

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2013) 37: 1 – 7 © TÜBİTAK doi:10.3906/mat-1101-23

Research Article

A note on unmixed ideals of Veronese bi-type

Monica LA BARBIERA*

University of Messina, Department of Mathematics Viale Ferdinando Stagno d'Alcontres, 31,

98166 Messina, Italy

Received: 06.01.2011	•	Accepted: 12.04.2011	٠	Published Online: 17.12.2012	•	Printed: 14.01.2013
----------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: We classify the unmixed ideals of Veronese bi-type and in some cases we give a description of their associated prime ideals.

Key words: Unmixed ideals. Veronese bi-type ideals

1. Introduction

Let $R = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$ be a polynomial ring in two sets of variables over a field K. In recent papers, monomial ideals of R are introduced and their connection to bipartite complete graphs is studied ([4], [6]). In this paper we study a class of monomial ideals of R, so-called Veronese bi-type ideals. They are an extension of the ideals of Veronese type ([5]) in a polynomial ring in two sets of variables. More precisely, the ideals of Veronese bi-type are monomial ideals of R generated in the same degree: $L_{q,s} = \sum_{k+r=q} I_{k,s} J_{r,s}$, with $k, r \geq 1$, where $I_{k,s}$ is the Veronese-type ideal generated on degree k by the set $\{X_1^{a_{i_1}} \cdots X_n^{a_{i_n}} | \sum_{j=1}^n a_{i_j} =$ $k, 0 \leq a_{i_j} \leq s, s \in \{1, \ldots, k\}$ and $J_{r,s}$ is the Veronese-type ideal generated on degree r by the set $\{Y_1^{b_{i_1}} \cdots Y_m^{b_{i_m}} | \sum_{j=1}^m b_{i_j} = r, 0 \leq b_{i_j} \leq s, s \in \{1, \ldots, r\}\}$ ([2], [3]). For s = 2 the Veronese bi-type ideals are the ideals associated to bipartite graphs with loops ([2]).

In this paper some properties of these class of monomial ideals are discussed. In particular, our aim is to classify the unmixed Veronese bi-type ideals.

Establishing whenever an ideal is unmixed in general is a difficult problem because it is necessary to know all its associated prime ideals. In [8] equidimensional and unmixed ideals of Veronese type are characterized. Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description of the associated prime ideals.

This paper is organized as follows. In Section 1, unmixed ideals of Veronese bi-type are classified and the generalized ideals associated to the walks of special bipartite graphs, described by the Veronese by-type ideals $L_{q,2} = \sum_{k+r=q} I_{k,2}J_{r,2}$, are considered. In Section 2, the toric ideal $I(L_{q,s})$ of the monomial subring $K[L_{q,s}] \subset R$ is studied. Let $L_{q,s} = (f_1, \ldots, f_p)$ and $K[L_{q,s}]$ be the K-algebra spanned by f_1, \ldots, f_p . There is a graded epimorphism of K-algebras: $\varphi : S = K[T_1, \ldots, T_p] \to K[L_{q,s}]$ induced by $\varphi(T_i) = f_i$, where S is a polynomial ring graded by $\deg(T_i) = \deg(f_i)$. Let $I(L_{q,s})$ be the toric ideal of $K[L_{q,s}]$, that is the kernel of φ .

^{*}Correspondence: monicalb@dipmat.unime.it

²⁰⁰⁰ AMS Mathematics Subject Classification: 05B35, 13P10,13C15.

We are able to prove that $I(L_{q,s})$ has a quadratic Groebner basis and as a consequence the K-algebra $K[L_{q,s}]$ is Koszul. In order to formulate these results we have to recall the notion of sortability ([5]), and we apply it to the monomial ideals $L_{q,s}$.

2. Unmixed ideals of Veronese bi-type

Let $R = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$ be the polynomial ring over a field K in two sets of variables with each $\deg X_i = 1$, $\deg Y_j = 1$, for all $i = 1, \ldots, n$, $j = 1, \ldots, m$.

We define the *ideals of Veronese bi-type* of degree q as the monomial ideals of R

$$L_{q,s} = \sum_{r+k=q} I_{k,s} J_{r,s}, \quad r,k \ge 1,$$

where $I_{k,s}$ is the ideal of Veronese-type of degree k in the variables X_1, \ldots, X_n and $J_{r,s}$ is the ideal of Veronese-type of degree r in the variables Y_1, \ldots, Y_m .

 $L_{q,s}$ is not trivial for $2 \le q \le s(n+m) - 1$, $s \le q$.

Remark 2.1 In general, $I_{k,s} \subseteq I_k$, where I_k is the Veronese ideal of degree k generated by all the monomials in the variables X_1, \ldots, X_n of degree k ([6]).

One has $I_{k,s} = I_k$ for any $k \leq s$. If s = 1, $I_{k,1}$ is the square-free Veronese ideal of degree k generated by all the square-free monomials in the variables X_1, \ldots, X_n of degree k. Similar considerations hold for $J_{r,s} \subset K[Y_1, \ldots, Y_m]$.

Example 2.2 Let $R = K[X_1, X_2; Y_1, Y_2]$ be a polynomial ring. 1) $L_{2,2} = I_{1,2}J_{1,2} = I_1J_1 = (X_1Y_1, X_1Y_2, X_2Y_1, X_2Y_2);$ 2) $L_{4,2} = I_{3,2}J_{1,2} + I_{1,2}J_{3,2} + I_{2,2}J_{2,2} = I_{3,2}J_1 + I_1J_{3,2} + I_2J_2 = (X_1^2X_2Y_1, X_1^2X_2Y_2, X_1X_2^2Y_1, X_1X_2^2Y_2, X_1Y_1^2Y_2, X_2Y_1^2Y_2, X_1Y_1Y_2^2, X_2Y_1Y_2, X_1Y_2Y_2, X_1Y_2Y_2, X_1Y_1Y_2, X_2Y_2, X_1Y_1Y_2, X_1Y_2Y_2, X_1Y_1Y_2, X_1Y_2Y_2, X_1Y_1Y_2, X_1Y_2Y_2, X_1Y_2Y_2).$

In this section we classify the unmixed Veronese bi-type ideals. First, we recall some preliminary notions.

Definition 2.3 Let $G(L_{q,s})$ be the unique minimal set of monic monomial generators of $L_{q,s}$. A vertex cover of $L_{q,s}$ is a subset W of $\{X_1, \ldots, X_n; Y_1, \ldots, Y_m\}$ such that each $u \in G(L_{q,s})$ is divided by some variables of W. Such a vertex cover W is called minimal if no proper subset of W is a vertex cover.

Denote by $h(L_{q,s})$ the minimal cardinality of the vertex covers of $L_{q,s}$.

Definition 2.4 A monomial ideal is said to be unmixed if all its minimal vertex covers have the same cardinality.

Remark 2.5 We recall the one-to-one correspondence between the minimal vertex covers of an ideal and its minimal primes. Hence \wp is a minimal prime ideal of $L_{q,s}$ if and only if $\wp = (\mathcal{A})$ for some minimal vertex cover \mathcal{A} of $L_{q,s}$.

Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description of the associated prime ideals.

Proposition 2.6 Let $R = K[X_1, ..., X_n; Y_1, ..., Y_m]$. Let $2 \le q < s(n+m) - i$ for i = 1, ..., s - 1. $L_{q,s}$ is unmixed if and only if n = m.

Proof By the structure of $G(L_{q,s})$ the minimal vertex covers of $L_{q,s}$ are $W_1 = \{X_1, \ldots, X_n\}$, $W_2 = \{Y_1, \ldots, Y_m\}$. The minimal cardinality of the vertex covers of $L_{q,s}$ is $h(L_{q,s}) = \min\{n, m\}$. Hence all the minimal vertex covers have the same cardinality if and only if n = m.

$$\begin{split} & \textbf{Example 2.7} \quad R = K[X_1, X_2; Y_1, Y_2] \\ & L_{3,2} = \left(X_1^2 Y_1, X_1^2 Y_2, X_1 X_2 Y_1, X_1 X_2 Y_2, X_2^2 Y_1, X_2^2 Y_2, X_1 Y_1^2, X_1 Y_1 Y_2, X_1 Y_2^2, X_2 Y_1^2, X_2 Y_1 Y_2, X_2 Y_2^2\right). \\ & The \ minimal \ vertex \ covers \ are: \ W_1 = \{X_1, X_2\}; \ W_2 = \{Y_1, Y_2\}. \\ & h(L_{3,2}) = |W_1| = |W_2| = 2 \ \Rightarrow \ L_{3,2} \ is \ unmixed. \end{split}$$

Proposition 2.8 Let $R = K[X_1, ..., X_n; Y_1, ..., Y_m]$. If q = s(n+m) - i for i = 1, ..., s - 1, then $L_{q,s}$ is unmixed.

Proof One has $W_i = \{X_i\}, i = 1, ..., n, W_j = \{Y_j\}, j = 1, ..., m$, are the minimal vertex covers of $L_{q,s}$ by construction.

Example 2.9 $R = K[X_1, X_2; Y_1, Y_2],$ $L_{11,3} = (X_1^3 X_2^3 Y_1^3 Y_2^2, X_1^3 X_2^3 Y_1^2 Y_2^3, X_1^3 X_2^2 Y_1^3 Y_2^3, X_1^2 X_2^3 Y_1^3 Y_2^3).$ The minimal vertex covers are: $W_1 = \{X_1\}; W_2 = \{X_2\}; W_3 = \{Y_1\}; W_4 = \{Y_2\}.$ $h(L_{11,3}) = |W_i| = 1 \text{ for all } i = 1, 2, 3, 4 \Rightarrow L_{11,3} \text{ is unmixed.}$

Let $\mathcal{A} \subseteq \{1, 2, ..., n+m\}$, where n+m is the number of the variables of the polynomial ring R. For a subset \mathcal{A} we denote by $\mathcal{P}_{\mathcal{A}}$ the prime ideal of R generated by the variables whose index is in \mathcal{A} .

Theorem 2.10 Let $R = K[X_1, ..., X_n; Y_1, ..., Y_m], L_{q,s} \subset R$.

$$\mathcal{P}_{\mathcal{A}} \in Ass_R(L_{q,s}) \Leftrightarrow |\mathcal{A}| \le i+1,$$

for i = s(n+m) - q, i = 1, ..., s - 1.

Proof In the following replace the set of variables $\{X_1, \ldots, X_n\}$ with $\{z_1, \ldots, z_n\}$ and $\{Y_1, \ldots, Y_m\}$ with $\{z_{n+1}, \ldots, z_{n+m}\}$.

Assume that $\mathcal{P}_{\mathcal{A}} \in Ass_{R}(L_{q,s})$. Then there exists a monomial $f \notin L_{q,s}$ such that $L_{q,s} : f = \mathcal{P}_{\mathcal{A}}$. Now we show that we can choose such a monomial f of degree q-1 such that $L_{q,s} : f = \mathcal{P}_{\mathcal{A}}$. Suppose that $f \notin L_{q,s}$, $L_{q,s} : f = \mathcal{P}_{\mathcal{A}}$, $deg(f) \geq q$ and $f = z_1^{a_1} \cdots z_{n+m}^{a_{n+m}}$. Then there exists $j_0 \in \{1, 2, \ldots, n+m\}$ such that $a_{j_0} > s$. Since $L_{q,s} : f = \mathcal{P}_{\mathcal{A}}$, we have $z_i f \in L_{q,s}$ for all $i \in \mathcal{A}$ and $z_i f \notin L_{q,s}$ for all $i \notin \mathcal{A}$. Moreover, for all $i \in \mathcal{A}$ there exists a monomial $u_i \in G(L_{q,s})$ such that $u_i | (z_i f)$. Being $f \notin L_{q,s}$, this fact means that, for all $i \in \mathcal{A}$, the variable z_i appears in u_i with exponent $a_i + 1$. Therefore $a_i < s$ for all $i \in \mathcal{A}$. It follows that $j_0 \notin \mathcal{A}$. Now we claim that: I) $\overline{f} = f/z_{j_0} \notin L_{q,s}$ and II) $L_{q,s} : \overline{f} = \mathcal{P}_{\mathcal{A}}$.

The first fact follows from that $f \notin L_{q,s}$ and $a_{j_0} - 1 \ge s$. For the second assertion we proceed as follows. $L_{q,s}: \overline{f} \subseteq L_{q,s}: f$ because \overline{f} divides f. Then $L_{q,s}: \overline{f} \subseteq \mathcal{P}_{\mathcal{A}}$, being $\mathcal{P}_{\mathcal{A}} = L_{q,s}: f$. Moreover, since $a_{j_0} - 1 \ge s$. then u_i divides $z_i f/z_{j_0}$ for all $i \in \mathcal{A}$, then $z_i \in L_{q,s} : (f/z_{j_0})$ for all $i \in \mathcal{A}$. Hence $\mathcal{P}_{\mathcal{A}} \subseteq L_{q,s} : (f/x_{j_0})$. It follows the other inclusion $\mathcal{P}_{\mathcal{A}} \subseteq L_{q,s} : \overline{f}$. Hence $\mathcal{P}_{\mathcal{A}} = L_{q,s} : \overline{f}$. After a finite number of these reductions, we find $f \notin L_{q,s}$ of degree q-1 such that $\mathcal{P}_{\mathcal{A}} = L_{q,s} : f$. From this fact follows that $fz_i \in L_{q,s}$ for all $i \in \mathcal{A}$ and $fz_i \notin L_{q,s}$ for all $i \notin \mathcal{A}$. In particular $a_i + 1 \leq s$ for all $i \in \mathcal{A}$, and $a_i \leq s$ for all $i \notin \mathcal{A}$. Therefore $f = \prod_{i \in \mathcal{A}} z_i^{a_i} \prod_{i \notin \mathcal{A}} z_i^s$ with $0 \leq a_i < s$ for all $i \in \mathcal{A}$. We have $\deg(\prod_{i \notin \mathcal{A}} z_i^s) = s(n + m - |\mathcal{A}|) = t$. Then we obtain: $s(n + m) \geq (\sum_{i \in \mathcal{A}} a_i + 1) + t = \sum_{i \in \mathcal{A}} a_i + |\mathcal{A}| + t = \sum_{i \in \mathcal{A}} a_i + t + |\mathcal{A}| = \deg(f) + |\mathcal{A}| = q - 1 + |\mathcal{A}|$.

Conversely, let $|\mathcal{A}| \leq i+1$, for i = s(n+m) - q, $i = 1, \ldots, s-1$, that is $|\mathcal{A}| \leq s(n+m) - q+1$. Moreover, in these hypotheses one has $s(n+m-|\mathcal{A}|) \leq q-1$. In fact, $s(n+m-|\mathcal{A}|) \leq s(n+m) - i-1$; then $s|\mathcal{A}| \geq i+1$ that is true for $i = 1, \ldots, s-1$. Being q = s(n+m) - i for $i = 1, \ldots, s-1$, then by the definition of $L_{q,s}$ it follows that for any monomial $u \in G(L_{q,s})$ there exists an integer $j \in \mathcal{A}$ such that z_j divides u. Therefore $L_{q,s} \subset \mathcal{P}_{\mathcal{A}}$. The condition $s(n+m) \geq q-1 + |\mathcal{A}|$ implies that $(s-1)|\mathcal{A}| + s(n+m-|\mathcal{A}|) \geq q-1$, which together with $s(n+m-|\mathcal{A}|) \leq q-1$ shows that there exists an integer $c_i < s$, for all $i \in \mathcal{A}$ such that $c_i|\mathcal{A}| + s(n+m-|\mathcal{A}|) = q-1$. Then the monomial $f = \prod_{i \in \mathcal{A}} z_i^{c_i} \prod_{i \notin \mathcal{A}} z_i^s$ has degree q-1. Hence $f \notin L_{q,s}$ and as a consequence $\mathcal{P}_{\mathcal{A}} \subseteq L_{q,s} : f$. Now we prove that $\mathcal{P}_{\mathcal{A}} = L_{q,s} : f$. Assume that $\mathcal{P}_{\mathcal{A}}$ is a proper subset of $L_{q,s} : f$. Then there exists a monomial f', in the variables z_i with $i \notin \mathcal{A}$, of degree at least 1 such that $ff' \in L_{q,s}$. This means that there exists a monomial $u = z_1^{a_1} \cdots z_{n+m}^{a_{n+m}} \in G(L_{q,s})$ such that u divides ff'. Therefore $a_i \leq c_i$ for any $i \in \mathcal{A}$ because $f' \in K[z_i|i \notin \mathcal{A}]$. It follows that $q = \deg(u) = \sum_{i=1}^{n+m} a_i \leq \sum_{i \in \mathcal{A}} c_i + s(n+m-|\mathcal{A}|) = \deg(f) = q-1$, which is a contradiction. Hence $\mathcal{P}_{\mathcal{A}}$ is not a proper subset of $L_{q,s} : f$, but $\mathcal{P}_{\mathcal{A}} = L_{q,s} : f$. This equality means that $\mathcal{P}_{\mathcal{A}} \in Ass_R(L_{q,s})$.

$$\begin{split} & \textbf{Example 2.11} \hspace{0.1cm} R = K[X_1, X_2; Y_1, Y_2], \\ & L_{15,4} = (X_1^4 X_2^4 Y_1^4 Y_2^3, X_1^4 X_2^4 Y_1^3 Y_2^4, X_1^4 X_2^3 Y_1^4 Y_2^4, X_1^3 X_2^4 Y_1^4 Y_2^4). \\ & By \hspace{0.1cm} \textit{Theorem 2.10} \hspace{0.1cm} Ass_R(L_{15,4}) = \{(X_1), (X_2), (Y_1), (Y_2), (X_1, X_2), (X_1, Y_1), (X_1, Y_2), (X_2, Y_1), (X_2, Y_2), (Y_1, Y_2)\}. \end{split}$$

As an application, we observe that the ideals of Veronese bi-type can be associated to graphs with loops. In fact for s = 2, the ideals $L_{q,s}$ are associated to the walks of length q-1 of the strong quasi-bipartite graphs with loops ([2]).

Definition 2.12 A graph G with loops is a strong quasi-bipartite if all vertices of V_1 are joined to all vertices of V_2 and for each vertex of V there is a loop.

Definition 2.13 Let G be a strong quasi-bipartite graph on the vertex set $V = \{v_1, \ldots, v_n\}$. A walk of length q in G is an alternating sequence $w = \{v_{i_0}, l_{i_1}, v_{i_1}, l_{i_2}, \ldots, v_{i_{q-1}}, l_{i_q}, v_{i_q}\}$, where v_{i_j} is a vertex of G and $l_{i_j} = \{v_{i_{j-1}}, v_{i_j}\}$ is the edge joining $v_{i_{j-1}}$ and v_{i_j} or a loop if $v_{i_{j-1}} = v_{i_j}$, $1 \le i_1 \le i_2 \le \ldots \le i_q \le n$.

Example 2.14 Let G be a strong quasi-bipartite graph on vertices $\{x_1, x_2; y_1, y_2\}$. A walk of length 2 is

$$w = \{x_1, l_1, x_1, l_2, y_1\},\$$

where $l_1 = \{x_1, x_1\}$ is the loop on x_1 and $l_2 = \{x_1, y_1\}$ is the edge joining x_1 and y_1 .

LA BARBIERA/Turk J Math

Let G be a strong quasi-bipartite graph on vertex set $\{x_1, \ldots, x_n; y_1, \ldots, y_m\}$.

The generalized ideal $I_q(G)$ associated to G is the ideal of the polynomial ring $R = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$ generated by the monomials of degree q corresponding to the walks of length q - 1. Hence the generalized ideal $I_q(G)$ is generated by all monomials of degree $q \ge 3$ corresponding to the walks of length q - 1 and the variables in each generator of $I_q(G)$ have at most degree 2. Therefore:

$$I_q(G) = L_{q,2} = \sum_{k+r=q} I_{k,2} J_{r,2}, \text{ for } q \ge 3$$
 ([2]).

Example 2.15 Let $R = K[X_1, X_2; Y_1, Y_2]$ be a polynomial ring over a field K and G be the strong quasibipartite graph on vertices x_1, x_2, y_1, y_2 :

$$\begin{split} &I_3(G) = &I_1 J_2 + I_2 J_1 = (X_1 Y_1 Y_2, X_2 Y_1 Y_2, X_1 Y_1^2, X_2 Y_1^2, X_1 Y_2^2, X_2 Y_2^2, X_1 X_2 Y_1, X_1 X_2 Y_2, X_1^2 Y_1, X_1^2 Y_2, X_2^2 Y_1, X_2^2 Y_2) \,. \\ &I_4(G) = &I_{3,2} J_1 + I_1 J_{3,2} + I_2 J_2 = (X_1^2 X_2 Y_1, X_1^2 X_2 Y_2, X_1 X_2^2 Y_1, X_1 X_2^2 Y_2, X_1 Y_1^2 Y_2, X_2 Y_1^2 Y_2, X_1 Y_1 Y_2^2, X_2 Y_1 Y_2^2, X_1^2 Y_1^2, X_1^2 Y_1^2, X_1 Y_2^2 Y_2, X_1 Y_1^2 Y_2, X_2 Y_1^2 Y_2, X_1 Y_1 Y_2^2, X_2 Y_1 Y_2^2, X_1^2 Y_1^2, X_1 Y_2 Y_2^2, X_1 Y_1 Y_2^2, X_2 Y_1 Y_2^2, X_1^2 Y_1^2, X_1 Y_2 Y_1^2, X_1 Y_2 Y_2^2, X_1 Y_1 Y_2^2, X_2 Y_1 Y_2^2, X_1^2 Y_1^2, X_1 Y_2 Y_1^2, X_1 Y_2 Y_2^2, X_1 Y_1 Y_2^2, X_2 Y_1 Y_2^2, X_1 Y_1 Y_1^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_1 Y_2^2, X_1 Y_1 Y_1^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_1 Y_2^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_1^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_1^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_1^2, X_1 Y_1 Y_2^2, X_1 Y_1 Y_1 Y_2^2, X_1 Y_1 Y_1 Y_1^2, X_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1$$

The following result classifies the ideals $I_q(G)$ that are unmixed.

Proposition 2.16 Let $R = K[X_1, ..., X_n; Y_1, ..., Y_m]$. 1) If $2 \le q < 2(n+m) - 1$ then $L_{q,2}$ is unmixed if and only if n = m.

2) If q = 2(n+m) - 1, then $L_{q,2}$ is unmixed.

Proof By Propositions 2.6 and 2.8.

We consider the case $q \ge 3$. In fact, for q = s = 2, the ideal $L_{2,2} = (\{X_iY_j | i = 1, ..., n, j = 1, ..., m\})$ doesn't describe the edge ideal $I(G) = I_2(G)$ of a strong quasi-bipartite graph, but it is the edge ideal of a complete bipartite graph (with no loops) on the vertex set $\{x_1, ..., x_n; y_1, ..., y_m\}$. Then $L_{2,2}$ satisfies the characterization of unmixed bipartite graphs given in [7].

3. The toric ideal of $K[L_{q,s}]$

Let $R = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$ and $L_{q,s} = (f_1, \ldots, f_p)$ be the ideal of Veronese bi-type. The monomial subring of R spanned by $F = \{f_1, \ldots, f_p\}$ is the K-algebra $K[L_{q,s}] = K[F] = K[f_1, \ldots, f_p]$. Note that K[F] is a graded algebra with the grading $K[F]_i = K[F] \cap R_i$. There is a graded epimorphism of Kalgebras: $\varphi : S = K[T_1, \ldots, T_p] \to K[L_{q,s}]$ induced by $\varphi(T_i) = f_i$, where S is a polynomial ring graded by $\deg(T_i) = \deg(f_i)$. Note that the map φ is given by $\varphi(h(T_1, \ldots, T_p)) = h(f_1, \ldots, f_p)$ for all $h \in S$.

Let $I(L_{q,s})$ be the kernel of the K-algebra epimorphism, called the *toric ideal* of $K[L_{q,s}]$. It is known that the toric ideal of a monomial K-algebra is a graded prime ideal generated by a finite set of binomials.

LA BARBIERA/Turk J Math

Now we prove that $I(L_{q,s})$ has a quadratic Groebner basis. In order to formulate this result we have to recall the notion of sortability, introduced in [5], and we apply it to the monomial ideal $L_{q,s}$.

Let $A = K[z_1, \ldots, z_t]$ be a polynomial ring and L be a monomial ideal of A generated in degree q. Let B be the set of the exponent vectors of the monomials of G(L). If $u = (u_1, \ldots, u_t), v = (v_1, \ldots, v_t) \in B$, then $\underline{z}^u = \prod_i z_i^{u_i}, \underline{z}^v = \prod_i z_i^{v_i} \in L$. We write $\underline{z}^u \underline{z}^v = z_{i_1} \cdots z_{i_{2q}}$ with $i_1 \leq i_2 \leq \cdots \leq i_{2q}$. Then we set $\underline{z}^{u'} = \prod_{j=1}^q z_{2j-1}$ and $\underline{z}^{v'} = \prod_{j=1}^q z_{2j}$. This defines a map

sort:
$$B \times B \to M_q \times M_q$$
, $(u, v) \longmapsto (u', v')$,

where M_q is the set of all integer vectors (a_1, \ldots, a_t) such that $\sum_{i=1}^t a_i = q$.

The set B is called *sortable* if $\operatorname{Im}(sort) \subseteq B \times B$.

The ideal L is called *sortable* if the set of exponent vectors of the monomials of G(L) is sortable. In other words, let $\underline{z}^u, \underline{z}^v \in L$, then L is said sortable if $\underline{z}^{u'}, \underline{z}^{v'} \in L$, where (u', v') = sort(u, v).

Theorem 3.1 Let $R = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$. $L_{q,s}$ is sortable.

Proof Let $L_{q,s} = (\{X_1^{a_1} \cdots X_n^{a_n} Y_1^{b_1} \cdots Y_m^{b_m} | \sum_{i=1}^n a_i + \sum_{j=1}^m b_j = q, 0 \le a_i, b_j \le s\})$ and B be the set of the exponent vectors of the monomials of $G(L_{q,s})$.

Let $f_i = X_1^{a_1} \cdots X_n^{a_n} Y_1^{b_1} \cdots Y_m^{b_m}, f_j = X_1^{c_1} \cdots X_n^{c_n} Y_1^{d_1} \cdots Y_m^{d_m} \in G(L_{q,s}), \text{ then } u = (a_1, \dots, a_n; b_1, \dots, b_m),$ $v = (c_1, \dots, c_n; d_1, \dots, d_m) \in B.$ One has that $f_i f_j = \underbrace{X_1 \cdots X_1}_{a_1+c_1-times} \cdots \underbrace{X_n \cdots X_n}_{a_n+c_n-times} \underbrace{Y_1 \cdots Y_1}_{b_1+d_1-times} \cdots \underbrace{Y_m \cdots Y_m}_{b_m+d_m-times}$ is

a monomial of degree 2q. If one replaces the set of variables $\{X_1, \ldots, X_n\}$ with $\{z_1, \ldots, z_n\}$ and $\{Y_1, \ldots, Y_m\}$ with $\{z_{n+1}, \ldots, z_{n+m}\}$, then $f_i f_j = z_{i_1} \cdots z_{i_{2q}}$ with $i_1 \leq \cdots \leq i_{2q}$. Then we consider $f'_i = \underline{z}^{u'} = \prod_{l=1}^q z_{2l-1}$ and $f'_j = \underline{z}^{v'} = \prod_{l=1}^q z_{2l}$. We must prove that $f'_i, f'_j \in L_{q,s}$. We have that f'_i is of degree q and we write $f'_i = \prod_{l=1}^q z_{2l-1} = X_1^{a'_1} \cdots X_n^{a'_n} Y_1^{b'_1} \cdots Y_m^{b'_m}$. If $a_i + c_i$ is even then $a'_i = \frac{a_i + c_i}{2} \leq s$ and if $a_i + c_i$ is odd then $a'_i = \frac{a_i + c_i + 1}{2} < s$. Similarly, if $b_j + d_j$ is even then $b'_j = \frac{b_j + d_j}{2} \leq s$. If $b_j + d_j$ is odd then $b'_j = \frac{b_j + d_j + 1}{2} < s$. Moreover, because f'_i is of degree q and there exist $a'_i \neq 0$, $b'_j \neq 0$ with $0 \leq a'_i, b'_j \leq q$ for all i, j, then $X_1^{a'_1} \cdots X_n^{a'_n} \neq X_i^q$ and $Y_1^{b'_1} \cdots Y_m^{b'_m} \neq Y_j^q$. It follows that $X_1^{a'_1} \cdots X_n^{a'_n} \in I_{k,s}$ and $Y_1^{b'_1} \cdots Y_m^{b'_m} \in J_{r,s}$ with k + r = q. Hence $f'_i \in L_{q,s}$. In the same way the argument holds for f'_j . Hence $L_{q,s}$ is sortable.

Corollary 3.2 Let $R = K[X_1, \ldots, X_n; Y_1, \ldots, Y_m]$ and $L_{q,s} \subset R$. Then:

- 1) $I(L_{q,s})$ has a quadratic Groebner basis.
- 2) $K[L_{q,s}]$ is Koszul.

Proof 1) By Theorem 3.1 and [1] (Lemma 5.2).

2) The conclusion follows by 1).

References

- [1] Herzog, J., Hibi, T.: Discrete Polymatroids, Journal of Alg. Comb., 16, 239–268 (2002).
- [2] La Barbiera, M.: Normalization of Veronese bi-type ideals, Italian Journal of Pure and Applied Mathematics, 26, 79-92 (2009).

LA BARBIERA/Turk J Math

- [3] La Barbiera, M.: On a class of monomial ideals generated by s-sequences, Mathematical Reports, 12(62), N.3, 201-216 (2010).
- [4] Restuccia, G., Villarreal, R.H.: On the normality of monomial ideals of mixed products, Communications in Algebra, 29(8), 3571-3580 (2001).
- [5] Sturmfels, B.: Groebner bases and convex polytopes, Amer. Math. Soc., Providence, RI, 1995.
- [6] Villarreal, R.H.: Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker, Inc., New York, 2001.
- [7] Villarreal, R.H.: Unmixed bipartite graphs, Revista Colombiana de Matematicas, 41, 393-395 (2007).
- [8] Vladoiu, M.: Equidimensional and unmixed ideals of Veronese type, Communication in Algebra, 36(9), 3378-3392 (2008).