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doi:10.3906/mat-0912-19

Lower bounds for the maximum genus of 4-regular graphs∗
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Abstract

This paper investigates the maximum genus and upper embeddability of connected 4-regular graphs. We

obtain lower bounds on the maximum genus of connected 4-regular simple graphs and connected 4-regular

graphs without loops in terms of the Betti number. The definition of the Betti number is referred to [Gross

and Tucker, Topological Graph Theory, New York, 1987]. Furthermore, we give examples that show that

these lower bounds are tight.
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1. Introduction

The maximum genus of a connected graph G = (V, E), denoted by γM (G), is the maximum integer k

with the property that there exists a cellular embedding of G on the orientable surface with genus k .

The maximum genus has received considerable attention after Nordhaus et al. [18]. Xuong [22] proved
that every 4-edge connected graph is upper embeddable. However, there are many examples of 3-edge connected
graphs and 2-edge connected graphs that are not upper embeddable. See, for example, [2, 12, 14]. Therefore,
considerable attention is given to the lower bounds on the maximum genus of many kinds of graphs in terms
of some graph invariants. See, for example, [3, 5, 7, 10]. Chen et al. [2] proved that for a 2-connected simple

graph with all its vertices of degree greater than 2, the maximum genus is at least β(G)/3. Chen and Huang

gave some results on the maximum genus of graphs in [4]. In the paper [15], Nedela and Skoviera proved that

any Eulerian graph with at most 2 vertices of degree 0 (mod 4) is necessarily upper embeddable. In particular,

any connected regular graph with degree 4k + 2, for an integer k ≥ 1, is upper embeddable. Skovieria [20, 21]
has obtained the maximum genus of graphs which are 3-regular with 2-factor triangles, and its slightly weaker
form of the result was earlier proved in [1]. Naturally, a question on the maximum genus for 4-regular graphs

can be posed. More information on upper embeddability of graphs can be found for example in [11]-[19].

In this paper, tight lower bounds on the maximum genus of connected 4-regular simple graphs and
connected 4-regular graphs without loops are obtained.
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2. Preliminaries

For simplification, throughout this paper, G is asumed to have n vertices and m edges.

Since any embedding has at least one face, from the Euler formula, it can be seen that γM (G) ≤
�β(G)/2� , where β (G) = m − n + 1 is called the Betti number [11] of the connected graph G . If γM (G) =

�β(G)/2� , G is said to be upper embeddable.

For a subset A ⊆ E(G), c(G\A) denotes the number of connected components of G \ A , and b(G \ A)

denotes the number of connected components of G \ A with an odd Betti number, where G \ A means the
subgraph obtained from G by deleting all the edges of A from G . Let T be a spanning tree of a connected
graph G . Define the deficiency ξ(G, T ) to be the number of components of G \E(T ) that have an odd number

of edges. The deficiency ξ(G) of the graph G is defined to be the minimum value of ξ(G, T ) over all spanning

trees T of G . Note that ξ(G) = β(G) (mod 2). For k ≥ 2, let F1, F2, · · · , Fk be k distinct subgraphs of a

graph G . Then denote by EG(F1, F2, · · · , Fk) the edges of G with ends in distinct Fi s and E(Fi, G) the edges

of E(G) with just one end in Fi .

We follow [6] for terminologies and notations not defined here.

The following theorems are some characterizations on the maximum genus and upper embeddability of
a graph, which are due to Xuong and Nebesky, respectively.

Theorem 1 [22, 17] If G is a connected graph, then

(a) G is upper embeddable if and only if ξ(G) ≤ 1 ;

(b) γM (G) = (β(G) − ξ(G))/2 .

Theorem 2 [16] If G is a connected graph, then

(1) G is upper embeddable if and only if c(G \ A) + b(G \A) − 2 ≤ |A| for any subset A ⊆ E(G);

(2) ξ(G) = maxA⊆E(G){c(G \ A) + b(G \A) − |A| − 1}.

The following result, which was proved by Huang, provides a structural characterization of graphs that
are not upper embeddable.

Theorem 3 [9, 8, 17] Let G be a connected graph. If ξ(G) ≥ 2 , namely G is not upper embeddable, then

there exists a subset A ⊆ E(G) such that the following properties are satisfied:

(1) c(G \ A) = b(G \ A) ≥ 2 , β(F ) = 1(mod 2) for each component F of G \ A ;

(2) F is a vertex-induced subgraph of G for each component F of G \ A ;

(3) for any k distinct components F1, F2, . . . , Fk of G \A , |EG(F1, F2, · · · , Fk)| ≤ 2k−3 . In particular,

|EG(F, H)| ≤ 1 for any 2 distinct components F and H of G \ A ;

(4) ξ(G) = 2c(G \ A) − |A| − 1.

3. Main results

Theorem A If G is a connected 4-regular simple graph with Betti number β = β(G) , then

γM (G) ≥ �(2β + 3)/5� .
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Proof. Let G be a connected 4-regular simple graph with n vertices and m edges. Then by the definition
of Betti number, β = m − n + 1 = 4n/2− n + 1 = n + 1. The following 2 cases are considered:

Case 1 G is upper embeddable. In this case,

γM (G) = �β/2� .

Since G is a connected 4-regular simple graph, n ≥ 5 and �β/2� ≥ �(2β + 3)/5� , so γM (G) ≥
�(2β + 3)/5� .

Case 2 G is not upper embeddable.

By Theorem 3, there exists A ⊆ E(G) such that the properties (1)–(4) of Theorem 3 are satisfied. Then

c(G \ A) = b(G \ A) ≥ 2 and ξ(G) = 2c(G \ A) − |A| − 1.

Let aj
i denote the number of connected components of G \ A with order i and Betti number j . Since

G is a simple graph and c(G \ A) = b(G \ A), for each component F of G \ A , we have β(F ) = 1(mod 2), so

there exist aj
i �= 0 only for i ≥ 3 and j = 1(mod 2), and thus the following Claim 1 is right:

Claim 1 aj
i = 0 for any i ≥ 3 and j = 0(mod 2) .

Before finishing the proof of this theorem, we first prove the following, Claim 2.

Claim 2 aj
i = 0 for any positive integer j with j > i.

Proof of Claim 2 By the contrary, suppose aj
i �= 0 for some positive integer j with j > i , and then there

is at least one connected component, denoted by F , of G \ A with order i and Betti number j . Since G is 4-

regular, thus
∑

v∈F

dG(v) = 4i . Because the number of vertices with odd degree in F must be even, E(F, G) ≥ 2.

By E(F, G) = 4i − 2(i − 1) − 2j = 2i − 2j + 2, where i − 1 and j are the number of spanning tree edges and
that of cotree edges of F respectively, then 2i − 2j + 2 ≥ 2, i.e., i ≥ j , this is a contradiction with i < j . �

We now continue with the proof of the theorem.

Since the number of connected components of G \ A is sum of aj
i for all integers i and j , by Claims 2,

c(G \ A) =
∑

j≤i

aj
i .

Since G is a simple graph, any connected component with order 1 of G \ A cannot have Betti number

1; thus a1
1 = 0. Similarly, it can be checked that a1

2 = a3
3 = 0 because of G being a connected 4-regular simple

graph. Also by Claims 1 and 2, we have

c(G \ A) =
∑

j≤i

aj
i = a1

3 + a1
4 + a1

5 + · · ·+ a3
4 + a3

5 + a3
6 + · · ·

+a5
5 + a5

6 + a5
7 + · · ·+ ∑

i ≥ j ≥ 7

j = 1(mod 2)

aj
i . (1)

Since a connected component with order i of G \ A contributes to i for the order n of G , thus aj
i
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connected component with order i contributes to iaj
i for n . So,

n = 3a1
3 + 4a1

4 + 5a1
5 + · · ·+ 4a3

4 + 5a3
5 + 6a3

6 + · · ·

+5a5
5 + 6a5

6 + 7a5
7 + · · ·+ ∑

i ≥ j ≥ 7
j = 1(mod 2)

iaj
i . (2)

Let F be a connected component of G \ A with order i and Betti number j , then
∑

v∈F

dG(v) = 2[i − 1 + j] +

|E(F, G)| , where 2(i − 1 + j) is contributed by the edges in F ,and |E(F, G)| is contributed by the edges not

in F . Thus 4i = 2[i − 1 + j] + |E(F, G)|, i.e., |E(F, G)| = 4i − 2(i − 1) − 2j = 2i − 2j + 2.

Let ϕ be the set of all the components of G \ A . From Theorem 3 (2),

|A| = 1
2

∑

F∈ϕ

|E(F, G)|. Also by Claims 1 and 2, then

|A| =
∑

i ≥ 1
j = 1(mod 2)

(i − j + 1)aj
i ,

= 3a1
3 + 4a1

4 + 5a1
5 + · · ·+ 2a3

4 + 3a3
5 + 4a3

6 + · · ·

+a5
5 + 2a5

6 + 3a5
7 + · · ·+ ∑

i ≥ j ≥ 7
j = 1(mod 2)

(i − j + 1)aj
i .

(3)

From β = n + 1 and Theorem 1, ξ(G) = β − 2γM (G) = n + 1 − 2γM (G).

Assume γM (G) < �(2β + 3)/5� . Then

ξ(G) = n + 1 − 2γM (G) > n + 1 − 2 [(2n + 2)/5 + 3/5] = n/5− 1.

From Theorem 3 (4), we have

ξ(G) = 2c(G \ A) − |A| − 1 > n/5− 1. Therefore, 2c(G \ A) − |A| − n/5 > 0. But from (1) − (3),

2c(G \ A) − |A| − n/5 = −(8/5)a1
3 − (14/5)a1

4 − 4a1
5 − · · ·

−(4/5)a3
4 − 2a3

5 − (16/5)a3
6 − · · · − 0a5

5 − (6/5)a5
6 − (12/5)a5

7

+ · · ·+ ∑

i ≥ j ≥ 7
j = 1(mod 2)

(1 − 6i/5 + j)aj
i .

(4)

If i ≥ j ≥ 7, then the coefficient of aj
i in (4) satisfies

1 − 6i/5 + j ≤ 1 − 6i/5 + i = 1 − i/5 ≤ 0. Thus

2c(G \ A) − |A| − n/5 ≤ 0.

There is a contradiction. Consequently, γM (G) ≥ �(2β + 3)/5� .
From these 2 cases, the theorem follows we complete proof of Theorem A. �

Note 1 In the following, we can find an infinite number of 4-regular graphs whose maximum genus equals
the lower bound, that is, γM (G) = �(2β + 3)/5�, which means that the lower bound of Theorem A is tight.
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Let C3
5 be the graph shown in Figure 1, which is obtained from K5 by removing one edge.

Let G1, · · · , Gk (k ≥ 3) be copies of the graph C3
5 . Then G is obtained by adding a new edge from Gi

to Gi+1(mod k), i = 1, 2, · · · , k as shown in Figure 2.

It can be seen that G is a connected 4-regular simple graph. Let the set of edges from Gi to Gi+1 be

A . Then G\A has k connected components, each with 5 vertices and its Betti number is 5. It can be checked

that n = 5k , β = n + 1 = 5k + 1, γM (G) = �(2β + 3)/5� = 2k + 1.

It follows from the above examples that there exist an infinite number of connected 4-regular simple
graphs whose maximum genus is equal to the lower bounds, so the lower bound of Theorem A is tight.

The following Theorem B is generalized from simple 4-regular graphs to 4-regular graphs without loops.

Figure 1. C3
5 .

Figure 2. A connected 4-regular simple graph

Theorem B If G is a connected 4-regular graph without loops, then

γM (G) ≥ �(β + 2)/3� .

The proof of Theorem B is similar to that of Theorem A, so it is omitted.
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Figure 3. C3
3 .

Figure 4. A connected 4-regular graph without a loop.

Note 2 We now give an infinite number of graphs whose maximum genus equal the lower bound, that is,
γM (G) = �(β + 2)/3�. It means that the lower bound of Theorem B is tight.

Let C3
3 be the graph shown in Figure 3, which is obtained from K3 by doubling 2 of its edges.

Let G1, · · · , Gk (k ≥ 3) be copies of C3
3 ; G is obtained by adding a new edge from Gi to Gi+1(mod k)

(i = 1, 2, · · · , k ) as shown in Figure 4.

Then it can be seen that G is a connected 4-regular graph and has no loops, Let A be the set of edges
from Gi to Gi+1 , then G\A has k connected components, each with 3 vertices and the Betti number is 3. It

can be checked that β = n + 1 = 3k + 1, γM (G) = �(β + 2)/3� = k + 1.

This example shows that the lower bound of Theorem B is tight.

Note 3 If G is a graph with loops, Theorems A and B do not hold.

For example, let Cn be the circuit with n vertices; the graph denoted by C1
n is obtained from Cn

by adding one loop at each vertex. If n ≥ 4, so β ≥ 5, then γM (C1
n) = 1, but �(2β + 3)/5� ≥ 2 and

�(β + 2)/3� ≥ 2.

535



ZHOU, HAO, HE

Acknowledgment

The authors would like to thank the anonymous reviewers for valuable comments that helped to revise
the error in the first version and improve the quality of this paper. Corresponding author: Rongxia Hao, this
work was supported by the National Natural Science Foundation of China (10871021).

References

[1] Bouchet, A.: Genre maximum d’un Δ-graphs. Problemes Combinatories et Theorie des Graphes. Colloques Internet.

C.N.R.S. 260, C.N.R.S. Paris. 57–60 (1978).

[2] Chen, J., Achdeacon, D., Gross, J.L.: Maximum genus and connectivity. Discrete Mathematics 149, 19–29 (1996).

[3] Chen, J., Kanchi, S.P., Gross, J.L.: A tight lower bound on the maximum genus of a simplicial graph. Discrete

Math. 156, 83–102 (1996).

[4] Chen, J., Huang Y.Q.: Maximum genus, Topics in Topological Graph Theory. (Beineke, L.W. and Wilson, R.J.

eds.) 34–43, Cambridge University Press, (2009).

[5] Dong, G.H., Liu, Y.P.: Up-embeddability via girth and the degree-sum of adjacent vertices. Science in China Series

A: Mathematics 52(3), 597–604 (2009).

[6] Gross, J.L., Tucker, T.W.: Topological Graph Theory. New York. Wiley-Interscience (1987).

[7] Huang, Y.Q.: Maximum genus and girth of graphs. Discrete Mathematics 194, 253–259 (1999).

[8] Huang, Y.Q.: Maximum genus and chromatic number of graphs. Discrete Mathematics 270, 117–127 (2003).

[9] Huang, Y.Q., Liu, Y.P.: The maximum genus of graphs with diameter three. Discrete Mathematics 194, 139–149

(1999).

[10] Huang, Y.Q., Liu, Y.P.: Face size and the maximum genus of a graph. J. Comb. Theory Ser. B, 80(2), 356–370

(2000).

[11] Jungerman, M.: A characterization of upper-embeddable graphs. Transactions of the American Mathematical

Society 241, 401–406 (1978).

[12] Kanchi, S.P., Chen, J.: A tight lower bound on the maximum genus of a 2-connected simplicial graph. Manuscript

(1992).

[13] Liu, Y.P.: Embeddability in Graphs. Kluwer Academic Publisher Dordrecht/Boston/London 15–19 (1995).

[14] Liu, H., Tsai, M.-C.: The maximum genus of diameter three. Australian J. Comb. 14, 187–197 (1996).

[15] Nedela, R., Skoviera, M.: The maximum genus of a graph and doubly Eulerian trails. Boll. Unione Mat. Ital., VII

Ser. B 4(3), 541–551 (1990).

[16] Nesbesky, L.: A new characterization of the maximum genus of graphs. Czechoslovak Mathematical J. 31(106),

604–613 (1981).

[17] Nesbesky, L.: A note on upper embeddable graphs. Czechoslovak Mathematical J. 33(1), 37–40 (1983).

536



ZHOU, HAO, HE

[18] Nordhaus, E., Stewart, B., White, A.T.: On the maximum genus of a graph. J. Comb. Theory Ser. B 11(3), 258–267

(1971).

[19] Ringeisen, R.: Determining all compact orientable 2-manifolds upon which Km,n has 2-cell imbeddings. J. Comb.

Theory Ser. B 12(2), 101–104 (1974).

[20] Skoviera, M.: The maximum genus of graphs of diameter two. Discrete Mathematics 87(2), 175–180 (1991).

[21] Skoviera, M.: The decay number and the maximum genus of a graph. Mathematica Slovaca 42(4), 391–406 (1992).

[22] Xuong, N.H.: Upper-embeddable graphs and related topics. J. Comb. Theory Ser. B 26(2), 226–232 (1979).

Ding ZHOU, Rongxia HAO, Weili HE
Department of Mathematics,
Beijing Jiaotong University,
Beijing 100044, P.R. CHINA
e-mail: rxhao@bjtu.edu.cn

Received: 12.12.2009

537


