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An identity between the m-spotty weight enumerators of a linear
code and its dual”®
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Abstract
The m-spotty byte error control codes provide a good source for detecting and correcting errors in
semiconductor memory systems using high density RAM chips with wide I/O data (e.g. 8, 16, or 32 bits).
m-spotty byte error control codes are very suitable for burst correction. Here, we introduce the m-spotty
weights and m-spotty weight enumerator of linear codes over the ring F» + uF» and prove a MacWilliams

type identity.
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1. Introduction

Byte error control codes play an important role in computer memory systems that use chips with 4-bit
I/O data [8]. Recently, high-density RAM chips with wide I/O data of 8, 16 and 32 bits have also found
applications for byte error control codes. These chips are quite vulnerable to multiple random error bits while
being exposed to strong electromagnetic waves, radio active particles, etc. As such in order to be able to
correct multiple errors a new spotty byte error called m-spotty byte error is introduced in [11] for binary codes.
Construction of codes correcting byte errors and properties of such codes are also investigated. Spotty byte
error correcting codes further require lower number of check bits compared to the existing byte error control RS
codes [11, 12, 14]. Some related work can be found in [6, 11, 14]. Recently, a MacWilliams identity has been
proven for m-spotty byte error codes [10]. Most of the work on byte errors known to the author is applied over
binary or extension fields of binary fields. A link between binary codes and quaternary (Zy) codes is established
in [4] where some binary nonlinear codes are represented as images of linear quaternary codes via a Gray map.
Recently, Lee m-spotty weight enumerators over quaternary codes have been introduced and a MacWilliams
type identity is proved by the author [9]. In [1], Bachoc considered linear codes over the ring F, + uF), (p
prime) and constructed modular lattices by making use of linear codes over these rings. Later, interest in linear
codes over these rings has grown quite remarkably [2, 3]. Studying linear codes over special rings with algebraic
structural properties leads to gaining insight into some linear or nonlinear codes over fields and their application

to other algebraic structures. Here, in this paper, we introduce m-byte error control linear codes over the ring
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R = Fy+uFy = {0,1,u,1+u} with u> = 0 and establish a MacWilliams type identity for m-spotty weight
enumerators.

The m-spotty Hamming distance for binary linear codes is shown to be metric [11]. A linear code C' of
length n over R is defined to be an R-submodule of R™. The elements of C' are called codewords.

The Hamming weight w of a codeword c¢ is the number of nonzero entries of the codeword ¢ and is
denoted by w(c). The Hamming distance between the codewords ¢ and v is defined by d(c,v) = w(c — v).

Now, we give the definition of m-spotty weight of a codeword c. Let ¢ = (c11,¢12, .-, Clby - - -5 Cn1s Cn2y - - -y

cnp) € R be a codeword of length N = bn. The i th byte of ¢ will be denoted by ¢; = (ci1, ciz, - - -, Cip)-
Spotty byte errors are introduced originally for binary codes [14].

Definition 1.1 [14] An error e is called a spotty byte error or t/b-error if t or fewer bits within a b-byte are

i error, where 1 <t <b.

Now, we extend the definition of m-spotty weights originally introduced in [11] for binary codes to codes
over Fy 4+ ukFs.

Definition 1.2 Let e € RN be an error vector and e; € RY be the i th byte of e where 1 <1i <n. The number
of t/b-errors in e, denoted by wys(e), and called m-spotty weight is defined as

— [w(ei)
(3
w = .
we) =30 |4
i=1

If t =1, then wys(e) = w(e), the usual Hamming weight in this particular case.

There are two classes of spotty byte errors [14]. The first is the class of s-spotty (single spotty) byte
errors which consists of errors of weight less than or equal to ¢ in a byte where ¢ < b. The other is the class of

m-spotty (multiple spotty) byte errors where more than ¢ errors occur in a byte of length b. In this particular
case, if k > ¢ random errors have occurred in a byte of length b where ¢ < b, then we say that multiple (ﬂ

t/b errors have occurred. Otherwise, we say that single spotty or s-spotty errors have occurred in short. To

illustrate the definitions we give an example:

Example 1.1 Let b=6,n=3 and t = 2 and assume that (00uu001100110u0u0u) € R'® is a codeword. If the
received word is (011u001100110ulu0l), then in the first and the last bytes s-spotty errors have occurred. On
the other hand, if the received word is (vulullllulluOullOu), then in the first byte multiple f%] = 3 (triple)
2/6 errors and in the second byte multiple [3] = 2 (double) 2/6 errors and in the last byte an s-spotty error

have occurred. (Here, the underline notation is used to note the error locations.)

In a similar way, we define the m-spotty distance of two codewords ¢ and v as d(c,v) =Y., f@]
Further, it is also straightforward to show that this distance is a metric in RY.

Let ¢ = (c1,¢2,...,cn) and v = (v1,v2, . ..,vN) be two elements of RYV. An inner product of the elements
¢ and v is defined by (c,v) = Zf\;l Civ;.

Let C be a linear code. The set C+ = {v € RN|(c,v) = 0 for all ¢ € C} is also a linear code and it is
called the dual code of C.
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The m-spotty t/b-weight enumerator of a linear code C' is defined by

A(z) = Z Zwm(e),

ceC

Let a; € N count the number of bytes with Hamming weight i. Then,

b
> i/ oy

j=0
gives the m-spotty ¢/b-weight of a codeword. Hence, we have

&g

A(z) = Z Agﬁ(z[j/ﬂ)
3=0

aptar+-+ap=n

where @ = (ap, a1, ..., ap) denotes the distribution of bytewise Hamming weights of a codeword and Az gives

the number of codewords of weight distribution @.

2. The MacWilliams identity

The MacWilliams identity relates the weight enumerator of a code to its dual [7]. The MacWilliams
identity has many important applications in algebraic coding theory. In this section, first we state several

lemmas that will help on proving the main Theorem 2.1. We also give an example that illustrates the theorem.
The ring R has three ideals {0}, (u) = {0,u}, and R. These are by definition the additive subgroups of

R. As an additive group, R has four characters. In this paper, we always refer to the character x defined by

B 1, a€{0,1},
x(a) _{ —1, otherwise. (1)

We note that x is a nontrivial character, i.e. x is not the identity map on the nonzero ideals of R.

We can readily obtain the following result by using the definition of the character x in (1).

Lemma 2.1 Let H # {0} be an ideal of R. Then,

Zx(a)zo.

a€H

Lemma 2.2 Let a € R. Then,
Zx(ar)={ 0 e
reER ’

Proof. If a =0, then clearly x (ar) =0 for all 7 € R and hence the result follows. Otherwise, if a # 0, and

a =u, then > x(ur)=2- 3> x(r)=0, by Lemma2.1. If a 40, and a # u, then > x(ar) = > x(r) =0,
reER re(u) reR reR

by Lemma 2.1. O
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Definition 2.1 Let v = (vy,va,...,v5) € RY. Then, the support of v is defined by supp (v) = {i|v; # 0} and
the complement of supp (v) is denoted by supp (v).

Lemma 2.3 Let ¢ = (¢, ca,...,¢) € R, with w(c)=j #0 and k € {1,2,...,5}. Then,

Z x ({¢,v)) = 0.
0<w(v)<k
supp(v) Csupp(c)
Proof.  Let {l1,ls,...,lx} C supp(c). If we define a map ¢ : R¥ — R such that ¢(vi,ve,...,v%) =
c,v1 + -+ + ¢ vg. This is a ring homomorphism and the image Im¢ = H is not zero since w(c) # 0.
Further, H is the nonzero ideal of R generated by {c,...,c;, }. Thus, by the first isomorphism theorem,

|R¥|/|Kerg| = H # {0}. Let |Ker¢| = m.

k
> x(ew) = > x (Z clivll) =m > x(h)=0

)<k k heH
supp(v) Crupp(©) iy )€R c

by Lemma 2.1. O

Now we introduce some auxiliary notations. Let ¢ = (c1, ¢, ..., ¢p) € RY and define
Sk(c) = {v € R®[supp (v) C supp (c) and k = |supp (v) |} and

Sk(c) = {v € R’[supp (v) C supp (c) and k = [supp (v) [}.

Lemma 2.4 Let ¢ = (cy, ¢, ...,cp) € R’ and w(c) # 0. For all k positive integers, we let I, = {i1,ia, ... i} C
supp (¢) and Iy = 0. Then, we have

> x(ewv) = (=D
supup%f;ilk

Proof. We use the notation R* = R\ {0}. We apply induction on k.

For k=0 i.e. Iy =0, we have

Yo oxlev)= > x(0)=x(0)=1

veRD wg (v)=0
supp(v)=Ip

For k =1, we have

Z X((C’U»: Z X(Cilvil): Z X(Cilvil)_lz_l'
vERD i€l v, ER
supp(v)=Iy UnER*

Now, we assume that the identity holds true for k = r, i.e.

S xew) = (-1
Su:pigilr
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For k =r+ 1, suppose supp (v) = {i1, 42, ..., iy, tr4+1 } . Then

Z X ((C’ U>) = Z X Z Cijvij + Ciry1Vipyq

veRD ViqsVigsesVip Vi, g ER* j=1
supp(v)=I. 41

kA
= E X E Ci; Vi X(CiT+1UiT+1)
j=1

ViqsVigsees Wiy Wiy ER*
T
= § : X § :Cijvi:‘ § : X (Ciriavi,s)
Vi ,Vig 7~~~7'U'LTER* =1 Vipiq ER*

= (-1)" (1) = (1)

a
Corollary 2.1 Let ¢ = (¢, ¢z, ...,c5) € R® and w(c) = j #0. For all 0 <k < j, we have
k(J
> e = 04 (]).
vESk(c)
Proof.
J k
> olem= XX ae= ¥ 0f=(]) ek
vESk (c) I, Csupp(c)  supp(v)=Ik I, Csupp(c)
a

Lemma 2.5 Let ¢ = (c1,¢a,...,c3) € R® and w(c) = j #0. For all 0 < k < j, we have

> e =3("7).

vESk(c)

Proof. Since v € S(c) with supp (v) C supp (c) we have x ((c,v)) = 1. Further, since k = |supp (v) |, there

are (b;j ) ways of choosing a subset of size k£ from the complement of support of ¢ of size k. For each subset

of size k, the sum of characters equals to 3¥. Hence, the result follows. O

Lemma 2.6 Let ¢ = (cy,co,...,¢) € R with w(c) =7, 0<j1 <j and 0 < jy, <b—j. We define
Si1a(c)={v e R®|j1 = [supp (v) Nsupp (c) | and jo = |supp (v) Nsupp (c)|}. Then,

> xlen=cure(2) (000,

vES;y,j5(c)
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Proof. Let ¢V and ¢(® denote the partial vectors consisting of the first j and the last b — j entries of ¢,

respectively. Then,

S x(e) =

vES;y,j5(c)

Z X Z civi + Z CrUp

vES;y,j5(c) i€supp(v)Nsupp(c) resupp (v)Nsupp(c)
= Z X Z C;U; X Z CrUy
vES;y 4, (c) i€supp(v)Nsupp(c) resupp (v)Nsupp(c)
= Y (D)) T ((@0@)) = (- <J>3J (b fj>_
Ve, (M) vES), () It J2
In the last line of the equations above, both Corollary 2.1 and Lemma 2.5 are applied. O

Lemma 2.7 Let ¢ = (c1,ca,...,c) € R® and w(c) = j. Then,

j o b—j . .
- b— .y
[wa (v)/t] — 1)71342 (j > ( j> [(G1+72)/t]
E c,v))z E E . . z .
X (( >) ( ) J1 jo

vER? j1=0 j2=0

Proof. Since the sum > x ((c,v))z[*»(®)/t] tuns over all v € R, we can split the sum according to the
vER®

set Sj, j,(c) where j; and jo run through all possible cases. Hence, by Lemma 2.6, we have

j o b—j
Z x ({c, U>)Z[wM(v)/ﬂ = Z Z x ({e, U>)Z[(J’1+j2)/ﬂ_
veER’ J1=0 j2=0 VESj) o (c)

Lemma 2.8 Let C be a linear code over R and C* its dual code and

Then,
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Proof.

S i@ =33 x(w)f @)
ueC

ueC veRNY
=2 2 x @+ Y x(wu)f @
ueCveC+ u€C veR"P\C+
1T rmr Y Y x )
veC+ veERM\C+ uel

Now, for fixed v € R™\ C* and for all ¢ € C let ¢,(c) = (c,v). Since ¢, is an R-module homomor-
phism, ¢,(C) is a nonzero ideal of R. Hence, by Lemma 2.1, > x ({u,v)) = 0. Therefore, the second double
ueC

sum in the last line of the equations equals zero, hence we get the required result. O

Theorem 2.1 Let C be a linear code. The relation between the m-spotty t/b- weight enumerators of C and

its dual 1s given by

g

b
OIS | (G I D SRS § (CIOR

aotar+tFap=n J= cotarttap=n  j=0

[}

where

J —J b
-y Z J13J2< >< 3>Z[(j1+j2)/ﬂ_

Jj1=0 j2=0 J2

3

Proof. In Lemma 2.8, we set f (v) = [] 2[*()/*] where v; represents the i th byte of v. Then,

Flor=3" xew) H LTw(:)/t]

vERM®

=3 T Y xlen o) x (e va) - x (en o)) [[M000.

v1ERP v ERD v, ERY i=1

Hence,

F@ =TI | X xlewsle

V; ER?

By Lemma 2.7, we have

_ ﬁ Z Z J13J2< 1> (b ;zki>z[(j1+j2)/ﬂ
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where k; = w (¢;). Thus,

b a;(c)

fle)= H ZJ: ‘_J (—1)71372 <3> (b fj>z(<j1+j2>/tw

J2

Therefore,

ORICES- IED SR | (CTORE

veC+ 0,01,...,05 >0 j=0
aptar+-+ap=n

Here, we give a moderate example in order to illustrate the theorem.

Example 2.1 Let

1 0 w1 uw O
G = 01 1 uw 0 wu
be the generator matriz of a linear code C of length 6. C is a free submodule and it has 16 codewords. The
dual of C is a linear code of length 6 also and it has 4* = 256 codewords. The necessary computations in order

to apply the main theorem are listed in Tables 1 and 2.

Table 1. The codewords and bitwise Hamming weights where n = 2 and b = 3.

Codewords (o, 1, (o, (v3) Codewords (ap, a1, a2, a3)
v1 = (0,0,0,0,0,0) (2,0,0,0) vo = (L,0,u, L, u,0) (0,0,2,0)
2 = (0, ,1,0,0,0) (1,0,1,0) v10 = (L, 0,1, w,0) (0,0,2,0)
vy =(0,1,1,u,0,u) (0,0,2,0) v = (L, L, 1+ u,1+u,u,u) (0,0,0,2)
ve = (0,14 u,1+wu,u,0,u) (0,0,2,0) vig= (1L, 14u,1,1+u,u,u) (0,0,0,2)
vs = (u,0,0,u,0,0) (0,2,0,0) vig = (1 +u,0,u, 1 +u,u,0) (0,0,2,0)
ve = (u,u, u,u,0,0) (0,1,0,1) vig = (L +u,u,0,14+u,u,0) (0,0,2,0)
vy = (u,1,1,0,0,u) (0,1,0,1) vis =(1+u,1,14+u,1,u,u) (0,0,0,2)
vg = (u, 1 +u,1+u,0,0,u) (0,1,0,1) vig=(1+u,14+u,1,1u,u) (0,0,0,2)

Hence, by Theorem 2.1, the m-spotty 2/3-weight enumerator of the dual code is

Wer (2) = > Ax

3
aotartaztaz=2 Jj=

|
(Fj(2) = el (16 + 962 + 13762% + 16322° + 9762") .
0

Therefore,
Wer (2) =14 62 + 8622 4+ 1022% + 612,
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Table 2. The codewords and the corresponding terms.

Codewords Fo(2)F1(2)Fa(z)F5(2)
vy Fo(2)Fo(2) = 1+ 722 + 135022 + 194423 + 72927
Vo Fy(2)Fo(2) = 1+ 322 — 11422 + 8127
v;  (1=3,4,9,10,13,14) Fy(2)Fa(2) =1 — 82 + 2222 — 2423 + 927
Us Fi(2)Fi(2) = 1+ 162 + 4622 — 14423 + 8127
v, (1=26,7,8) Fi(2)F3(2) =1+ 82 — 1022 — 823 + 927
v, (1=11,12,15,16) F3(2)F3(2) =1 — 222 + 2%

Fo(2) =1+362+2722F1 (2) =1+82—922, F5(2) =1 — 42+ 322, and F3(2) = 1 — 2%
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