Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: 1 - 7
(c) TÜBİTAK
doi:10.3906/mat-1101-23

A note on unmixed ideals of Veronese bi-type

Monica LA BARBIERA*

University of Messina, Department of Mathematics Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy

Received: 06.01.2011 • Accepted: 12.04.2011 • \quad Published Online: 17.12.2012 \quad • Printed: 14.01 .2013
Abstract: We classify the unmixed ideals of Veronese bi-type and in some cases we give a description of their associated
prime ideals. prime ideals.

Key words: Unmixed ideals. Veronese bi-type ideals

1. Introduction

Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ be a polynomial ring in two sets of variables over a field K. In recent papers, monomial ideals of R are introduced and their connection to bipartite complete graphs is studied ([4], [6]). In this paper we study a class of monomial ideals of R, so-called Veronese bi-type ideals. They are an extension of the ideals of Veronese type ([5]) in a polynomial ring in two sets of variables. More precisely, the ideals of Veronese bi-type are monomial ideals of R generated in the same degree: $L_{q, s}=\sum_{k+r=q} I_{k, s} J_{r, s}$, with $k, r \geq 1$, where $I_{k, s}$ is the Veronese-type ideal generated on degree k by the set $\left\{X_{1}^{a_{i_{1}}} \cdots X_{n}^{a_{i_{n}}} \mid \sum_{j=1}^{n} a_{i_{j}}=\right.$ $\left.k, \quad 0 \leq a_{i_{j}} \leq s, \quad s \in\{1, \ldots, k\}\right\}$ and $J_{r, s}$ is the Veronese-type ideal generated on degree r by the set $\left\{Y_{1}^{b_{i_{1}}} \cdots Y_{m}^{b_{i_{m}}} \mid \sum_{j=1}^{m} b_{i_{j}}=r, \quad 0 \leq b_{i_{j}} \leq s, \quad s \in\{1, \ldots, r\}\right\}([2],[3])$. For $s=2$ the Veronese bi-type ideals are the ideals associated to bipartite graphs with loops ([2]).

In this paper some properties of these class of monomial ideals are discussed. In particular, our aim is to classify the unmixed Veronese bi-type ideals.

Establishing whenever an ideal is unmixed in general is a difficult problem because it is necessary to know all its associated prime ideals. In [8] equidimensional and unmixed ideals of Veronese type are characterized. Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description of the associated prime ideals.

This paper is organized as follows. In Section 1, unmixed ideals of Veronese bi-type are classified and the generalized ideals associated to the walks of special bipartite graphs, described by the Veronese by-type ideals $L_{q, 2}=\sum_{k+r=q} I_{k, 2} J_{r, 2}$, are considered. In Section 2, the toric ideal $I\left(L_{q, s}\right)$ of the monomial subring $K\left[L_{q, s}\right] \subset R$ is studied. Let $L_{q, s}=\left(f_{1}, \ldots, f_{p}\right)$ and $K\left[L_{q, s}\right]$ be the K-algebra spanned by f_{1}, \ldots, f_{p}. There is a graded epimorphism of K-algebras: $\varphi: S=K\left[T_{1}, \ldots, T_{p}\right] \rightarrow K\left[L_{q, s}\right]$ induced by $\varphi\left(T_{i}\right)=f_{i}$, where S is a polynomial ring graded by $\operatorname{deg}\left(T_{i}\right)=\operatorname{deg}\left(f_{i}\right)$. Let $I\left(L_{q, s}\right)$ be the toric ideal of $K\left[L_{q, s}\right]$, that is the kernel of φ.

[^0]
LA BARBIERA/Turk J Math

We are able to prove that $I\left(L_{q, s}\right)$ has a quadratic Groebner basis and as a consequence the K-algebra $K\left[L_{q, s}\right]$ is Koszul. In order to formulate these results we have to recall the notion of sortability ([5]), and we apply it to the monomial ideals $L_{q, s}$.

2. Unmixed ideals of Veronese bi-type

Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ be the polynomial ring over a field K in two sets of variables with each $\operatorname{deg} X_{i}=1, \operatorname{deg} Y_{j}=1$, for all $i=1, \ldots, n, j=1, \ldots, m$.

We define the ideals of Veronese bi-type of degree q as the monomial ideals of R

$$
L_{q, s}=\sum_{r+k=q} I_{k, s} J_{r, s}, \quad r, k \geq 1
$$

where $I_{k, s}$ is the ideal of Veronese-type of degree k in the variables X_{1}, \ldots, X_{n} and $J_{r, s}$ is the ideal of Veronese-type of degree r in the variables Y_{1}, \ldots, Y_{m}.
$L_{q, s}$ is not trivial for $2 \leq q \leq s(n+m)-1, s \leq q$.
Remark 2.1 In general, $I_{k, s} \subseteq I_{k}$, where I_{k} is the Veronese ideal of degree k generated by all the monomials in the variables X_{1}, \ldots, X_{n} of degree k ([6]).

One has $I_{k, s}=I_{k}$ for any $k \leq s$. If $s=1, I_{k, 1}$ is the square-free Veronese ideal of degree k generated by all the square-free monomials in the variables X_{1}, \ldots, X_{n} of degree k. Similar considerations hold for $J_{r, s} \subset K\left[Y_{1}, \ldots, Y_{m}\right]$.

Example 2.2 Let $R=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}\right]$ be a polynomial ring.

1) $L_{2,2}=I_{1,2} J_{1,2}=I_{1} J_{1}=\left(X_{1} Y_{1}, X_{1} Y_{2}, X_{2} Y_{1}, X_{2} Y_{2}\right)$;
2) $L_{4,2}=I_{3,2} J_{1,2}+I_{1,2} J_{3,2}+I_{2,2} J_{2,2}=I_{3,2} J_{1}+I_{1} J_{3,2}+I_{2} J_{2}=\left(X_{1}^{2} X_{2} Y_{1}, X_{1}^{2} X_{2} Y_{2}, X_{1} X_{2}^{2} Y_{1}, X_{1} X_{2}^{2} Y_{2}, X_{1} Y_{1}^{2} Y_{2}\right.$, $\left.X_{2} Y_{1}^{2} Y_{2}, X_{1} Y_{1} Y_{2}^{2}, X_{2} Y_{1} Y_{2}^{2}, X_{1}^{2} Y_{1}^{2}, X_{1}^{2} Y_{1} Y_{2}, X_{1}^{2} Y_{2}^{2}, X_{2}^{2} Y_{1}^{2}, X_{2}^{2} Y_{2}^{2}, X_{2}^{2} Y_{1} Y_{2}, X_{1} X_{2} Y_{1}^{2}, X_{1} X_{2} Y_{2}^{2}, X_{1} X_{2} Y_{1} Y_{2}\right)$.

In this section we classify the unmixed Veronese bi-type ideals. First, we recall some preliminary notions.

Definition 2.3 Let $G\left(L_{q, s}\right)$ be the unique minimal set of monic monomial generators of $L_{q, s}$. A vertex cover of $L_{q, s}$ is a subset W of $\left\{X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right\}$ such that each $u \in G\left(L_{q, s}\right)$ is divided by some variables of W. Such a vertex cover W is called minimal if no proper subset of W is a vertex cover.

Denote by $h\left(L_{q, s}\right)$ the minimal cardinality of the vertex covers of $L_{q, s}$.

Definition 2.4 A monomial ideal is said to be unmixed if all its minimal vertex covers have the same cardinality.

Remark 2.5 We recall the one-to-one correspondence between the minimal vertex covers of an ideal and its minimal primes. Hence \wp is a minimal prime ideal of $L_{q, s}$ if and only if $\wp=(\mathcal{A})$ for some minimal vertex cover \mathcal{A} of $L_{q, s}$.

Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description of the associated prime ideals.

Proposition 2.6 Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$. Let $2 \leq q<s(n+m)-i$ for $i=1, \ldots, s-1$. $L_{q, s}$ is unmixed if and only if $n=m$.
Proof By the structure of $G\left(L_{q, s}\right)$ the minimal vertex covers of $L_{q, s}$ are $W_{1}=\left\{X_{1}, \ldots, X_{n}\right\}, W_{2}=$ $\left\{Y_{1}, \ldots, Y_{m}\right\}$. The minimal cardinality of the vertex covers of $L_{q, s}$ is $h\left(L_{q, s}\right)=\min \{n, m\}$. Hence all the minimal vertex covers have the same cardinality if and only if $n=m$.

Example $2.7 R=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}\right]$
$L_{3,2}=\left(X_{1}^{2} Y_{1}, X_{1}^{2} Y_{2}, X_{1} X_{2} Y_{1}, X_{1} X_{2} Y_{2}, X_{2}^{2} Y_{1}, X_{2}^{2} Y_{2}, X_{1} Y_{1}^{2}, X_{1} Y_{1} Y_{2}, X_{1} Y_{2}^{2}, X_{2} Y_{1}^{2}, X_{2} Y_{1} Y_{2}, X_{2} Y_{2}^{2}\right)$.
The minimal vertex covers are: $W_{1}=\left\{X_{1}, X_{2}\right\} ; W_{2}=\left\{Y_{1}, Y_{2}\right\}$.
$h\left(L_{3,2}\right)=\left|W_{1}\right|=\left|W_{2}\right|=2 \Rightarrow L_{3,2}$ is unmixed.
Proposition 2.8 Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$. If $q=s(n+m)-i$ for $i=1, \ldots, s-1$, then $L_{q, s}$ is unmixed.
Proof One has $W_{i}=\left\{X_{i}\right\}, i=1, \ldots, n, W_{j}=\left\{Y_{j}\right\}, j=1, \ldots, m$, are the minimal vertex covers of $L_{q, s}$ by construction.

Example 2.9 $R=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}\right]$,
$L_{11,3}=\left(X_{1}^{3} X_{2}^{3} Y_{1}^{3} Y_{2}^{2}, X_{1}^{3} X_{2}^{3} Y_{1}^{2} Y_{2}^{3}, X_{1}^{3} X_{2}^{2} Y_{1}^{3} Y_{2}^{3}, X_{1}^{2} X_{2}^{3} Y_{1}^{3} Y_{2}^{3}\right)$.
The minimal vertex covers are:
$W_{1}=\left\{X_{1}\right\} ; W_{2}=\left\{X_{2}\right\} ; W_{3}=\left\{Y_{1}\right\} ; W_{4}=\left\{Y_{2}\right\}$.
$h\left(L_{11,3}\right)=\left|W_{i}\right|=1$ for all $i=1,2,3,4 \Rightarrow L_{11,3}$ is unmixed.
Let $\mathcal{A} \subseteq\{1,2, \ldots, n+m\}$, where $n+m$ is the number of the variables of the polynomial ring R. For a subset \mathcal{A} we denote by $\mathcal{P}_{\mathcal{A}}$ the prime ideal of R generated by the variables whose index is in \mathcal{A}.

Theorem 2.10 Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right], L_{q, s} \subset R$.

$$
\mathcal{P}_{\mathcal{A}} \in \operatorname{Ass}_{R}\left(L_{q, s}\right) \Leftrightarrow|\mathcal{A}| \leq i+1
$$

for $i=s(n+m)-q, i=1, \ldots, s-1$.
Proof In the following replace the set of variables $\left\{X_{1}, \ldots, X_{n}\right\}$ with $\left\{z_{1}, \ldots, z_{n}\right\}$ and $\left\{Y_{1}, \ldots, Y_{m}\right\}$ with $\left\{z_{n+1}, \ldots, z_{n+m}\right\}$.

Assume that $\mathcal{P}_{\mathcal{A}} \in \operatorname{Ass}_{R}\left(L_{q, s}\right)$. Then there exists a monomial $f \notin L_{q, s}$ such that $L_{q, s}: f=\mathcal{P}_{\mathcal{A}}$. Now we show that we can choose such a monomial f of degree $q-1$ such that $L_{q, s}: f=\mathcal{P}_{\mathcal{A}}$. Suppose that $f \notin L_{q, s}$, $L_{q, s}: f=\mathcal{P}_{\mathcal{A}}, \operatorname{deg}(f) \geq q$ and $f=z_{1}^{a_{1}} \cdots z_{n+m}^{a_{n+m}}$. Then there exists $j_{0} \in\{1,2, \ldots, n+m\}$ such that $a_{j_{0}}>s$. Since $L_{q, s}: f=\mathcal{P}_{\mathcal{A}}$, we have $z_{i} f \in L_{q, s}$ for all $i \in \mathcal{A}$ and $z_{i} f \notin L_{q, s}$ for all $i \notin \mathcal{A}$. Moreover, for all $i \in \mathcal{A}$ there exists a monomial $u_{i} \in G\left(L_{q, s}\right)$ such that $u_{i} \mid\left(z_{i} f\right)$. Being $f \notin L_{q, s}$, this fact means that, for all $i \in \mathcal{A}$, the variable z_{i} appears in u_{i} with exponent $a_{i}+1$. Therefore $a_{i}<s$ for all $i \in \mathcal{A}$. It follows that $j_{0} \notin \mathcal{A}$. Now we claim that: I) $\bar{f}=f / z_{j_{0}} \notin L_{q, s}$ and II) $L_{q, s}: \bar{f}=\mathcal{P}_{\mathcal{A}}$.
The first fact follows from that $f \notin L_{q, s}$ and $a_{j_{0}}-1 \geq s$. For the second assertion we proceed as follows. $L_{q, s}: \bar{f} \subseteq L_{q, s}: f$ because \bar{f} divides f. Then $L_{q, s}: \bar{f} \subseteq \mathcal{P}_{\mathcal{A}}$, being $\mathcal{P}_{\mathcal{A}}=L_{q, s}: f$. Moreover, since $a_{j_{0}}-1 \geq s$
then u_{i} divides $z_{i} f / z_{j_{0}}$ for all $i \in \mathcal{A}$, then $z_{i} \in L_{q, s}:\left(f / z_{j_{0}}\right)$ for all $i \in \mathcal{A}$. Hence $\mathcal{P}_{\mathcal{A}} \subseteq L_{q, s}:\left(f / x_{j_{0}}\right)$. It follows the other inclusion $\mathcal{P}_{\mathcal{A}} \subseteq L_{q, s}: \bar{f}$. Hence $\mathcal{P}_{\mathcal{A}}=L_{q, s}: \bar{f}$. After a finite number of these reductions, we find $f \notin L_{q, s}$ of degree $q-1$ such that $\mathcal{P}_{\mathcal{A}}=L_{q, s}: f$. From this fact follows that $f z_{i} \in L_{q, s}$ for all $i \in \mathcal{A}$ and $f z_{i} \notin L_{q, s}$ for all $i \notin \mathcal{A}$. In particular $a_{i}+1 \leq s$ for all $i \in \mathcal{A}$, and $a_{i} \leq s$ for all $i \notin \mathcal{A}$. Then $a_{i}=s$ for all $i \notin \mathcal{A}$. Therefore $f=\prod_{i \in \mathcal{A}} z_{i}^{a_{i}} \prod_{i \notin \mathcal{A}} z_{i}^{s}$ with $0 \leq a_{i}<s$ for all $i \in \mathcal{A}$. We have $\operatorname{deg}\left(\prod_{i \notin \mathcal{A}} z_{i}^{s}\right)=s(n+m-|\mathcal{A}|)=t$. Then we obtain: $s(n+m) \geq\left(\sum_{i \in \mathcal{A}} a_{i}+1\right)+t=\sum_{i \in \mathcal{A}} a_{i}+|\mathcal{A}|+t=$ $\sum_{i \in \mathcal{A}} a_{i}+t+|\mathcal{A}|=\operatorname{deg}(f)+|\mathcal{A}|=q-1+|\mathcal{A}|$.

Conversely, let $|\mathcal{A}| \leq i+1$, for $i=s(n+m)-q, i=1, \ldots, s-1$, that is $|\mathcal{A}| \leq s(n+m)-q+1$. Moreover, in these hypotheses one has $s(n+m-|\mathcal{A}|) \leq q-1$. In fact, $s(n+m-|\mathcal{A}|) \leq s(n+m)-i-1$; then $s|\mathcal{A}| \geq i+1$ that is true for $i=1, \ldots, s-1$. Being $q=s(n+m)-i$ for $i=1, \ldots, s-1$, then by the definition of $L_{q, s}$ it follows that for any monomial $u \in G\left(L_{q, s}\right)$ there exists an integer $j \in \mathcal{A}$ such that z_{j} divides u. Therefore $L_{q, s} \subset \mathcal{P}_{\mathcal{A}}$. The condition $s(n+m) \geq q-1+|\mathcal{A}|$ implies that $(s-1)|\mathcal{A}|+s(n+m-|\mathcal{A}|) \geq q-1$, which together with $s(n+m-|\mathcal{A}|) \leq q-1$ shows that there exists an integer $c_{i}<s$, for all $i \in \mathcal{A}$ such that $c_{i}|\mathcal{A}|+s(n+m-|\mathcal{A}|)=q-1$. Then the monomial $f=\prod_{i \in \mathcal{A}} z_{i}^{c_{i}} \prod_{i \notin \mathcal{A}} z_{i}^{s}$ has degree $q-1$. Hence $f \notin L_{q, s}$ and as a consequence $\mathcal{P}_{\mathcal{A}} \subseteq L_{q, s}: f$. Now we prove that $\mathcal{P}_{\mathcal{A}}=L_{q, s}: f$. Assume that $\mathcal{P}_{\mathcal{A}}$ is a proper subset of $L_{q, s}: f$. Then there exists a monomial f^{\prime}, in the variables z_{i} with $i \notin \mathcal{A}$, of degree at least 1 such that $f f^{\prime} \in L_{q, s}$. This means that there exists a monomial $u=z_{1}^{a_{1}} \cdots z_{n+m}^{a_{n+m}} \in G\left(L_{q, s}\right)$ such that u divides $f f^{\prime}$. Therefore $a_{i} \leq c_{i}$ for any $i \in \mathcal{A}$ because $f^{\prime} \in K\left[z_{i} \mid i \notin \mathcal{A}\right]$. It follows that $q=\operatorname{deg}(u)=\sum_{i=1}^{n+m} a_{i} \leq \sum_{i \in \mathcal{A}} c_{i}+s(n+m-|\mathcal{A}|)=\operatorname{deg}(f)=q-1$, which is a contradiction. Hence $\mathcal{P}_{\mathcal{A}}$ is not a proper subset of $L_{q, s}: f$, but $\mathcal{P}_{\mathcal{A}}=L_{q, s}: f$. This equality means that $\mathcal{P}_{\mathcal{A}} \in A s s_{R}\left(L_{q, s}\right)$.

Example $2.11 R=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}\right]$,
$L_{15,4}=\left(X_{1}^{4} X_{2}^{4} Y_{1}^{4} Y_{2}^{3}, X_{1}^{4} X_{2}^{4} Y_{1}^{3} Y_{2}^{4}, X_{1}^{4} X_{2}^{3} Y_{1}^{4} Y_{2}^{4}, X_{1}^{3} X_{2}^{4} Y_{1}^{4} Y_{2}^{4}\right)$.
By Theorem 2.10 Ass $_{R}\left(L_{15,4}\right)=\left\{\left(X_{1}\right),\left(X_{2}\right),\left(Y_{1}\right),\left(Y_{2}\right),\left(X_{1}, X_{2}\right),\left(X_{1}, Y_{1}\right),\left(X_{1}, Y_{2}\right),\left(X_{2}, Y_{1}\right),\left(X_{2}, Y_{2}\right),\left(Y_{1}, Y_{2}\right)\right\}$.
As an application, we observe that the ideals of Veronese bi-type can be associated to graphs with loops. In fact for $s=2$, the ideals $L_{q, s}$ are associated to the walks of length $q-1$ of the strong quasi-bipartite graphs with loops ([2]).

Definition 2.12 A graph G with loops is a strong quasi-bipartite if all vertices of V_{1} are joined to all vertices of V_{2} and for each vertex of V there is a loop.

Definition 2.13 Let G be a strong quasi-bipartite graph on the vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. A walk of length q in G is an alternating sequence $w=\left\{v_{i_{0}}, l_{i_{1}}, v_{i_{1}}, l_{i_{2}}, \ldots, v_{i_{q-1}}, l_{i_{q}}, v_{i_{q}}\right\}$, where $v_{i_{j}}$ is a vertex of G and $l_{i_{j}}=\left\{v_{i_{j-1}}, v_{i_{j}}\right\}$ is the edge joining $v_{i_{j-1}}$ and $v_{i_{j}}$ or a loop if $v_{i_{j-1}}=v_{i_{j}}, 1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{q} \leq n$.

Example 2.14 Let G be a strong quasi-bipartite graph on vertices $\left\{x_{1}, x_{2} ; y_{1}, y_{2}\right\}$. A walk of length 2 is

$$
w=\left\{x_{1}, l_{1}, x_{1}, l_{2}, y_{1}\right\}
$$

where $l_{1}=\left\{x_{1}, x_{1}\right\}$ is the loop on x_{1} and $l_{2}=\left\{x_{1}, y_{1}\right\}$ is the edge joining x_{1} and y_{1}.

LA BARBIERA/Turk J Math

Let G be a strong quasi-bipartite graph on vertex set $\left\{x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right\}$.
The generalized ideal $I_{q}(G)$ associated to G is the ideal of the polynomial ring $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ generated by the monomials of degree q corresponding to the walks of length $q-1$. Hence the generalized ideal $I_{q}(G)$ is generated by all monomials of degree $q \geq 3$ corresponding to the walks of length $q-1$ and the variables in each generator of $I_{q}(G)$ have at most degree 2 . Therefore:

$$
I_{q}(G)=L_{q, 2}=\sum_{k+r=q} I_{k, 2} J_{r, 2}, \quad \text { for } \quad q \geq 3 \quad([2])
$$

Example 2.15 Let $R=K\left[X_{1}, X_{2} ; Y_{1}, Y_{2}\right]$ be a polynomial ring over a field K and G be the strong quasibipartite graph on vertices $x_{1}, x_{2}, y_{1}, y_{2}$:

$$
\begin{aligned}
& I_{3}(G)=I_{1} J_{2}+I_{2} J_{1}=\left(X_{1} Y_{1} Y_{2}, X_{2} Y_{1} Y_{2}, X_{1} Y_{1}^{2}, X_{2} Y_{1}^{2}, X_{1} Y_{2}^{2}, X_{2} Y_{2}^{2}, X_{1} X_{2} Y_{1}, X_{1} X_{2} Y_{2}, X_{1}^{2} Y_{1}, X_{1}^{2} Y_{2}, X_{2}^{2} Y_{1}, X_{2}^{2} Y_{2}\right) \\
& I_{4}(G)=I_{3,2} J_{1}+I_{1} J_{3,2}+I_{2} J_{2}=\left(X_{1}^{2} X_{2} Y_{1}, X_{1}^{2} X_{2} Y_{2}, X_{1} X_{2}^{2} Y_{1}, X_{1} X_{2}^{2} Y_{2}, X_{1} Y_{1}^{2} Y_{2}, X_{2} Y_{1}^{2} Y_{2}, X_{1} Y_{1} Y_{2}^{2}, X_{2} Y_{1} Y_{2}^{2}, X_{1}^{2} Y_{1}^{2}\right. \\
& \left.X_{1}^{2} Y_{1} Y_{2}, X_{1}^{2} Y_{2}^{2}, X_{2}^{2} Y_{1}^{2}, X_{2}^{2} Y_{2}^{2}, X_{2}^{2} Y_{1} Y_{2}, X_{1} X_{2} Y_{1}^{2}, X_{1} X_{2} Y_{2}^{2}, X_{1} X_{2} Y_{1} Y_{2}\right)
\end{aligned}
$$

The following result classifies the ideals $I_{q}(G)$ that are unmixed.

Proposition 2.16 Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$.

1) If $2 \leq q<2(n+m)-1$ then $L_{q, 2}$ is unmixed if and only if $n=m$.
2) If $q=2(n+m)-1$, then $L_{q, 2}$ is unmixed.

Proof By Propositions 2.6 and 2.8.
We consider the case $q \geq 3$. In fact, for $q=s=2$, the ideal $L_{2,2}=\left(\left\{X_{i} Y_{j} \mid i=1, \ldots, n, j=1, \ldots, m\right\}\right)$ doesn't describe the edge ideal $I(G)=I_{2}(G)$ of a strong quasi-bipartite graph, but it is the edge ideal of a complete bipartite graph (with no loops) on the vertex set $\left\{x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right\}$. Then $L_{2,2}$ satisfies the characterization of unmixed bipartite graphs given in [7].
3. The toric ideal of $K\left[L_{q, s}\right]$

Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ and $L_{q, s}=\left(f_{1}, \ldots, f_{p}\right)$ be the ideal of Veronese bi-type. The monomial subring of R spanned by $F=\left\{f_{1}, \ldots, f_{p}\right\}$ is the K-algebra $K\left[L_{q, s}\right]=K[F]=K\left[f_{1}, \ldots, f_{p}\right]$. Note that $K[F]$ is a graded algebra with the grading $K[F]_{i}=K[F] \cap R_{i}$. There is a graded epimorphism of K algebras: $\varphi: S=K\left[T_{1}, \ldots, T_{p}\right] \rightarrow K\left[L_{q, s}\right]$ induced by $\varphi\left(T_{i}\right)=f_{i}$, where S is a polynomial ring graded by $\operatorname{deg}\left(T_{i}\right)=\operatorname{deg}\left(f_{i}\right)$. Note that the map φ is given by $\varphi\left(h\left(T_{1}, \ldots, T_{p}\right)\right)=h\left(f_{1}, \ldots, f_{p}\right)$ for all $h \in S$.

Let $I\left(L_{q, s}\right)$ be the kernel of the K-algebra epimorphism, called the toric ideal of $K\left[L_{q, s}\right]$. It is known that the toric ideal of a monomial K-algebra is a graded prime ideal generated by a finite set of binomials.

LA BARBIERA/Turk J Math

Now we prove that $I\left(L_{q, s}\right)$ has a quadratic Groebner basis. In order to formulate this result we have to recall the notion of sortability, introduced in [5], and we apply it to the monomial ideal $L_{q, s}$.

Let $A=K\left[z_{1}, \ldots, z_{t}\right]$ be a polynomial ring and L be a monomial ideal of A generated in degree q. Let B be the set of the exponent vectors of the monomials of $G(L)$. If $u=\left(u_{1}, \ldots, u_{t}\right), v=\left(v_{1}, \ldots, v_{t}\right) \in B$, then $\underline{z}^{u}=\prod_{i} z_{i}^{u_{i}}, \underline{z}^{v}=\prod_{i} z_{i}^{v_{i}} \in L$. We write $\underline{z}^{u} \underline{z}^{v}=z_{i_{1}} \cdots z_{i_{2 q}}$ with $i_{1} \leq i_{2} \leq \cdots \leq i_{2 q}$. Then we set $\underline{z}^{u^{\prime}}=\prod_{j=1}^{q} z_{2 j-1}$ and $\underline{z}^{v^{\prime}}=\prod_{j=1}^{q} z_{2 j}$. This defines a map

$$
\text { sort }: B \times B \rightarrow M_{q} \times M_{q}, \quad(u, v) \longmapsto\left(u^{\prime}, v^{\prime}\right)
$$

where M_{q} is the set of all integer vectors $\left(a_{1}, \ldots, a_{t}\right)$ such that $\sum_{i=1}^{t} a_{i}=q$.
The set B is called sortable if $\operatorname{Im}($ sort $) \subseteq B \times B$.
The ideal L is called sortable if the set of exponent vectors of the monomials of $G(L)$ is sortable. In other words, let $\underline{z}^{u}, \underline{z}^{v} \in L$, then L is said sortable if $\underline{z}^{u^{\prime}}, \underline{z}^{v^{\prime}} \in L$, where $\left(u^{\prime}, v^{\prime}\right)=\operatorname{sort}(u, v)$.

Theorem 3.1 Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right] . L_{q, s}$ is sortable.
Proof Let $L_{q, s}=\left(\left\{X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}} \mid \sum_{i=1}^{n} a_{i}+\sum_{j=1}^{m} b_{j}=q, \quad 0 \leq a_{i}, b_{j} \leq s\right\}\right)$ and B be the set of the exponent vectors of the monomials of $G\left(L_{q, s}\right)$.
Let $f_{i}=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}, f_{j}=X_{1}^{c_{1}} \cdots X_{n}^{c_{n}} Y_{1}^{d_{1}} \cdots Y_{m}^{d_{m}} \in G\left(L_{q, s}\right)$, then $u=\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{m}\right)$, $v=\left(c_{1}, \ldots, c_{n} ; d_{1}, \ldots, d_{m}\right) \in B$. One has that $f_{i} f_{j}=\underbrace{X_{1} \cdots X_{1}}_{a_{1}+c_{1}-\text { times }} \cdots \underbrace{X_{n} \cdots X_{n}}_{a_{n}+c_{n}-\text { times }} \underbrace{Y_{1} \cdots Y_{1}}_{b_{1}+d_{1}-\text { times }} \cdots \underbrace{Y_{m} \cdots Y_{m}}_{b_{m}+d_{m}-\text { times }}$ is a monomial of degree $2 q$. If one replaces the set of variables $\left\{X_{1}, \ldots, X_{n}\right\}$ with $\left\{z_{1}, \ldots, z_{n}\right\}$ and $\left\{Y_{1}, \ldots, Y_{m}\right\}$ with $\left\{z_{n+1}, \ldots, z_{n+m}\right\}$, then $f_{i} f_{j}=z_{i_{1}} \cdots z_{i_{2 q}}$ with $i_{1} \leq \cdots \leq i_{2 q}$. Then we consider $f_{i}^{\prime}=\underline{z}^{u^{\prime}}=\prod_{l=1}^{q} z_{2 l-1}$ and $f_{j}^{\prime}=\underline{z}^{v^{\prime}}=\prod_{l=1}^{q} z_{2 l}$. We must prove that $f_{i}^{\prime}, f_{j}^{\prime} \in L_{q, s}$. We have that f_{i}^{\prime} is of degree q and we write $f_{i}^{\prime}=\prod_{l=1}^{q} z_{2 l-1}=X_{1}^{a_{1}^{\prime}} \cdots X_{n}^{a_{n}^{\prime}} Y_{1}^{b_{1}^{\prime}} \cdots Y_{m}^{b_{m}^{\prime}}$. If $a_{i}+c_{i}$ is even then $a_{i}^{\prime}=\frac{a_{i}+c_{i}}{2} \leq s$ and if $a_{i}+c_{i}$ is odd then $a_{i}^{\prime}=\frac{a_{i}+c_{i}+1}{2}<s$. Similarly, if $b_{j}+d_{j}$ is even then $b_{j}^{\prime}=\frac{b_{j}+d_{j}}{2} \leq s$. If $b_{j}+d_{j}$ is odd then $b_{j}^{\prime}=\frac{b_{j}+d_{j}+1}{2}<s$. Moreover, because f_{i}^{\prime} is of degree q and there exist $a_{i}^{\prime} \neq 0, b_{j}^{\prime} \neq 0$ with $0 \leq a_{i}^{\prime}, b_{j}^{\prime} \leq q$ for all i, j, then $X_{1}^{a_{1}^{\prime}} \cdots X_{n}^{a_{n}^{\prime}} \neq X_{i}^{q}$ and $Y_{1}^{b_{1}^{\prime}} \cdots Y_{m}^{b_{m}^{\prime}} \neq Y_{j}^{q}$. It follows that $X_{1}^{a_{1}^{\prime}} \cdots X_{n}^{a_{n}^{\prime}} \in I_{k, s}$ and $Y_{1}^{b_{1}^{\prime}} \cdots Y_{m}^{b_{m}^{\prime}} \in J_{r, s}$ with $k+r=q$. Hence $f_{i}^{\prime} \in L_{q, s}$. In the same way the argument holds for f_{j}^{\prime}. Hence $L_{q, s}$ is sortable.

Corollary 3.2 Let $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ and $L_{q, s} \subset R$. Then:

1) $I\left(L_{q, s}\right)$ has a quadratic Groebner basis.
2) $K\left[L_{q, s}\right]$ is Koszul.

Proof 1) By Theorem 3.1 and [1](Lemma 5.2).
2) The conclusion follows by 1).

References

[1] Herzog, J., Hibi, T.: Discrete Polymatroids, Journal of Alg. Comb., 16, 239-268 (2002).
[2] La Barbiera, M.: Normalization of Veronese bi-type ideals, Italian Journal of Pure and Applied Mathematics, 26, 79-92 (2009).

LA BARBIERA/Turk J Math

[3] La Barbiera, M.: On a class of monomial ideals generated by s-sequences, Mathematical Reports, 12(62), N.3, 201-216 (2010).
[4] Restuccia, G., Villarreal, R.H.: On the normality of monomial ideals of mixed products, Communications in Algebra, 29(8), 3571-3580 (2001).
[5] Sturmfels, B.: Groebner bases and convex polytopes, Amer. Math. Soc., Providence, RI, 1995.
[6] Villarreal, R.H.: Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker, Inc., New York, 2001.
[7] Villarreal, R.H.: Unmixed bipartite graphs, Revista Colombiana de Matematicas, 41, 393-395 (2007).
[8] Vladoiu, M.: Equidimensional and unmixed ideals of Veronese type, Communication in Algebra, 36(9), 3378-3392 (2008).

[^0]: *Correspondence: monicalb@dipmat.unime.it
 2000 AMS Mathematics Subject Classification: 05B35, 13P10,13C15.

