function θ

satisfies cos θ = 0 at p . Similarly, a point p is called a complex point if its slant function satisfies sinθ = 0 at p .

A pointwise slant submanifold M in an almost Hermitian manifold (M̃, J, g̃) is called totally real if every point

of M is a totally real point. A totally real submanifold M in M̃ is called Lagrangian if dimM = dimC M̃ .

Definition 1.3 A pointwise slant submanifold of an almost Hermitian manifold is called pointwise proper slant
if it contains no totally real points.

A pointwise slant submanifold M is called slant in the sense of [6, 7] if its slant function θ is globally
constant, i.e., θ is also independent of the choice of the point on M . In this case, the constant θ is called
the slant angle of the slant submanifold. Since the notion of slant submanifolds was introduced in 1990, slant
submanifolds have been studied by many geometers. Consequently, many nice results on slant submanifolds
have been obtained during the last two decades (see, for instance, [1]-[3], [7], [8], [10], [14], [15] and [18]-[22] for

more details).

The main purpose of this paper is to study pointwise slant submanifolds in almost Hermitian manifolds.
The notion of pointwise slant submanifolds extends the notion of slant submanifolds in a very natural way.
Several fundamental results on pointwise slant submanifolds are proved in this paper.

2. Conformal invariants of pointwise slant submanifolds

A differentiable map φ : M → N of a differentiable manifold M into another differentiable manifold N

is called an immersion if the differential dφ : TM → TN is injective [5]. Let φ : M → M̃ be an immersion

of an n-manifold into an almost Hermitian manifold M̃ equipped with an almost complex structure J and an
almost Hermitian metric g̃ . We denote by g the metric on M induced from g̃ via φ .

Let P and F be the endomorphism and the normal-bundle-valued 1-form defined by (1.2). Since M̃ is

almost Hermitian, we find from (1.1) and (1.2) that

g(PX, Y ) = −g(X, PY ) (2.1)

for vectors X, Y tangent to M . Hence P 2 is a self-adjoint endomorphism of the tangent bundle TM of M .

Thus each tangent space TpM , p ∈ M , admits an orthogonal direct decomposition of eigenspaces of P 2 :

TpM = D1
p ⊕ · · · ⊕ Dk(p)

p . (2.2)

631



CHEN, GARAY

Since P is skew-symmetric and J2 = −I, each eigenvalue λi of P 2 lies in [−1, 0 ] .

Clearly, a point p ∈ M is totally real (respectively, complex point) if P = 0 at p (respectively, P = J

at p).

Lemma 2.1 An immersion φ : M → M̃ of a manifold M into an almost Hermitian manifold M̃ is a pointwise

slant immersion if and only if P 2 = −(cos2 θ)I for some real-valued function θ defined on the tangent bundle
TM of M .

Proof. If φ : M → M̃ is a pointwise slant immersion with slant function θ : M → R , then we have

g(PX, PX) = cos2 θ(p)g(X, X)

for X ∈ TpM . Combining this with (2.1) yields

g(P 2X, X) = − cos2 θ(p)g(X, X).

Thus, after applying polarization, we obtain P 2 = −(cos2 θ)I on TM .

Conversely, if M is a submanifold of M̃ satisfying P 2 = −(cos2 θ)I for some function θ on M , then

g(PX, PX) = −g(P 2X, X) = cos2 θ(p)g(X, X),

which implies that the Wirtinger angle is independent of the choice of X ∈ T ∗
p M at each given point p ∈ M .

Hence the submanifold is pointwise slant. �

A pointwise slant submanifold is called a totally real submanifold if every point of the submanifold is a
totally real point (cf. [13]).

The following result is an immediate consequence of Lemma 2.1.

Corollary 2.1 Let φ : M → M̃ be a pointwise slant immersion of an n-manifold into an almost Hermitian
manifold. If φ is not a totally real immersion, then M is even-dimensional.

The following proposition provides another simple characterization of pointwise slant immersions.

Proposition 2.1 Let φ : M → M̃ be an immersion of a manifold M into an almost Hermitian manifold M̃ .
Then φ is a pointwise slant immersion if and only if P : TM → TM preserves orthogonality, i.e., P carries
each pair of orthogonal vectors into orthogonal vectors.

Proof. Let φ : M → M̃ be an immersion of an n-manifold M into an almost Hermitian manifold M̃ .

Denote by θ : T 1M → R the Wirtinger function on the unit tangent bundle T 1M defined in section 1. Clearly,

with respect the induced metric, T 1
p M is the unit hypersphere Σp in TpM centered at o .

At a given point p ∈ M , we have

g(PX, PX) = cos2 θ(X) (2.3)

for any unit vector X ∈ T 1
p M . For each unit vector Y tangent to Σp at X ∈ Σp (hence Y ⊥ X ), we have

2g(PX, PY ) = Y g(PX, PX) = −(Y θ) sin 2θ(X). (2.4)
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Consequently, P carries each pair of orthogonal vectors in TpM into a pair of orthogonal vectors in TpM if

and only if the Wirtinger function θ is independent of the choice of X ∈ T 1
p M . This implies the proposition.

�

The following proposition shows the important facts that the notions of pointwise slant submanifolds and
slant functions are conformal invariant.

Proposition 2.2 If φ : M → (M̃, J, g̃) is a pointwise slant immersion of a manifold M into an almost

Hermitian manifold M̃ . Then, for any given function f on M̃ , the immersion φ : M → (M̃, J, e2f g̃) is

pointwise slant with the same slant function as the immersion φ : M → (M̃, J, g̃) .

Proof. Let φ : M → (M̃, J, g̃) be a pointwise slant immersion with slant function θ . Then, for any X ∈ TpM ,

we have

g̃(PX, PX) = (cos2 θ)g̃(X, X) (2.5)

Thus, if we put ḡ = e2f g̃ for a given function f on M̃ , then

ḡ(PX, PX) = e2f g̃(PX, PX)

= (cos2 θ)e2f g̃(X, X)

= (cos2 θ)ḡ(X, X).

(2.6)

Hence, φ : M → (M̃, J, e2f g̃) is also a pointwise slant immersion with the same slant function as φ : M →
(M̃, J, g̃). �

The following conformal property of slant immersions is an immediate consequence of Proposition 2.2.

Corollary 2.2 If φ : M → (M̃, J, g̃) is a slant immersion of M into an almost Hermitian manifold M̃ . Then,

for every given function f on M̃ , φ : M → (M̃, J, e2f g̃) is also a slant immersion with the same slant angle.

Recall that a Hermitian n-manifold (M̃, J, g) is called a locally conformal Kähler manifold if there exist

an open cover {Ui}i∈I of M̃ and a family {fi}i∈I of smooth functions fi : Ui → R such that each local metric

gi = e−2fig|Ui (2.7)

is Kählerian (cf. [16]).

Another interesting application of Proposition 2.2 is the following.

Corollary 2.3 For each integer n ≥ 1 , there exist infinitely many 2n-dimensional totally umbilical proper
slant submanifolds in locally conformal Kähler 2n-manifolds.

Proof. Let M be an open domain of a proper slant 2n-plane of the complex Euclidean 2n-space (C2n, J, g0)

and let f be a smooth function defined on M . Then M is totally geodesic in C2n .
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Consider the new metric g∗ = e2fg0 . Let ξ denote the vector field associated with the 1-form df with
respect to g0 , i.e.,

g0(ξ, Z) = df(Z), ∀Z ∈ TC
2n.

Then it follows from formula (2.8) of [4, p. 381] that the second fundamental h∗ of M in (C2n, J, g∗) satisfies

h∗(X, Y ) = g0(X, Y )ξN , (2.8)

where ξN is the normal component of the vector field ξ|M . Thus M is a non-totally geodesic, totally umbilical

submanifold of the locally conformal Kähler 2n-manifold (C2n, J, g∗) whenever ξN �= 0. Therefore it follows

from Corollary 2.2 that M is a proper slant submanifold of (C2n, J, g∗). This proves the corollary. �

3. Examples of pointwise slant submanifolds

In this section, we provide some examples of pointwise slant submanifolds in almost Hermitian manifolds.

Example 1 Every 2-dimensional submanifold in an almost Hermitian manifold is pointwise slant.

Remark 3.1 A pointwise slant surface in an almost Hermitian manifold is called purely real if it contains no
complex points. Some basic properties of purely real surfaces in Kähler surfaces have been obtained in [9]-[12].

Example 2 Every slant (resp. proper slant) submanifold in an almost Hermitian manifold is pointwise slant

(resp. pointwise proper slant).

Example 3 Let E4n = (R4n, g0) denote the Euclidean 4n-space endowed with the standard Euclidean metric

g0 and let {J0, J1} be a pair of almost complex structures on E4n satisfying J0J1 = −J1J0 . Assume that
J0, J1 are orthogonal almost complex structures, i.e., they are compatible with the Euclidean metric g0 ; thus

g0(JiX, JiY ) = g0(X, Y ), i = 0, 1, for X, Y ∈ T (E4n).

Let us denote (R4n, J0, g0) by C2n
0 . For any real-valued function f : E4n → R , we define an almost

complex structure Jf on E4n by

Jf = (cos f)J0 + (sin f)J1 . (3.1)

Then C2n
f = (R4n, Jf , g0) is an almost Hermitian manifold.

For any given pointwise slant submanifold (resp. slant submanifold) M in (E4n, J0, g0), M is also a

pointwise slant submanifold (resp. slant submanifold) of C2n
f = (R4n, Jf , g0). In particular, if M is a complex

submanifold of C2n
0 , then M is a pointwise slant minimal submanifold in C2n

f whose slant function θ is the

restriction of f on M , i.e., θ = f |M .

Remark 3.2 There do exist pairs of orthogonal almost complex structures {J0, J1} which satisfy the conditions

mentioned in Example 3. For instance, let J0 and J1 be the two orthogonal almost complex structures on E4n
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defined by

J0(a1, . . . , a2n, b1, . . . , b2n)

= (−b1, . . . ,−b2n, a1, . . . , a2n),

J1(a1, . . . , a2n, b1, . . . , b2n)

= (−a2, a1, . . . ,−a2n, a2n−1, b2,−b1, . . . .b2n,−b2n−1).

(3.2)

Then J0J1 = −J1J0 . Since there exist many real-valued functions on C2n and many complex submanifolds

in C2n , we may conclude from Example 3 that there are infinitely many examples of pointwise slant minimal
submanifolds in almost Hermitian manifolds which are not slant.

4. Pointwise slant submanifolds in Kähler manifolds

For a submanifold M of an almost Hermitian manifold (M̃, J, g̃), we denote by ∇ and ∇̃ the Levi-

Civita connections of M and M̃ , respectively. Then the Gauss and Weingarten formulas of M in M̃ are given
respectively by

∇̃XY = ∇XY + h(X, Y ), (4.1)

∇̃Xξ = −AξX + DXξ, (4.2)

where X, Y are tangent vector, ξ is a normal vector field, h is the second fundamental form, D the normal
connection and A the shape operator of M .

The second fundamental form h and the Weingarten map A are related by

g(AξX, Y ) = g̃(h(X, Y ), ξ). (4.3)

The mean curvature vector H of M is defined by

H =
(

1
n

)
trace h, n = dimM. (4.4)

For any vector field ξ normal to the submanifold M , we put

Jξ = tξ + fξ, (4.5)

where tξ and fξ are the tangential and the normal components of Jξ , respectively. It is easy to verify that f

is an endomorphism of the normal bundle and t is a tangent-bundle-valued 1-form on the normal bundle T⊥N .

We have the following result in terms of the operators A, F, P defined by (1.2) and (4.2).

Proposition 4.1 A pointwise slant submanifold M in a Kähler manifold is slant if and only if the shape
operator of M satisfies

AFXPX = AFPXX (4.6)

for X ∈ TM .
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Proof. Let M be a pointwise slant submanifold of a Kähler manifold M̃ with slant function θ . For any
unit tangent vector field X of M , we may put

PX = (cos θ)X∗, (4.7)

where X∗ is a unit tangent vector field orthogonal to X . Then, for any tangent vector Y of M , we have

∇̃Y (JX) = ∇̃Y ((cos θ)X∗) + ∇̃Y FX

= (cos θ)∇Y X∗ + (cos θ)h(Y, X∗) − (sin θ)(Y θ)X∗

− AFXY + DY (FX).

(4.8)

On the other hand, we also have

∇̃Y (JX) = J∇̃Y X

= P (∇Y X) + F (∇Y X) + th(X, Y ) + fh(X, Y ).
(4.9)

Hence, after comparing the tangential components of (4.8) and (4.9), we find

(sin θ)(Y θ)X∗ = (cos θ)∇Y X∗ − AFXY − P (∇Y X) − th(X, Y ). (4.10)

Thus, by taking the inner product of (4.10) with X∗ , we obtain

(sin θ)Y θ = g̃(h(X, Y ), FX∗) − g̃(h(Y, X∗), FX). (4.11)

Consequently, the pointwise slant submanifold is slant if and only if

AFX∗X = AFXX∗

holds for any X ∈ TM , which implies the proposition. �

Some consequences of Proposition 4.1 are the following.

Corollary 4.1 Every totally geodesic pointwise slant submanifold of any Kähler manifold is slant.

Proof. Follows from Proposition 4.1 and the fact that the shape operator A vanishes identically for totally
geodesic submanifolds. �

Corollary 4.2 Let M be a 2n-dimensional totally umbilical pointwise proper slant submanifold of a Kähler

2n-manifold M̃ . If M is non-totally geodesic in M̃ , then M is always non-slant in M̃ .

Proof. Assume that M is a 2n-dimensional totally umbilical pointwise proper slant submanifold of a Kähler

2n-manifold M̃ . Then the second fundamental form h of M satisfies

h(X, Y ) = g(X, Y )H (4.12)

for X, Y ∈ TM . Thus we have

g(AFPXX, Y ) = g̃(h(X, Y ), FPX) = g̃(FPX, H)g(X, Y ), (4.13)

g(AFXPX, Y ) = g̃(FX, H)g(PX, Y ). (4.14)
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If M is slant, then Proposition 4.1 and (4.13)–(4.14) imply that

g̃(FPX, H)X = g̃(FX, H)PX = 0. (4.15)

Since M is non-totally geodesic, totally umbilical in M̃ , M is a non-minimal submanifold. Thus, M cannot
be a complex submanifold of the Kähler manifold. Moreover, by the assumption, there exists a point p ∈ M

with H(p) �= 0. Hence, after applying the condition dimM = dimC M̃ , we conclude that there exists a vector

X ∈ TpM satisfying FX = H(p) �= 0. Thus, by using (4.15) we find PX = 0. Therefore, p is a totally real

point, which contradicts the assumption that M is pointwise proper slant. Consequently, M cannot be slant. �

For totally umbilical surfaces in an arbitrary Kähler manifold, we have the following.

Proposition 4.2 We have the following:

(1) Every totally geodesic surface in any Kähler surface is slant.

(2) Every non-totally geodesic, totally umbilical surface in any Kähler surface is a non-slant, pointwise slant
surface, unless it is Lagrangian.

Proof. Statement (1) is a special case of Corollary 4.1. Statement (2) follows from Corollary 4.2 and the
fact that every complex surface in a Kähler manifold is minimal. �

Remark 4.1 Statement (2) of Proposition 4.2 implies that every totally umbilical surface in the Euclidean
complex plane is a non-slant, pointwise slant surface.

Remark 4.2 It follows from Corollary 2.3 that statement (2) of Proposition 4.2 is false if the Kähler surface
were replaced by a locally conformal Kähler surface.

5. A canonical cohomology class

Recall that a 2n-dimensional manifold N is called a symplectic manifold if it has a non-degenerate closed
2-form Φ, i.e., Φ is a 2-form satisfying dΦ = 0 and Φn �= 0 at each point on N .

For a given pointwise proper slant 2n-submanifold M of a Kähler manifold (M̃, J, g̃), we put

Ω(X, Y ) = g(X, PY ) (5.1)

for vectors X, Y tangent to M . Then, by applying Lemma 1.1 of [7, p.78], we know that Ω is a non-degenerate
2-form on M .

We recall the following lemma from [6, page 23].

Lemma 5.1 Let M be a submanifold of a Kähler manifold M̃ . Then for any vectors X, Y tangent to M , we
have

(∇XP )Y = th(X, Y ) + AFY X,

where h is the second fundamental form and A the shape operator of M .

The following result extends Theorem 3.4 of [6, page 96].
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Theorem 5.1 Let M be a proper pointwise slant submanifold of a Kähler manifold M̃ . Then Ω is closed.
Consequently, Ω defines a canonical cohomology class of M :

[Ω] ∈ H2(M ; R). (5.2)

Proof. By definition of the exterior differentiation, we have

3dΩ(X, Y, Z) =XΩ(Y, Z) + Y Ω(Z, X) + ZΩ(X, Y )

− Ω([X, Y ], Z)− Ω([Y, Z], X) − Ω([Z, X], Y ).

Thus, by applying the definition of Ω, we obtain

3dΩ(X, Y, Z) =g(∇XY, PZ) + g(Y,∇X(PZ)) + g(∇Y Z, PX)

+ g(Z,∇Y (PX)) + g(∇ZX, PY ) + g(X,∇Z(PY ))

− g([X, Y ], PZ)− g([Z, X], PY ) − g([Y, Z], PX)

= g(Y,∇X(PZ)) + g(Z,∇Y (PX)) + g(X,∇Z(PY ))

+ g(∇XZ, PY ) + g(∇Y X, PZ) + g(∇ZY, PX).

Therefore, by using the definition of ∇P , we find

3dΩ(X, Y, Z) = 〈X, (∇ZP )Y 〉 + 〈Y, (∇XP )Z〉 + 〈Z, (∇Y P )X〉 , (5.3)

where ∇P is defined by
(∇XP )Y = ∇X(PY ) − P∇XY

for any vector fields X, Y tangent to M . Therefore, after applying Lemma 5.1 and formula (5.3), we find

3dΩ(X, Y, Z) =g(X, th(Y, Z)) + g(X, AFY Z) + g(Y, th(Z, X))

+ g(Y, AFZX) + g(Z, th(X, Y )) + g(Z, AFXY ).
(5.4)

Consequently, by applying formulas (1.1), (1.4), (1.5) of [6, pages 13-14] and formula (5.4), we obtain (5.2).
This proves the theorem. �

Corollary 5.1 Every 2n-dimensional proper pointwise slant submanifold M of a Kähler manifold is a sym-
plectic manifold.

Proof. Under the hypothesis, it follows from Theorem 5.1 that dΩ = 0. On the other hand, it follows from
(5.1) that Ωn is a positive multiple of the volume element of M . Thus, Ωn �= 0. Consequently, Ω defines a
symplectic structure on M . �

6. A topological obstruction to pointwise slant immersions

As an immediate consequence of Theorem 5.1 we have the following topological obstruction to pointwise
proper slant immersions.
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Theorem 6.1 Let M be a compact 2n-dimensional differentiable manifold with H2i(N ; R) = 0 for some

i ∈ {1, . . . , n} . Then M cannot be immersed in any Kähler manifold as a pointwise proper slant submanifold.

Proof. Assume that M can be immersed in a Kähler manifold M̃ as a pointwise proper slant submanifold.
Then we have dΩ = 0 according to Theorem 5.1.

If H2i(N ; R) = 0 holds for some i ∈ {1, . . . , n} , then Ωi is an exact form. Thus, we may put Ωi = dω

for some (2i − 1)-form ω . Hence, we find

Ωn = (dω) ∧ Ωn−i = d(ω ∧ Ωn−i).

But this is impossible, since Ωn is a positive multiple of the volume form according to (5.1). �

As an important immediate consequence of Theorem 6.1, we have the following optimal non-existence
result.

Corollary 6.1 Every topological 2n-sphere with n > 1 cannot be immersed in any Kähler manifold as a
pointwise proper slant submanifold.

Proof. Follows from Theorem 6.1 and the fact that the Betti numbers βi of a topological 2n-sphere satisfy
β1 = · · · = β2n−1 = 0. �

Corollary 6.1 is sharp. This can be seem from the following two remarks.

Remark 6.1 If n = 1 , Corollary 6.1 is false. For instance, the diagonal embedding of the 2-sphere S2 into
the the Hermitian symmetric space

Q2 = SO(4)/SO(2) × SO(2) = S2 × S2

is a Lagrangian surface, which is by definition a pointwise proper slant submanifold.

Remark 6.2 The condition “proper” in Corollary 6.1 cannot be dropped. Since the unit 2n-sphere S2n(1)

can be isometrically immersed in the complex projective 2n-space CP 2n(4) with constant holomorphic sectional
curvature 4 as a totally geodesic Lagrangian submanifold.

The immersed S2n(1) is a pointwise non-proper slant submanifold of CP 2n(4) for any n ≥ 2 .
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