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Abstract: We classify the unmixed ideals of Veronese bi-type and in some cases we give a description of their associated

prime ideals.
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1. Introduction

Let R = K[X1,...,Xn;Y1,...,Y,] be a polynomial ring in two sets of variables over a field K. In recent
papers, monomial ideals of R are introduced and their connection to bipartite complete graphs is studied ([4],
[6]). In this paper we study a class of monomial ideals of R, so-called Veronese bi-type ideals. They are an
extension of the ideals of Veronese type ([5]) in a polynomial ring in two sets of variables. More precisely, the
ideals of Veronese bi-type are monomial ideals of R generated in the same degree: L, =Y ktreq Iy s Jr s, with
k,r > 1, where I, is the Veronese-type ideal generated on degree k by the set {X| .- X;™| Z?Zl a;; =

E, 0<a; <s s¢&{l,...,k}} and J,, is the Veronese-type ideal generated on degree r by the set

v

the ideals associated to bipartite graphs with loops ([2]).

Ly |2 b, =7, 0<b;; <s, s€{l,....r}} ([2], [3]). For s =2 the Veronese bi-type ideals are

In this paper some properties of these class of monomial ideals are discussed. In particular, our aim is to
classify the unmixed Veronese bi-type ideals.

Establishing whenever an ideal is unmixed in general is a difficult problem because it is necessary to know
all its associated prime ideals. In [8] equidimensional and unmixed ideals of Veronese type are characterized.
Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description of
the associated prime ideals.

This paper is organized as follows. In Section 1, unmixed ideals of Veronese bi-type are classified and
the generalized ideals associated to the walks of special bipartite graphs, described by the Veronese by-type
ideals Lg2 = > 4, ,—, Ik,2Jr2, are considered. In Section 2, the toric ideal I(Lg,s) of the monomial subring
K[L,s] C R is studied. Let L, s = (f1,..., fp) and K[L, ] be the K -algebra spanned by f1,..., f,. There is
a graded epimorphism of K-algebras: ¢ : S = K[T1,...,T,] — K[L, ;] induced by ¢(T;) = f;, where S is a
polynomial ring graded by deg(T;) = deg(fi). Let I(Ly,s) be the toric ideal of K[L, 5], that is the kernel of ¢.
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We are able to prove that I(L, s) has a quadratic Groebner basis and as a consequence the K -algebra K[Lg ;]
is Koszul. In order to formulate these results we have to recall the notion of sortability ([5]), and we apply it

to the monomial ideals L ;.

2. Unmixed ideals of Veronese bi-type
Let R = K[X1,...,X,;Y1,...,Y,] be the polynomial ring over a field K in two sets of variables with each
degX; =1, degY; =1,foralli=1,...,n, j=1,...,m.

We define the ideals of Veronese bi-type of degree ¢ as the monomial ideals of R

Lq,s = Z Ik,er,s; T,kZ 1;
r+k=q

where Ij s is the ideal of Veronese-type of degree k in the variables Xi,...,X, and J,s is the ideal of
Veronese-type of degree r in the variables Y7,...,Y,,.

L, s is not trivial for 2 < ¢ <s(n+m)—1, s <q.

Remark 2.1 In general, It s C Ij,, where I, is the Veronese ideal of degree k generated by all the monomials
in the variables X1, ..., X, of degree k ([6]).
One has I s = I, for any k <s. If s=1, I} 1 1is the square-free Veronese ideal of degree k generated

by all the square-free monomials in the variables Xi,..., X, of degree k. Similar considerations hold for
Jrs C K[Y1,...,Y,].

Example 2.2 Let R = K[X;, X2;Y1,Y2] be a polynomial ring.

1) Lyo=T12J12="nJ1 = (X1Y1, X1Ys, XoY1, XoY2);

2) Lao=1I30J10+ 1 2J32+ 1 20J00 =I32J1+ 11 J3 20+ I o = (X7 XoY1, X7 XoYo, X1X3Y1, X1 X5Y0, X1 YV,
XoY2Yo, XiV1Y3, XoV1 Y3, XPYE, XiV1Ys, XTY3, X3V, X3Y5, X3V1Yo, X1 Xo VP, X1 Xo V3, X1 XoY1Y5).

In this section we classify the unmixed Veronese bi-type ideals. First, we recall some preliminary notions.

Definition 2.3 Let G(Lgs) be the unique minimal set of monic monomial generators of Lq 5. A vertex cover
of Ly s is a subset W of {X1,...,Xn;Y1,..., Y} such that each w € G(Lgys) is divided by some variables of

W. Such a vertex cover W is called minimal if no proper subset of W is a vertex cover.

Denote by h(Lg,s) the minimal cardinality of the vertex covers of Ly s.

Definition 2.4 A monomial ideal is said to be unmized if all its minimal vertex covers have the same cardi-
nality.

Remark 2.5 We recall the one-to-one correspondence between the minimal vertex covers of an ideal and its
minimal primes. Hence p is a minimal prime ideal of L, s if and only if p = (A) for some minimal vertex cover
Aof Lys.

Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description
of the associated prime ideals.
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Proposition 2.6 Let R = K[X1,...,X;Y1,..., Y] Let 2<g<s(n+m)—i fori=1,...,s—1. Ly, is
unmized if and only if n =m.

Proof By the structure of G(L, ) the minimal vertex covers of L,, are W7 = {X1,...,X,}, Wp =
{Y1,...,Y,,}. The minimal cardinality of the vertex covers of Ly is h(Lgs) = min{n,m}. Hence all the

minimal vertex covers have the same cardinality if and only if n = m. O

Example 2.7 R = K[X;, X2; Y1, Y3)

L3o = (X3Y1, X3Ys, X1 XoY1, X1 XoYo, X3Y1, X3Ya, X1V, X1 V1Y, X1YZ, XoV, XoV1 Y, XoY5).
The minimal vertex covers are: W1 = {X1, Xo}; Wo = {Y¥1,Y2}.

h(Ls2) = |Wh| = |Wa| =2 = Ls o is unmized.

Proposition 2.8 Let R = K[X1,...,X;;Y1,...,Y]. If q=s(n+m) —i fori=1,...,s =1, then Ly, is
unmized.
Proof Omnehas W; ={X;}, i=1,...,n, W; ={Y;}, j=1,...,m, are the minimal vertex covers of L, s by

construction. O

Example 2.9 R = K[X;, X2; Y1, Y3],

Liis = (XPX3YPYR, XPXSYPYS, XPX3YPYS, XPX3YPYS).
The minimal vertex covers are:

Wy ={X1}; Wa = {Xo}; W3 ={Y1}; Wy = {Ya}.

h(L113) = Wil =1 forall i =1,2,3,4 = Lq1,3 is unmized.

Let AC{1,2,...,n+m}, where n 4+ m is the number of the variables of the polynomial ring R. For a
subset A we denote by P4 the prime ideal of R generated by the variables whose index is in A.

Theorem 2.10 Let R=K[X1,...,X,;Y1,..., Y], Lys CR.
Pa€ Assp(Lgs) < |A <i+1,

fori=s(n+m)—q,i=1,...,s—1.
Proof In the following replace the set of variables {X1,...,X,,} with {z1,...,2,} and {Y1,...,Y,} with
{Znt1y - s Zntm}-

Assume that P4 € Assr(Ly,s). Then there exists a monomial f ¢ L, such that Ly : f = Pa. Now
we show that we can choose such a monomial f of degree ¢—1 such that L, s : f = Pa. Suppose that f ¢ L s,
Lgs:f=Pa, deg(f) > q and f =z -z, Then there exists jo € {1,2,...,n+ m} such that aj, > s.
Since Lgs : f = Pa, we have z;f € Ly, forall i € A and z;f ¢ Ly for all i ¢ A. Moreover, for all i € A
there exists a monomial u; € G(Lg,s) such that w;|(z; f). Being f ¢ L, s, this fact means that, for all i € A,
the variable z; appears in u; with exponent a; + 1. Therefore a; < s for all ¢ € A. Tt follows that jo ¢ A.
Now we claim that: 1) f = f/zj, ¢ Lgs and 1) Lys: f = Pa.
The first fact follows from that f ¢ L,s and aj, —1 > s. For the second assertion we proceed as follows.

Lys:fC Lys: f because f divides f. Then L, s : f C P4, being Pao = L, : f. Moreover, since aj, —1 > s
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then w; divides z;f/z;, for all i € A, then z; € Ly s : (f/zj,) for all i € A. Hence P4 C Ly s : (f/xj,). It
follows the other inclusion P4 C L, s : f. Hence Py = L, : f. After a finite number of these reductions,
we find f ¢ L, s of degree ¢ — 1 such that P4 = L, : f. From this fact follows that fz; € Ly for all
ieAand fz; ¢ Ly, for all i ¢ A. In particular a; +1 < s for all ¢ € A, and a; < s for all i ¢ A.
Then a; = s for all i ¢ A. Therefore f = [[;c %" Hz‘gEAZiS with 0 < a; < s for all i € A. We have
deg([[;¢4 %) = s(n+m —[A]) = t. Then we obtain: s(n+m) > (3 ;cqai+ 1)+t =210 +[A+t=
dieati+t+|Al =deg(f) + Al =q—1+]A.

Conversely, let |A| < i+ 1, for i =s(n+m)—gq,i=1,...,s—1, that is |A] < s(n+m) — g+ 1.
Moreover, in these hypotheses one has s(n+m —|A|) < ¢—1. In fact, s(n+m —|A|) < s(n+m)—1i—1; then
s|A| > i+1 that is true for i =1,...,s—1. Being ¢ =s(n+m) —i for i =1,...,s—1, then by the definition
of Ly it follows that for any monomial u € G(Lg, ) there exists an integer j € A such that z; divides u.
Therefore L, s C Pa. The condition s(n+m) > g — 1+ | A| implies that (s — 1)|A| +s(n+m —|A|) > ¢—1,
which together with s(n + m — |A|) < ¢ — 1 shows that there exists an integer ¢; < s, for all i € A such
that c;|A| + s(n +m — |A]) = ¢ — 1. Then the monomial f = J[;c 42" [[,4 4%’ has degree ¢ — 1. Hence
f ¢ Lgs and as a consequence P4 C L, s : f. Now we prove that P4 = Lgs : f. Assume that Py is
a proper subset of L, s : f. Then there exists a monomial f’, in the variables z; with i ¢ A, of degree
at least 1 such that ff’ € Lg,. This means that there exists a monomial u = z{'-- 2,1 € G(Lgs)
such that u divides ff’. Therefore a; < ¢; for any i € A because f' € K|z|i ¢ A]. It follows that
q = deg(u) = X1 " a; < Y icaCi+s(n+m —|A|) = deg(f) = ¢ — 1, which is a contradiction. Hence P4 is
not a proper subset of Ly s : f, but P4 = Ly, : f. This equality means that P4 € Assr(Lys). O

Example 2.11 R = K[X;, Xo;Y1,Y5],
Lisa = (XI5, XPX0VPYS, X XSV, XP X5V Y.
By Theorem 2.10 Assg(Lis.4) = {(X1), (X2), (Y1), (Y2), (X1, X2), (X1, Y1), (X1,Y2), (X2, Y1), (X2, Y2), (Y1,Y2)}.

As an application, we observe that the ideals of Veronese bi-type can be associated to graphs with loops.

In fact for s = 2, the ideals L, ; are associated to the walks of length ¢ —1 of the strong quasi-bipartite graphs
with loops ([2]).

Definition 2.12 A graph G with loops is a strong quasi-bipartite if all vertices of V1 are joined to all vertices
of Vo and for each vertex of V' there is a loop.

Definition 2.13 Let G be a strong quasi-bipartite graph on the vertex set V. = {v1,...,v,}. A walk of length
q in G is an alternating sequence w = {viy, iy, Viy,y liy, - ..,viqfl,liq,viq}, where v;; is a vertex of G' and

li; = {vi;_,, v} is the edge joining vi,_, and vi; or a loop if vy, | =v;;, 1 <iy <y < <ig<n.

Example 2.14 Let G be a strong quasi-bipartite graph on vertices {x1,22;y1,y2}. A walk of length 2 is

w= {CL‘l, l1, 1, l?ayl}’

where Iy = {x1,21} is the loop on x1 and ly = {x1,11} is the edge joining x1 and y; .
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Let G be a strong quasi-bipartite graph on vertex set {21,...,Zn;y1,- -, Ym}-
The generalized ideal I,(G) associated to G is the ideal of the polynomial ring R = K[X1,...,Xn; Y1,..., Y]
generated by the monomials of degree ¢ corresponding to the walks of length ¢ — 1. Hence the generalized
ideal 1,(G) is generated by all monomials of degree ¢ > 3 corresponding to the walks of length ¢ — 1 and the

variables in each generator of I,(G) have at most degree 2. Therefore:

I,(G)=Ly2 = Z Ik 2dr2, for ¢>3 ([2]).
k+r=q

Example 2.15 Let R = K[X1, X2;Y1,Ys] be a polynomial ring over a field K and G be the strong quasi-

bipartite graph on vertices x1,T2,Y1,y2 :

X1 X9

O Vi Y2

I3(G):IIJ2 + IQJIZ(XIE/&}/Q) X2}/1}/2) X1}/12) X2}/12) X1}/22) X2}/22) X1X2}/1) X1X2}/2) X12}/1) X12}/2) X22}/1) X22}/2) .
L(G)=I3 01+ 1 J3 0+ I Jo=(X3? X2 Y1, X2 X0 Yo, X1 X3V, X1 X3Ys, X1Y Yo, Xo VYo, XaV1YF, XoV1 Y2, X3Y2,
X12}/1}/2) X12}/22) X22}/12) X22}/22) X22}/1}/2) X1X2}/12) X1X2}/22) X1X2}/1}/2) .

The following result classifies the ideals I,(G) that are unmixed.

Proposition 2.16 Let R= K[X1,..., X;Y1,..., Y]

1)If2<qg<2(n+m)—1 then Lyo is unmized if and only if n = m.

2)If q=2(n+m)—1, then Lyo is unmized.

Proof By Propositions 2.6 and 2.8. O
We consider the case ¢ > 3. In fact, for ¢ = s =2, theideal Lo o = ({X;Y;li=1,...,n, j=1,...,m})

doesn’t describe the edge ideal I(G) = I2(G) of a strong quasi-bipartite graph, but it is the edge ideal of a

complete bipartite graph (with no loops) on the vertex set {x1,...,Zn;%1,.-.,Ym}. Then Lo o satisfies the

characterization of unmixed bipartite graphs given in [7].

3. The toric ideal of K[L, ]
Let R = K[X1,...,Xn;Y1,...,Y] and Ly s = (f1,..., fp) be the ideal of Veronese bi-type. The monomial
subring of R spanned by F = {f1,...,fp} is the K-algebra K[L,| = K[F] = K|[f1,...,fp]. Note that
K|[F] is a graded algebra with the grading K[F]; = K[F| N R;. There is a graded epimorphism of K-
algebras: ¢ : S = K[T1,...,T,] — K[Lgs] induced by ¢(T;) = fi, where S is a polynomial ring graded by
deg(T;) = deg(f;). Note that the map ¢ is given by w(h(T1,...,Tp)) = h(f1,..., fp) forall h e S.

Let I(Lys) be the kernel of the K -algebra epimorphism, called the toric ideal of K[L,s]. It is known

that the toric ideal of a monomial K -algebra is a graded prime ideal generated by a finite set of binomials.
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Now we prove that (L, s) has a quadratic Groebner basis. In order to formulate this result we have to
recall the notion of sortability, introduced in [5], and we apply it to the monomial ideal L 5.

Let A = Klz1,...,2 be a polynomial ring and L be a monomial ideal of A generated in degree gq.
Let B be the set of the exponent vectors of the monomials of G(L). If uw = (uq,...,us),v = (v1,...,v) € B,

w w o v . wov . . . .
then z* = |, 2,",2" = |],2° € L. We write 2"z = Ziy  Zig, with 41 < iy < --- < igy. Then we set

’

u q . v q . ]
2" =[[j=1 #2j-1 and 2" =[]j_; z2;. This defines a map

sort : B x B— My x My, (u,v)— (u/,0"),

where M, is the set of all integer vectors (aq,...,a:) such that Zle a; =q.
The set B is called sortable if Im(sort) C B X B.
The ideal L is called sortable if the set of exponent vectors of the monomials of G(L) is sortable. In

other words, let z%, 2" € L, then L is said sortable if 2, 2% € L, where (v, v") = sort(u,v).

Theorem 3.1 Let R= K[X1,...,Xn;Y1,...,Yn]. Lys is sortable.

Proof Let L, = ({X{"--- X&YYo |30 a +3>721bj =¢, 0<a;b; <s}) and B be the set of the
exponent vectors of the monomials of G(Lg s).

Let f; = X0 ... Xy o ybem f; = X0 XYM Y € G(L,), then w = (a1,...,an;b1,...,bm),

v=(c1,...,¢n;d1,...,dp) € B. One has that f;f; = X;--- X1 -+ Xp--- X, Y1---Y7 -+ Y,,---Y, is
——— —_———  —— —_——
a1-+c1—times an+cp—times by +dy —times by +dy, —times

a monomial of degree 2q. If one replaces the set of variables {Xy,..., X,,} with {z1,...,2,} and {Y7,..., Y}
with {2n11,..., Zntm}, then fif; = 2z, -2, with 43 < -+ <p,. Then we consider f] = v = [T 2211
and f} = 2V = [1/2; z21. We must prove that f{, fj € Lys. We have that f{ is of degree ¢ and we write

: rb, b’ . e . .
fl = H?Zl Zol—1 = Xfl ---XZ”Yl1 Y. If a; + ¢; is even then af = ‘“TM < s and if a; + ¢; is odd then

K2

aj = Egtl < 5. Similarly, if b + d; is even then b = @ < s. If bj +d; is odd then V) = bﬁdfjﬂ <s

K2

Moreover, because f; is of degree ¢ and there exist a # 0, b # 0 with 0 < a;,b; < ¢ for all 4,7, then

X{ o Xgn 4 X9 and YY1 Yar £ YL Tt follows that Xi1---Xu» € I, and Y{'--- Y € J,, with
k+r=gq. Hence f; € Lys. In the same way the argument holds for f;. Hence L, is sortable. O
Corollary 3.2 Let R=K[X1,...,X;Y1,...,Yy] and Ly s C R. Then:

1) I(Ly,s) has a quadratic Groebner basis.

2) K[Lys] is Koszul.

Proof 1) By Theorem 3.1 and [1](Lemma 5.2).

2) The conclusion follows by 1). O
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