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doi:10.3906/mat-1103-55

An identity between the m-spotty weight enumerators of a linear
code and its dual∗

İrfan Şiap

Abstract

The m -spotty byte error control codes provide a good source for detecting and correcting errors in

semiconductor memory systems using high density RAM chips with wide I/O data (e.g. 8, 16, or 32 bits).

m -spotty byte error control codes are very suitable for burst correction. Here, we introduce the m -spotty

weights and m -spotty weight enumerator of linear codes over the ring F2 + uF2 and prove a MacWilliams

type identity.
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1. Introduction

Byte error control codes play an important role in computer memory systems that use chips with 4-bit
I/O data [8]. Recently, high-density RAM chips with wide I/O data of 8, 16 and 32 bits have also found
applications for byte error control codes. These chips are quite vulnerable to multiple random error bits while
being exposed to strong electromagnetic waves, radio active particles, etc. As such in order to be able to
correct multiple errors a new spotty byte error called m-spotty byte error is introduced in [11] for binary codes.
Construction of codes correcting byte errors and properties of such codes are also investigated. Spotty byte
error correcting codes further require lower number of check bits compared to the existing byte error control RS
codes [11, 12, 14]. Some related work can be found in [6, 11, 14]. Recently, a MacWilliams identity has been

proven for m-spotty byte error codes [10]. Most of the work on byte errors known to the author is applied over

binary or extension fields of binary fields. A link between binary codes and quaternary (Z4 ) codes is established

in [4] where some binary nonlinear codes are represented as images of linear quaternary codes via a Gray map.
Recently, Lee m-spotty weight enumerators over quaternary codes have been introduced and a MacWilliams
type identity is proved by the author [9]. In [1], Bachoc considered linear codes over the ring Fp + uFp (p

prime) and constructed modular lattices by making use of linear codes over these rings. Later, interest in linear

codes over these rings has grown quite remarkably [2, 3]. Studying linear codes over special rings with algebraic
structural properties leads to gaining insight into some linear or nonlinear codes over fields and their application
to other algebraic structures. Here, in this paper, we introduce m-byte error control linear codes over the ring
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R = F2 + uF2 = {0, 1, u, 1 + u} with u2 = 0 and establish a MacWilliams type identity for m-spotty weight
enumerators.

The m-spotty Hamming distance for binary linear codes is shown to be metric [11]. A linear code C of
length n over R is defined to be an R -submodule of Rn. The elements of C are called codewords.

The Hamming weight w of a codeword c is the number of nonzero entries of the codeword c and is
denoted by w(c). The Hamming distance between the codewords c and v is defined by d(c, v) = w(c − v).

Now, we give the definition of m-spotty weight of a codeword c. Let c = (c11, c12, . . . , c1b, . . . , cn1, cn2, . . . ,

cnb) ∈ Rbn be a codeword of length N = bn. The i th byte of c will be denoted by ci = (ci1, ci2, . . . , cib).

Spotty byte errors are introduced originally for binary codes [14].

Definition 1.1 [14] An error e is called a spotty byte error or t/b-error if t or fewer bits within a b-byte are
in error, where 1 ≤ t ≤ b.

Now, we extend the definition of m-spotty weights originally introduced in [11] for binary codes to codes
over F2 + uF2 .

Definition 1.2 Let e ∈ RN be an error vector and ei ∈ Rb be the i th byte of e where 1 ≤ i ≤ n. The number
of t/b-errors in e, denoted by wM (e), and called m-spotty weight is defined as

wM(e) =
n∑

i=1

⌈
w(ei)

t

⌉
.

If t = 1, then wM (e) = w(e), the usual Hamming weight in this particular case.

There are two classes of spotty byte errors [14]. The first is the class of s-spotty (single spotty) byte
errors which consists of errors of weight less than or equal to t in a byte where t ≤ b. The other is the class of
m-spotty (multiple spotty) byte errors where more than t errors occur in a byte of length b. In this particular

case, if k ≥ t random errors have occurred in a byte of length b where t ≤ b, then we say that multiple
⌈

k
t

⌉
t/b errors have occurred. Otherwise, we say that single spotty or s-spotty errors have occurred in short. To
illustrate the definitions we give an example:

Example 1.1 Let b = 6, n = 3 and t = 2 and assume that (00uu001100110u0u0u)∈ R18 is a codeword. If the

received word is (011u001100110u1u01) , then in the first and the last bytes s-spotty errors have occurred. On

the other hand, if the received word is (uu1u1111u11u0u110u) , then in the first byte multiple �5
2� = 3 (triple)

2/6 errors and in the second byte multiple �4
2
� = 2 (double) 2/6 errors and in the last byte an s-spotty error

have occurred. (Here, the underline notation is used to note the error locations.)

In a similar way, we define the m-spotty distance of two codewords c and v as dM (c, v) =
∑n

i=1�
d(ci,vi)

t
�.

Further, it is also straightforward to show that this distance is a metric in RN .

Let c = (c1, c2, . . . , cN) and v = (v1, v2, . . . , vN) be two elements of RN . An inner product of the elements

c and v is defined by 〈c, v〉 =
∑N

i=1 civi.

Let C be a linear code. The set C⊥ = {v ∈ RN |〈c, v〉 = 0 for all c ∈ C} is also a linear code and it is
called the dual code of C.
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The m-spotty t/b-weight enumerator of a linear code C is defined by

A (z) =
∑
c∈C

zwM (c).

Let αi ∈ N count the number of bytes with Hamming weight i. Then,

b∑
j=0

�j/t� · αj

gives the m-spotty t/b -weight of a codeword. Hence, we have

A (z) =
∑

α0+α1+···+αb=n

Aα

b∏
j=0

(
z�j/t�

)αj

where α = (α0, α1, . . . , αb) denotes the distribution of bytewise Hamming weights of a codeword and Aα gives
the number of codewords of weight distribution α.

2. The MacWilliams identity

The MacWilliams identity relates the weight enumerator of a code to its dual [7]. The MacWilliams
identity has many important applications in algebraic coding theory. In this section, first we state several
lemmas that will help on proving the main Theorem 2.1. We also give an example that illustrates the theorem.

The ring R has three ideals {0}, 〈u〉 = {0, u}, and R. These are by definition the additive subgroups of
R. As an additive group, R has four characters. In this paper, we always refer to the character χ defined by

χ(a) =
{

1, a ∈ {0, 1},
−1, otherwise. (1)

We note that χ is a nontrivial character, i.e. χ is not the identity map on the nonzero ideals of R.

We can readily obtain the following result by using the definition of the character χ in (1).

Lemma 2.1 Let H 
= {0} be an ideal of R. Then,

∑
a∈H

χ (a) = 0.

Lemma 2.2 Let a ∈ R. Then, ∑
r∈R

χ (ar) =
{

4, a = 0
0, a 
= 0

Proof. If a = 0, then clearly χ (ar) = 0 for all r ∈ R and hence the result follows. Otherwise, if a 
= 0, and

a = u, then
∑

r∈R

χ (ur) = 2· ∑
r∈〈u〉

χ (r) = 0, by Lemma 2.1. If a 
= 0, and a 
= u, then
∑

r∈R

χ (ar) =
∑

r∈R

χ (r) = 0,

by Lemma 2.1. �
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Definition 2.1 Let v = (v1, v2, ..., vb) ∈ Rb. Then, the support of v is defined by supp (v) = {i|vi 
= 0} and

the complement of supp (v) is denoted by supp (v).

Lemma 2.3 Let c = (c1, c2, ..., cb) ∈ Rb, with w (c) = j 
= 0 and k ∈ {1, 2, . . . , j}. Then,

∑
0≤w(v)≤k

supp(v)⊆supp(c)

χ (〈c, v〉) = 0.

Proof. Let {l1, l2, . . . , lk} ⊆ supp (c) . If we define a map φ : Rk → R such that φ(v1, v2, . . . , vk) =

cl1v1 + · · · + clkvk. This is a ring homomorphism and the image Imφ = H is not zero since w (c) 
= 0.

Further, H is the nonzero ideal of R generated by {cl1 , . . . , clk}. Thus, by the first isomorphism theorem,

|Rk|/|Kerφ| = H 
= {0}. Let |Kerφ| = m.

∑
w(v)≤k

supp(v)⊆supp(c)

χ (〈c, v〉) =
∑

(vl1 ,...,vlk
)∈Rk

χ

(
k∑

i=1

clivli

)
= m

∑
h∈H

χ(h) = 0

by Lemma 2.1. �

Now we introduce some auxiliary notations. Let c = (c1, c2, ..., cb) ∈ Rb and define

Sk(c) = {v ∈ Rb|supp (v) ⊆ supp (c) and k = |supp (v) |} and

Sk(c) = {v ∈ Rb|supp (v) ⊆ supp (c) and k = |supp (v) |}.

Lemma 2.4 Let c = (c1, c2, ..., cb) ∈ Rb and w(c) 
= 0. For all k positive integers, we let Ik = {i1, i2, . . . , ik} ⊆
supp (c) and I0 = ∅. Then, we have

∑
v∈Rb

supp(v)=Ik

χ (〈c, v〉) = (−1)k
.

Proof. We use the notation R∗ = R \ {0}. We apply induction on k.

For k = 0 i.e. I0 = ∅, we have

∑
v∈Rb

supp(v)=I0

χ (〈c, v〉) =
∑

wH (v)=0

χ (0) = χ (0) = 1.

For k = 1, we have∑
v∈Rb

supp(v)=I1

χ (〈c, v〉) =
∑

i1∈I

vi1
∈R∗

χ (ci1vi1) =
∑

vi1∈R

χ (ci1vi1) − 1 = −1.

Now, we assume that the identity holds true for k = r, i.e.

∑
v∈Rb

supp(v)=Ir

χ (〈c, v〉) = (−1)r
.
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For k = r + 1, suppose supp (v) = {i1, i2, ..., ir, ir+1} . Then

∑
v∈Rb

supp(v)=Ir+1

χ (〈c, v〉) =
∑

vi1 ,vi2,...,vir ,vir+1∈R∗

χ

⎛
⎝ r∑

j=1

cijvij + cir+1vir+1

⎞
⎠

=
∑

vi1 ,vi2 ,...,vir ,vir+1∈R∗

χ

⎛
⎝ r∑

j=1

cij vij

⎞
⎠χ

(
cir+1vir+1

)

=
∑

vi1 ,vi2 ,...,vir∈R∗

χ

⎛
⎝ r∑

j=1

cij vij

⎞
⎠ ∑

vir+1∈R∗

χ
(
cir+1vir+1

)

= (−1)r (−1) = (−1)r+1
.

�

Corollary 2.1 Let c = (c1, c2, ..., cb) ∈ Rb and w(c) = j 
= 0. For all 0 ≤ k ≤ j, we have

∑
v∈Sk(c)

χ (〈c, v〉) = (−1)k

(
j

k

)
.

Proof.

∑
v∈Sk(c)

χ (〈c, v〉) =
∑

Ik⊆supp(c)

∑
supp(v)=Ik

χ (〈c, v〉) =
∑

Ik⊆supp(c)

(−1)k =
(

j

k

)
(−1)k

.

�

Lemma 2.5 Let c = (c1, c2, ..., cb) ∈ Rb and w(c) = j 
= 0. For all 0 ≤ k ≤ j, we have

∑
v∈Sk(c)

χ (〈c, v〉) = 3k

(
b − j

k

)
.

Proof. Since v ∈ Sk(c) with supp (v) ⊆ supp (c) we have χ (〈c, v〉) = 1. Further, since k = |supp (v) |, there

are
(
b−j
k

)
ways of choosing a subset of size k from the complement of support of c of size k. For each subset

of size k, the sum of characters equals to 3k. Hence, the result follows. �

Lemma 2.6 Let c = (c1, c2, ..., cb) ∈ Rb with w(c) = j, 0 ≤ j1 ≤ j and 0 ≤ j2 ≤ b − j. We define

Sj1,j2(c) = {v ∈ Rb|j1 = |supp (v) ∩ supp (c) | and j2 = |supp (v) ∩ supp (c)|}. Then,

∑
v∈Sj1 ,j2(c)

χ (〈c, v〉) = (−1)j13j2

(
j

j1

)(
b − j

j2

)
.
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Proof. Let c(1) and c(2) denote the partial vectors consisting of the first j and the last b − j entries of c ,
respectively. Then,

∑
v∈Sj1 ,j2(c)

χ (〈c, v〉) =

=
∑

v∈Sj1 ,j2(c)

χ

⎛
⎝ ∑

i∈supp(v)∩supp(c)

civi +
∑

r∈supp(v)∩supp(c)

crvr

⎞
⎠

=
∑

v∈Sj1 ,j2(c)

χ

⎛
⎝ ∑

i∈supp(v)∩supp(c)

civi

⎞
⎠ · χ

⎛
⎝ ∑

r∈supp(v)∩supp(c)

crvr

⎞
⎠

=
∑

v∈Sj1 (c(1))

χ
(〈

c(1), v(1)
〉)

·
∑

v∈Sj2 (c(2))

χ
(〈

c(2), v(2)
〉)

= (−1)j1

(
j

j1

)
3j2

(
b − j

j2

)
.

In the last line of the equations above, both Corollary 2.1 and Lemma 2.5 are applied. �

Lemma 2.7 Let c = (c1, c2, ..., cb) ∈ Rb and w (c) = j. Then,

∑
v∈Rb

χ (〈c, v〉)z�wM (v)/t� =
j∑

j1=0

b−j∑
j2=0

(−1)j13j2

(
j

j1

)(
b − j

j2

)
z�(j1+j2)/t�.

Proof. Since the sum
∑

v∈Rb

χ (〈c, v〉)z�wM (v)/t� runs over all v ∈ Rb, we can split the sum according to the

set Sj1,j2(c) where j1 and j2 run through all possible cases. Hence, by Lemma 2.6, we have

∑
v∈Rb

χ (〈c, v〉)z�wM (v)/t� =
j∑

j1=0

b−j∑
j2=0

∑
v∈Sj1,j2(c)

χ (〈c, v〉)z�(j1+j2)/t�.

�

Lemma 2.8 Let C be a linear code over R and C⊥ its dual code and

f̂ (u) =
∑

v∈Rnb

χ (〈u, v〉)f (v) .

Then,

∑
v∈C⊥

f (v) =
1
|C|

∑
u∈C

f̂ (u).
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Proof. ∑
u∈C

f̂ (u) =
∑
u∈C

∑
v∈Rnb

χ (〈u, v〉)f (v)

=
∑
u∈C

∑
v∈C⊥

χ (〈u, v〉)f (v) +
∑
u∈C

∑
v∈Rnb\C⊥

χ (〈u, v〉)f (v)

= |C|
∑

v∈C⊥

f (v) +
∑

v∈Rnb\C⊥

∑
u∈C

χ (〈u, v〉)f (v) .

Now, for fixed v ∈ Rnb \ C⊥ and for all c ∈ C let φv(c) = 〈c, v〉 . Since φv is an R -module homomor-

phism, φv(C) is a nonzero ideal of R. Hence, by Lemma 2.1,
∑

u∈C

χ (〈u, v〉) = 0. Therefore, the second double

sum in the last line of the equations equals zero, hence we get the required result. �

Theorem 2.1 Let C be a linear code. The relation between the m-spotty t/b- weight enumerators of C and
its dual is given by

∑
α0+α1+···+αb=n

A⊥
α

b∏
j=0

(
z�j/t�

)αj

=
1
|C|

∑
α0+α1+···+αb=n

Aα

b∏
j=0

(Fj(z))αj

where

Fj (z) =
j∑

j1=0

b−j∑
j2=0

(−1)j13j2

(
j

j1

)(
b − j

j2

)
z�(j1+j2)/t�.

Proof. In Lemma 2.8, we set f (v) =
n∏

i=1
z�w(vi)/t� where vi represents the i th byte of v. Then,

f̂ (c) =
∑

v∈Rnb

χ (〈c, v〉)
n∏

i=1

z�w(vi)/t�

=
∑

v1∈Rb

∑
v2∈Rb

· · ·
∑

vn∈Rb

χ (〈c1, v1〉)χ (〈c2, v2〉) · · ·χ (〈cn, vn〉)
n∏

i=1

z�w(vi)/t�.

Hence,

f̂ (c) =
n∏

i=1

⎛
⎝ ∑

vi∈Rb

χ (〈ci, vi〉)z�w(vi)/t�

⎞
⎠.

By Lemma 2.7, we have

f̂ (c) =
n∏

i=1

⎛
⎝ ki∑

j1=0

b−ki∑
j2=0

(−1)j13j2

(
ki

j1

)(
b − ki

j2

)
z�(j1+j2)/t�

⎞
⎠
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where ki = w (ci) . Thus,

f̂ (c) =
b∏

j=0

⎛
⎝ j∑

j1=0

b−j∑
j2=0

(−1)j13j2

(
j

j1

)(
b − j

j2

)
z�(j1+j2)/t�

⎞
⎠

αj(c)

where αj(c) = |{i| w (ci) = j}| .
∑

v∈C⊥

f (v) =
1
|C|

∑
c∈C

b∏
j=0

(Fj (z))αj(c).

Therefore,

∑
v∈C⊥

f (v) =
1
|C|

∑
α0,α1,...,αb≥0
α0+α1+···+αb=n

Aα

b∏
j=0

(Fj(z))αj .

�

Here, we give a moderate example in order to illustrate the theorem.

Example 2.1 Let

G =
[

1 0 u 1 u 0
0 1 1 u 0 u

]

be the generator matrix of a linear code C of length 6. C is a free submodule and it has 16 codewords. The

dual of C is a linear code of length 6 also and it has 44 = 256 codewords. The necessary computations in order
to apply the main theorem are listed in Tables 1 and 2.

Table 1. The codewords and bitwise Hamming weights where n = 2 and b = 3.

Codewords (α0, α1, α2, α3) Codewords (α0, α1, α2, α3)
v1 = (0, 0, 0, 0, 0, 0) (2,0,0,0) v9 = (1, 0, u, 1, u, 0) (0,0,2,0)
v2 = (0, u, u, 0, 0, 0) (1,0,1,0) v10 = (1, u, 0, 1, u, 0) (0,0,2,0)
v3 = (0, 1, 1, u, 0, u) (0,0,2,0) v11 = (1, 1, 1 + u, 1 + u, u, u) (0,0,0,2)

v4 = (0, 1 + u, 1 + u, u, 0, u) (0,0,2,0) v12 = (1, 1 + u, 1, 1 + u, u, u) (0,0,0,2)
v5 = (u, 0, 0, u, 0, 0) (0,2,0,0) v13 = (1 + u, 0, u, 1 + u, u, 0) (0,0,2,0)
v6 = (u, u, u, u, 0, 0) (0,1,0,1) v14 = (1 + u, u, 0, 1 + u, u, 0) (0,0,2,0)
v7 = (u, 1, 1, 0, 0, u) (0,1,0,1) v15 = (1 + u, 1, 1 + u, 1, u, u) (0,0,0,2)

v8 = (u, 1 + u, 1 + u, 0, 0, u) (0,1,0,1) v16 = (1 + u, 1 + u, 1, 1, u, u) (0,0,0,2)

Hence, by Theorem 2.1, the m-spotty 2/3-weight enumerator of the dual code is

WC⊥ (z) =
∑

α0+α1+α2+α3=2

Aα

3∏
j=0

(Fj(z))αj =
1
|C|

(
16 + 96z + 1376z2 + 1632z3 + 976z4

)
.

Therefore,

WC⊥ (z) = 1 + 6z + 86z2 + 102z3 + 61z4.
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Table 2. The codewords and the corresponding terms.

Codewords F0(z)F1(z)F2(z)F3(z)
v1 F0(z)F0(z) = 1 + 72z + 1350z2 + 1944z3 + 729z4

v2 F2(z)F0(z) = 1 + 32z − 114z2 + 81z4

vi (i = 3, 4, 9, 10, 13, 14) F2(z)F2(z) = 1 − 8z + 22z2 − 24z3 + 9z4

v5 F1(z)F1(z) = 1 + 16z + 46z2 − 144z3 + 81z4

vi (i = 6, 7, 8) F1(z)F3(z) = 1 + 8z − 10z2 − 8z3 + 9z4

vi (i = 11, 12, 15, 16) F3(z)F3(z) = 1 − 2z2 + z4

F0 (z) = 1 + 36z + 27z2,F1 (z) = 1 + 8z − 9z2, F2 (z) = 1 − 4z + 3z2, and F3 (z) = 1 − z2.
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