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1. Introduction

Let R = K[X1, . . . , Xn; Y1, . . . , Ym] be a polynomial ring in two sets of variables over a field K . In recent

papers, monomial ideals of R are introduced and their connection to bipartite complete graphs is studied ([4],

[6]). In this paper we study a class of monomial ideals of R , so-called Veronese bi-type ideals. They are an

extension of the ideals of Veronese type ([5]) in a polynomial ring in two sets of variables. More precisely, the

ideals of Veronese bi-type are monomial ideals of R generated in the same degree: Lq,s =
∑

k+r=q Ik,sJr,s , with

k, r ≥ 1, where Ik,s is the Veronese-type ideal generated on degree k by the set {Xai1
1 · · ·Xain

n |∑n
j=1 aij =

k, 0 ≤ aij ≤ s, s ∈ {1, . . . , k}} and Jr,s is the Veronese-type ideal generated on degree r by the set

{Y bi1
1 · · ·Y bim

m |∑m
j=1 bij = r, 0 ≤ bij ≤ s, s ∈ {1, . . . , r}} ([2], [3]). For s = 2 the Veronese bi-type ideals are

the ideals associated to bipartite graphs with loops ([2]).

In this paper some properties of these class of monomial ideals are discussed. In particular, our aim is to
classify the unmixed Veronese bi-type ideals.

Establishing whenever an ideal is unmixed in general is a difficult problem because it is necessary to know
all its associated prime ideals. In [8] equidimensional and unmixed ideals of Veronese type are characterized.
Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description of
the associated prime ideals.

This paper is organized as follows. In Section 1, unmixed ideals of Veronese bi-type are classified and
the generalized ideals associated to the walks of special bipartite graphs, described by the Veronese by-type
ideals Lq,2 =

∑
k+r=q Ik,2Jr,2 , are considered. In Section 2, the toric ideal I(Lq,s) of the monomial subring

K[Lq,s] ⊂ R is studied. Let Lq,s = (f1, . . . , fp) and K[Lq,s] be the K -algebra spanned by f1, . . . , fp . There is

a graded epimorphism of K -algebras: ϕ : S = K[T1, . . . , Tp] → K[Lq,s] induced by ϕ(Ti) = fi , where S is a

polynomial ring graded by deg(Ti) = deg(fi). Let I(Lq,s) be the toric ideal of K[Lq,s] , that is the kernel of ϕ .
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We are able to prove that I(Lq,s) has a quadratic Groebner basis and as a consequence the K -algebra K[Lq,s]

is Koszul. In order to formulate these results we have to recall the notion of sortability ([5]), and we apply it
to the monomial ideals Lq,s .

2. Unmixed ideals of Veronese bi-type

Let R = K[X1, . . . , Xn; Y1, . . . , Ym] be the polynomial ring over a field K in two sets of variables with each
degXi = 1, degYj = 1, for all i = 1, . . . , n , j = 1, . . . , m .

We define the ideals of Veronese bi-type of degree q as the monomial ideals of R

Lq,s =
∑

r+k=q

Ik,sJr,s, r, k ≥ 1,

where Ik,s is the ideal of Veronese-type of degree k in the variables X1, . . . , Xn and Jr,s is the ideal of

Veronese-type of degree r in the variables Y1, . . . , Ym .

Lq,s is not trivial for 2 ≤ q ≤ s(n + m) − 1, s ≤ q .

Remark 2.1 In general, Ik,s ⊆ Ik , where Ik is the Veronese ideal of degree k generated by all the monomials

in the variables X1, . . . , Xn of degree k ([6]).

One has Ik,s = Ik for any k ≤ s. If s = 1 , Ik,1 is the square-free Veronese ideal of degree k generated

by all the square-free monomials in the variables X1, . . . , Xn of degree k . Similar considerations hold for
Jr,s ⊂ K[Y1, . . . , Ym] .

Example 2.2 Let R = K[X1, X2; Y1, Y2] be a polynomial ring.

1) L2,2 = I1,2J1,2 = I1J1 = (X1Y1, X1Y2, X2Y1, X2Y2) ;

2) L4,2 = I3,2J1,2 +I1,2J3,2 +I2,2J2,2 = I3,2J1 +I1J3,2 +I2J2 = (X2
1X2Y1, X

2
1X2Y2, X1X

2
2Y1, X1X

2
2 Y2, X1Y

2
1 Y2,

X2Y
2
1 Y2, X1Y1Y

2
2 , X2Y1Y

2
2 , X2

1Y 2
1 , X2

1Y1Y2, X
2
1Y 2

2 , X2
2Y 2

1 , X2
2Y 2

2 , X2
2Y1Y2, X1X2Y

2
1 , X1X2Y

2
2 , X1X2Y1Y2) .

In this section we classify the unmixed Veronese bi-type ideals. First, we recall some preliminary notions.

Definition 2.3 Let G(Lq,s) be the unique minimal set of monic monomial generators of Lq,s . A vertex cover

of Lq,s is a subset W of {X1, . . . , Xn; Y1, . . . , Ym} such that each u ∈ G(Lq,s) is divided by some variables of

W . Such a vertex cover W is called minimal if no proper subset of W is a vertex cover.

Denote by h(Lq,s) the minimal cardinality of the vertex covers of Lq,s .

Definition 2.4 A monomial ideal is said to be unmixed if all its minimal vertex covers have the same cardi-
nality.

Remark 2.5 We recall the one-to-one correspondence between the minimal vertex covers of an ideal and its
minimal primes. Hence ℘ is a minimal prime ideal of Lq,s if and only if ℘ = (A) for some minimal vertex cover
A of Lq,s .

Now we are able to classify the unmixed Veronese bi-type ideals and in some cases we can give a description
of the associated prime ideals.
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Proposition 2.6 Let R = K[X1, . . . , Xn; Y1, . . . , Ym] . Let 2 ≤ q < s(n + m) − i for i = 1, . . . , s− 1 . Lq,s is
unmixed if and only if n = m.

Proof By the structure of G(Lq,s) the minimal vertex covers of Lq,s are W1 = {X1, . . . , Xn} , W2 =

{Y1, . . . , Ym} . The minimal cardinality of the vertex covers of Lq,s is h(Lq,s) = min{n, m} . Hence all the

minimal vertex covers have the same cardinality if and only if n = m . �

Example 2.7 R = K[X1, X2; Y1, Y2]

L3,2 = (X2
1Y1, X

2
1Y2, X1X2Y1, X1X2Y2, X

2
2Y1, X

2
2Y2, X1Y

2
1 , X1Y1Y2, X1Y

2
2 , X2Y

2
1 , X2Y1Y2, X2Y

2
2 ) .

The minimal vertex covers are: W1 = {X1, X2} ; W2 = {Y1, Y2} .

h(L3,2) = |W1| = |W2| = 2 ⇒ L3,2 is unmixed.

Proposition 2.8 Let R = K[X1, . . . , Xn; Y1, . . . , Ym] . If q = s(n + m) − i for i = 1, . . . , s − 1 , then Lq,s is

unmixed.
Proof One has Wi = {Xi} , i = 1, . . . , n , Wj = {Yj} , j = 1, . . . , m , are the minimal vertex covers of Lq,s by
construction. �

Example 2.9 R = K[X1, X2; Y1, Y2] ,

L11,3 = (X3
1X3

2Y 3
1 Y 2

2 , X3
1X3

2Y 2
1 Y 3

2 , X3
1X2

2Y 3
1 Y 3

2 , X2
1X3

2Y 3
1 Y 3

2 ) .
The minimal vertex covers are:
W1 = {X1} ; W2 = {X2} ; W3 = {Y1} ; W4 = {Y2} .

h(L11,3) = |Wi| = 1 for all i = 1, 2, 3, 4 ⇒ L11,3 is unmixed.

Let A ⊆ {1, 2, . . . , n + m} , where n + m is the number of the variables of the polynomial ring R . For a
subset A we denote by PA the prime ideal of R generated by the variables whose index is in A .

Theorem 2.10 Let R = K[X1, . . . , Xn; Y1, . . . , Ym] , Lq,s ⊂ R .

PA ∈ AssR(Lq,s) ⇔ |A| ≤ i + 1 ,

for i = s(n + m) − q , i = 1, . . . , s− 1 .

Proof In the following replace the set of variables {X1, . . . , Xn} with {z1, . . . , zn} and {Y1, . . . , Ym} with

{zn+1, . . . , zn+m} .

Assume that PA ∈ AssR(Lq,s). Then there exists a monomial f /∈ Lq,s such that Lq,s : f = PA . Now

we show that we can choose such a monomial f of degree q−1 such that Lq,s : f = PA . Suppose that f /∈ Lq,s ,

Lq,s : f = PA , deg(f) ≥ q and f = za1
1 · · · zan+m

n+m . Then there exists j0 ∈ {1, 2, . . . , n + m} such that aj0 > s .

Since Lq,s : f = PA , we have zif ∈ Lq,s for all i ∈ A and zif /∈ Lq,s for all i /∈ A . Moreover, for all i ∈ A
there exists a monomial ui ∈ G(Lq,s) such that ui|(zif). Being f /∈ Lq,s , this fact means that, for all i ∈ A ,

the variable zi appears in ui with exponent ai + 1. Therefore ai < s for all i ∈ A . It follows that j0 /∈ A .

Now we claim that: I) f = f/zj0 /∈ Lq,s and II) Lq,s : f = PA .

The first fact follows from that f /∈ Lq,s and aj0 − 1 ≥ s . For the second assertion we proceed as follows.

Lq,s : f ⊆ Lq,s : f because f divides f . Then Lq,s : f ⊆ PA , being PA = Lq,s : f . Moreover, since aj0 − 1 ≥ s
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then ui divides zif/zj0 for all i ∈ A , then zi ∈ Lq,s : (f/zj0 ) for all i ∈ A . Hence PA ⊆ Lq,s : (f/xj0). It

follows the other inclusion PA ⊆ Lq,s : f . Hence PA = Lq,s : f . After a finite number of these reductions,

we find f /∈ Lq,s of degree q − 1 such that PA = Lq,s : f . From this fact follows that fzi ∈ Lq,s for all

i ∈ A and fzi /∈ Lq,s for all i /∈ A . In particular ai + 1 ≤ s for all i ∈ A , and ai ≤ s for all i /∈ A .

Then ai = s for all i /∈ A . Therefore f =
∏

i∈A zai

i

∏
i/∈A zs

i with 0 ≤ ai < s for all i ∈ A . We have

deg(
∏

i/∈A zs
i ) = s(n + m − |A|) = t . Then we obtain: s(n + m) ≥ (

∑
i∈A ai + 1) + t =

∑
i∈A ai + |A| + t =

∑
i∈A ai + t + |A| = deg(f) + |A| = q − 1 + |A| .

Conversely, let |A| ≤ i + 1, for i = s(n + m) − q , i = 1, . . . , s − 1, that is |A| ≤ s(n + m) − q + 1.

Moreover, in these hypotheses one has s(n +m− |A|) ≤ q− 1. In fact, s(n +m− |A|) ≤ s(n +m)− i− 1; then

s|A| ≥ i + 1 that is true for i = 1, . . . , s− 1. Being q = s(n +m)− i for i = 1, . . . , s− 1, then by the definition

of Lq,s it follows that for any monomial u ∈ G(Lq,s) there exists an integer j ∈ A such that zj divides u .

Therefore Lq,s ⊂ PA . The condition s(n + m) ≥ q − 1 + |A| implies that (s− 1)|A|+ s(n + m− |A|) ≥ q − 1,

which together with s(n + m − |A|) ≤ q − 1 shows that there exists an integer ci < s , for all i ∈ A such

that ci|A| + s(n + m − |A|) = q − 1. Then the monomial f =
∏

i∈A zci

i

∏
i/∈A zs

i has degree q − 1. Hence

f /∈ Lq,s and as a consequence PA ⊆ Lq,s : f . Now we prove that PA = Lq,s : f . Assume that PA is

a proper subset of Lq,s : f . Then there exists a monomial f ′ , in the variables zi with i /∈ A , of degree

at least 1 such that ff ′ ∈ Lq,s . This means that there exists a monomial u = za1
1 · · · zan+m

n+m ∈ G(Lq,s)

such that u divides ff ′ . Therefore ai ≤ ci for any i ∈ A because f ′ ∈ K[zi|i /∈ A] . It follows that

q = deg(u) =
∑n+m

i=1 ai ≤
∑

i∈A ci + s(n + m − |A|) = deg(f) = q − 1, which is a contradiction. Hence PA is

not a proper subset of Lq,s : f , but PA = Lq,s : f . This equality means that PA ∈ AssR(Lq,s). �

Example 2.11 R = K[X1, X2; Y1, Y2] ,

L15,4 = (X4
1X4

2Y 4
1 Y 3

2 , X4
1X4

2Y 3
1 Y 4

2 , X4
1X3

2Y 4
1 Y 4

2 , X3
1X4

2Y 4
1 Y 4

2 ) .

By Theorem 2.10 AssR(L15,4) = {(X1), (X2), (Y1), (Y2), (X1, X2), (X1, Y1), (X1, Y2), (X2, Y1), (X2, Y2), (Y1, Y2)} .

As an application, we observe that the ideals of Veronese bi-type can be associated to graphs with loops.
In fact for s = 2, the ideals Lq,s are associated to the walks of length q−1 of the strong quasi-bipartite graphs

with loops ([2]).

Definition 2.12 A graph G with loops is a strong quasi-bipartite if all vertices of V1 are joined to all vertices
of V2 and for each vertex of V there is a loop.

Definition 2.13 Let G be a strong quasi-bipartite graph on the vertex set V = {v1, . . . , vn}. A walk of length

q in G is an alternating sequence w = {vi0 , li1 , vi1, li2 , . . . , viq−1 , liq , viq} , where vij is a vertex of G and

lij = {vij−1 , vij} is the edge joining vij−1 and vij or a loop if vij−1 = vij , 1 ≤ i1 ≤ i2 ≤ . . . ≤ iq ≤ n .

Example 2.14 Let G be a strong quasi-bipartite graph on vertices {x1, x2; y1, y2} . A walk of length 2 is

w = {x1, l1, x1, l2, y1},

where l1 = {x1, x1} is the loop on x1 and l2 = {x1, y1} is the edge joining x1 and y1 .
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Let G be a strong quasi-bipartite graph on vertex set {x1, . . . , xn; y1, . . . , ym} .

The generalized ideal Iq(G) associated to G is the ideal of the polynomial ring R = K[X1, . . . , Xn; Y1, . . . , Ym]

generated by the monomials of degree q corresponding to the walks of length q − 1. Hence the generalized
ideal Iq(G) is generated by all monomials of degree q ≥ 3 corresponding to the walks of length q − 1 and the

variables in each generator of Iq(G) have at most degree 2. Therefore:

Iq(G) = Lq,2 =
∑

k+r=q

Ik,2Jr,2, for q ≥ 3 ([2]).

Example 2.15 Let R = K[X1, X2; Y1, Y2] be a polynomial ring over a field K and G be the strong quasi-
bipartite graph on vertices x1, x2, y1, y2 :

x1 x2

y1
y2

I3(G)=I1J2 + I2J1=(X1Y1Y2, X2Y1Y2, X1Y
2
1 , X2Y

2
1 , X1Y

2
2 , X2Y

2
2 , X1X2Y1, X1X2Y2, X

2
1Y1, X

2
1Y2, X

2
2Y1, X

2
2Y2) .

I4(G)=I3,2J1+I1J3,2+I2J2=(X2
1X2Y1, X

2
1X2Y2, X1X

2
2Y1, X1X

2
2 Y2, X1Y

2
1 Y2, X2Y

2
1 Y2, X1Y1Y

2
2 , X2Y1Y

2
2 , X2

1Y 2
1 ,

X2
1 Y1Y2, X

2
1Y 2

2 , X2
2Y 2

1 , X2
2Y 2

2 , X2
2Y1Y2, X1X2Y

2
1 , X1X2Y

2
2 , X1X2Y1Y2) .

The following result classifies the ideals Iq(G) that are unmixed.

Proposition 2.16 Let R = K[X1, . . . , Xn; Y1, . . . , Ym] .

1) If 2 ≤ q < 2(n + m) − 1 then Lq,2 is unmixed if and only if n = m.

2) If q = 2(n + m) − 1 , then Lq,2 is unmixed.

Proof By Propositions 2.6 and 2.8. �

We consider the case q ≥ 3. In fact, for q = s = 2, the ideal L2,2 = ({XiYj |i = 1, . . . , n, j = 1, . . . , m})
doesn’t describe the edge ideal I(G) = I2(G) of a strong quasi-bipartite graph, but it is the edge ideal of a

complete bipartite graph (with no loops) on the vertex set {x1, . . . , xn; y1, . . . , ym} . Then L2,2 satisfies the

characterization of unmixed bipartite graphs given in [7].

3. The toric ideal of K[Lq,s]

Let R = K[X1, . . . , Xn; Y1, . . . , Ym] and Lq,s = (f1, . . . , fp) be the ideal of Veronese bi-type. The monomial

subring of R spanned by F = {f1, . . . , fp} is the K -algebra K[Lq,s] = K[F ] = K[f1, . . . , fp] . Note that

K[F ] is a graded algebra with the grading K[F ]i = K[F ] ∩ Ri . There is a graded epimorphism of K -

algebras: ϕ : S = K[T1, . . . , Tp] → K[Lq,s] induced by ϕ(Ti) = fi , where S is a polynomial ring graded by

deg(Ti) = deg(fi). Note that the map ϕ is given by ϕ(h(T1 , . . . , Tp)) = h(f1, . . . , fp) for all h ∈ S .

Let I(Lq,s) be the kernel of the K -algebra epimorphism, called the toric ideal of K[Lq,s] . It is known

that the toric ideal of a monomial K -algebra is a graded prime ideal generated by a finite set of binomials.
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Now we prove that I(Lq,s) has a quadratic Groebner basis. In order to formulate this result we have to

recall the notion of sortability, introduced in [5], and we apply it to the monomial ideal Lq,s .

Let A = K[z1, . . . , zt] be a polynomial ring and L be a monomial ideal of A generated in degree q .

Let B be the set of the exponent vectors of the monomials of G(L). If u = (u1, . . . , ut), v = (v1, . . . , vt) ∈ B ,

then zu =
∏

i zui

i , zv =
∏

i zvi

i ∈ L . We write zuzv = zi1 · · ·zi2q with i1 ≤ i2 ≤ · · · ≤ i2q . Then we set

zu′
=

∏q
j=1 z2j−1 and zv′

=
∏q

j=1 z2j . This defines a map

sort : B × B → Mq × Mq, (u, v) �−→ (u′, v′),

where Mq is the set of all integer vectors (a1, . . . , at) such that
∑t

i=1 ai = q .

The set B is called sortable if Im(sort) ⊆ B × B .

The ideal L is called sortable if the set of exponent vectors of the monomials of G(L) is sortable. In

other words, let zu, zv ∈ L , then L is said sortable if zu′
, zv′ ∈ L , where (u′, v′) = sort(u, v).

Theorem 3.1 Let R = K[X1, . . . , Xn; Y1, . . . , Ym] . Lq,s is sortable.

Proof Let Lq,s = ({Xa1
1 · · ·Xan

n Y b1
1 · · ·Y bm

m |∑n
i=1 ai +

∑m
j=1 bj = q, 0 ≤ ai, bj ≤ s}) and B be the set of the

exponent vectors of the monomials of G(Lq,s).

Let fi = Xa1
1 · · ·Xan

n Y b1
1 · · ·Y bm

m , fj = Xc1
1 · · ·Xcn

n Y d1
1 · · ·Y dm

m ∈ G(Lq,s), then u = (a1, . . . , an; b1, . . . , bm),

v = (c1, . . . , cn; d1, . . . , dm) ∈ B . One has that fifj = X1 · · ·X1︸ ︷︷ ︸
a1+c1−times

· · · Xn · · ·Xn︸ ︷︷ ︸
an+cn−times

Y1 · · ·Y1︸ ︷︷ ︸
b1+d1−times

· · · Ym · · ·Ym︸ ︷︷ ︸
bm+dm−times

is

a monomial of degree 2q . If one replaces the set of variables {X1, . . . , Xn} with {z1, . . . , zn} and {Y1, . . . , Ym}
with {zn+1, . . . , zn+m} , then fifj = zi1 · · ·zi2q with i1 ≤ · · · ≤ i2q . Then we consider f ′

i = zu′
=

∏q
l=1 z2l−1

and f ′
j = zv′

=
∏q

l=1 z2l . We must prove that f ′
i , f

′
j ∈ Lq,s . We have that f ′

i is of degree q and we write

f ′
i =

∏q
l=1 z2l−1 = X

a′
1

1 · · ·Xa′
n

n Y
b′1
1 · · ·Y b′m

m . If ai + ci is even then a′
i = ai+ci

2 ≤ s and if ai + ci is odd then

a′
i = ai+ci+1

2
< s . Similarly, if bj + dj is even then b′j = bj+dj

2
≤ s . If bj + dj is odd then b′j = bj+dj +1

2
< s .

Moreover, because f ′
i is of degree q and there exist a′

i �= 0, b′j �= 0 with 0 ≤ a′
i, b

′
j ≤ q for all i, j , then

X
a′
1

1 · · ·Xa′
n

n �= Xq
i and Y

b′1
1 · · ·Y b′m

m �= Y q
j . It follows that X

a′
1

1 · · ·Xa′
n

n ∈ Ik,s and Y
b′1
1 · · ·Y b′m

m ∈ Jr,s with

k + r = q . Hence f ′
i ∈ Lq,s . In the same way the argument holds for f ′

j . Hence Lq,s is sortable. �

Corollary 3.2 Let R = K[X1, . . . , Xn; Y1, . . . , Ym] and Lq,s ⊂ R . Then:

1) I(Lq,s) has a quadratic Groebner basis.

2) K[Lq,s] is Koszul.

Proof 1) By Theorem 3.1 and [1](Lemma 5.2).

2) The conclusion follows by 1). �
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