

Essential normality for certain weighted composition operators on the Hardy space H^2

Mahsa Fatehi and Bahram Khani Robati

Abstract

We characterize the essentially normal weighted composition operators $C_{\psi,\varphi}$ on the Hardy space H^2 , whenever φ is a linear-fractional transformation and $\psi \in A(\mathbb{D})$. Also we investigate the essential normality problem for some other weighted composition operators on H^2 .

Key Words: Hardy spaces, essentially normal, weighted composition operator, linear-fractional transformation

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} , and let $\partial \mathbb{D}$ denote the boundary of \mathbb{D} . The algebra $A(\mathbb{D})$ consists of all continuous functions on the closure of \mathbb{D} that are analytic on \mathbb{D} .

For an analytic function f on the unit disk and 0 < r < 1, we define the dilate function f_r by $f_r(e^{i\theta}) = f(re^{i\theta})$. It is easy to see that the functions f_r are continuous on $\partial \mathbb{D}$ for each r, hence they are in $L^p(\partial \mathbb{D}, d\theta/2\pi)$, where $d\theta/2\pi$ is the normalized arc length measure on the unit circle.

For $0 , the Hardy space <math>H^p(\mathbb{D}) = H^p$ is the set of all analytic functions on the unit disk for which

$$||f||_p^p = \sup_{0 < r < 1} \int_0^{2\pi} |f_r(e^{i\theta})|^p \frac{d\theta}{2\pi} < \infty.$$

Also we recall that $H^{\infty}(\mathbb{D}) = H^{\infty}$ is the space of all bounded analytic functions defined on \mathbb{D} , with supremum norm $||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|$. We know that for $p \ge 1$, H^p is a Banach space (see, e.g., [15, p. 37]).

It is well known that the supremum in the above definition of H^p spaces is actually a limit, that is,

$$||f||_p^p = \lim_{r \to 1} \int_0^{2\pi} |f_r(e^{i\theta})|^p \frac{d\theta}{2\pi} < \infty.$$

Also we know that if f is in H^p for some p > 0, then the radial limit

$$f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta}),$$

AMS Mathematics Subject Classification: Primary 47B33; Secondary 47B38.

exists for almost all θ and the mapping $f \to f^*$ is an isometry of H^p to a closed subspace of $L^p(\partial \mathbb{D}, d\theta/2\pi)$. Therefore

$$||f||_{p}^{p} = \int_{0}^{2\pi} |f^{*}(e^{i\theta})|^{p} \frac{d\theta}{2\pi} < \infty.$$

We will also write $f(e^{i\theta})$ for $f^*(e^{i\theta})$. If p = 2 and $\hat{f}(n)$ is the *n*th coefficient of *f* in its Maclaurin series, then we have another representation for the norm of *f* on H^2 as follows:

$$\|f\|_2^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty.$$

The formula above defines a norm that turns H^2 into a Hilbert space whose inner product is given by

$$\langle f,g\rangle = \sum_{n=0}^{\infty} \hat{f}(n)\overline{\hat{g}(n)} = \int_{0}^{2\pi} f(e^{i\theta})\overline{g(e^{i\theta})}\frac{d\theta}{2\pi}$$

for each $f, g \in H^2$. For more information about the Hardy spaces see, for example, [12] and [15].

For each $\psi \in L^{\infty}(\partial \mathbb{D})$, we define the Toeplitz operator T_{ψ} on H^2 by $T_{\psi}(f) = P(\psi f)$, where P denotes the orthogonal projection of $L^2(\partial \mathbb{D})$ onto H^2 :

$$P\left(\sum_{-\infty}^{\infty} \hat{f}(n)e^{in\theta}\right) = \sum_{n=0}^{\infty} \hat{f}(n)e^{in\theta}.$$

Since an orthogonal projection has norm 1, clearly T_{ψ} is bounded.

For any analytic self-map φ of \mathbb{D} , the composition operator C_{φ} on H^2 is defined by the rule $C_{\varphi}(f) = f \circ \varphi$. It is well known (see, e.g., [15, p. 29] or [28, Theorem 1]) that the composition operators are bounded on each of the Hardy spaces H^p (0 . One of the first papers in this research area is [28], while $H. J. Schwartz in [30] begun the research on compact composition operators on <math>H^p$. J. H. Shapiro and P. D. Taylor in [32] have studied the role of angular derivative for compactness of C_{φ} in H^p . For some other classical results see [12] and [31]. If ψ is a bounded analytic function on \mathbb{D} and φ is an analytic map from \mathbb{D} into itself, the weighted composition operator $C_{\psi,\varphi}$ is defined by $C_{\psi,\varphi}(f)(z) = \psi(z)f(\varphi(z))$. The map φ is called the composition map and ψ is called the weight. If ψ is a bounded analytic function on \mathbb{D} , then the weighted composition operator can be rewritten as $C_{\psi,\varphi} = T_{\psi}C_{\varphi}$. In this case $C_{\psi,\varphi}$ is bounded, but in general every weighted composition operator $C_{\psi,\varphi}$ on H^2 is not bounded. If $C_{\psi,\varphi}$ is bounded, then $C_{\psi,\varphi}(1) = \psi$ belongs to H^2 . These operators come up naturally. In 1964, Forelli [16] showed that every isometry on H^p for 1 $and <math>p \neq 2$ is a weighted composition operator. A similar result holds for the isometries on the Bergman space L_a^p ; see [19]. Recently there has been a great interest in studying weighted composition operators in the unit disk, polydisk, or the unit ball; see, for example, [7, 17, 18, 22, 23, 24, 25, 34].

A mapping of the form

$$\varphi(z) = \frac{az+b}{cz+d} \qquad (ad-bc\neq 0) \tag{1}$$

is called a linear-fractional transformation. We denote the set of those linear-fractional transformations that take the open unit disk \mathbb{D} into itself by LFT(\mathbb{D}).

For bounded operators A and B on a Hilbert space, we use the notation

$$[A, B] := AB - BA$$

for the commutator of A and B. Recall that an operator A is called normal if $[A, A^*] = 0$ and essentially normal if $[A, A^*]$ is compact. In [35] Nina Zorboska characterized the essentially normal composition operators on the Hardy space H^2 induced by conformal automorphisms of the unit disk. In addition, Zorboska showed that the composition operators on H^2 induced by linear-fractional transformations fixing no point on the unit circle are not nontrivially essentially normal. P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro in [4] showed that a composition operator induced on H^2 by a linear-fractional self-map of the unit disk is nontrivially essentially normal if and only if it is induced by a parabolic non-automorphism self-map of the unit disk. The essentially normal composition operators on other spaces have been investigated by some authors (see, e.g., [5] and [26]).

Suppose that φ is an analytic self-map of \mathbb{D} and α is a complex number of modulus 1. Since $\operatorname{Re}\left(\frac{\alpha+\varphi}{\alpha-\varphi}\right)$ is a positive harmonic function on \mathbb{D} , there exists a finite positive Borel measure μ_{α} on $\partial \mathbb{D}$ such that

$$\frac{1-|\varphi(z)|^2}{|\alpha-\varphi(z)|^2} = \operatorname{Re}\left(\frac{\alpha+\varphi(z)}{\alpha-\varphi(z)}\right) = \int_{\partial \mathbb{D}} P_z d\mu_o$$

for each $z \in \mathbb{D}$, where

$$P_z(e^{i\theta}) = \frac{1 - |z|^2}{|e^{i\theta} - z|^2}$$

is the Poisson kernel at z. The measures μ_{α} are called the Clark measures of φ . Let μ_{α}^{s} be the singular parts of μ_{α} with respect to Lebesgue measure. The singular part μ_{α}^{s} is carried by $\varphi^{-1}(\{\alpha\})$, the set of those ζ in $\partial \mathbb{D}$ where $\varphi(\zeta)$ exists and equals α . We write $E(\varphi)$ for the closure in $\partial \mathbb{D}$ of the union of the closed supports of μ_{α}^{s} as α ranges over the unit circle. In particular, if φ is a linear-fractional non-automorphism such that $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$, then $\mu_{\alpha}^{s} = 0$ when $\alpha \neq \eta$ and $\mu_{\eta}^{s} = |\varphi'(\zeta)|^{-1}\delta_{\zeta}$, where δ_{ζ} is the unit point mass measure at ζ . The measures μ_{α} were introduced as an operator-theoretic tool by D. N. Clark [6] and have been further analyzed by A. B. Aleksandrov [1], A. G. Poltoratski [27] and D. E. Sarason [29].

In this paper, we use the results of Bourdon et al. [4] and T. L. Kriete, B. D. MacCluer and J. L. Moorhouse [20] in order to investigate the essential normality problem for certain weighted composition operators $C_{\psi,\varphi}$, whenever φ is a linear-fractional transformation and $\psi \in H^{\infty}$.

2. Linear-fractional non-automorphism

In this section, we investigate the essential normality problem for certain weighted composition operators $C_{\psi,\varphi}$ on the Hardy space H^2 , whenever φ is a linear-fractional non-automorphic self-map of \mathbb{D} and $\psi \in H^{\infty}$. First, we state some useful results of [4, 6.3] and [33, Proposition 9.1.4] that we use frequently in this paper.

Remark 2.1 Suppose that φ is an analytic self-map of \mathbb{D} and $\psi \in H^{\infty}$. Let f and g be two bounded measurable functions on $\partial \mathbb{D}$ and λ be a complex number. Then

(a)
$$C_{\varphi}T_{\psi} = T_{\psi\circ\varphi}C_{\varphi}$$
,
(b) $T_gT_{\psi} = T_{g\psi}$,
(c) $T_{f+\lambda g} = T_f + \lambda T_g$, and
(d) $T_f^* = T_{\bar{f}}$.

In [11] Carl Cowen showed that if $\varphi \in LFT(\mathbb{D})$ is given by Equation (1), then

$$C_{\varphi}^* = T_g C_{\sigma_{\varphi}} T_h^*, \tag{2}$$

where $\sigma_{\varphi}(z) := (\bar{a}z - \bar{c})/(-\bar{b}z + \bar{d})$ is a self-map of \mathbb{D} , $g(z) := (-\bar{b}z + \bar{d})^{-1}$, h(z) := cz + d and $g, h \in H^{\infty}$. If $\varphi(\zeta) = \eta$ for $\zeta, \eta \in \partial \mathbb{D}$, then $\sigma_{\varphi}(\eta) = \zeta$; see [11]. The map σ_{φ} is called the Krein adjoint of φ ; we will write σ for σ_{φ} except when confusion could arise. For further details see, for example, [4]. From now on, unless otherwise stated, we assume that σ , h and g are given as above.

Now let $\psi \in H^{\infty}$. Then by Equation (2) and Remark 2.1, we have

$$C^*_{\psi,\varphi} = (T_{\psi}C_{\varphi})^* = C^*_{\varphi}T^*_{\psi} = T_gC_{\sigma}T^*_{h\psi}$$

Hence

$$C_{\psi,\varphi}C^*_{\psi,\varphi} = T_{\psi}C_{\varphi}T_gC_{\sigma}T^*_{h\psi} = T_{g\circ\varphi}C_{\psi,\varphi}C_{\sigma}T^*_{h\psi};$$
(3)

and on the other hand, we have

$$C^*_{\psi,\varphi}C_{\psi,\varphi} = T_g C_\sigma T^*_{h\psi}C_{\psi,\varphi}.$$
(4)

The set of all bounded operators and the set of all compact operators from H^2 into itself are denoted by $B(H^2)$ and $B_0(H^2)$, respectively. Also we will use the notation $A \equiv B \pmod{B_0(H^2)}$ to indicate that the difference of two bounded operators A and B belongs to $B_0(H^2)$. In [20] Kriete et al. showed that if $\varphi \in \text{LFT}(\mathbb{D})$ is not an automorphism which satisfies $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$, then

$$C^*_{\varphi} \equiv |\varphi'(\zeta)|^{-1} C_{\sigma} \pmod{B_0(H^2)}.$$
(5)

Also we will use the following result frequently, which is proved in [20].

Theorem 2.2 [20] Let φ be an analytic self-map of \mathbb{D} such that $|\varphi(e^{i\theta})| < 1$ a.e. with respect to Lebesgue measure on $\partial \mathbb{D}$, and suppose that γ is a bounded measurable function on $\partial \mathbb{D}$ which is continuous at each point of $E(\varphi)$. Then $T_{\gamma}C_{\varphi}: H^2 \to H^2$ is compact if and only if $\gamma \equiv 0$ on $E(\varphi)$.

Proposition 2.3 Suppose that $\varphi \in LFT(\mathbb{D})$ is not an automorphism and that $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$. Let $\psi \in A(\mathbb{D})$. Then $[C^*_{\psi,\varphi}, C_{\psi,\varphi}] \equiv |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1} [C_{\sigma}, C_{\varphi}] \pmod{B_0(H^2)}$.

Proof. It is easy to see that $E(\sigma \circ \varphi) = \{\zeta\}$, so by Theorem 2.2, [14, Proposition 7.22], Remark 2.1 and Equation (5), we have

$$C_{\psi,\varphi}^* C_{\psi,\varphi} - C_{\psi,\varphi} C_{\psi,\varphi}^* \equiv |\varphi'(\zeta)|^{-1} (C_{\sigma} T_{\psi}^* T_{\psi} C_{\varphi} - T_{\psi} C_{\varphi} C_{\sigma} T_{\psi}^*) \pmod{B_0(H^2)}$$
$$\equiv |\varphi'(\zeta)|^{-1} (C_{\sigma} T_{\psi} T_{\psi}^* C_{\varphi} - T_{\psi} C_{\sigma \circ \varphi} T_{\psi}^*) \pmod{B_0(H^2)}$$
$$\equiv |\varphi'(\zeta)|^{-1} (\overline{\psi(\zeta)} C_{\sigma} T_{\psi} C_{\varphi} - T_{\psi} C_{\sigma \circ \varphi} T_{\psi}^*) \pmod{B_0(H^2)}$$
$$\equiv |\varphi'(\zeta)|^{-1} (|\psi(\zeta)|^2 C_{\varphi \circ \sigma} - \psi(\zeta) C_{\sigma \circ \varphi} T_{\psi}^*) \pmod{B_0(H^2)}.$$

Using ~ for the Krein adjoint, by [13, Lemma 12], we see that $\widetilde{\sigma \circ \varphi} = \widetilde{\varphi} \circ \widetilde{\sigma} = \sigma \circ \varphi$. Then by Equation (5), we have

$$T_{\psi}C^*_{\sigma\circ\varphi} \equiv s_1 T_{\psi}C_{\widetilde{\sigma\circ\varphi}} \pmod{B_0(H^2)}$$
$$\equiv s_1 T_{\psi}C_{\sigma\circ\varphi} \pmod{B_0(H^2)}$$
$$\equiv s_1\psi(\zeta)C_{\sigma\circ\varphi} \pmod{B_0(H^2)},$$

where $s_1 = |(\sigma \circ \varphi)'(\zeta)|^{-1}$. Hence by [20, Proposition 3.6], $s_1 = 1$. Therefore $C_{\sigma \circ \varphi} T_{\psi}^* \equiv \overline{\psi(\zeta)} C_{\sigma \circ \varphi}^* \pmod{B_0(H^2)}$, so by this fact and Equation (5), we have

$$C_{\sigma \circ \varphi} T_{\psi}^* \equiv \overline{\psi(\zeta)} C_{\widetilde{\sigma \circ \varphi}} \pmod{B_0(H^2)}$$
$$\equiv \overline{\psi(\zeta)} C_{\sigma \circ \varphi} \pmod{B_0(H^2)}.$$

Hence

$$[C^*_{\psi,\varphi}, C_{\psi,\varphi}] \equiv |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1} [C_{\sigma}, C_{\varphi}] \pmod{B_0(H^2)}.$$

A map $\varphi \in \text{LFT}(\mathbb{D})$ whose fixed point set, relative to the Riemann sphere, consists of a single point ζ in $\partial \mathbb{D}$ is termed parabolic. The linear-fractional transformation $\tau(z) := (1 + \overline{\zeta} z)/(1 - \overline{\zeta} z)$ takes the unit disk onto the right half-plane II and takes ζ to ∞ . Set $\phi := \tau \circ \varphi \circ \tau^{-1}$. Therefore ϕ is a linear-fractional self-map of II which fixes only ∞ , so it must have the form $\phi(z) = z + t$ for some complex number t, where $\text{Ret} \geq 0$. Let us call t the translation number of either φ or ϕ . When Ret = 0 we have a parabolic automorphism; otherwise the map is not automorphism. Also in [31, p. 3] J. H. Shapiro showed that among the linear-fractional transformations fixing $\zeta \in \partial \mathbb{D}$, the parabolic ones are characterized by $\varphi'(\zeta) = 1$. For further details see [4] and [31].

Theorem 2.4 Let $\varphi \in LFT(\mathbb{D})$ be a parabolic non-automorphism and $\psi \in A(\mathbb{D})$. Then $C_{\psi,\varphi}$ is essentially normal.

Proof. Suppose that the map φ fixes $\zeta \in \partial \mathbb{D}$, so $\varphi'(\zeta) = 1$. Therefore by Proposition 2.3, $C_{\psi,\varphi}$ be essentially normal if and only if $|\psi(\zeta)|^2 (C_{\varphi \circ \sigma} - C_{\sigma \circ \varphi}) \in B_0(H^2)$. By the proof of Theorem 4.1 in [4], $\sigma \circ \varphi = \varphi \circ \sigma$. So the result follows.

Theorem 2.5 Let $\varphi \in LFT(\mathbb{D})$ be a non-automorphism such that $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$ and $\psi \in A(\mathbb{D})$. Also suppose that φ is not a parabolic non-automorphism. Then $C_{\psi,\varphi}$ is essentially normal if and only if $\psi(\zeta) = 0$.

Proof. If $\psi(\zeta) = 0$, then by Theorem 2.2, $C_{\psi,\varphi}$ is essentially normal. Conversely, let $C_{\psi,\varphi}$ be essentially normal and $\psi(\zeta) \neq 0$. Then by Proposition 2.3, we have

$$[C^*_{\psi,\varphi}, C_{\psi,\varphi}] \equiv |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1} (C_{\varphi \circ \sigma} - C_{\sigma \circ \varphi}) \pmod{B_0(H^2)}.$$

Therefore $C_{\varphi \circ \sigma} - C_{\sigma \circ \varphi} \in B_0(H^2)$. Since a difference of non-compact linear-fractional composition operators is compact only if it is zero (see [3] and [21]), we have $\varphi \circ \sigma = \sigma \circ \varphi$.

Now if $\zeta = \eta$, then by [20, p. 139], φ is a parabolic non-automorphism which is a contradiction, and if $\zeta \neq \eta$, then $\varphi \circ \sigma$ has two fixed points $\zeta, \eta \in \partial \mathbb{D}$. Thus by [20, Proposition 3.4], it is a contradiction. \Box

A map $\varphi \in LFT(\mathbb{D})$ is called hyperbolic if it has a fixed point in $\overline{\mathbb{D}}$ and a fixed point outside \mathbb{D} . Also φ is an automorphism of \mathbb{D} if and only if these two fixed points lie on $\partial \mathbb{D}$. The case in which φ is a hyperbolic non-automorphism with a fixed point ζ on $\partial \mathbb{D}$ and $\psi \in A(\mathbb{D})$ is an example of Theorem 2.5.

We know that if $\overline{\varphi(\mathbb{D})} \subseteq \mathbb{D}$, then C_{φ} is compact (see, e.g., [31]) and so $C_{\psi,\varphi}$ is compact too. Since every compact operator is essentially normal, $C_{\psi,\varphi}$ is essentially normal. We investigated the essential normality problem for weighed composition operators $C_{\psi,\varphi}$, whenever φ is a parabolic or hyperbolic non-automorphism. In the rest of this section, we assume that φ is a linear-fractional self-map of \mathbb{D} satisfying the following:

(i) φ is not an automorphism.

(ii) $\varphi(\zeta) = \eta$ for some $\zeta \neq \eta \in \partial \mathbb{D}$.

Conditions (i) and (ii) imply that $\|\varphi \circ \varphi\|_{\infty} < 1$, therefore C_{φ}^2 is compact. By Remark 2.1,

$$C_{\psi,\varphi}C_{\psi,\varphi} = T_{\psi}C_{\varphi}T_{\psi}C_{\varphi} = T_{\psi}T_{\psi\circ\varphi}C_{\varphi}^2,$$

hence $C^2_{\psi,\varphi} \in B_0(H^2)$.

Similar to the notations introduced by Kriete et al. in [20], let x, x^* and e be the cosets of $C_{\psi,\varphi}$, $C^*_{\psi,\varphi}$ and I in the Calkin algebra $B(H^2)/B_0(H^2)$, respectively, so $(xx^*)(x^*x) = (x^*x)(xx^*) = 0$ and therefore the C^* -algebra generated by xx^* , x^*x and e is abelian. In the proof of Proposition 2.6 and Theorem 2.7, we apply these results. Also let \mathcal{A} be an abelian Banach algebra. We denote the collection of all nonzero homomorphisms of $\mathcal{A} \to \mathbb{C}$ by Σ ; for further information see, for example, [9].

In [10] C. C. Cowen described the spectrum of a composition operator whose symbol is a parabolic non-automorphism. In [20] Kriete et al. showed that $\sigma \circ \varphi$ is a parabolic non-automorphism and obtained $\sigma(C_{\sigma\circ\varphi}) = \sigma_e(C_{\sigma\circ\varphi}) = [0,1]$. We know that if a and b are two elements of a Banach algebra with identity, then $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}$; see [9, p. 199]. We use this fact in the following proposition.

Proposition 2.6 Suppose that $\psi \in H^{\infty}$ and ψ is continuous at ζ . Then $\sigma_e(C_{\psi,\varphi}C^*_{\psi,\varphi}) = \sigma_e(C^*_{\psi,\varphi}C_{\psi,\varphi}) = [0, |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1}].$

Proof. By Equation (3), we have

$$\sigma_e(C_{\psi,\varphi}C^*_{\psi,\varphi}) = \sigma_e(T_{g\circ\varphi}C_{\psi,\varphi}C_{\sigma}T^*_{h\psi}).$$

Since $E(\sigma \circ \varphi) = \{\zeta\}$, by Remark 2.1, Theorem 2.2 and [20, Proposition 3.5], we have

$$\sigma_e(T_{g\circ\varphi}C_{\psi,\varphi}C_{\sigma}T_{h\psi}^*) \cup \{0\} = \sigma_e(T_{\overline{h\psi}}T_{g\circ\varphi}C_{\psi,\varphi}C_{\sigma}) \cup \{0\}$$
$$= \sigma_e(T_{|\psi|^2\overline{h}g\circ\varphi}C_{\sigma\circ\varphi}) \cup \{0\}$$
$$= |\psi(\zeta)|^2\overline{h(\zeta)}g \circ \varphi(\zeta)\sigma_e(C_{\sigma\circ\varphi}) \cup \{0\}$$
$$= |\psi(\zeta)|^2\overline{h(\zeta)}g(\eta)[0,1].$$

We see after some computation that $\overline{h(\zeta)}g(\eta)$ is equal to the number s as in [20, Theorem 3.1], so by [20, Proposition 3.6],

$$\sigma_e(C_{\psi,\varphi}C^*_{\psi,\omega}) \cup \{0\} = [0, |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1}].$$

On the other hand, by Remark 2.1, Theorem 2.2 and Equation (5), we have

$$\sigma_{e}(C_{\psi,\varphi}^{*}C_{\psi,\varphi}) \cup \{0\} = \sigma_{e}(|\varphi^{'}(\zeta)|^{-1}C_{\sigma}T_{\psi}^{*}C_{\psi,\varphi}) \cup \{0\}$$

$$= |\varphi^{'}(\zeta)|^{-1}\sigma_{e}(C_{\sigma}T_{|\psi|^{2}}C_{\varphi}) \cup \{0\}$$

$$= |\varphi^{'}(\zeta)|^{-1}\sigma_{e}(T_{|\psi|^{2}}C_{\sigma\circ\varphi}) \cup \{0\}$$

$$= |\psi(\zeta)|^{2}|\varphi^{'}(\zeta)|^{-1}\sigma_{e}(C_{\sigma\circ\varphi}) \cup \{0\}.$$

Again applying [20, Proposition 3.5], we have

$$\sigma_e(C^*_{\psi,\varphi}C_{\psi,\varphi}) \cup \{0\} = [0, |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1}].$$

Since $\sigma_e(C^*_{\psi,\varphi}C_{\psi,\varphi})$ and $\sigma_e(C_{\psi,\varphi}C^*_{\psi,\varphi})$ are compact subsets of \mathbb{C} , the result follows.

Now we apply Proposition 2.6 to obtain a necessary and sufficient condition for $C_{\psi,\varphi}$ to be an essentially normal weighted composition operator. In the following theorem, we use the techniques used in [20, Proposition 4.2].

Theorem 2.7 Suppose that $\psi \in H^{\infty}$ and ψ is continuous at ζ . Then $C_{\psi,\varphi}$ is essentially normal if and only if $\psi(\zeta) = 0$.

Proof. If $\psi(\zeta) = 0$, then Theorem 2.2 implies that $C_{\psi,\varphi}$ is compact. Therefore $C_{\psi,\varphi}$ is essentially normal. Conversely, let $C_{\psi,\varphi}$ be essentially normal. Since $(xx^*)(x^*x) = (x^*x)(xx^*) = 0$, $m(x^*x) = 0$ or $m(xx^*) = 0$ for each $m \in \Sigma$. Therefore by [9, Theorem 8.6, p. 219] and Proposition 2.6, we have $\sigma_e(C^*_{\psi,\varphi}C_{\psi,\varphi}-C_{\psi,\varphi}C^*_{\psi,\varphi}) = [-|\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1}, |\psi(\zeta)|^2 |\varphi'(\zeta)|^{-1}]$. Hence the proof is complete.

Since the conditions on ψ in Theorem 2.7 are weaker than the condition on ψ in Theorem 2.5, there are some examples of ψ such that they satisfy the hypotheses of Theorem 2.7, but they do not satisfy the hypothesis of Theorem 2.5.

Theorem 2.8 Let $\varphi(z) = \frac{i}{2}(1-z)$.

(a) Suppose that $\psi(z) = e^{\frac{1}{z-1}}$. It is easy to see that $\psi \in H^{\infty}$ and ψ is continuous at -1. Then by Theorem 2.7, $C_{\psi,\varphi}$ is not essentially normal.

(b) Suppose that $\psi(z) = (1+z)e^{\frac{1}{z-1}}$. Then again by Theorem 2.7, $C_{\psi,\varphi}$ is essentially normal.

3. Automorphism

It is well known that the automorphisms of the unit disk, that is, the one-to-one analytic maps of the disk onto itself, are just the functions

$$\varphi(z) = \lambda \frac{a-z}{1-\bar{a}z},\tag{6}$$

where $|\lambda| = 1$ and |a| < 1 (see, e.g., [8]). We denote the class of automorphisms of \mathbb{D} by Aut(\mathbb{D}). Also we know that φ is an automorphism if and only if σ is in this case $\sigma = \varphi^{-1}$; see [4]. In this section, we investigate the essential normality problem for weighted composition operators $C_{\psi,\varphi}$ on the Hardy space H^2 , whenever $\varphi \in \operatorname{Aut}(\mathbb{D})$ and $\psi \in A(\mathbb{D})$. Also we assume that φ is given by Equation (6) and $w(z) = (1 - \bar{a}z)\psi(z)$, where $\psi \in A(\mathbb{D})$.

Proposition 3.1 Suppose that $\varphi \in Aut(\mathbb{D})$ and $\psi \in A(\mathbb{D})$. Then $C_{\psi,\varphi}$ is essentially normal if and only if $[T_{|w|^2}, C_{\varphi}] \in B_0(H^2)$.

Proof. Since $\sigma = \varphi^{-1}$, Equations (3) and (4) imply that

$$[C^*_{\psi,\varphi}, C_{\psi,\varphi}] = T_g C_{\varphi^{-1}} T^*_{h\psi} T_{\psi} C_{\varphi} - T_{g \circ \varphi} T_{\psi} T^*_{h\psi}.$$

Thus by [14, Proposition 7.22] and Remark 2.1, we have

$$[C^*_{\psi,\varphi}, C_{\psi,\varphi}] \equiv C_{\varphi^{-1}} T_{\overline{h}|\psi|^2 g \circ \varphi} C_{\varphi} - T_{\overline{h}|\psi|^2 g \circ \varphi} \pmod{B_0(H^2)}.$$

Since $C_{\varphi}C_{\varphi^{-1}} = I$, we see that $[C^*_{\psi,\varphi}, C_{\psi,\varphi}] \in B_0(H^2)$ if and only if $[T_{\bar{h}|\psi|^2 g \circ \varphi}, C_{\varphi}] \in B_0(H^2)$. Also after some computation, we conclude that

$$\bar{h}(z)g\circ\varphi(z) = \frac{|1-\bar{a}z|^2}{1-|a|^2},$$

which completes the proof.

Example 3.2 Let $\varphi \in Aut(\mathbb{D})$ and for some $n \in \mathbb{N} \cup \{0\}$, $\psi(z) = z^n/(1 - \bar{a}z)$. Then $w(z) = z^n$ and $T_{|w|^2} = I$, so Proposition 3.1 implies that $C_{\psi,\varphi}$ is essentially normal.

Theorem 3.3 Let $\varphi \in Aut(\mathbb{D})$ and $\psi \in A(\mathbb{D})$. Then $C_{\psi,\varphi}$ is essentially normal if and only if $|w| = |w \circ \varphi|$ on $\partial \mathbb{D}$.

Proof. By [14, Proposition 7.22], Equation (2) and Remark 2.1, we have

$$\begin{aligned} (T_{|w|^{2}}C_{\varphi} - C_{\varphi}T_{|w|^{2}})C_{\varphi}^{-1} &\equiv T_{|w|^{2}} - C_{\varphi}T_{w}T_{\bar{w}}C_{\varphi^{-1}} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{w\circ\varphi}C_{\varphi}T_{\bar{w}}C_{\varphi^{-1}} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{w\circ\varphi}C_{\varphi}T_{\bar{w}}T_{\frac{1}{g}}C_{\varphi}^{*}T_{\frac{1}{h}}^{*} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{w\circ\varphi}C_{\varphi}T_{\frac{1}{g}}T_{\bar{w}}C_{\varphi}^{*}T_{\frac{1}{h}}^{*} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{\frac{w\circ\varphi}{g\circ\varphi}}C_{\varphi}T_{\bar{w}}C_{\varphi}^{*}T_{\frac{1}{h}}^{*} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{\frac{w\circ\varphi}{g\circ\varphi}}C_{\varphi}C_{\varphi}^{*}T_{w\circ\varphi}T_{\frac{1}{h}}^{*} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{\frac{w\circ\varphi}{g\circ\varphi}}T_{g\circ\varphi}T_{g}^{*}T_{h}^{*}T_{\frac{w\circ\varphi}{h}}^{*} \pmod{B_{0}(H^{2})} \\ &\equiv T_{|w|^{2}} - T_{|w\circ\varphi|^{2}} \pmod{B_{0}(H^{2})}. \end{aligned}$$

Now the conclusion follows from Proposition 3.1 and [33, Proposition 9.1.3].

In 1969, H. J. Schwartz [30] showed that a composition operator on H^2 is normal if and only if it is induced by a dilation $z \to az$, where $|a| \leq 1$. In the following corollary, we assume that C_{φ} is normal and we obtain a necessary and sufficient condition for $C_{\psi,\varphi}$ to is essentially normal.

Corollary 3.4 Let $\varphi \in Aut(\mathbb{D})$, $\psi \in A(\mathbb{D})$ and suppose that C_{φ} is normal. Then $C_{\psi,\varphi}$ is essentially normal if and only if $|\psi(\varphi(z))| = |\psi(z)|$ for each $z \in \partial \mathbb{D}$.

Corollary 3.5 Let $\varphi \in Aut(\mathbb{D})$, $\psi \in A(\mathbb{D})$ and for each $z \in \overline{\mathbb{D}}$, $\psi(z) \neq 0$. Then $C_{\psi,\varphi}$ is essentially normal if and only if w is an eigenvector for the operator C_{φ} and the modulus of the corresponding C_{φ} -eigenvalue for w is 1.

Proof. Suppose that $C_{\psi,\varphi}$ is essentially normal. Since $|\frac{(1-\bar{a}z)\psi}{(1-\bar{a}\varphi)\psi\circ\varphi}|$ and $|\frac{(1-\bar{a}\varphi)\psi\circ\varphi}{(1-\bar{a}z)\psi}|$ are subharmonic on \mathbb{D} , by [2, Corollary A.1.4] and Theorem 3.3, $|\frac{(1-\bar{a}z)\psi}{(1-\bar{a}\varphi)\psi\circ\varphi}|$ is constant on \mathbb{D} . Therefore $|\frac{(1-\bar{a}z)\psi}{(1-\bar{a}\varphi)\psi\circ\varphi}| = 1$ on $\overline{\mathbb{D}}$. Hence by the Maximum Modulus Theorem, there is a $\beta \in \mathbb{C}$ such that $|\beta| = 1$ and

$$((1 - \bar{a}z)\psi) \circ \varphi = \beta(1 - \bar{a}z)\psi.$$

Hence $(1 - \bar{a}z)\psi$ is an eigenvector for C_{φ} . The other direction follows from Theorem 3.3.

Example 3.6 Let $\varphi_a(z) = (a-z)/(1-\overline{a}z)$, where $a \neq 0$. Suppose that $\psi(z) = (\varphi_a(z) + z + b)/(1-\overline{a}z)$, where |b| > 2. We see that $w(z) = \varphi_a(z) + z + b$ and $C_{\varphi_a}(w) = w$. Hence by Corollary 3.5, C_{ψ,φ_a} is essentially normal.

In the rest of this section, we investigate the essential normality problem for weighted composition operators $C_{\psi,\varphi}$, whenever $|\psi| = t$ almost everywhere on $\partial \mathbb{D}$ for a positive constant t.

Lemma 3.7 Let $\varphi \in Aut(\mathbb{D})$ and $\psi \in H^{\infty}$. Also $|\psi| = t$ almost everywhere on $\partial \mathbb{D}$, where t is a positive constant. Then $\{\frac{\psi}{t}z^n : n \in \mathbb{N} \cup \{0\}\}$ is an orthonormal set in H^2 .

Proof. We have

$$\left\|\frac{\psi}{t}z^n\right\|_2^2 = \int_0^{2\pi} \left|\frac{\psi(e^{i\theta})}{t}\right|^2 |e^{in\theta}|^2 \frac{d\theta}{2\pi} = 1.$$

Also, we have

$$\begin{split} \langle \frac{\psi}{t} z^n, \frac{\psi}{t} z^m \rangle &= \frac{1}{t^2} \langle \psi z^n, \psi z^m \rangle \\ &= \frac{1}{t^2} \int_0^{2\pi} |\psi(e^{i\theta})|^2 e^{in\theta} e^{-im\theta} \frac{d\theta}{2\pi} \\ &= 0, \end{split}$$

where $n \neq m \in \mathbb{N}$, so the result follows.

The idea behind Proposition 3.8 is similar to one found in [26, Proposition 2].

Proposition 3.8 Suppose that φ is given by Equation (6) such that $a \neq 0$. Then $\|C_{\varphi}^* z^n\|_2 = \|C_{\varphi}^* z^m\|_2 > 1$ for each $n, m \in \mathbb{N}$.

Proof. Let $\varphi_a(z) = (a-z)/(1-\bar{a}z)$. Then there is a constant λ of modulus 1 such that $C_{\varphi} = C_{\varphi_a}C_{\lambda z}$. Since $C_{\lambda z}$ is a surjective isometry, we have

$$C_{\varphi}^* = C_{\lambda z}^* C_{\varphi_a}^* = C_{\lambda z}^{-1} C_{\varphi_a}^* = C_{\frac{1}{\lambda} z} C_{\varphi_a}^*.$$

Therefore it is enough to prove the result for φ_a . We know that $C^*_{\varphi_a} = T_g C_{\sigma_{\varphi_a}} T^*_h$, where $\sigma_{\varphi_a} = \varphi_a$, $g(z) = (1 - \overline{a}z)^{-1}$ and $h(z) = 1 - \overline{a}z$. Hence by Equation (2), we obtain

$$C^*_{\varphi_a}(z^n) = T_g C_{\sigma_{\varphi_a}} T^*_h(z^n)$$

= $T_g C_{\varphi_a} T_{1-a\bar{z}}(z^n)$
= $T_g C_{\varphi_a}(z^n - az^{n-1})$
= $(\varphi_a - a)g\varphi_a^{n-1}.$

Then

$$\begin{aligned} \|C_{\varphi_a}^*(z^n)\|_2^2 &= \int_0^{2\pi} |g(e^{i\theta})|^2 |\varphi_a^{n-1}(e^{i\theta})|^2 |\varphi_a(e^{i\theta}) - a|^2 \frac{d\theta}{2\pi} \\ &= \int_0^{2\pi} |g(e^{i\theta})|^2 |\varphi_a(e^{i\theta}) - a|^2 \frac{d\theta}{2\pi} \\ &= \|(\varphi_a - a)g\|_2^2. \end{aligned}$$

By some computation, we obtain

$$\begin{aligned} (\varphi_a - a)g &= \frac{(|a|^2 - 1)z}{1 - \bar{a}z} \cdot \frac{1}{1 - \bar{a}z} \\ &= (|a|^2 - 1) \sum_{n=0}^{\infty} (n+1)(\bar{a})^n z^{n+1}. \end{aligned}$$

592

Therefore

$$\begin{aligned} \|(\varphi_a - a)g\|_2^2 &= (1 - |a|^2)^2 \left\| \sum_{n=0}^{\infty} (n+1)(\bar{a})^n z^{n+1} \right\|_2^2 \\ &= (1 - |a|^2)^2 \sum_{n=0}^{\infty} (n+1)^2 |a|^{2n} \\ &> (1 - |a|^2)^2 \sum_{n=0}^{\infty} (n+1)|a|^{2n} \\ &= 1, \end{aligned}$$

so the proof is complete.

The idea of the proof of the following theorem is similar to the proof of Theorem 6.2 in [4].

Theorem 3.9 Let $\varphi \in Aut(\mathbb{D})$ and $\psi \in H^{\infty}$. Also assume that $|\psi| = t$ almost everywhere on $\partial \mathbb{D}$, where t is a positive constant. If $C_{\psi,\varphi}$ is essentially normal, then C_{φ} is normal.

Proof. Suppose that $C_{\psi,\varphi}$ is essentially normal and C_{φ} is not normal, so φ is not a rotation. By some computation, we see that

$$\langle [C_{\psi,\varphi}, C_{\psi,\varphi}^*] \left(\frac{\psi}{t} z^n\right), \left(\frac{\psi}{t} z^n\right) \rangle = \left\| C_{\psi,\varphi}^* \left(\frac{\psi}{t} z^n\right) \right\|_2^2 - \left\| C_{\psi,\varphi} \left(\frac{\psi}{t} z^n\right) \right\|_2^2$$

$$= \left\| C_{\varphi}^* T_{\psi}^* \left(\frac{\psi}{t} z^n\right) \right\|_2^2$$

$$- \int_0^{2\pi} |\psi(e^{i\theta})|^2 \frac{|\psi(\varphi(e^{i\theta}))|^2}{t^2} |\varphi^n(e^{i\theta})|^2 \frac{d\theta}{2\pi}$$

$$= t^2 \| C_{\varphi}^*(z^n) \|_2^2 - t^2$$

$$= t^2 (\| C_{\varphi}^*(z^n) \|_2^2 - 1).$$

Since $\{\frac{\psi}{t}z^n\}$ converges weakly to 0 as $n \to \infty$, we conclude that $t^2(\|C^*_{\varphi}(z^n)\|_2^2 - 1) \to 0$ as $n \to \infty$. Thus, by Proposition 3.8, it is a contradiction.

Remark 3.10 If φ and ψ satisfy the hypotheses of Theorem 3.9 and also $1/\psi \in H^{\infty}$, then the converse of the proceeding theorem is true. Let $\varphi(z) = \lambda z$, where $|\lambda| = 1$. Then by Equations (3) and (4), we have

$$C^*_{\psi,\varphi}C_{\psi,\varphi} = C_{\bar{\lambda}z}T^*_{\psi}T_{\psi}C_{\lambda z} = t^2 C_{\bar{\lambda}z}C_{\lambda z} = t^2 I = T^*_{\psi}T_{\psi}$$

and

$$C_{\psi,\varphi}C^*_{\psi,\varphi} = T_{\psi}C_{\lambda z}C_{\bar{\lambda z}}T^*_{\psi} = T_{\psi}IT^*_{\psi} = T_{\psi}T^*_{\psi}.$$

Therefore $[C^*_{\psi,\varphi}, C_{\psi,\varphi}] = T^*_{\psi}T_{\psi} - T_{\psi}T^*_{\psi}$. Since $1/\psi \in H^{\infty}$, we have

$$T_{\frac{1}{\psi}}[C_{\psi,\varphi}^{*},C_{\psi,\varphi}] = T_{t^{2}\frac{1}{\psi}} - T_{\psi}^{*} = T_{\frac{t^{2}}{\psi} - \bar{\psi}}.$$

Thus, by [33, Proposition 9.1.3], $C_{\psi,\varphi}$ is essentially normal.

References

- Aleksandrov, A. B.: Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22, 490–503 (1987).
- [2] Aupetit, B.: A Primer on Spectral Theory. Springer-Verlag 1991.
- [3] Bourdon, P. S.: Components of linear-fractional composition operators. J. Math. Anal. Appl. 279, 228–245 (2003).
- [4] Bourdon, P. S., Levi D., Narayan S. K. and Shapiro J. H.: Which linear-fractional composition operators are essentially normal?. J. Math. Anal. Appl. 280, 30–53 (2003).
- [5] Chacón, G. A. and Chacón, G. R.: Some properties of composition operators on the Dirichlet space. Acta Math. Univ. Comenianae vol. LXXIV, 259–272 (2005).
- [6] Clark, D. N.: One dimensional perturbations of restricted shifts. J. Analyse Math. 25, 169–191 (1972).
- [7] Contreras, M. D. and Hernández-Díaz A. G.: Weighted composition operators between different Hardy spaces. Integral Equations Operator Theory 46, 165–188 (2003).
- [8] Conway, J. B.: Functions of One Complex Variable, Second Edition. New York. Springer-Verlag 1978.
- [9] Conway, J. B.: A Course in Functional Analysis, Second Edition, New York. Springer-Verlag 1990.
- [10] Cowen, C. C.: Composition operators on H^2 . J. Operator Theory 9, 77–106 (1983).
- [11] Cowen, C. C.: Linear fractional composition operators on H^2 . Integral Equations Operator Theory 11, 151–160 (1988).
- [12] Cowen, C. C. and MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Boca Raton. CRC Press 1995.
- [13] Cowen, C. C. and MacCluer, B. D.: Linear fractional maps of the ball and their composition operators. Acta Sci. Math. (Szeged) 66, 351–376 (2000).
- [14] Douglas, R. G.: Banach Algebra Techniques in Operator Theory. New York. Academic Press 1972.
- [15] Duren, P. L. Theory of H^p Spaces. New York. Academic Press 1970.
- [16] Forelli, F.: The isometries of H^p . Canad. J. Math. 16, 721–728 (1964).
- [17] Gunatillake, G.: Compact weighted composition operators on the Hardy space. Proc. Amer. Math. Soc. 136, 2895– 2899 (2008).
- [18] Haji Shaabani, M. and Khani Robati, B.: On the norm of certain weighted composition operators on the Hardy space. Abstr. Appl. Anal. vol. 2009, Article ID 720217, 13 pages (2009).
- [19] Kolaski, C. J.: Isometries of the weighted Bergman spaces. Canad. J. Math. 34, 910–915 (1982).
- [20] Kriete, T. L., MacCluer, B. D. and Moorhouse, J. L.: Toeplitz-composition C^{*}-algebras. J. Operator Theory 58, 135–156 (2007).

- [21] Kriete, T. L. and Moorhouse, J. L.: Linear relations in the Calkin algebra for composition operators. Trans. Amer. Math. Soc. 359, 2915–2944 (2007).
- [22] Li, S. and Stević, S.: Weighted composition operators from H^{∞} to the Bloch space on the polydisc. Abstr. Appl. Anal. vol. 2007, Article ID 48478, 13 pages (2007).
- [23] Li, S. and Stević, S.: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci. Math. Sci. 117, 371–385 (2007).
- [24] Li, S. and Stević, S.: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206, 825–831 (2008).
- [25] Luo, L. and Ueki, S. I.: Weighted composition operators between weighted Bergman spaces and Hardy spaces on the unit ball of C^n . J. Math. Anal. Appl. 326, 88–100 (2007).
- [26] MacCluer, B. D. and Weir, R. J.: Essentially normal composition operators on Bergman spaces. Acta Sci. Math. (Szeged) 70, 799–817 (2004).
- [27] Poltoratski, A. G.: Boundary behavior of pseudocontinuable functions (Russian). Algebra i Analiz 5, 189–210 (1993); translation in St. Petersburg Math. J. 5, 389–406 (1994).
- [28] Ryff, J. V.: Subordinate H^p functions. Duke Math. J. 33, 347–354 (1966).
- [29] Sarason, D. E.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas. Lecture Notes in the Mathematical Sciences 10. New York. John Wiley and Sons,(1994).
- [30] Schwartz, H. J. Composition operators on H^p , Ph.D. thesis. University of Toledo 1969.
- [31] Shapiro, J. H.: Composition Operators and Classical Function Theory. New York. Springer-Verlag 1993.
- [32] Shapiro, J. H. and Taylor, P. D.: Compact, nuclear, and Hilbert-Schmidt composition operators on H². Indiana Univ. Math. J. 23, 471–496 (1973).
- [33] Zhu, K.: Operator Theory in Function Spaces. New York. Marcel Dekker 1990.
- [34] Zhu, X.: Weighted composition operators from F(p,q,s) spaces to H^{∞}_{μ} spaces. Abstr. Appl. Anal. vol. 2009, Article ID 290978 14 pages (2009).
- [35] Zorboska, N.: Closed range essentially normal composition operators are normal. Acta Sci. Math. (Szeged) 65, 287–292 (1999).

Received: 20.10.2010

Mahsa FATEHI Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, IRAN. e-mail:fatehi@shirazu.ac.ir Bahram KHANI ROBATI Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, IRAN e-mail: bkhani@shirazu.ac.ir