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Extensions and s-comparability of exchange rings

Chaoling Huang

Abstract

Let S be a ring extension of R . In this note, for any positive integer s we study s -comparability related

to ring extensions. We show that if S is an excellent extension of R , R and S are exchange rings, and R

has the n-unperforation property. R satisfies s -comparability if and we only if so does S , and we prove

that for a 2-sided ideal J of S , and an exchange subring R of the exchange ring S , which contains J as a

direct summand, then R satisfies s -comparability if and only if so does R/J .
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1. Introduction

We say that S is a ring extension of R if there is a (unital) ring homomorphism f : R → S . Let S

be a ring and let R be a subring of S (with the same 1). S is called a finite normalizing extension of R if
there exist elements a1, . . . , an ∈ S such that a1 = 1, S = Ra1 + · · · + Ran , aiR = Rai for all i = 1, . . . , n .
Finite normalizing extensions have been studied in many papers such as [4, 8, 9, 10, 13]. S is called a free
normalizing extension of R if a1 = 1, S = Ra1 + · · ·+ Ran is finite normalizing extension and S is free with
basis {a1, . . . , an} as both a right R -module and a left R -module. S is said to be an excellent extension of R

in case S is a free normalizing extension of R and S is right R -projective (that is, if MS is a right S -module

and NS is a submodule of MS , then NR | MR implies NS | MS , where N |M means N is a direct summand

of M ).

For any right R -module M , Crawley and Jónsson defined M to have the exchange property if for every
right R -module A and any 2 decompositions of A ,

A = M ′ ⊕ N = ⊕i∈IAi

where M ′ ∼= M , there are submodules A′
i ⊆ Ai such that A = M ′⊕ (⊕i∈IA′

i). It follows from the modular law

that A′
i must be a direct summand of Ai for all i . Warfield [12] called a ring R an exchange ring if R has the

exchange property as a right R -module. He proved that this definition is left-right symmetric. Many classes of
rings belong to this class of rings, for instance local rings, clean rings, von Neumann regular rings, semiperfect
rings, and (strongly) π -regular rings, cf. [6, 11, 12].
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For 2 R -modules M and N , we use M �⊕ N to denote that M is isomorphic to a direct summand of
N . nM means the direct sum of n copies of M for a positive integer n and an R -module M . We denote
the category of finitely generated projective R -modules by FP (R). Other basic notations can be found in [3].
Throughout this note, R is an associative ring with identity and R -modules are unitary right R -modules.

R is said to be separative if the following condition holds for all A, B ∈ FP (R):

A ⊕ A ∼= A ⊕ B ∼= B ⊕ B ⇒ A ∼= B.

Recall that in [3, Page 275], given a positive integer s , a von Neumann regular ring R is said to satisfy s-

comparability if, for each pair of elements x, y of R , either xR is isomorphic to a summand of s(yR), or

yR is isomorphic to a summand of s(xR). It is clear that the notion can be generalized to exchange rings.
Comparability concepts have proven to be particularly fruitful in the development of the theory of regular rings.
Goodearl and Handelman showed that directly finite regular rings satisfying 1-comparability have stable rank
one [3, Theorem 8.12]. Pardo [7] showed that an exchange ring satisfying s-comparability is separative and so
has stable rank 1, 2, or ∞ .

2. Main results

Lemma 2.1 [5, Lemma 7.2.2] Let S be a ring extension of R . If MS is a projective module and SR is
projective, then MR is projective.

Lemma 2.2 Let S be an excellent extension of R . Given any S -module M , if MR is projective, then MS is
projective.

Proof. Let FS be a free S -module with an epimorphism g : FS → MS . Set K = Kerg . There is an exact
sequence of right S -modules 0 → K → F → M → 0 that is split as an exact sequence of right R -modules,
since MR is projective. So KR | FR . Since S is an excellent extension of R , KS | FS , therefore, MS

∼= F/K

is projective. �

Lemma 2.3 Let S be an excellent extension of R , and let AR
∼= BR . Given AS , we can define an S -module

multiplication on B such that AS
∼= BS .

Proof. Let α : AR → BR and β : BR → AR be the isomorphisms. Define bs = α(β(b)s). It is easy to check
that B is an S -module such that AS

∼= BS . �

Lemma 2.4 Let A , B be finitely generated projective right modules over an exchange ring R . If A �⊕ nB

for some positive integer n , then there is a decomposition A = A1 ⊕ A2 ⊕ · · · ⊕ An such that A1 �⊕ A2 �⊕
· · · �⊕ An �⊕ B .

Proof. We prove it by induction. By [1, Proposition 1.2], there is a decomposition A = U ⊕ W , where

U �⊕ (n − 1)B , and W �⊕ B . By the inductive hypothesis, there is a chain C1 ⊆ C2 ⊆ · · · ⊆ Cn−1 of B

such that U ∼= C1 ⊕C2 ⊕ · · · ⊕Cn−1 . Let D1, ..., Dn be submodules of B such that D1 = C1 , Ci = Ci−1 ⊕Di

for i = 2, ..., n− 1 and B = Cn−1 ⊕ Dn . Then B = D1 ⊕ D2 ⊕ · · · ⊕ Dn . Using [1, Proposition 1.2] again,

it follows from W �⊕ B that there are Xi ⊆ Di, i = 1, ..., n such that W ∼= X1 ⊕ X2 ⊕ · · · ⊕ Xn . Hence
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A = U ⊕ W ∼= C1 ⊕ C2 ⊕ · · · ⊕ Cn−1 ⊕ X1 ⊕ X2 ⊕ · · · ⊕ Xn = X1 ⊕ (C1 ⊕ X2) ⊕ · · · ⊕ (Cn−1 ⊕ Xn), where

X1 ⊆ (C1 ⊕ X2) ⊆ · · · ⊆ (Cn−1 ⊕ Xn) ⊆ B . In fact, since X1 ⊆ D1 and D1 = C1 , X1 ⊆ C1 ⊆ C1 ⊕ X2. Since
X2 ⊆ D2 and C2 = C1 ⊕ D2 , C1 ⊕ X2 ⊆ C1 ⊕ D2 = C2 ⊆ C2 ⊕ X2 . Continue this procedure. Set A1 = X1 ,
Ai = (Ci−1 ⊕ Xi) for i = 2, ..., n as desired. �

For a positive integer s , we say that a ring R satisfies s-comparability, if for any idempotents x, y ∈ R ,
xR �⊕ s(yR) or yR �⊕ s(xR). The finitely generated projective right R -modules are said to satisfy s-

comparability if A �⊕ sB or B �⊕ sA for any finitely generated projective right R -modules A and B .

Proposition 2.5 Let R be an exchange ring satisfying s-comparability. Then the finitely generated projective
right R -modules also satisfy s-comparability.

Proof. Let A , B be finitely generated projective right R -modules. There is a positive integer n such that
A, B �⊕ nR . We prove the assertion by induction on n . If n = 1, it is true since R satisfies s-comparability.

Assume that the assertion holds for n − 1 and suppose A, B �⊕ nR . Since R is an exchange ring, by [1,

Proposition 1.2], we can write A = A1 ⊕A2 and B = B1 ⊕B2 where Ai, Bi �⊕ (n− 1)R for i = 1, 2. By the
induction, we have A1 �⊕ sB1 or B1 �⊕ sA1 , and A2 �⊕ sB2 or B2 �⊕ sA2 . If A1 �⊕ sB1 and A2 �⊕ sB2 ,

or B1 �⊕ sA1 and B2 �⊕ sA2 , the assertion is obviously true. Now assume that A1 �⊕ sB1 and B2 �⊕ sA2 .
By Lemma 2.4, there is a direct summand V of A1 such that V �⊕ B1 and A1 �⊕ sV and a direct summand
U of B2 such that U �⊕ A2 and B2 �⊕ sU . So B1

∼= V ⊕ C and A2
∼= U ⊕ D , where C and D are finitely

generated projective right R -modules. Since C, D �⊕ (n−1)R , by the inductive hypothesis, we get C �⊕ sD ,

or D �⊕ sC . If the former is true, then

B = B1 ⊕ B2
∼= V ⊕ C ⊕ B2

�⊕ V ⊕ sD ⊕ sU

∼= V ⊕ sA2

�⊕ sA1 ⊕ sA2

= sA.

Thus B �⊕ sA . Similarly, if the latter is true, then A �⊕ sB , as desired. �

Lemma 2.4 and Proposition 2.5 for regular rings is well-known [2, Lemma 1.1 and Proposition 2.1].

Theorem 2.6 Let S be an excellent extension of R . If R and S are exchange rings, and R has the n-
unperforation property (i.e., nA �⊕ nB implies that A �⊕ B for any finitely generated projective R -modules

A and B ), then R satisfies s-comparability if and only if so does S .

Proof. ⇒: Let x = x2, y = y2 ∈ S . xS and yS are finitely generated projective S -modules. By Lemma
2.1, (xS)R and (yS)R are finitely generated projective. Since R satisfies s-comparability, by Proposition 2.5,

finitely generated projective R -modules satisfy s-comparability. Thus (xS)R �⊕ s(yS)R or (yS)R �⊕ s(xS)R .

If (xS)R �⊕ s(yS)R , let T be the direct summand of s(yS)R such that (xS)R
∼= TR . Since xS is an S -module,

we can consider T as an S -module such that (xS)S
∼= TS as S -modules by Lemma 2.3. Since TR | s(yS)R ,

by the R -projectivity of S , TS | s(yS)S . Thus (xS)S �⊕ s(yS)S . Similarly, we have (yS)S �⊕ s(xS)S , if

(yS)R �⊕ s(xS)R .
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⇐: For any x = x2, y = y2 ∈ R , (xR)R �⊕ RR �⊕ nRR
∼= SR . So (xR) ⊗R S and (yR) ⊗R S are

finitely generated projective S -modules. Since S satisfies s-comparability, ((xR)⊗R S)S �⊕ s((yR)⊗R S)S or

((yR)⊗R S)S �⊕ s((xR)⊗R S)S . ((xR)⊗R S)R �⊕ s((yR)⊗R S)R or ((yR)⊗R S)R �⊕ s((xR)⊗R S)R . Since

S is a free R -module with basis {a1, . . . , an} , we have ((xR)⊗R S)R
∼= ((xR)⊗R nR)R

∼= n(xR)R . Similarly,

((yR)⊗R S)R
∼= n(yR)R . Thus, n(xR)R �⊕ s(n(yR))R or n(yR)R �⊕ s(n(xR))R . By the hypothesis, we have

(xR)R �⊕ s(yR)R or (yR)R �⊕ s(xR)R . �

Lemma 2.7 [1, Proposition 1.4] Any exchange ring R has the following properties:

(1) for any M ′ ∈ FP (R/I) , there is M ∈ FP (R) such that R/I ⊗R M ∼= M ′ ;

(2) whenever A, B ∈ FP (R) with A/AI ∼= B/BI , there exist decompositions A = A1 ⊕ A2 and
B = B1 ⊕ B2 such that A1

∼= B1, A2 = A2I, B2 = B2I .

We thank Ken Goodearl for giving the proof of the following lemma (in private communication).

Lemma 2.8 Let J be a 2-sided ideal in an exchange ring R , and let A and B be finitely generated projective
right R -modules such that A/AJ �⊕ B/BJ . Then there exist decompositions A = A1 ⊕ A2 and B = B1 ⊕ B2

such that A1
∼= B1 and A2 = A2J.

Proof. Suppose that A and B are finitely generated projective right R -modules, and let J be an ideal of
R . Assume that A/AJ is isomorphic to a direct summand of B/BJ . Set (A/AJ)⊕C ′ ∼= B/BJ . Then C ′ is a

finitely generated projective R/J -module. By Lemma 2.7, it lifts to a finitely generated projective R -module

C , that is, C/CJ ∼= C ′ . At this point, we have (A ⊕ C)/(A ⊕ C)J isomorphic to B/BJ .

Using Lemma 2.7 again, there are decompositions A ⊕ C = A1 ⊕ A2 and B = B1 ⊕ B2 such that A1

is isomorphic to B1 while A2 = A2J and B2 = B2J . Since R is an exchange ring, by [1, Proposition 1.2],

there are decompositions A = A′ ⊕ A′′ and C = C ′ ⊕ C ′′ such that A1
∼= A′ ⊕ C ′ and A2

∼= A′′ ⊕ C ′′ . Since
A2 = A2J , we have that A′′ = A′′J . On the other hand, B1 = B′ ⊕ B′′ with A′ ∼= B′ and C ′ ∼= B′′ . So
A = A′ ⊕ A′′ B = B1 ⊕ B2 = B′ ⊕ (B′′ ⊕ B2), A′ ∼= B′ and A′′ = A′′J . �

Lemma 2.9 [2, Lemma 1.2] Let A, B, C be finitely generated projective modules over any exchange ring R .
If A ⊕ B ∼= kC for some positive integer k , then there is a decomposition C = C0 ⊕ C1 ⊕ · · · ⊕ Ck such that

A ∼= C1 ⊕ 2C2 ⊕ · · · ⊕ kCk

B ∼= kC0 ⊕ (k − 1)C1 ⊕ · · · ⊕ Ck−1.

Theorem 2.10 Let S be an exchange ring satisfying s-comparability, let J be a 2-sided ideal of S , and let R

be an exchange subring of S which contains J as a direct summand. Then R satisfies s-comparability if and
only if so does R/J .

Proof. Assume that x = x2 ∈ R , y = y2 ∈ R . We distinguish the following cases:

(1) If x, y ∈ J , then xR = xJ = xS and yR = yJ = yS . Since S satisfies s-comparability, xR �⊕ s(yR)

or yR �⊕ s(xR).
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(2) If x ∈ J , and y /∈ J , then y /∈ SxS . If yS �⊕ s(xS), since xRxR = xR and yR ∼= yRxS ,

yS �⊕ SxS . We have y ∈ SxS , which is a contradiction. Thus we have xS �⊕ syS . xR = xJ ∼= xS ⊗S J �⊕

s(yS) ⊗S J ∼= s(yJ) ≤⊕ s(yR).

(3) If x /∈ J , since R/J satisfies s-comparability, we have that xR/(xR)J �⊕ s(yR/(yR)J) or

yR/(yR)J �⊕ s(xR/(xR)J). Without loss of the generality, we assume the former is true. By Lemma 2.8,

there are decompositions xR = x1R⊕x2R and yR = y1R⊕y2R with x1R ∼= y1R and x2R = (x2R)J . Clearly,

y2 = y2
2 ∈ R . Thus by the above discussion, x2R �⊕ s(y2R) or y2R �⊕ s(x2R). If the former is true,

xR = x1R ⊕ x2R �⊕ s(y1R) ⊕ s(y2R) ∼= s(yR).

If the latter is true, by Lemma 2.4 and 2.9, there exist finitely generated projective R -modules U, V such that

x1R �⊕ sU, U �⊕ y1R, U �⊕ x1R,

y2R �⊕ sV, V �⊕ x2R, V �⊕ y2R.

Set U ⊕ W ∼= y1R, V ⊕ T ∼= x2R . So there are f = f2, g = g2 ∈ R such that W = fR, T = gR . It is clear
that g ∈ x2R ⊆ J , thus W �⊕ sT or T �⊕ sW . Without loss of generality, we assume that the former is true,

yR = y1R ⊕ y2R ∼= U ⊕ W ⊕ y2R

�⊕ U ⊕ sT ⊕ y2R

�⊕ x1R ⊕ sT ⊕ sV

�⊕ s(x1R) ⊕ s(T ⊕ V )

�⊕ s(x1R) ⊕ s(x2R)

�⊕ s(xR).

Similarly, if the latter is true, then xR �⊕ s(yR), as desired. �

We end this note by raising the following question: let S be an excellent extension of R . Is it true that R

is an exchange ring satisfying s-comparability if and only if S is an exchange ring satisfying s-comparability?
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