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Multiplication modules with Krull dimension

Mahmood Behboodi and Maryam Molakarimi

Abstract

In ring theory, it is shown that a commutative ring R with Krull dimension has classical Krull dimension

and satisfies k.dim(R) = cl.k.dim(R) . Moreover, R has only a finite number of distinct minimal prime

ideals and some finite product of the minimal primes is zero (see Gordon and Robson [9, Theorem 8.12,

Corollary 8.14, and Proposition 7.3]). In this paper, we give a generalization of these facts for multiplication

modules over commutative rings. Actually, among other results, we prove that if M is a multiplication

R -module with Krull dimension, then: (i) M is finitely generated, (ii) R has finitely many minimal prime

ideals P1, . . . ,Pn of Ann(M) such that Pk
1 . . .Pk

nM = (0) for some k ≥ 1, and (iii) M has classical Krull

dimension and k.dim(M) = cl.k.dim(M) = k.dim(M/PM) = cl.k.dim(M/PM) for some prime ideal P of

R .
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1. Introduction

All rings throughout this paper are associative, commutative with identity 1 �= 0, and all modules are
unital. Let M be an R -module and X be either an element or a subset of R . Then the annihilator of X is
the ideal Ann(X) = {a ∈ R | aX = 0} . A proper submodule P of M is called a prime submodule, provided

rm ∈ P for some r ∈ R and m ∈ M , implies that m ∈ P or rM ⊆ P (i.e. r ∈ Ann(M/P )). One may

easily see that a proper submodule P of M is prime if and only if Ann(M/P ) = P is a prime ideal of R

and M/P is a torsion free R/P -module. This notion of prime submodules was first introduced by Feller [8]

and studied by Karakas [10] over commutative rings, and more systematically by Dauns [6] in general (not

necessarily over commutative rings). Recently this notion of primes in modules has received a good deal of

attention from several authors, for example [2], [3], [4], [5], [6], [12], and many others. An R -module M is
called a multiplication module if any submodule N of M is expressible as N = IM , where I is an ideal of
R . Ideals generated by idempotents, and hence any ideal in a Von-Neumann regular ring, multiplication ideals,
invertible ideals, and more generally projective ideals, are examples of multiplication modules. For more details
and in fact some significant equivalent definitions that are crucial for understanding multiplication modules, the
reader is referred to [1] and [7].
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By “Krull dimension” we will mean the module-theoretic Krull dimension (defined below), introduced by

Rentschler and Gabriel [14] and Krause [11] and studied extensively by Gordon and Robson [9] amongst others.

Let R be a ring and let M be an R -module. The Krull dimension of M , denoted by k.dim(M), if it exists, is

defined as follows: k.dim(M) = −1 if and only if M = 0. If α ≥ 0 is an ordinal such that all modules with Krull

dimension strictly less than α are known, then k.dim(M) ≤ α if for every chain M = M0 ⊇ M1 ⊇ M2 ⊇ . . . of

submodules of M there is a positive integer n such that k.dim(Mi/Mi+1) < α for all i ≥ n ; and k.dim(M) = α

if α is the smallest ordinal β such that k.dim(M) ≤ β . Note that k.dim(M) = 0 if and only if M is nonzero
Artinian. In this sense, the Krull dimension of a module can be thought of as a measure of how far the module
is from being Artinian. It is interesting, however, that many properties of modules with Krull dimension are
similar (or identical) to those of Noetherian modules. A ring R will be said to have Krull dimension if the
R -module R has Krull dimension.

For a module M , the prime spectrum Spec(M) is defined to be the set of all prime submodules of M .
Trivially, maximal submodules are prime submodules. Unfortunately, unlike the rings with identity, not every
R -module contains a prime submodule; for example Zp∞ does not contain a prime submodule.

Let M be a multiplication R -module. Let Spec−1(M) = ∅ and Spec0(M) denote the collection of

maximal submodules of M and for any ordinal α ≥ 1, let Specα(M) denote the collection of prime submodules

P of M such that all prime submodules of M properly containing P belong to
⋃

0≤β<α Specβ(M). If there

exists an ordinal α ≥ 1 such that Spec(M) = Specα(M) then we shall say that M has classical Krull dimension

and the classical Krull dimension of M , denoted by cl.k.dim(M), shall be the least ordinal γ ≥ 0 such that

Spec(M) = Specγ(M). This notion of classical Krull dimension for modules was first introduced in [3] (see also

[5]). Krause [11] shows that having classical Krull dimension for a ring R is equivalent to having ascending

chain condition (acc) on prime ideals. This fact is also true for multiplication modules (see [3, Proposition

4.10]).

In this paper we will discuss relationships between the above different types of “Krull dimension” for
multiplication modules. In ring theory, it is shown that Krull and classical Krull dimension are equal for left
FBN−rings (fully bounded Noetherian rings); see [13, Theorem 4.8]. This generalizes to FBK−rings (fully

bounded rings with Krull dimension); see Gordon and Robson [9, Theorem 8.12]. In particular, a commutative

ring R with Krull dimension has classical Krull dimension and satisfies k.dim(R) = cl.k.dim(R). Also, a ring
with Krull dimension has only a finite number of distinct minimal prime ideals and some finite product of the
minimal primes is zero (see [9, Proposition 7.3] or [15, Proposition 1.4.11]).

Our main aim in this paper is a further generalization of these facts for multiplication modules over
commutative rings. In fact: it is shown that if M is a multiplication module with Krull dimension, then R has

only a finite number of distinct minimal prime ideals P1, . . . ,Pn of Ann(M) such that Pk
1 . . .Pk

nM = (0) for

some k ≥ 1, and P1M, . . . ,PnM are the only minimal prime submodules of M (see Theorem 2.12). Also, if

M is a multiplication module with Krull dimension, then M is finitely generated (see Corollary 2.14). Finally,
Theorem 4.6 shows that if M is a multiplication R -module with Krull dimension, then M has classical Krull
dimension and k.dim(M) = cl.k.dim(M) = k.dim(M/PM) = cl.k.dim(M/PM) for some prime ideal P of R .
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2. On Krull dimension of multiplication modules

Let R be a ring. We recall that an element c ∈ R is called regular if c is not a zero divisor of R (i.e. its

Ann(c) is (0))

Lemma 2.1 Let M be a faithful multiplication R -module with Krull dimension. Then k.dim(M/cM) <

k.dim(M) for each regular element c of R .

Proof. Suppose that c is a regular element of R . Clearly M ⊇ cM ⊇ c2M ⊇ · · · is a descending chain

of submodules of M . We define ϕ : M −→ ciM/ci+1M with ϕ(m) = cim + ci+1M . Clearly, ϕ is an R -

module epimorphism and cM ⊆ kerϕ . Also, if m ∈ kerϕ , then cim = ci+1m′ for some m′ ∈ M . Since M

is a multiplication R -module, the submodule R(m − cm′) is of the form IM for some ideal I . Therefore,

ciIM = 0 and since M is faithful, ciI = (0). Since c is a regular element in R , I = (0), i.e. m = cm′ . Thus

kerϕ = cM and hence for all i , M/cM ∼= ciM/ci+1M . Now by definition of Krull dimension, k.dim(M/cM) <

k.dim(M). �

An R -module M is called a prime module provided (0) � M is a prime submodule of M , i.e. Ann(m) =

Ann(M) for all (0) �= m ∈ M . Clearly P � M is a prime submodule if and only if M/P is a prime module.

Lemma 2.2 [7, Theorem 2.13] Let M be a faithful multiplication R -module. A submodule E of M is essential
if and only if there exists an essential ideal I of R such that E = IM .

The next result is often useful in calculations.

Lemma 2.3 [13, Lemma 2.2.8] Let M be an R -module with Krull dimension. Then

k.dim(M) ≤ sup{k.dim(M/E) + 1 | E is an essential submodule of M}.

Lemma 2.4 [13, Lemma 6.2.4] Let M be an R -module. If N is a submodule of M then

k.dim(M) = sup{k.dim(N), k.dim(M/N)}.

Lemma 2.5 [7, Corollary 2.11] The following statements are equivalent for a proper submodule P of multipli-
cation R -module M.

(i) P is a prime submodule of M .

(i) P = Ann(M/P ) is a prime ideal of R .

(i) P = PM for some prime ideal P of R with P ⊇ Ann(M) .

Theorem 2.6 Let M be a prime multiplication R -module with Krull dimension. Then

k.dim(M) = sup {k.dim(M/E) + 1 | E is an essential submodule of M}.
Proof. Since M is a prime module by Lemma 2.5, P = AnnR(M) is a prime ideal. Also, it is easy to see

that the Krull dimension of M as an R -module is equal to the Krull dimension of M as an R/P -module.
Thus without loss of generality we can assume that R is a domain and M is a faithful R -module. Since every
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nonzero ideal of a domain is essential, by Lemma 2.2, every nonzero submodule of M is also essential. Let the
supremum be α . By Lemma 2.3, k.dim(M) ≤ α . For each nonzero submodule E = IM of M , the ideal I

contains a regular element; say c , so cM ⊆ IM = E . Thus by using Lemma 2.1 and Lemma 2.4

k.dim(M/E) + 1 ≤ k.dim(M/cRM) + 1 ≤ k.dim(M),

and this completes the proof. �

Corollary 2.7 Let M be a prime multiplication R -module with Krull dimension. Then for any nonzero
submodule N of M , k.dim(M/N) < k.dim(M).

Proof. Clear by the proof of Theorem 2.6. �

Recall that an element of a ring is called nilpotent if some power of it is zero and that a set is called
nil if each of its elements is nilpotent. Also, we recall the definition of the nilpotent element in a module. An

element m of an R -module M is called nilpotent if m =
∑r

i=1 aimi for some ai ∈ R , mi ∈ M , and r ∈ N ,

such that ak
i mi = 0 (1 ≤ i ≤ r) for some k ∈ N . A submodule N of M is called a nil submodule if each

element of N is nilpotent. We denote the set of all nilpotent elements of M by Nil∗(RM). Clearly Nil∗(RM)

is a submodule of M (see [4]). M is called a nil module if every element of M is nilpotent. Also, a submodule

N = IM of a multiplication R -module M is called nilpotent (resp., idempotent) if InM = 0 for some n ∈ N

(resp., I2M = IM ).

Minimal prime submodules are defined in a natural way. It is clear that whenever {Pi}i∈I is a chain of
prime submodules of an R -module M , then ∩i∈IPi is always a prime submodule. Therefore, by Zorn’s lemma
each prime submodule of M contains a minimal one. Let radR(M) be the intersection of all (minimal) prime

submodules of M . Then Nil∗(R)M ⊆Nil∗(RM) ⊆radR(M) (see [4, Lemma 3.2]). Note that for an ideal I of

R ,
√

I := {r ∈ R | rk ∈ I for some k ≥ 1} and Nil∗(R) =
√

(0).

Lemma 2.8 Let M be a multiplication R -module. Then

√
Ann(M)M = Nil∗(RM) = radR(M).

In particular, if M is faithful, then Nil∗(R)M = Nil∗(RM) = radR(M) .

Proof. Clearly
√

Ann(M)M ⊆ Nil∗(RM) and by [4, Lemma 3.2], Nil∗(RM) ⊆ radR(M). Also, by [7,

Theorem 2.12],
√

Ann(M)M = radR(M), and hence the proof is complete. �

Lemma 2.9 ([7, Corollary 4.7] Let M be a faithful multiplication R -module. Then the ring R has Krull

dimension if and only if M has Krull dimension. In this case k.dim(R) = k.dim(M) .

It is well known that if R is a ring with Krull dimension, then every nil ideal of R is nilpotent (see

for example, [13, Theorem 6.3.7]). Next, we give a generalization of this fact for multiplication modules over
commutative rings.
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Proposition 2.10 Let M be a multiplication R -module with Krull dimension. Then every nil submodule of
M is nilpotent.

Proof. Clearly Nil∗(M) is nilpotent as an R -submodule of M if and only if Nil∗(M) is nilpotent as an

R/Ann(M)-submodule. Also, M has Krull dimension as an R -module if and only if M has Krull dimension

as an R/Ann(M)-module. Thus we may assume that M is faithful. Since each nil submodule of M contained

in Nil∗(M), it suffices to show that Nil∗(M) is nilpotent. By Lemma 2.8, Nil∗(M) = Nil∗(R)M . By Lemma

2.9, R has Krull dimension and since Nil∗(R) is a nil ideal of R , by [13, Theorem 6.3.7], Nil∗(R) is nilpotent.

It follows that Nil∗(M) is a nilpotent submodule of M . �

In [15, Proposition 1.4.11] it was shown that, if R is a ring with right Krull dimension, then there are
only finitely many minimal prime ideals of R and some finite product of these is zero. The following theorem
is a generalization of this fact for multiplication modules over commutative rings.

Lemma 2.11 Let M be a multiplication R -module and P be a proper submodule of M . Then P is a prime
submodule of M if and only if for all ideals I , J of R , IJM ⊆ P implies that IM ⊆ P or JM ⊆ P .

Proof. Evident. �

Theorem 2.12 Let R be a ring and M be a multiplication R -module with Krull dimension. Then R has

finitely many minimal prime ideals P1, . . . ,Pn of Ann(M) such that Pk
1 . . .Pk

nM = (0) for some k ≥ 1 and
P1M, . . . ,PnM are the only minimal prime submodules of M .

Proof. By Lemma 2.8,
√

Ann(M)M = radR(M) and by Lemma 2.9, R/Ann(M) has Krull dimension. Also,

by [13, Corollary 6.3.8], R/Ann(M) contain only finitely many minimal primes, P1/Ann(M), · · · , Pn/Ann(M)

say; and the prime radical Nil∗(R/Ann(M)) = (
⋂n

i=1 Pi)/Ann(M) is nilpotent, i.e. (
⋂n

i=1 Pi)kM = (0) for

some k ≥ 1. It follows that Pk
1 · · · Pk

nM = (0). Since each Pi contains Ann(M), by Lemma 2.5, for each i ,

Pi is a minimal prime of Ann(M) and PiM is a prime submodule of M . On the other hand, if PM is a

minimal prime submodule of M , then Pk
1 · · ·Pk

nM = (0) implies that PjM ⊆ PM (see Lemma 2.11), whence

by minimality, PjM = PM . Therefore, P1M, . . . ,PnM are the only minimal prime submodules of M . �

Lemma 2.13 [7, Theorem 3.7] Let M be a multiplication R -module such that M contains only finitely many
minimal prime submodules. Then M is finitely generated.

Corollary 2.14 Let M be a multiplication R -module with Krull dimension. Then M is finitely generated.

Proof. Let M be a multiplication R -module with Krull dimension. By Theorem 2.12, M contains only
finitely many minimal prime submodules and by Lemma 2.13, M is finitely generated. �

By Woodward [15], if R is a ring with Krull dimension, then k.dim(R) = k.dim(R/P) for some prime
ideal P of R . Next we prove the following extension of this result for multiplication modules.

Theorem 2.15 Let M be a multiplication R -module with Krull dimension. Then k.dim(M) = k.dim(M/PM)
for some prime submodule PM of M .
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Proof. It is easy to see that the Krull dimension of M as an R -module is equal to the Krull dimension
of M as an R/Ann(M)-module. Thus we can assume that M is a faithful R -module. Since M has Krull
dimension, by Corollary 2.14, M is finitely generated and by Theorem 2.12, there exist minimal prime ideals
P1, . . . ,Pt (not necessarily distinct) of Ann(M) such that P1 . . .PtM = (0). Consider the descending chain

M ⊇ P1M ⊇ P1P2M ⊇ ... ⊇ P1 . . .PtM = (0). If t = 1, then P1 = (0) (since M is faithful) and hence

(0) is a prime ideal of R , and k.dim(M) = k.dim(M/(0)M). Thus we can assume that t ≥ 2. Then for

each 2 ≤ i ≤ t the factor (P1...Pi−1)M/(P1...Pi−1Pi)M is an (R/Pi)−module and so by [15, Lemma 1.4.6],

k.dim((P1...Pi−1)M/(P1...Pi−1Pi)M) ≤ k.dim(R/Pi) as an R/Pi -module. Since M is finitely generated and

each Pi is a minimal prime of Ann(M), we conclude that M/PiM is a finitely generated faithful R/Pi -module.

Thus by Lemma 2.9, k.dim(M/PiM) = k.dim(R/Pi) for each i . Now by Lemma 2.4,

k.dim(M) = sup {k.dim(M/P1M), ..., k.dim(M/PtM)}

and hence, k.dim(M) = k.dim(M/PiM) for some 1 ≤ i ≤ t . �

3. On classical Krull dimension of multiplication modules

Let R be a ring, let I be an ideal of R , and let α ≥ 0 be an ordinal. If P is a prime ideal of R containing
I , then P ∈ Specα(R) if and only if P/I ∈ Specα(R/I) (see [15, Lemma 5.2.3(i)]). By using the same method,
we still extend this result for modules as follows:

Lemma 3.1 Let M be an R -module, let N be a submodule of M , and let α ≥ 0 be an ordinal. If P is a
prime submodule of M containing N , then P ∈ Specα(M) if and only if P/N ∈ Specα(M/N) .

Let M be an R -module and N1 , N2 be submodules of M . As [3], we say that N1 is strongly properly

contained in N2 , and write N1 ⊂s N2 , if N1 ⊂ N2 and also Ann(M/N1) ⊂ Ann(M/N2).

Proposition 3.2 Let M be a prime multiplication R -module with classical Krull dimension. Then for any
nonzero prime submodule PM of M , cl.k.dim(M/PM) exists and

cl.k.dim(M/PM) < cl.k.dim(M).

Proof. Assume that PM is a nonzero prime submodule of M . Since M is a multiplication R -module, by
[3, Lemma 4.4], for any 2 prime submodules P , Q of M , P ⊂s Q if and only if P ⊂ Q . Since (0) ⊂ PM ,

so (0) ⊂s PM and hence by [3, Lemma 3.10], cl.k.dim(M/PM) exists and cl.k.dim(M/PM) < cl.k.dim(M).�

Lemma 3.3 (see [3, Lemma 3.6]) Let M be multiplication R -module for which cl.k.dim(M) exists. Then for

any submodule N of M , cl.k.dim(M/N) exists and is no larger than cl.k.dim(M) .

Proposition 3.4 Let M be a multiplication R -module with classical Krull dimension cl.k.dim(M) ≥ α for

some ordinal α ≥ 0 . If cl.k.dim(M/IM) < α for every nonzero submodule IM of M , then M is a prime

module with cl.k.dim(M) = α.

555



BEHBOODI, MOLAKARIMI

Proof. Since cl.k.dim(M) ≥ α ≥ 0, M has a prime submodule. Let P1M ∈ Spec(M). It suffices to

show that P1M ∈ Specα(M). If every prime submodule of M is maximal, then cl.k.dim(M) = 0 = α . Take

P2M strictly containing P1M . Since P2M �= (0), cl.k.dim(M/P2M) = β for some ordinal β < α and so

P2M ∈ Specβ(M) by Lemma 3.1. It follows that P1M ∈ Specα(M). Therefore, cl.k.dim(M) ≤ α and so

cl.k.dim(M) = α . Now suppose, contrary to our claim, that M is not a prime module. By Lemma 2.11, there

exist nonzero submodules IM and JM of M where I, J are ideals of R and IJM = (0). Let PM be a prime

submodule of M and put β = max{cl.k.dim(M/IM), cl.k.dim(M/JM)} . Then β < α and we may assume

that IM ⊆ PM (since IJM = (0) and PM � M is prime). Thus by Lemma 3.3,

cl.k.dim(M/PM) = cl.k.dim(
M/IM

PM/IM
) ≤ cl.k.dim(M/IM) ≤ β < α,

so PM ∈ Specβ(M). Thus Spec(M) = Specβ(M) with β < α , a contradiction (since cl.k.dim(M) = α). Thus

M is a prime module. �

Theorem 3.5 Let M be a Noetherian multiplication R -module. Then the following statements are equivalent:
(i) M is a prime module.

(ii) cl.k.dim(M/PM) < cl.k.dim(M) for every nonzero prime submodule PM of M .

(iii) cl.k.dim(M/IM) < cl.k.dim(M) for every nonzero submodule IM of M .

Proof. Since M is Noetherian, by [3, Proposition 4.10], M has classical Krull dimension. Thus (i) ⇒ (ii) is

by Lemma 3.3 and (iii) ⇒ (i) is by Proposition 3.4.

(ii) ⇒ (iii). Let IM be a submodule of M which is maximal with respect to the property that cl.k.dim(M/IM) =

cl.k.dim(M) = α . If KM/IM is a nonzero submodule of M/IM then cl.k.dim((M/IM)/(KM/IM)) =

cl.k.dim(M/KM) < α = cl.k.dim(M/IM), by the maximality of IM . It follows, by Proposition 3.4, that

M/IM is a prime module, that is IM is a prime submodule of M . Thus IM = (0) by (ii) and, hence,

cl.k.dim(M/IM) < cl.k.dim(M) for every nonzero submodule IM of M . �

4. The relationship between Krull and classical Krull dimension of multiplication modules

We begin this section with the following interesting result that shows that as rings with identity, every
nonzero multiplication module M over a Noetherian ring R has a maximal submodule.

Proposition 4.1 Let R be a Noetherian ring. Then every nonzero multiplication R -module M has a maximal
submodule.
Proof. Without loss of generality we can assume that M is a faithful R -module. First we show that M

has a prime submodule, for if not, then by Lemma 2.5, PM = M for all prime ideals of R . It follows that
IM = M for all nonzero ideals I of R and so R must be a domain and (0) is the only proper submodule of

M . Thus M is a simple R -module and so (0) is prime submodule of M , a contradiction. Therefore, M has a

prime submodule, say PM . Now by [7, Corollary 3.5], M/PM is a finitely generated R/P -module. It follows

that M/PM has a maximal R/P -submodule, say K/PM . It is clear that K is a maximal R -submodule of
M . �
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Corollary 4.2 Let M be a multiplication module over a Noetherian ring R . Then

(i) k.dim(M) = −1 if and only if cl.k.dim(M) = −1 if and only if M = (0) .

(ii) cl.k.dim(M) = 0 if and only if M �= (0) and every prime submodule of M is maximal.

(iii) k.dim(M) = 0 if and only if M is an Artinian module with cl.k.dim(M) = 0 , if and only if M is an
Artinian cyclic module.

Proof. (i) and (ii) are clear by Proposition 4.1 and the coincidence of Krull and classical Krull dimen-

sions. For (iii), we note that by [7, Corollary 2.9], Artinian multiplication modules are cyclic. k.dim(M) = 0

if and only if M is an Artinian module with cl.k.dim(M) = 0, if and only if, M is an Artinian cyclic module. �

The following example shows that a multiplication module M (even if M = R) with cl.k.dim(M) = 0
need not have Krull dimension.

Example 4.3 Put

R :=
Z2[{Xi | i ∈ N}]

< XiXj | i, j ∈ N >

where < XiXj | i, j ∈ N > is the ideal of Z2[{Xi | i ∈ N}] generated by the set {XiXj | i, j ∈ N} . Then

the ring R is a non-Noetherian local ring with only prime (maximal) ideal M =< xi | i ∈ N > , where

xi = Xi+ < XiXj | i, j ∈ N > . Thus cl.k.dim(R) = 0, but R has no krull dimension (since M ∼=
⊕

i∈N
Rxi

where each Rxi = {0, xi} is a simple R -module, and so M has no Krull dimension).

Proposition 4.4 Let R be a commutative ring with Krull dimension. Then R has classical Krull dimension
and cl.k.dim(R) = k.dim(R) .

Proof. By [9, Theorem 8.12]. �

Proposition 4.5 Let M be a be nonzero finitely generated multiplication R -module with AnnR(M) = I . Then

cl.k.dim(R/I) exists if and only if cl.k.dim(M) exists. Moreover, if one of them exists, then

cl.k.dim(R/I) = cl.k.dim(M).

Proof. By [5, Corollary 2.5] is clear. �

Now, we are in position to prove the main theorem of this paper.

Theorem 4.6 Let M be a multiplication R -module with Krull dimension. Then M has classical Krull
dimension and

k.dim(M) = cl.k.dim(M) = k.dim(M/PM) = cl.k.dim(M/PM)

for some prime submodule PM of M .
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Proof. First we show that cl.k.dim(M) exists and also cl.k.dim(M) ≤ k.dim(M). So suppose that

k.dim(M) = α for some ordinal α ≥ −1. We prove the result by induction on α . By Corollary 4.2, the

result is clear if α = −1 or 0, so suppose that α ≥ 1. Let PM be any prime submodule of M . Then M/PM

is a prime module with Krull dimension. Let QM be any prime submodule of M such that PM � QM . Since

M/QM ∼= M/PM
QM/PM , by Corollary 2.7,

k.dim(M/QM) = k.dim(
M/PM

QM/PM
) < k.dim(M/PM) ≤ k.dim(M) = α.

Now by hypotheses cl.k.dim(M/QM) ≤ k.dim(M/QM), and so QM ∈ Specβ(M) for some ordinal 0 ≤ β < α ,

by Lemma 3.1. Thus PM ∈ Specγ(M) for some ordinal β < γ ≤ α . It follows that Specγ(M) = Spec(M)

and hence M has classical Krull dimension and cl.k.dim(M) ≤ γ ≤ α = k.dim(M). Now by Theorem 2.15,

there exists a prime submodule P0M of M with k.dim(M) = k.dim(M/P0M). If cl.k.dim(M/P0M) =

k.dim(M/P0M), then, by the first part of the proof

k.dim(M/P0M)=cl.k.dim(M/P0M)≤ cl.k.dim(M)≤ k.dim(M)=k.dim(M/P0M)

and so k.dim(M) = cl.k.dim(M) = k.dim(M/P0M) = cl.k.dim(M/P0M). Therefore, without loss of generality,
we may assume that M is a prime module. We claim that for any ordinal β < α there is a nonzero prime
submodule QM of M such that β ≤ k.dim(M/QM) < α . By Theorem 2.6, there is certainly an essential

submodule E of M such that β ≤ k.dim(M/E) < α . Therefore, by choosing a nonzero prime submodule QM

of M satisfying k.dim(M/E) = k.dim(M/QM), we are done by Theorem 2.15. By induction on α , assume

that the result is true for all ordinals strictly less than α . If cl.k.dim(M) �= α then cl.k.dim(M) < α , so there is

a nonzero prime submodule QM of M such that cl.k.dim(M) ≤ k.dim(M/QM) < α . By induction hypothesis

we have k.dim(M/QM) = cl.k.dim(M/QM) and thus

cl.k.dim(M) ≤ k.dim(M/QM) = cl.k.dim(M/QM).

Since M is a prime module, by Proposition 3.2, cl.k.dim(M/QM) < cl.k.dim(M) and so cl.k.dim(M) <

cl.k.dim(M), a contradiction. Therefore, cl.k.dim(M) = α = k.dim(M). �

Finally, we conclude this article with the following corollary.

Corollary 4.7 Let M be a multiplication R -module with Krull dimension. Then M is finitely generated and
has acc on prime submodules.

Proof. By Corollary 2.14, M is finitely generated and by Theorem 4.6 and [3, Proposition 4.10], M has acc

on prime submodules. �
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