p-Rank and p-groups in algebraic groups

Adrien Deloro

Abstract

A few remarks on the measures of the p-rank of a group equipped with a dimension, including the refutation of a result of Burdges and Cherlin.

Key Words: Algebraic groups, groups of finite Morley rank, torsion, p-groups
Groups of finite Morley rank are abstract analogues of algebraic groups; like them they bear a dimension enabling various genericity arguments. They do not come from geometry but from logic; yet the Cherlin-Zilber conjecture and related work suggest tight relationships between both aspects. My reader may thus view what follows as naive properties of algebraic groups obtained by elementary means; the word "definable" stands for "constructible". Should he desire more on groups of finite Morley rank, [1] would provide references.

I wish to thank Éric Jaligot for his many suggestions.

A group of finite Morley rank is connected if it has no proper definable subgroup of finite index. One lets H° be the connected component of a definable subgroup H, i.e. its smallest definable connected subgroup of finite index. This extends to arbitrary $H: H$ is included in a smallest definable subgroup $d(H)$, one takes the connected component $d(H)^{\circ}$ and sets $H^{\circ}=H \cap d(H)^{\circ}$.

Throughout, p will be a prime (possibly 2). A p-torus T is a finite power of the Prüfer quasi-cyclic p-group $\mathbb{Z}_{p^{\infty}} ; T \simeq \mathbb{Z}_{p}^{d}$ is injective among abelian groups. For $H \leq T, H^{\circ}$ consistently denotes the maximal subtorus of H.

A group of finite Morley rank is U_{p}^{\perp} if it has no infinite elementary abelian p-subgroup. U_{p}^{\perp} groups conjugate their Sylow p-subgroups [3, Theorem 4], i.e. their maximal (non-necessarily definable) p-subgroups; these are finite extensions of p-tori. Hence, for S a Sylow p-subgroup of a U_{p}^{\perp} group, S° is a p-torus.

Given a U_{p}^{\perp} group, 3 measures of its Sylow p-subgroups are available. One can consider the Prüfer p-rank $\operatorname{Pr}_{p}(G)$, which is the number of $\mathbb{Z}_{p^{\infty}}$ factors in a Sylow p-subgroup. One can also estimate the normal p-rank $n_{p}(G)$, which is the maximal p-rank of an elementary abelian p-group normal in a Sylow p-subgroup. Or one can simply compute the p-rank $m_{p}(G)$, which is the maximal p-rank of an elementary abelian p-subgroup. All 3 numbers are well defined by conjugacy of the Sylow p-subgroups, and $m_{p}(G) \geq n_{p}(G) \geq \operatorname{Pr}_{p}(G)$.

[^0]
DELORO

1. The n-rank

Lemma 1 If G is a connected, U_{p}^{\perp} group, then $n_{p}(G)=\operatorname{Pr}_{p}(G)$.
Proof. Let S be a Sylow p-subgroup of $G, V \triangleleft S$ an elementary abelian normal subgroup, and $v \in V$. As $V \triangleleft S, v^{S^{\circ}} \subseteq V$ which is finite; by connectedness, S° centralizes v. So $v \in C_{S}\left(S^{\circ}\right)=S^{\circ}$ by [3, Corollary 3.1], and $V \leq S^{\circ}$.

2. Not quite a digression

For a p-torus $T \simeq \mathbb{Z}_{p^{\infty}}^{d}, \Omega_{p^{n}}(T)$ denotes the set of elements of order at most p^{n}.
Fact 1 Let φ be an automorphism of finite order of a p-torus $T \simeq \mathbb{Z}_{p \infty}^{d}$.

1. Suppose $\Omega_{p^{2}}(T) \leq C_{T}(\varphi)$. Then $\varphi=\mathrm{Id}$.
2. Suppose $\Omega_{p}(T) \leq C_{T}(\varphi)$. If $p=2$, then $\varphi^{2}=\mathrm{Id}$. If $p \neq 2$, then $\varphi=\mathrm{Id}$.

Proof. This must be classical but I know no reference.

1. Up to taking a power of φ, we may assume that φ has prime order q. Let $x \notin C_{T}(\varphi)$ have minimal order. Then $\varphi\left(x^{p}\right)=x^{p}$ so there is $y \in \Omega_{p}(T) \backslash\{1\}$ with $\varphi(x)=x y$. By assumption $y \in C_{T}(\varphi)$, so $x=\varphi^{q}(x)=x y^{q}$ and $q=p$. Let \hat{x} and \hat{y} be such that $\hat{x}^{p}=x$ and $\varphi(\hat{x})=\hat{x} \hat{y}$. Then $\hat{y}^{p}=y$ so $\hat{y} \in \Omega_{p^{2}}(T) \leq C_{T}(\varphi)$ and $\hat{x}=\varphi^{p}(\hat{x})=\hat{x} \hat{y}^{p}=\hat{x} y$, a contradiction.
2. Since φ centralizes $\Omega_{p}(T)$, for $x \in \Omega_{p^{2}}(T)$ there is $y \in \Omega_{p}(T)$ with $\varphi(x)=x y$; hence $\varphi^{p}(x)=x y^{p}=x$ and $\Omega_{p^{2}}(T) \leq C_{T}\left(\varphi^{p}\right)$. So $\varphi^{p}=\mathrm{Id}$; we may assume $p \neq 2$. Represent $\varphi_{\mid \Omega_{p^{3}}(T)}$ by a matrix $M \in \mathrm{GL}_{d}\left(\mathbb{Z} / p^{3} \mathbb{Z}\right)$. As $\Omega_{p}(T) \leq C_{T}(\varphi)$, the reduction of M modulo p is the identity: there is a matrix N with $M=\operatorname{Id}+p N$. Since $\varphi^{p}=\operatorname{Id}$,

$$
0 \equiv \sum_{\ell=1}^{p}\binom{p}{\ell} p^{\ell} N^{\ell} \equiv p^{2} N+\frac{p(p-1)}{2} p^{2} N^{2} \quad\left[p^{3}\right]
$$

Since $p \neq 2, p$ divides $\frac{p(p-1)}{2}$, so $p^{2} N \equiv 0\left[p^{3}\right]$ and $N \equiv 0[p]$. Hence the reduction of $M=\operatorname{Id}+p N$ modulo p^{2} is the identity: M centralizes $\Omega_{p^{2}}(T)$, and φ is trivial.

Consequence If $p \neq 2$, the restriction map $\rho: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}\left(\Omega_{p}(T)\right)$ kills no element of finite order. In particular if W is a finite subgroup of $\operatorname{Aut}(T)$ then W embeds into $\operatorname{Aut}\left(\Omega_{p}(T)\right) \simeq \operatorname{GL}_{d}\left(\mathbb{F}_{p}\right)$. If $p=2$ then $\operatorname{ker} \rho_{\mid W} \hookrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{d}$.

Proof. The only non-immediate claim is about the rank of $K=\operatorname{ker} \rho_{\mid W}$ when $p=2$. Observe that K has exponent 2, so it is abelian. We go in a direction that will prove fruitful. Taking automorphism groups changes inductive limits to projective limits, so $\operatorname{Aut}(T) \simeq \lim _{\leftarrow} \operatorname{Aut}\left(\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{d}\right)=\lim _{\leftarrow} \mathrm{GL}_{d}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)=\mathrm{GL}_{d}\left(\mathbb{Z}_{p}\right)$. Hence K embeds into $\mathrm{GL}_{d}\left(\mathbb{Z}_{2}\right)$. Now elements of K are simultaneously diagonalizable over $\overline{\mathbb{Q}}_{2}$ with eigenvalues ± 1, so
K embeds into $\{ \pm 1\}^{d}$.

We could use a similar method to get a lazy bound on $\operatorname{rk} W$ for $W \leq \operatorname{Aut}(T)$ an elementary abelian p-group; observe how we are naturally moving towards the p-adic representation. Anyway, embedding into $\mathrm{GL}_{d}\left(\mathbb{F}_{p}\right)$, i.e. restricting to $\Omega_{p}(T)$, was too clumsy in the first place. For instance, any element of $\mathrm{GL}_{d}\left(\mathbb{F}_{p}\right)$ comes from an element of $\mathrm{GL}_{d}\left(\mathbb{Z}_{p}\right)$, but not necessarily from one of finite order. (The reader may check that $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$ has no element of order 5.) Representation-theoretically speaking, embedding into $\mathrm{GL}_{d}\left(\mathbb{Z}_{p}\right)$ is more appropriate, and this is what we shall now do.

3. Bounding the m-rank

Let φ be an automorphism of order p of a p-torus $T \simeq \mathbb{Z}_{p^{\infty}}^{d}$.
Fact 2 (Maschke's Theorem) Let $T_{1} \leq T$ be a φ-invariant subtorus. Then there is a φ-invariant subtorus $T_{2} \leq T$ such that $T=T_{1}+T_{2}$ and $T_{1} \cap T_{2} \leq \Omega_{p}\left(T_{1}\right)$.
Proof. There is a subtorus $T_{0} \leq T$ with $T=T_{1} \oplus T_{0}$. Let π be the projection on T_{1} along T_{0} and $\hat{\pi}=\sum_{i=0}^{p-1} \varphi^{i} \pi \varphi^{-i}$. Then $\hat{\pi}$ is φ-covariant, $\operatorname{im} \hat{\pi}=T_{1}$, and $\hat{\pi}\left(t_{1}\right)=p t_{1}$ for $t_{1} \in T_{1}$. Take T_{2} to be the maximal subtorus of $\operatorname{ker} \hat{\pi}$.

Fact $3\left(\varphi, T\right.$ as above) If $C_{T}^{\circ}(\varphi)=1$ then $p-1 \mid d$ and $\operatorname{Id}+\varphi+\cdots+\varphi^{p-1}=0$.
Proof. (This again must be well known.) We may assume $p \neq 2$. Let $\tau \leq T$ be isomorphic to $\mathbb{Z}_{p^{\infty}}$, and set $\Theta=\sum_{i=0}^{p-1} \varphi^{i}(\tau) ; \Theta$ is φ-invariant and $\operatorname{Pr}_{p}(\Theta) \leq p$. So by Maschke's Theorem, we may assume $d \leq p$. As in the proof of the Consequence above, let us view φ as an element of order p of $\mathrm{GL}_{d}\left(\mathbb{Z}_{p}\right) \leq \mathrm{GL}_{d}\left(\mathbb{Q}_{p}\right)$. By assumption, 1 is not an eigenvalue.

The minimal polynomial μ of φ over \mathbb{Q}_{p} divides $X^{p}-1=(X-1)\left(1+X+\cdots+X^{p-1}\right)$, so it divides $1+X+\cdots+X^{p-1}$. The latter is irreducible over \mathbb{Z}_{p} by Eisenstein's criterion, so $\mu=1+X+\cdots+X^{p-1}$. But μ divides the characteristic polynomial which has degree d. So $p-1 \leq d \leq p$. Over $\overline{\mathbb{Q}}_{p}, \varphi$ has $p-1$ eigenvalues, which sum to -1 . So if $d=p$, one of them, say j, occurs twice: hence $1+\operatorname{Tr} \varphi=j \in \mathbb{Q}_{p}$, against $p \neq 2$. So $d=p-1$.

Lemma 2 For $W \leq$ Aut $\mathbb{Z}_{p^{\infty}}^{d}$ an elementary abelian p-group, $\operatorname{rk} W \leq \frac{1}{p-1} d$.
Proof. $\quad E=\mathbb{Q}_{p}^{d}$ is a sum of W-irreducible subspaces $\oplus_{i \in I} E_{i} \bigoplus \oplus_{j \in J} F_{j}$ with E_{i} 's the W-trivial lines. Since W is abelian, it acts W-covariantly. Let $\rho_{j}: W \rightarrow \operatorname{Aut}_{W}\left(F_{j}\right)$ be the restriction map, with (non-trivial) image W_{j} and kernel K_{j}. Each End ${ }_{W} F_{j}$ is a skew-field by Schur's Lemma, so the abelian group W_{j} of exponent p has order p. As $C_{W}(E)=1, W \hookrightarrow \prod_{j \in J} W / K_{j}$, and $\operatorname{rk} W \leq \# J$. By Fact 3 , $\operatorname{dim} F_{j} \geq p-1$, whence $\# J \leq \frac{d}{p-1}$.

Corollary 1 Let G be a connected, U_{p}^{\perp} group. Then $m_{p}(G) \leq \frac{p}{p-1} \operatorname{Pr}_{p}(G)$.

DELORO

Proof. For $V \leq S$ an elementary abelian subgroup of a Sylow p-subgroup S, write $V=\left(V \cap S^{\circ}\right) \oplus W$. By [3, Corollary 3.1], $C_{S}\left(S^{\circ}\right)=S^{\circ}$; use Lemma 2.

4. Maximal abelian p-subgroups

Thesis [2, Theorem 1.2] Let G be a connected, U_{p}^{\perp} group with $m_{p}(G) \geq 3$. Then any maximal elementary abelian p-subgroup $V<G$ has p-rank at least 3 .

The flaw in [2] lies at the bottom of page 172. On the very last line, "commutation with v " need not in general be "a map from $\Omega_{1}(T) / A$ to A ". Observe that in [2] Theorem 6.4 relies on Corollary 4.2, which relies on Theorem 1.2.

Counter-Example $\operatorname{In} \operatorname{PSL}_{5}(\mathbb{C})$ let Θ be the usual torus and σ be the Weyl element naturally associated with the 5 -cycle (12345). Let $\theta \in C_{\Theta}(\sigma) \backslash\{1\}$. Then $\langle\theta, \sigma\rangle$ does not extend to an elementary abelian 5 -group of rank 3 .

Proof. The actual computations will take place in $\mathrm{SL}_{5}(\mathbb{C})$. Let $\lambda=e^{\frac{2 i \pi}{5}} \in \mathbb{C}$; then $Z\left(\mathrm{SL}_{5}(\mathbb{C})\right)=\left\{\lambda^{k} \mathrm{Id}\right\}$. The matrix $s=\left(\delta_{j, i+1}\right) \in \mathrm{SL}_{5}(\mathbb{C})$ (equality modulo 5) reduces modulo $Z\left(\mathrm{SL}_{5}(\mathbb{C})\right.$) to $\sigma \in \mathrm{PSL}_{5}(\mathbb{C})$; conjugation by s rotates coefficients of a matrix $\left(m_{i, j}\right) \in \mathrm{SL}_{5}(\mathbb{C})$ along the 5 (complete) diagonals. So given $\theta \in \Theta \leq \operatorname{PSL}_{5}(\mathbb{C})$ and a diagonal matrix $t \in \mathrm{SL}_{5}(\mathbb{C})$ representing it, one sees that $[\sigma, \theta]=1$ iff $t_{i, i}=\lambda^{k+\ell i}$ for some integers k and ℓ; thus $C_{\Theta}(\sigma)$ has order 5. Fix $\theta \in C_{\Theta}(\sigma) \backslash\{1\}$. Conjugation by t on ($m_{i, j}$) multiplies $m_{i, j}$ by $\lambda^{\ell(j-i)}$. So $C(\theta)=\Theta \rtimes\langle\sigma\rangle$, and $\langle\theta, \sigma\rangle$ is maximal.

The following merely serves the purpose of exposing an important method.
Observation Let G be a connected, U_{p}^{\perp} group, and $S \leq G$ a Sylow p-subgroup. Then S is connected iff abelian iff nilpotent.

Proof. Only one claim is non-trivial; we prove it by induction on the Morley rank (read: dimension) of G. Suppose S nilpotent; let $\omega \in S$. Then by nilpotence, $\tau=C_{S^{\circ}}^{\circ}(\omega) \neq 1$. By [3, Corollary 3.1], ω lies in any maximal p-torus of $C^{\circ}(\omega)$, so $\omega \in C^{\circ}(\tau)$. Hence $\left\langle S^{\circ}, \omega\right\rangle \leq C^{\circ}(\tau)$. If $C^{\circ}(\tau)<G$ we are done by induction. Otherwise τ is central and we can factor by $Z^{\circ}(G)$, pursuing by induction.

I shall now bring my reader some comfort.

Lemma 3 The thesis of [2, Theorem 1.2] holds for $p=2$, and so does [2, Corollary 6.5].
Proof. Suppose $m_{2}(G) \geq 3$; clearly $\operatorname{Pr}_{2}(G) \geq 2$. Let i, j be 2 commuting involutions; by torality [3, Theorem 3] there is a Sylow 2 -subgroup S with $i \in S^{\circ}$ and $j \in S$.

Suppose $\operatorname{Pr}_{2}(G) \geq 3$. If $j \in S^{\circ}$ we are done. If not, consider the map $\varphi(k)=[j, k]: \Omega_{2}\left(S^{\circ}\right) \rightarrow \Omega_{2}\left(S^{\circ}\right)$. Then $\operatorname{im} \varphi \leq \operatorname{ker} \varphi$ and $\operatorname{rkim} \varphi+\operatorname{rk} \operatorname{ker} \varphi \geq 3$, so $\operatorname{rk} \operatorname{ker} \varphi \geq 2$ and we are done. From now on, suppose $\operatorname{Pr}_{2}(G)=2\left(\right.$ so $\left.m_{2}(G) \leq 4\right)$ and let $V=\Omega_{2}\left(S^{\circ}\right)$.

Assume first that $j \in S \backslash S^{\circ}$. If j inverts S° then $\langle i, j\rangle \leq\langle V, j\rangle$: we are done. Otherwise $\tau=C_{S^{\circ}}^{\circ}(j) \neq 1$. If $i \notin \tau$ then $\langle i, j\rangle \leq\left\langle i, \Omega_{2}(\tau), j\right\rangle$: we are done. So assume $i \in \tau \leq C^{\circ}(j)$. By torality [3, Theorem 3 and Corollary 3.1], i lies in a 2 -torus of $C^{\circ}(j)$ and j lies in any 2 -torus of $C^{\circ}(j)$, so i and j are cotoral.

So assume that $j \in S^{\circ}$, that is $V=\langle i, j\rangle$. By assumption there is an elementary abelian 2-subgroup of rank 3: $A=\langle r, s, t\rangle \leq S$; clearly $A \cap S^{\circ} \neq 1$, say $r \in V$. If s or t is in V then $\langle i, j\rangle=V \leq A$: we are done. Suppose that s and t (hence st as well) lie in $S \backslash S^{\circ}$. Since $|\operatorname{Aut}(V)|=6$, one of s, t, st must centralize $V=\langle i, j\rangle$: we are done again.

Here is a final word on counter-examples.
Lemma 4 Let G be a counter-example to [2, Theorem 1.2]. Then $\operatorname{Pr}_{p}(G)=p-1$. In particular, [2, Theorem 1.2] also holds for $p=3$.

Proof. By Lemma $3, p \geq 3$. As $m_{p}(G) \geq 3$, one sees with Corollary 1 that $\operatorname{Pr}_{p}(G) \geq 2$. Equality can hold only for $p=3$; as there is an elementary 3 -group of rank 3 , there is an automorphism of order 3 fixing $\Omega_{3}\left(\mathbb{Z}_{3 \infty}^{2}\right)$, against Fact 1 : equality cannot hold.

Hence $\operatorname{Pr}_{p}(G) \geq 3$. Let $V=\langle\alpha, \omega\rangle$ be a maximal abelian p-group and $S \geq V$ a Sylow p-subgroup. By torality we may assume $\alpha \in S^{\circ}$, so $\omega \in S \backslash S^{\circ}$. If $C_{S^{\circ}}^{\circ}(\omega) \neq 1$ then by maximality, $\alpha \in C_{S^{\circ}}^{\circ}(\omega) \leq C^{\circ}(\omega)$, and as in the proof of Lemma 3, α and ω are cotoral, a contradiction. Hence $C_{S^{\circ}}^{\circ}(\omega)=1$. Let $\varphi \in \operatorname{End} \Omega_{p}\left(S^{\circ}\right)$ map x to $[x, \omega]$; writing ω as an automorphism, $\varphi(x)=\omega(x)-x$ and $\varphi^{n}(x)=\sum_{i=0}^{n}(-1)^{i}\left({ }_{i}^{n}\right) \omega^{i}(x)$. As $\left.(-1)^{i}{ }_{\left({ }_{i}^{p-1}\right.}\right) \equiv 1[p], \varphi^{p-1}=\operatorname{Id}+\omega+\cdots+\omega^{p-1}$. But $C_{S^{\circ}}^{\circ}(\omega)=1$, so Fact 3 applied to ω implies $\varphi^{p-1}=0$. Since $\operatorname{ker} \varphi=C_{\Omega_{p}\left(S^{\circ}\right)}(\omega)=\langle\alpha\rangle$, one has $\operatorname{rk} \Omega_{p}\left(S^{\circ}\right) \leq p-1$.

References

[1] Borovik, A., Nesin, A.: Groups of Finite Morley rank, volume 26 of Oxford Logic Guides. New York. Clarendon 1994.
[2] Burdges, J., Cherlin, G.: A generation theorem for groups of finite Morley rank J. Math. Logic 8(2) 163-195, (2008).
[3] Burdges, J., Cherlin, G.: Semisimple torsion in groups of finite Morley rank. J. Math. Logic 9(2) 183-200, (2009).

Adrien DELORO

Received: 01.04.2011
Institut de Mathématiques de Jussieu,
Université Paris 6; 4, place Jussieu
75252 Paris Cedex 05, FRANCE
e-mail: adeloro@math.jussieu.fr

[^0]: 2010 AMS Mathematics Subject Classification: 20F11 (primary); 20G07, 20C11, 20D15.

