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Weight and nonlinearity of Boolean functions

Lavinia Corina Ciungu

Abstract

In this paper we analyze the weight and the nonlinearity of various types of Boolean functions. We give

some general results related to rotation symmetric Boolean functions, and in particular, we prove partially

a conjecture stated by Cusick and Stănică in [3].
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1. Introduction

Boolean functions have many applications in coding theory and cryptography. A detailed account of the
latter applications can be found in the book [2]. If we define Vn to be the vector space of dimension n over

the finite field GF (2) = {0, 1} , then an n variable Boolean function f(x1 , x2, ..., xn) = f(x) is a map from Vn

to GF (2). Every Boolean function f(x) has a unique polynomial representation (usually called the algebraic

normal form [2, p. 6]), and the degree of f is the degree of this polynomial. A function of degree ≤ 1 is said to
be affine, and if the constant term is 0 such a function is called linear. We let Bn denote the set of all Boolean
functions in n variables, with addition and multiplication done modulo 2. If we list the 2n elements of Vn

as v0 = (0, ..., 0), v1 = (0, ..., 0, 1), ... in lexicographic order, then the 2n -vector (f(v0), f(v1), ..., f(v2n−1)) is

called the truth table of f . The weight (also called Hamming weight) wt(f) of f is defined to be the number

of 1′ s in the truth table for f . In many cryptographic uses of Boolean functions, it is important that the
truth table of each function f has an equal number of 0′ s and 1′ s; in that case, we say that the function
f is balanced. The distance d(f, g) between 2 Boolean functions f and g is defined by d(f, g) = wt(f + g),
where the polynomial addition is done modulo 2. An important concept in cryptography is the nonlinearity
N(f) defined by N(f) = min

a affine
wt(f + a). We say a Boolean function f(x) in Bn is rotation symmetric if the

algebraic normal form of the function is unchanged by any cyclic permutation of the variables x1, x2, ..., xn. In
recent years, rotation symmetric functions have proven to be very useful in several areas of cryptography [2,

pp. 108–118]. This has led to many papers that study different aspects of the theory of rotation symmetric

functions. We say that 2 Boolean functions f(x) and g(x) in Bn are affine equivalent (we shall use the notation

f ≡ g ) if g(x) = f(Ax + b), where A is an n by n nonsingular matrix over the finite field GF (2) and b is an

n-vector over GF (2). We say f(Ax+b) is a nonsingular affine transformation of f(x). It is easy to see that if f
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and g are affine equivalent, then wt(f) = wt(g) and N(f) = N(g). We say that the weight and nonlinearity are
affine invariants. In this paper we study various properties of the weight and nonlinearity of Boolean functions.
Some of our results concern rotation symmetric Boolean functions, and in particular we prove some cases of a
more general version of a conjecture of Cusick and Stănică [3, Conjecture 12, p. 300].

2. General algebraic properties of weight and nonlinearity

We will first recall the notion of “direct sum” for Boolean functions (notation ⊕) which is well known in

the literature (see, for example, [1, p. 2880]).

Let f = f(x1, x2, . . . , xn) and g = g(x1, x2, . . . , xk) be 2 Boolean functions of n and respectively k

variables. Denote by f ⊕ g the function

(f ⊕ g)(x1, . . . , xn+k) = f(x1, . . . , xn) + g(xn+1, . . . , xn+k)

(this means that f ⊕ g is obtained from the tables of f and g by a kind of “expansion”). It is immediate from

the definition that if f ′ and g′ are other 2 such functions; then (f + f ′) ⊕ (g + g′) = (f ⊕ g) + (f ′ ⊕ g′).

Definition 2.1 For f = f(x1, . . . , xn) of 2n bits, we introduce the following notations:

(a) wt(f) = 1
2n · wt(f) (the “relative” or “weighted” weight),

(b) N(f) = 1
2n N(f) ,

(c) w0(f) = 1 − 2 ·wt(f) ,

(d) N0(f) = 1 − 2 · N(f) .

Note that then N(f) = min
L affine

{wt(f + L)} and

N0(f) = 1 − 1
2

min
L affine

{wt(f + L)} = max
L affine

{1 − 1
2
wt(f + L)}

= max
L affine

{w0(f + L)}.

We also note that wt(f) ∈ [0, 1]∩ Q for all f and also w0(f) ∈ [−1, 1]∩ Q for all f.

Lemma 2.2 For any 2 functions f and g we have:

wt(f ⊕ g) =
1
2
− 1

2
(1 − 2wt(f))(1 − 2wt(g)),

and

w0(f ⊕ g) = w0(f)w0(g).
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Proof. For the first equation in the lemma, we use the identity: wt(f⊕g) = 2kwt(f)+2nwt(g)−2wt(f)wt(g)

(well known in the literature; see, for example [1]). Dividing by 2n+k we get

wt(f ⊕ g) =
wt(f)

2n
· 2k − wt(g)

2k
+

2n − wt(f)
2n

· wt(g)
2k

= wt(f)(1 − wt(g)) + wt(g)(1 − wt(f))

= wt(f) + wt(g) − 2wt(f) ·wt(g)

=
1
2
− 1

2
(1 − 2wt(f))(1 − 2wt(g)).

To prove the second equation in the lemma, we observe that the work above implies

w0(f ⊕ g) = 1 − 2wt(f ⊕ g) = 1 − 2(
1
2
− 1

2
(1 − 2wt(f))(1 − 2wt(g)))

= 1 − 1 + w0(f)w0(g) = w0(f)w0(g).

�

In the same manner as above, we can prove the following result.

Lemma 2.3 With the above notations we have

N0(f ⊕ g) = N0(f)N0(g),

N(f ⊕ g) = N(f) + N(g) − 2N(f)N (g),

and
N(f ⊕ g) = 2kN(f) + 2nN(g) − 2N(f)N(g).

We note that the final assertion in Lemma 2.3 shows that an inequality proved by Seberry, Zhang, and
Zheng in [6, Lemma 18, p. 196] in fact always holds with equality. This sharpens some results in that paper.

Thus, when one is interested in the weight and nonlinearity of a function, it is enough to consider the
numbers w0(f) and N0(f) and work with these, since they have better algebraic properties.

From the above results, we obtain the following theorem, which is also well known in the literature (see,

for example, [1]).

Theorem 2.4 If f1, . . . , fn are such that N(fi) = wt(fi) then N(f1 ⊕ · · · ⊕ fn) = wt(f1 ⊕ · · · ⊕ fn).

3. Classes of Boolean functions with equal weight and nonlinearity

Theorem 3.1 Let fk = x1x2 . . . xsk for k = 1, 2, . . . , n and let sk ≥ 2, s0 = 0.

Let S(s1,s2,...,sN) = f1⊕f2⊕· · ·⊕fn =
∑n−1

k=0 xs1+···+sk+1xs1+···+sk+2 . . . xs1+···+sk+sk+1 . Then N(S(S1,...,SN )) =

wt(S(S1,...,SN )).

Proof. Obviously, wt(fk) = 1, since the only value of 1 for this function is obtained for x1 = · · · = xsk = 1.

Also, it is easy to see that fk is not affine since it is neither balanced nor equal to 0 or 1 because sk ≥ 2 (a
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linear function must necessarily have 1 of these 3 properties). Therefore, wt(fk + L) ≥ 1 for all L , L affine,

#{fk = 1} = wt(fk + 0) = 1, so

N(fk) = min
L

{wt(fk + L)} = 1.

Hence, wt(fk) = N(fk) for all k . Using Theorem 2.4, we get the conclusion. �

This is a generalization of the fact that wt(SN ) = N(SN ) and also of [4, Lemma 7]. Indeed, define
SN = x1xN+1x2N+1 + x2xN+2x2N+2 + · · · + xNx2Nx3N . It is obvious that SN = f ⊕ f ⊕ · · · ⊕ f︸ ︷︷ ︸

N

, where

f = x1x2x3 . Then the above theorem shows that

Corollary 3.2 The function SN has equal weight and nonlinearity.

Corollary 3.3 For functions f1, f2, . . . , fn (of lengths in bits 2k1 , 2k2, . . . , 2kn ) we have

wt(f1 ⊕ f2 ⊕ · · · ⊕ fn) =
1
2
− 1

2

n∏
k=1

(1 − 2wt(fk)).

The following result on quadratic functions will be needed later (as in the Introduction, we use the

notation f ≡ g to mean that the Boolean functions f and g are affine equivalent). There are too many papers

on quadratic Boolean functions to list here (see the book [2] for detailed references). The important reference

here is the paper of Kim et al. [4]; we give simpler proofs and generalizations of several results in that paper.

For example, Theorem 3.1 above extends [4, Lemma 7] from the degree 2 case to any degree > 2.

Theorem 3.4 For a permutation σ of {1, 2, . . . , n}, define fσ =
∑n

i=1 xixσ(i). Assume the decomposition of

σ into disjoint cycles is σ = τ1τ2 . . . τt, where each τi is a ki -cycle (i.e. a cycle of length ki .) Then

fσ ≡ fk1,2 ⊕ fk2,2 ⊕ . . .⊕ fkt,2 ⊕
∑

i≥k1+...+kt+1

xi.

Proof. Let τi be (ai1, ai2, . . . , ai,ki), that is, τi(ai1) = ai2, τi(ai2) = ai3, . . . , τi(ai,ki−1 ) = ai,ki, τi(ai,ki) = ai1

and τi(j) = j for all j /∈ {ai1, . . . , ai,ki}. Let Ai = {ai1, ai2, . . . , ai,ki}, and let F = {i : σ(i) = i}. Then

fσ =
n∑

i=1

xixσ(i) =
t∑

i=1

∑
j∈Ai

xjxσ(j) +
∑
j∈F

xjxσ(j) =
t∑

i=1

∑
j∈Ai

xixσi(j) +
∑
i∈F

xixi

=
k∑

i=1

(xai1xai2 + xai2xai3 + . . . + xai,ki−1xai,ki
+ xai,ki

xai1) +
∑
i∈F

xi

After a suitable change of variables, namely the permutation of the variables given by

xa11 ↔ x1; xa12 ↔ x2; . . . ; xa1,k1
↔ xk1 ;

xa21 ↔ xk1+1; . . . ; xa2,k2
↔ xk1+k2 ; . . . . . . . . . ;

xat,1 ↔ xk1+...+kt−1+1; . . . ; xat,kt
↔ xk1+...+kt−1+kt ,
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with the rest of the variables that correspond to indices in F being changed to the variables xk1+...+kt+1, . . . , xn,

we obtain

fσ ≡
t∑

i=1

fki,2(xk1+...+ki−1+1, . . . , xk1+...+ki ) +
∑

i≥k1+...+kt+1

xi

≡ fk1,2 ⊕ fk2,2 ⊕ . . .⊕ fkt,2 ⊕
∑

i≥k1+...+kt+1

xi

�

We next show that, using the result above, we can exactly compute the weight and nonlinearity of
S(s1,s2,...,sN) from Theorem 3.1. We obtain

Theorem 3.5 With the notations of Theorem 3.1, we have

wt(S(s1,s2,...,sN )) = N(S(s1,s2,...,sN)) = 2s1+s2+...sN−1(1 −
N∏

k=1

(
1 − 1

2sk−1

)
).

Proof. Again, let fk = x1x2 . . . xsk whose weight is wt(fk) = 1. Therefore, wt(fk) = 1
2sk and w0(fk) =

1− 1
2sk−1 . Thus by Theorems 3.1 and 3.4, w0(S(s1,s2,...,sN )) = N0(S(s1,s2,...,sN)) =

N∏
k=1

w0(fk) =
N∏

k=1

(
1 − 1

2sk−1

)
.

Since wt(S(s1,s2,...,sN)) = 2s1+s2+···+sN · 1
2 (1−w0(S(s1,s2,...,sN))), using also Theorem 3.1, the conclusion follows.

�

Theorems 3.1 and 3.4 generalize [4, Theorem 8] on homogeneous quadratic functions. We also get the
following result on homogeneous cubic functions.

Corollary 3.6 wt(SN ) = N(SN ) = 23N−1(1−
(

3
4

)N) = 1
2 (8N−6N ) where SN = x1xN+1x2N+1+x2xN+2x2N+2+

· · ·+ xNx2Nx3N as before.

Definition 3.7 For a function f of 2n bits (n variables) and a function g of 2k bits (k variables), define

(f 	 g)(x1, . . . , xn, xn+1, . . . , xn+k) = f(x1, . . . , xn)g(xn+1, . . . , xn+k).

Lemma 3.8 For f of n variables, we have

N(x1 	 f) = min{wt(f), wt(f + 1)}.
Proof. For affine functions L = a1x1 + a2x2 + · · ·+ an+1xn+1 + a0 , we have

wt(x1 	 f + L) = wt(x1(f(x2, . . . , xn+1) + a1) + l), where l = a2x2 + · · ·+ an+1xn+1 + a0.

To compute the weight, we note that

{x1 	 (f + a1) + l = 1} = {x1 = 0} ∩ {x1 	 (f + a1) + l = 1} 
 {x1 = 1} ∩ {x1 	 (f + a1) + l = 1}
= {0} ⊕ {l = 1} 
 {1} ⊕ {(f + a1) + l = 1},
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where by A 
B we mean a disjoint union. So

wt{x1 	 (f + a1) + l = 1} =

⎧⎪⎨
⎪⎩

#{f + a1 = 1} = wt(f + a1) when l = 0
2n + wt(f + a1 + 1) when l = 1
2n−1 + wt(f + a1 + l) otherwise.

(3)

These alternatives come from the fact that when l is affine, then we have

#{l = 1} = wt(l) =

⎧⎪⎨
⎪⎩

0 if l = 0
1 if l = 1
2n−1 otherwise (in this case, the affine function l is balanced).

We are interested in the minimum of all possible values in equation (3). So

N(x1 	 f) = min
a1∈{0,1};l affine of 2n bits

{wt(f + a1); 2n + wt(f + a1 + 1); 2n−1 + wt(f + l)}.

But min{wt(f + 0), wt(f + 1)} ≤ 2n−1 and therefore,

min{wt(f), wt(f + 1)} ≤ min{2n + wt(f + a1 + 1); 2n−1 + wt(f + l)}

for any a1 ∈ {0, 1}, l affine of 2n bits. Thus N(x1 	 f) = min{wt(f), wt(f + 1)} . �

Lemma 3.9 The following hold:
(1) wt(f 	 g) = wt(f) · wt(g).

(2) Given f(x2, . . . , xn+1) and g(x2, . . . , xk+1), we have

wt(x1 	 f ⊕ g) = 2n+1wt(g) + 2kwt(f) − 2wt(f)wt(g).

(3) Given f(x2, . . . , xn+1) and g(x2, . . . , xk+1), we have

wt(x1 	 f + g) = wt(g) + wt(f + g).

Also,

wt(x1 	 f + g) = wt(g) + wt(f + g),

where x1 = x1 + 1.

Proof. (1) Obviously, f(x1, . . . , xn)g(xn+1, . . . , xn+k) = 1 is equivalent to f(x1, . . . , xn) = 1 and g(xn+1, . . . ,

xn+k) = 1 so

|{(x1, . . . , xn+k)|(f 	 g)(x1, . . . , xn+k) = 1}| =
|{(x1, . . . , xn)|f(x1, . . . , xn) = 1}| · |{(xn+1, . . . , xn+k)|g(xn+1, . . . , xn+k) = 1}|.

This implies the conclusion.

525



CIUNGU

(2) We have

wt(x1 	 f ⊕ g) = 2n+1wt(g) + 2kwt(x1 	 f) − 2wt(x1 	 f)wt(g)

= 2n+1wt(g) + 2kwt(x1)wt(f) − 2wt(x1)wt(f)wt(g),

and therefore wt(x1 	 f ⊕ g) = 2n+1wt(g) + 2kwt(f) − 2wt(f)wt(g).

(3) We have

wt(x1 	 f + g) = #{(x1 	 f + g) = 1} = #({x1 	 f + g = 1} ∧ {x1 = 0})
+ #({x1 	 f + g = 1} ∧ {x1 = 1}) = #{g = 1}) + #{f + g = 1})
= wt(g) + wt(f + g).

The proof of the second statement is similar. �

Example 3.10 Consider f = x1x2 + x3, g = x3 as functions of 3 variables.
We have wt(f) = wt(g) = 4 , so wt(f + 1) = 4 and wt(g + 1) = 4 .
From the above theorems we have:
wt(x1 	 f) = wt(x1) · wt(f) = 1 · 4 = 4

wt(x1 	 g) = wt(x1) · wt(g) = 1 · 4 = 4

N(x1 	 f) = min{wt(f), wt(f + 1)} = min{4, 4} = 4

N(x1 	 g) = min{wt(g), wt(g + 1)} = min{4, 4} = 4

Thus, we have that the functions x1 	 f = x1(x2x3 + x4) = x1x2x3 + x1x4 and x1 	 g = x1x4 have the same
weight and the same nonlinearity. However, they cannot be affine equivalent, because the degree is an affine
invariant.

Nevertheless, we have the following theorem.

Theorem 3.11 Two functions of degree 2 are affine equivalent if and only if they have the same weight and
the same nonlinearity.

Proof. According to Theorem 4 in [4] (as stated there, this is an old result due to Dickson), every function
of degree 2 and n bits is affine equivalent to one of the following:
• x1x2 + x3x4 + · · ·+ x2k−1x2k + x2k+1

• x1x2 + x3x4 + · · ·+ x2k−1x2k

• x1x2 + x3x4 + · · ·+ x2k−1x2k + 1

Note that wt(x1x2) = 1, N(x1x2) = 1, wt(x1) = 1, N(x2k+1) = 0 = N(0) = N(1). Thus, w0(x1x2) =

1 − 2 · 1
22 wt(x1x2) = 1

2 and similarly N0(x1x2) = 1
2 , w0(x2k+1) = 0, w0(0) = w0(1) = −1; N0(x2k+1) = 1 =

N0(0) = N0(1). Now, using Theorems 3.4, 2.4, and Lemma 2.3 we have the following table showing the possible
values for the invariants w0 and N0 of a function of degree 2 and n variables:

f w0 N0

x1x2 + x3x4 + · · ·+ x2k−1x2k + x2k+1 0 1
2k

x1x2 + x3x4 + · · ·+ x2k−1x2k
1
2k

1
2k

x1x2 + x3x4 + · · ·+ x2k−1x2k + 1 − 1
2k

1
2k .
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(This follows, for example, by applying Theorems 3.4, 2.4, and Lemma 2.3 for

x1x2 + x3x4 + · · ·+ x2k−1x2k + x2k+1 = (x1x2) ⊕ · · · ⊕ (x1x2)︸ ︷︷ ︸
k

⊕x1 .) �

This table shows that if N(f) = N(g) and wt(f) = wt(g), equivalently, N0(f) = N0(g) and w0(f) = w0(g),
then f and g must be affine equivalent. Indeed, the nonlinearity will fix the integer k , while the weight will
show to which of the 3 above categories a function f of degree 2 belongs.

Lemma 3.12 (1) Let f be a function of n variables such that the functions of n − 1 variables f1 =

f(0, x2, . . . , xn) and f2 = f(1, x2, . . . , xn) have their respective weights equal to their nonlinearities, i.e.

wt(f1) = N(f1) and wt(f2) = N(f2) . Then wt(f) = N(f).

(2) More generally, if f is a function of n variables such that for any (a1, a2, . . . , ak) ∈ Fk
2 , we have

wt(f(a1, a2, . . . , ak, xk+1, . . . , xn)) = N(f(a1, . . . , ak, xk+1, . . . , xn+1)).

Then wt(f) = N(f).

Proof. (1) Suppose f = f(x1, . . . , xn) and let l = a1x1 + . . . + anxn + a0 denote an affine function. Note

that showing that wt(f) = N(f) means showing that the minimum

min
l

wt(f + l) = min
a0,...,an∈F2

wt(f(x1, . . . , xn) + a1x1 + . . . + anxn + a0)

is attained for l = 0, i.e. a1 = a2 = . . . = an = a0 = 0.

We have

wt(f(x1 , . . . , xn) + a1x1 + . . . + anxn + a0)

= wt(f(0, x2, . . . , xn) + a2x2 + . . . + anxn + a0)

+ wt(f(1, x2, . . . , xn) + a2x2 + . . . + anxn + a1 + a0)

≥ wt(f(0, x2, . . . , xn)) + wt(f(1, x2, . . . , xn))

= wt(f(x1, . . . , xn)).

Thus wt(f + l) ≥ wt(f) for all l = a1x1 + . . .+ anxn + a0, which means, as noticed above, that wt(f) = N(f).

(2) It follows from (1) by induction.
�

We can now state and prove one of our main results, which confirms the case n = 3p of a conjecture of
Cusick and Stănică [3, p. 300]:

Theorem 3.13 If n = 3p is a multiple of 3 , then the function

fn,3 = x1x2x3 + x2x3x4 + . . . + xn−2xn−1xn + xn−1xnx1 + xnx1x2

has wt(fn,3) = N(fN,3).
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Proof. We examine the functions of n−n/3 = 2p variables obtained from fn,3 by replacing x3, x6, x9, . . . , x3p

by 0 and 1 (there are 2p such functions) so we use x3 = a1, x6 = a2, . . . , x3p = ap, a1, a2, . . . , ap ∈ {0, 1} . We

have several cases:
• if all a′

is are 1, then we get the function:

x1x2 + x2x4 + x4x5 + x4x5 + x5x7 + x7x8 + x7x8 + . . .

. . . + xn−2xn−1 + xn−1x1 + x1x2 =

= x2x4 + x5x7 + x8x10 + . . . + x3k−1x3k+1 + . . . + x3p−1x1. (4)

• If one of them is 0 and the rest are 1, by the cyclic symmetry we can assume a1 = a2 = . . . = ap−1 =

1; ap = 0 and we get the function

x1x2 + x2x4 + x4x5 + x4x5 + x5x7 + x7x8 + x7x8 + x8x10 + x10x11 + . . .

. . . + x3p−5x3p−4 + x3p−4x3p−2 + x3p−2x3p−1 =

= x1x2 + x2x4 + x3p−4x3p−2 + x3p−2x3p−1. (5)

This situation can only occur when p ≥ 2 (n ≥ 6); when p = 2 we have the function x1x2 + x2x4, and when
p ≥ 3 we get the function in equation 5.

• In all the other cases, we have at least 2 different 0′s , so we have sequences of the form 0 1 1 . . . 1 0,
separated by strings of 0, in the sequence a1, a2, . . . , ap. We shall use indices modulo n for x1, x2, . . . , xn . In
such a sequence, for example, if xn = 0, x3 = 1, x6 = 1, . . . , x3k = 1, x3k+3 = 0 we obtain, for the part of the
function fn,3 containing the variables xn−2, xn−1, xn, x1, x2, . . . , x3k, x3k+1, x3k+2, x3k+3, the function

x1x2 + x2x4 + x4x5 + x4x5 + x5x7 + x7x8 + x7x8 + x8x10 + . . .

. . . + x3k−2x3k−1 + x3k−1x3k+1 + x3k+1x3k+2 =

= x1x2 + x2x4 + x5x7 + . . . + x3k−1x3k+1 + x3k+1x3k+2 (6)

if the sequence of 1′s has at least 2 1′s , so in this example k ≥ 3. Otherwise, if the sequence is 0 1 0 (for the

consecutive values of the a′
is) we get the function

x1x2 + x2x4 + x4x5. (7)

By the change of variables x1 ← x1 + x4 , this is affine equivalent to

x1x2 + x4x5. (8)

The above 3 cases show that, if we evaluate a1, a2, . . . , ap arbitrarily and divide the (cyclic, i.e. ap+1 =

a1 ) sequence a1, a2, . . . , ap into subsequences of the type 0 1 1 . . . 1 0, we obtain, for each such sequence, an

expression of the type (4) − (8) in fn,3 , but the variables of all these expressions do not overlap, so we get a

function of the type
g1 ⊕ g2 ⊕ . . .⊕ gn
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with g1, g2, . . . , gn of the types (4) − (8). Furthermore, the functions from (4) − (8) are affine equivalent to or
can be split into a function of the form

h1 ⊕ h2 ⊕ . . .⊕ hs

where hi is either x1x2 or x1x2+x2x3 (the “names” of the variables here are “generic”). But x1x2+x2x3 ≡ x1x2

by the change of variables x1 ← x1 + x3 , so we have shown in fact that any evaluation of the variables
x3, x6, . . . , x3p = xn at 0 and 1 yields a function of the 2p variables x2, x4, x5, x7, . . . , x3k−1, x3k+1, . . . , x3p−1

which is affine equivalent to a function
f1 ⊕ f2 ⊕ . . .⊕ ft

where f1 = f2 = . . . = ft = x1x2.

Since wt(x1 · x2) = N(x1 · x2), by Theorem 2.4 it follows that wt(f1 ⊕ f2 ⊕ . . .⊕ ft) = N(f1 ⊕ f2 ⊕ . . . ft) where
f1 = f2 = . . . = ft = x1x2.

We can now use Lemma 3.12 (2): since for any replacement of the variables x3, x6, . . . , xn = x3p with 0

and 1, we obtain a function of 2p variables which has its weight equal to its nonlinearity, it follows that
wt(fn,3) = N(fn,3). �
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