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Abstract: In this paper, the induced Ricci tensor and the extrinsic scalar curvature on lightlike submanifolds are

obtained. This scalar quantity extend the result given by C. Atindogbe in [1]. An example of extrinsic scalar curvature

on one class of 2-degenerate manifolds is provided. We investigate lightlike submanifolds which are locally symmetric,

semi-symmetric, Ricci semi-symmetric in indefinite spaces form. In the coisotropic case, we show that, under some

conditions, these lightlike submanifolds are totally geodesic.
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1. Introduction

The scalar curvature is one of the most important concepts in semi-Riemannian geometry and its connected
areas such as General Relativity. This scalar quantity, under the geometric point of view, is just the contraction
of the symmetric Ricci tensor Ric with a non-degenerate metric g , that is

S = gαβRicαβ. (1.1)

In geometry of the lightlike submanifolds, two difficulties arise: since the induced connection is not a Levi-Civita
connection (unless M be totally geodesic) the induced Ricci tensor is not symmetric in general. Also, as the
induced metric is degenerate, its inverse does not exist and it is not possible to proceed in the usual way by
contracting the Ricci tensor to get a scalar quantity.

To overcome these difficulties in degenerate geometry, Duggal considered in [4] one class of globally null
manifolds M , warped product of a globally null manifold and a complete Riemannian manifold and shows
that its geometry essentially reduces to the Riemannian geometry of a leaf of its screen distribution which is
integrable. This information is then used in finding the Ricci tensor and the scalar curvature of M . In [5],
Duggal studied one class of lightlike hypersurfaces of genus zero in ambient Lorentzian signature. Any element
of this class admit canonical screen distribution that induces a canonical transversal vector bundle and induced
symmetric Ricci tensor. Atindogbé in [1] constructed the concept of extrinsic scalar curvature on all lightlike
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hypersurfaces, by introducing a symmetrized induced Ricci tensor and using the concept of pseudo-inversion
introduced in [2].

In this paper, we give expression of the induced Ricci tensor and extend the concept of extrinsic scalar
curvature on r -degenerate submanifolds. We first define the symmetrized induced Ricci tensor on lightlike
submanifolds and by using the concept of pseudo-inversion of r -degenerate metrics introduced in [3], summarized
in the preliminaries, we overcome the above quoted difficulties in contracting with respect to the r -degenerate
metric. We give an example of extrinsic scalar curvature on one class of 2-degenerate manifolds.

The class of semi-Riemannian manifolds satisfying the condition ∇R = 0 is a natural generalization
of the class of manifolds of constant curvature, where ∇ is the Levi-Civita connection on semi-Riemannian
manifold and R is the corresponding curvature tensor. Such a manifold M is said to be locally symmetric.
Locally, at any point p , M admit an isometry σ verifying σ(p) = p and dσ(p) = −Id . A semi-Riemannian

manifold is called semi-symmetric if R(X, Y ) ·R = 0, where R(X, Y ) is the curvature operator corresponding to
the Riemann curvature R . The semi-symmetric manifolds have been classified, in Riemannian case, by Szabó
in [11] and [12]. A semi-Riemannian manifold is said to be Ricci semi-symmetric, if it verifies the condition

R(X, Y ) · Ric = 0, where Ric is the Ricci tensor.

In the sequel, in sections 5, 6 and 7, we have considered the lightlike submanifolds (M, g, S(TM), S(TM⊥))

of indefinite spaces form (M(c), g) with

Rank(RadTM) = r � min{m, n} , such that the distribution RadTM is integrable and ∇t is a metric linear

connection on tr(TM). We study symmetry properties of these lightlike submanifolds.

In section 5, we investigate locally symmetric lightlike submanifolds of indefinite spaces form; we show
that under the condition ANj ξj ∈ Γ(S(TM)), the coisotropic submanifolds of indefinite spaces form with inte-

grable radical distribution are totally geodesic (Theorem 5.2).

In section 6, we give characterization of semi-symmetric lightlike submanifolds of indefinite spaces form

(Theorem 6.1). We prove that under conditions hl(AN ξ, X) = 0 and g(AN ξ, AN′ξ) �= 0, the coisotropic

submanifolds of indefinite spaces form with integrable radical distribution are totally geodesic (Theorem 6.2).
In section 7, we give characterization of Ricci semi-symmetric lightlike submanifolds of indefinite spaces form
(Theorem 7.1). We show that under condition Ric(ξ, ANξ) �= 0, the coisotropic submanifolds of indefinite spaces

form with integrable radical distribution are totally geodesic (Theorem 7.2). Note that our characterization
results of semi-symmetry and Ricci semi-symmetry properties on r -degenerate submanifolds, in particular on
lightlike hypersurfaces, refind again the results given by Sahin [10] in the case of lightlike hypersurfaces of
semi-Euclidean spaces; see Corollaries 6.3 and 7.3.

2. Preliminaries

2.1. Lightlike submanifolds of semi-Riemannian manifolds

We follow ([6] and [7]) for the notations and formulas used in this paper. Let (M, g) be an (m + n)-

dimensional semi-Riemannian manifold of constant index ν , 1 � ν < m + n and M be a submanifold of M

of codimension n . We assume that both m and n are � 1. At a point u ∈ M , we define the orthogonal

complement TuM⊥ of the tangent space TuM by

TuM⊥ = {Xu ∈ TuM : g(Xu, Yu) = 0, ∀Yu ∈ TuM}.
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We put RadTuM = RadTuM⊥ = TuM ∩ TuM⊥ . The submanifold M of M is said to be an r-lightlike

submanifold (one can suppose that the index of M is ν � r ), if the mapping

RadTM : u ∈ M −→ RadTuM

defines a smooth distribution on M of rank r > 0. We call RadTM the radical distribution on M . In the
sequel, an r -lightlike submanifold will simply be called a lightlike submanifold and g is lightlike metric, unless
we need to specify r .
Let S(TM) be a screen distribution which is a semi-Riemannian complementary distribution of Rad(TM) in
TM , that is,

TM = RadTM ⊥ S(TM). (2.1)

We consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian complementary vector

bundle of Rad(TM) in TM⊥ . Since, for any local frame {ξi} of Rad(TM), there exists a local frame {Ni}
of sections with values in the orthogonal complement of S(TM⊥) in S(TM)⊥ such that g(ξi, Nj) = δij and

g(Ni, Nj) = 0, it follows that there exists a lightlike transversal vector bundle ltr(TM) locally spanned by

{Ni} (see [6], p144). Let tr(TM) be complementary (but not orthogonal) vector bundle to TM in TM |M .

Then
tr(TM) = ltr(TM) ⊥ S(TM⊥), (2.2)

TM |M = TM ⊕ tr(TM) = S(TM) ⊥ (RadTM ⊕ ltr(TM)) ⊥ S(TM⊥). (2.3)

Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle TM/RadTM ([9]).

Throughout this paper, we will discuss the dependence (or otherwise) of the results on induced objects and refer

to ([6] or [7]) for their transformation equations. We say that a submanifold (M, g, S(TM), S(TM⊥)) of M is

(1) proper lightlike if r < min{m, n} ;

(2) coisotropic if r = n < m , hence, S(TM⊥) = {0} ;

(3) isotropic if r = m < n , hence S(TM) = {0} ;

(4) totally lightlike if r = m = n , hence S(TM) = {0} = S(TM⊥).
The Gauss and Weingarten equations are

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM), (2.4)

∇XV = −AV X + ∇t
XV, ∀X ∈ Γ(TM), V ∈ Γ(tr(TM)), (2.5)

where {∇XY, AV X} and {h(X, Y ),∇t
XV } belong to Γ(TM) and Γ(tr(TM)), respectively. ∇ and ∇t are

linear connections on M and on the vector bundle tr(TM), respectively. Moreover, we have

∇XY = ∇XY + hl(X, Y ) + hs(X, Y ), ∀X, Y ∈ Γ(TM), (2.6)

∇XN = −ANX + ∇l
XN + Ds(X, N), ∀X ∈ Γ(TM), N ∈ Γ(ltr(TM)), (2.7)

∇XW = −AW X + ∇s
XW + Dl(X, W ), ∀X ∈ Γ(TM), W ∈ Γ(S(TM⊥)). (2.8)

Denote the projection of TM on S(TM) by P . Then, by using (2.6)-(2.8) and taking into account that ∇ is
a metric connection, we obtain

g(hs(X, Y ), W ) + g(Y, Dl(X, W )) = g(AW X, Y ), (2.9)
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g(Ds(X, N), W ) = g(N, AW X) (2.10)

From the decomposition (2.1) of the tangent bundle of lightlike submanifold, we have

∇XPY =
∗
∇X PY +

∗
h (X, PY ), ∀X, Y ∈ Γ(TM), (2.11)

∇Xξ = −
∗
Aξ X+

∗
∇t

X ξ, ∀X ∈ Γ(TM), ξ ∈ Γ(RadTM). (2.12)

By using the above equations, we obtain

g(hl(X, PY ), ξ) = g(
∗
Aξ X, PY ), (2.13)

g(
∗
h (X, PY ), N) = g(ANX, PY ), (2.14)

g(AN , N ′) + g(AN′ , N) = 0 (2.15)

g(hl(X, ξ), ξ) = 0,
∗
Aξ ξ = 0. (2.16)

In general, the induced connection ∇ on M and the transversal linear connection ∇t on tr(TM) are not metric

connections. Since ∇ is a metric connection, by using (2.5) and (2.6) we get

(∇Xg)(Y, Z) = g(hl(X, Y ), Z) + g(hl(X, Z), Y ), ∀X, Y, Z ∈ Γ(TM). (2.17)

and

(∇t
Xg)(V, V ′) = −{g(AV X, V ′) + g(AV ′X, V )}. (2.18)

However, it is important to note that
∗
∇ is a metric connection on S(TM).

We denote the Riemann curvature tensors of M and M by R and R respectively. The Gauss equation for M

is given by

R(X, Y )Z = R(X, Y )Z + Ahl(X,Z)Y − Ahl(Y,Z)X + Ahs(X,Z)Y

−Ahs(Y,Z)X + (∇Xhl)(Y, Z) − (∇Y hl)(X, Z)

+Dl(X, hs(Y, Z)) − Dl(Y, hs(X, Z)) + (∇Xhs)(Y, Z)

−(∇Y hs)(X, Z) + Ds(X, hl(Y, Z)) − Ds(Y, hl(X, Z)). (2.19)

Therefore,

R(X, Y, Z, PU) = R(X, Y, Z, PU) + g(
∗
h (Y, PU), hl(X, Z)) − g(

∗
h (X, PU), hl(Y, Z))

+g(hs(Y, PU), hs(X, Z)) − g(hs(X, PU), hs(Y, Z)) (2.20)

for any X, Y, Z ∈ Γ(TM). Note that for the coisotropic, isotropic and totally lightlike submanifolds, in (2.19),

we have hs = 0, hl = 0 and hl = hs = 0, respectively.
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2.2. Pseudo-inversion of r -degenerate metrics

In this section we indicate by case 1, case 2, case 3 and case 4 to mean the r -lightlike submanifolds with
0 < r < min{m, n} (proper lightlike submanifold), the coisotropic submanifolds, the isotropic submanifolds

and totally lightlike submanifolds, respectively. We recall from [3] the following result. Consider on M the

local frames {ξi} and {Ni} of sections of RadTM and ltr(TM) satisfying g(Ni, ξj) = δij . Consider on M

the 1-forms ηi, i = 1, ..., r defined by ηi(· ) = g(Ni, · ). Any vector field X on M is expressed on a coordinate
neighbourhood U as

X = PX +
r∑

i=1

ηi(X)ξi (case 1 or 2) (2.21)

X =
m∑

i=1

ηi(X)ξi (case 3 or 4) (2.22)

Now, we define �g as

�g : Γ(TM) −→ Γ(T ∗M),

X 
−→ X�g

such that for all Y ∈ Γ(TM)

X�g (Y ) = g(X, Y ) +
r∑

i=1

ηi(X)ηi(Y ) (case 1 or 2), (2.23)

X�g (Y ) =
m∑

i=1

ηi(X)ηi(Y ) (case 3 or 4). (2.24)

The map �g is an isomorphism of Γ(TM) onto Γ(T ∗M), its inverse is denoted �g . For X ∈ Γ(TM) (resp.,

ω ∈ Γ(T ∗M)), X�g (resp. ω�g ) is called the dual 1-form of X (resp. the dual vector field of ω ) with respect
to the degenerate metric g .
We define a (0, 2)-tensor g̃ by, for any X, Y ∈ Γ(TM),

g̃(X, Y ) = X�g (Y ) = g(X, Y ) +
r∑

i=1

ηi(X)ηi(Y ) (case 1 or 2), (2.25)

and

g̃(X, Y ) = X�g (Y ) =
m∑

i=1

ηi(X)ηi(Y ) (case 3 or 4). (2.26)

Clearly, g̃ defines a non-degenerate metric on M . Also, observe that g̃ coincides with g if the latter is non-

degenerate. The (0, 2)-tensor g̃−1 , inverse of g̃ is called the pseudo-inverse of g . Let us consider the local

quasi-orthogonal fields of frames {ξ1, ..., ξr, Xr+1, ..., Xm} and {ξ1, ..., ξr} on lightlike submanifold M with re-

spect to the decompositions TM = S(TM) ⊥ RadTM (case 1 or 2 ) and TM = RadTM (case 3 or 4). Using

relations (2.25) and (2.26), we have

g̃(ξi, ξj) = δij , 1 � i, j � r and g̃(Xi, Xj) = gij, r + 1 � i, j � m, (Case1 or 2).

g̃(ξi, ξj) = δij, 1 � i, j � m, (Case3 or 4).
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3. The Ricci tensor of a lightlike submanifold

In this section we study the Ricci tensor Ric of r -degenerate submanifold of a semi-Riemannian manifold

(M, g). We have the following proposition.

Proposition 3.1 Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a semi-Riemannian manifold

(M, g) , such that the radical distribution RadTM is integrable and ∇t is a metric linear connection on tr(TM) .

Then the Ricci tensor of M denoted by Ric is given by, for any X, Y ∈ Γ(TM) ,

Ric(X, Y ) = Ric(X, Y ) +
r∑

j=1

hl
j(X, Y )trANj −

r∑

j=1

g(ANj X,
∗
Aξj Y )

+
n∑

α=r+1

hs
α(X, Y )trAWα −

n∑

α=r+1

g(AWαX, AWαY )

−
r∑

j=1

ηj(R(ξj, Y )X) −
n∑

α=r+1

R(Wα, X, Y, Wα), (3.1)

where Ric is the Ricci tensor of M and trANj (resp., trAWα ) is the trace of the operator ANj (resp., AWα ).

Proof Suppose that M is an m-dimensional lightlike submanifold of an (m+n)-dimensional semi-Riemannian

manifold M with Rank(RadTM) = r and r � min{m, n} . Let R be an induced Riemann curvature tensor

on M with respect to {S(TM), S(TM⊥)} . Consider a local quasi-orthonormal frame {ξi, Ni, Ea, Wα} on M ,

where {ξ1, ..., ξr, Er+1, ..., Em} is a local frame field on M with respect to the decomposition (2.1). By definition

Ric(X, Y ) = trace(Z −→ R(Z, X)Y ), so we have, for any X, Y ∈ Γ(TM)

Ric(X, Y ) =
r∑

i=1

g̃iig̃(R(ξi, X)Y, ξi) +
m∑

a=r+1

g̃aag̃(R(Ea, X)Y, Ea)

=
r∑

i=1

g(R(ξi, X)Y, Ni) +
m∑

a=r+1

εag(R(Ea, X)Y, Ea), (3.2)

where εa is the causal character of the vector field Ea of the orthonormal frame field {Er+1, ..., Em} of S(TM).

Then, using relation (2.20), we have

g(R(Ea, X)Y, Ea) = g(R(Ea, X)Y, Ea) + g(
∗
h (Ea, Ea), hl(X, Y ))

−g(
∗
h (X, Ea), hl(Ea, Y )) + g(hs(Ea, Ea), hs(X, Y ))

−g(hs(X, Ea), hs(Ea, Y )).

So,

g(R(Ea, X)Y, Ea) = g(R(Ea, X)Y, Ea) +
r∑

j=1

hl
j(X, Y )g(ANj Ea, Ea)

−
r∑

j=1

g(
∗
Aξj Y, Ea)g(ANj X, Ea) +

n∑

α=r+1

hs
α(X, Y )g(AWαEa, Ea)
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−
n∑

α=r+1

g(AWαY, Ea)g(AWαX, Ea). (3.3)

Also, using relation (2.19), and since hl(X, ξ) = 0 and AW are Γ(S(TM))-valued linear operators, we have

g(R(ξi, X)Y, Ni) = g(R(ξi, X)Y, Ni) +
r∑

j=1

hl
j(X, Y )g(ANj ξi, Ni) − g(Ahl(ξi,Y )X, Ni)

+
n∑

α=r+1

hs
α(X, Y )g(AWαξi, Ni) − g(Ahs(ξi,Y )X, Ni)

= g(R(ξi, X)Y, Ni) +
r∑

j=1

hl
j(X, Y )g(ANj ξi, Ni)

+
n∑

α=r+1

hs
α(X, Y )g(AWαξi, Ni). (3.4)

Thus, by substituting (3.3) and (3.4) in (3.2), we obtain the result. �

For the cases of coisotropic submanifolds and totally lightlike submanifolds, since S(TM⊥) = {0} , using

relations (2.15) and (2.18), we obtain that ∇t is a metric linear connection on tr(TM). Thus, we have the
following corollary.

Corollary 3.2 Let (M, g, S(TM)) be a coisotropic submanifold of a semi-Riemannian manifold (M, g) , such

that the radical distribution RadTM is integrable. Then the Ricci tensor of is given by, for any X, Y ∈ Γ(TM) ,

Ric(X, Y ) = Ric(X, Y ) +
n∑

j=1

hl
j(X, Y )trANj −

n∑

j=1

g(ANj X,
∗
Aξj Y )

−
n∑

j=1

ηj(R(ξj, Y )X). (3.5)

For the cases of isotropic submanifolds and totally lightlike submanifolds, since hl vanishes identically
on M , we have the following

Corollary 3.3 Let (M, g, S(TM)) be an isotropic submanifold of a semi-Riemannian manifold (M, g) , such

that ∇t is a metric linear connection on tr(TM) . Then the Ricci tensor of M is given by, for any X, Y ∈
Γ(TM)

Ric(X, Y ) = Ric(X, Y ) +
n∑

α=m+1

hs
α(X, Y )trAWα −

n∑

α=m+1

g(AWαX, AWαY )

−
m∑

j=1

ηj(R(ξj , Y )X) −
n∑

α=m+1

R(Wα, X, Y, Wα) (3.6)
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Corollary 3.4 Let (M, g, S(TM)) be a totally lightlike submanifold of a semi-Riemannian manifold (M, g) .

Then the Ricci tensor of M is given by, for any X, Y ∈ Γ(TM)

Ric(X, Y ) = Ric(X, Y ) −
m∑

j=1

ηj(R(ξj , Y )X). (3.7)

4. Extrinsic scalar curvature

In this section we extend the concept of extrinsic scalar curvature on (M, g), an m-dimensional lightlike sub-

manifold of an (m+n)-dimensional semi-Riemannian manifold (M, g) with Rank(RadTM) = r � min{m, n} ,

we suppose that the distribution RadTM is integrable and ∇t is a metric linear connection on tr(TM). The
following range for various induces is used in this section:

a′, b′, ... ∈ {1, ..., m}; i, j, ... ∈ {1, ..., r}; a, b, ... ∈ {r + 1, ..., m}; α, β, ... ∈ {r + 1, ..., n}.

We consider the local field of frames {ξ1, ..., ξr, ∂a, N1, ..., Nr, ∂α} ≡ {∂a′ , N1, ...,

Nr , ∂α} of TM along M , where {∂a′}1�a′�m , {∂a}r+1�a�m and {∂α}r+1�α�n are local field of frames of

TM , S(TM) and S(TM⊥), respectively.

Recall that the induced Ricci tensor given in (3.1) is not symmetric in general. Then (see [1]) the

symmetrized induced Ricci tensor on M is defined as the (0, 2)-tensor Ricsym on M such that, for any

X, Y ∈ Γ(TM)

Ricsym(X, Y ) =
1
2
{Ric(X, Y ) + Ric(Y, X)} (4.1)

In index notation, we have

Ricsym
a′b′ =

1
2
{Rica′b′ + Ricb′a′}. (4.2)

By using the pseudo-inverse g̃−1 of r -degenerate metric g and contract the relation (4.2), we obtain the scalar
quantity

S = g̃a′b′Ricsym
a′b′ . (4.3)

We define S to be the extrinsic scalar curvature of the lightlike submanifold (M, g). Note that this definition

is independent of the choice of pair {S(TM), S(TM⊥)} .

Now, we give the expressions of the symmetrized Ricci tensor Ricsym and the extrinsic scalar curvature
S . Indeed, from relation (3.1), we obtain

Ricsym(X, Y ) = Ric(X, Y ) +
r∑

j=1

hl
j(X, Y )trANj +

n∑

α=r+1

hs
α(X, Y )trAWα

−
n∑

α=r+1

g(AWαX, AWαY ) −
n∑

α=r+1

R(Wα, X, Y, Wα)

−1
2
{ r∑

j=1

ηj(R(ξj , Y )X) +
r∑

j=1

ηj(R(ξj , X)Y )
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+
r∑

j=1

g(ANj X,
∗
Aξj Y ) +

r∑

j=1

g(ANj Y,
∗
Aξj X)

}
. (4.4)

Using the symmetry of
∗
Aξ with respect to g , we obtain locally,

Ricsym
a′b′ = Rica′b′ +

r∑

j=1

hl
j(∂a′ , ∂b′)trANj +

n∑

α=r+1

hs
α(∂a′ , ∂b′)trAWα

−
n∑

α=r+1

g(AWα∂a′ , AWα∂b′) −
n∑

α=r+1

R(Wα, ∂a′, ∂b′ , Wα)

−1
2
{ r∑

j=1

ηj(R(ξj , ∂b′)∂a′ ) +
r∑

j=1

ηj(R(ξj, ∂a′)∂b′)

+
r∑

j=1

g(
∗
Aξj ANj ∂a′ , ∂b′) +

r∑

j=1

g(
∗
Aξj ANj ∂b′ , ∂a′)

}
. (4.5)

In the sequel, we define by

σl
j =

1
m
√

2

m∑

a′,b′=1

g̃a′b′hl
j(∂a′ , ∂b′) and σs

α =
1

m
√

2

m∑

a′,b′=1

g̃a′b′hs
α(∂a′ , ∂b′), (4.6)

the lightlike mean curvature function and the screen mean curvature function of M and

θ =
r∑

i=1

Ric(Ni, ξi) +
n∑

α,β=r+1

gαβRic(∂α, ∂β), (4.7)

represent the transverse energy in transversal direction tr(TM).

Now, using relation (4.3) by contracting (4.5) with respect to g̃a′b′ we get in Einstein notation, the

following expression of the extrinsic scalar curvature on the lightlike submanifold (M, S(TM), S(TM⊥)) given
by,

S = S − θ +
r∑

j=1

m
√

2σl
jtrANj +

n∑

α=r+1

m
√

2σs
αtrAWα −

r∑

j=1

tr(
∗
Aξj ANj )

−
n∑

α=r+1

g̃a′b′g(AWα∂a′ , AWα∂b′) −
n∑

α=r+1

g̃a′b′R(Wα, ∂a′ , ∂b′, Wα)

−1
2

r∑

j=1

g̃a′b′
{
ηj(R(ξj , ∂b′)∂a′) + ηj(R(ξj , ∂a′)∂b′)

}
, (4.8)

where S is the scalar curvature on the ambient manifold M . For the case of coisotropic submanifold, since

S(TM⊥) = {0} , the extrinsic scalar curvature on (M, g, S(TM)) is given by

S = S − θ +
n∑

j=1

m
√

2σl
jtrANj −

n∑

j=1

tr(
∗
Aξj ANj )

103



ATINDOGBE et al./Turk J Math

−1
2

n∑

j=1

g̃a′b′
{
ηj(R(ξj, ∂b′)∂a′) + ηj(R(ξj , ∂a′)∂b′)

}
. (4.9)

For the ambient manifold M with constant sectional curvature c , we obtain the following result.

Theorem 4.1 Let (M, g, S(TM), S(TM⊥)) be a m-dimensional lightlike submanifold of a (m+n)-dimensional

indefinite space form (M(c), g) , such that the radical distribution RadTM is integrable and ∇t is a metric linear

connection on tr(TM) . Then

S = (m− 1)(m − r)c +
r∑

j=1

m
√

2σl
jtrANj +

n∑

α=r+1

m
√

2σs
αtrAWα

−
r∑

j=1

tr(
∗
Aξj ANj ) −

n∑

α=r+1

g̃a′b′g(AWα∂a′ , AWα∂b′) (4.10)

Proof In the ambient manifold M(c), we have Ric = (m + n − 1)cg ,

ηj(R(ξj , X)Y ) = cg(X, Y ) and R(Wα, X, Y, Wα) = cg(X, Y ), then from (4.5),

we obtain

Ricsym
a′b′ = (m − 1)cga′b′ +

r∑

j=1

hl
j(∂a′ , ∂b′)trANj +

n∑

α=r+1

hs
α(∂a′ , ∂b′)trAWα

−
n∑

α=r+1

g(AWα∂a′ , AWα∂b′) −
1
2

r∑

j=1

{
g(

∗
Aξj ANj ∂a′ , ∂b′) + g(

∗
Aξj ANj ∂b′ , ∂a′)

}
.

Thus,

S = (m− 1)(m − r)c +
r∑

j=1

m
√

2σl
jtrANj +

n∑

α=r+1

m
√

2σs
αtrAWα

−
r∑

j=1

tr(
∗
Aξj ANj ) −

n∑

α=r+1

g̃a′b′g(AWα∂a′ , AWα∂b′)

�

For the case of coisotropic submanifold, we have the following result.

Corollary 4.2 Let (M, g, S(TM)) be a m-dimensional coisotropic submanifold of a (m + n)-dimensional

indefinite space form (M(c), g) , such that the radical distribution RadTM is integrable. Then

S = (m − 1)(m− n)c +
n∑

j=1

m
√

2σl
jtrANj −

n∑

j=1

tr(
∗
Aξj ANj ) (4.11)

Basic example

Let (x, y) = (x0, ..., xp, y0, ..., yp) be the usual coordinates on R
2p+2 . Let f = f(x1 , ..., xp) and h = h(x1, ..., xp)
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be the smooth functions on an open subset O ⊂ R
p . We define with respect to the natural field of frames

{ ∂
∂x0

, ..., ∂
∂xp

, ∂
∂y0

, ..., ∂
∂yp

} a 2-degenerate metric g(f,h) on M = R ×O × R
p+1 by

g(f,h) =
p∑

i=1

(
∂f

∂xi
dx0dxi +

∂h

∂xi
dxidy0)

+
p∑

i,j=1

{( ∂f

∂xi

∂f

∂xj
+

∂h

∂xi

∂h

∂xj
)dxidxj + δijdxidyj}. (4.12)

The 2-degenerate manifold (M, g(f,h)) arise as a lightlike submanifold in a (2p+4)-dimensional semi-Euclidean

space M . Let {u0, ..., up, v0, ..., vp, w1, w2} be a basis for a space M . Define an semi-Euclidean metric g of

signature (p + 2, p + 2) on M by setting

g(ui, uj) = 0 = g(vi, vj), g(u0, vj) = 0 = g(ui, v0), 0 � i, j � p.

g(u0, w1) = 1 g(u0, w2) = 0, g(ui, w1) = 0 = g(ui, w2), 1 � i � p.

g(v0, w1) = 0 g(v0, w2) = 1, g(vi, w1) = 0 = g(vi, w2), 1 � i � p.

g(ui, vj) = δij , g(wi, wj) = δij , 1 � i, j � p.

Consider the application

F (x, y) = x0 u0 + ... + xp up + y0 v0 + ... + yp vp + f w1 + h w2. (4.13)

F (x, y) defines an embedding of M in M and g(f,h) is the induced metric on the embedded submanifold M .

FACT 1. By direct calculation using (4.13), the tangent space TM is defined by

TM = Span
{
∂x
0 = u0, ∂x

1 = u1 + ∂x
1 f w1 + ∂x

1 h w2, ...,

∂x
p = up + ∂x

p f w1 + ∂x
p h w2, ∂

y
0 = v0, ∂y

1 = v1, ..., ∂
y
p = vp

}
, (4.14)

where ∂x
i = ∂

∂xi
and ∂y

i = ∂
∂yi

.

The radical distribution RadTM of rank 2 is given by

RadTM = Span
{
ξ1 = ∂x

0 −
p∑

i=1

∂x
i f ∂y

i , ξ2 = ∂y
0 −

p∑

i=1

∂x
i h ∂y

i

}
. (4.15)

M is a coisotropic submanifold of a semi-Euclidean space M . The lightlike transversal vector bundle ltr(TM)
of M is given by

ltr(TM) = Span
{
N1 = w1 −

1
2
ξ1 , N2 = w2 −

1
2
ξ2

}
. (4.16)

The corresponding screen distribution S(TM) for the above ltr(TM) is given by

S(TM) =
{
U1, ..., Up, V1, ..., Vp

}
, (4.17)
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where

Ui = ∂x
i − ∂x

i f ∂x
0 − ∂x

i h ∂y
0 and Vi = ∂y

i .

FACT 2. Let’s consider on M a local field of frames {ξ1, ξ2, Ui, Vi, N1, N2}1�i�p such that {ξ1, ξ2, Ui, Vi}1�i�p is

a local field of frames on M with respect to the decomposition (2.1). Using the metric g , the only non-vanishing

components of the Levi-Civita connection ∇ are, for any i , 1 � i � p ,

∇UiN1 =
1
2

p∑

j=1

(∂x
i ∂x

j f) Vj , ∇UiN2 =
1
2

p∑

j=1

(∂x
i ∂x

j h) Vj ,

∇Uiξ1 = −
p∑

j=1

(∂x
i ∂x

j f) Vj, and ∇Uiξ2 = −
p∑

j=1

(∂x
i ∂x

j h) Vj . (4.18)

Thus, since hl
i(X, Y ) = −g(∇Xξi, Y ), we obtain that the non-vanishing components of hl are

hl
1(Ui, Uj) = ∂x

i ∂x
j f, hl

2(Ui, Uj) = ∂x
i ∂x

j h, 1 � i, j � p. (4.19)

Also, by straightforward calculation, using the Gauss equation, we obtain that the only non-vanishing compo-
nents of induced connection ∇ on M are

∇UiUj = −(
1
2
∂x

i ∂x
j f) ξ1 − (

1
2
∂x

i ∂x
j h) ξ2 −

p∑

k=1

(
∂x

i ∂x
j f ∂x

kf + ∂x
i ∂x

j h ∂x
kh

)
Vk,

∇Uiξ1 = −
p∑

j=1

(∂x
i ∂x

j f) Vj , ∇Uiξ2 = −
p∑

j=1

(∂x
i ∂x

j h) Vj , 1 � i, j � p. (4.20)

FACT 3. Using relations (4.18) and (4.20), we obtain that the non vanishing values of operators ANi and
∗
Aξi

are

AN1Ui = −1
2

p∑

j=1

(∂x
i ∂x

j f) Vj , AN2Ui = −1
2

p∑

j=1

(∂x
i ∂x

j h) Vj ,

∗
Aξ1 Ui =

p∑

j=1

(∂x
i ∂x

j f) Vj , and
∗
Aξ2 Ui =

p∑

j=1

(∂x
i ∂x

j h) Vj , 1 � i � P. (4.21)

Thus, we infer that

AN1 = −1
2

∗
Aξ1 and AN2 = −1

2
∗
Aξ2 (4.22)

FACT 4. Note the local field of frames on M by {∂a′}1�a′�2p+2 ≡ {ξ1, ξ2, Ui, Vi}1�i�p . By direct calculation,
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using relations (4.21) we have

tr(
∗
Aξ1 AN1) =

2p+2∑

a′,b′=1

g̃a′b′

(f,h)g̃(f,h)(
∗
Aξ1 AN1∂a′ , ∂b′)

=
p∑

i,j=1

g̃−1
(f,h)(Ui, Uj)g(f,h)(

∗
Aξ1 AN1Ui, Uj)

= −1
2

p∑

i,j,k=1

g̃−1
(f,h)(Ui, Uj)(∂x

i ∂x
kf)g(f,h)(

∗
Aξ1 Vk, Uj)

= 0.

Likewise, we have tr(
∗
Aξ2 AN2 ) = 0.

Also,

trAN1 =
2p+2∑

a′,b′=1

g̃a′b′

(f,h) g̃(f,h)(AN1∂a′ , ∂b′)

=
p∑

i,j=1

g̃−1
(f,h)(Ui, Uj)g(f,h)(AN1Ui, Uj)

= −1
2

p∑

i,j,k=1

g̃−1
(f,h)

(Ui, Uj)(∂x
i ∂x

kf)g(f,h)(Vk, Uj)

= −1
2

p∑

i,j=1

g̃−1
(f,h)(Ui, Uj)∂x

i ∂x
j f.

Likewise, we have

trAN2 = −1
2

p∑

i,j=1

g̃−1
(f,h)

(Ui, Uj)∂x
i ∂x

j h.

By using (4.6) and (4.19), we have

σl
1 =

1
(2p + 2)

√
2

p∑

i,j=1

g̃−1
(f,h)(Ui, Uj)hl

1(Ui, Uj) =
1

(2p + 2)
√

2

p∑

i,j=1

g̃−1
(f,h)(Ui, Uj)∂x

i ∂x
j f

and σl
2 =

1
(2p + 2)

√
2

p∑

i,j=1

g̃−1
(f,h)(Ui, Uj)∂x

i ∂x
j h.

Thus, by using (4.11), we obtain finally

S = −1
2
{( p∑

i,j=1

g̃ij
(f,h)∂

x
i ∂x

j f
)2 +

( p∑

i,j=1

g̃ij
(f,h)∂

x
i ∂x

j h
)2}

, (4.23)

where g̃ij
(f,h) = g̃−1

(f,h)(Ui, Uj).
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5. Locally symmetric lightlike submanifolds

In this section we study the lightlike submanifolds verifying local symmetry property. We establish that, under
certain conditions, the locally symmetric coisotropic submanifolds of indefinite spaces form are totally geodesic.

A lightlike submanifold (M, g, S(TM), S(TM⊥)) of a semi-Riemannian manifold (M, g) is said to be

locally symmetric, if and only if for any X, Y, Z, T, V1 ∈ Γ(TM) and N ∈ Γ(ltr(TM)) the following hold (see

[8])

g((∇V1R)(X, Y )Z, PT ) = 0 and g((∇V1R)(X, Y )Z, N) = 0. (5.1)

This condition is equivalent to (∇V1R)(X, Y )Z = 0.

Let’s consider the lightlike submanifold (M, g, S(TM), S(TM⊥)) of a semi-Riemannian manifold (M(c), g)
with a constant sectional curvature c . The induced Riemann curvature tensor on M is given by, for any
X, Y, Z ∈ Γ(TM),

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y }
+Ahl(Y,Z)X − Ahl(X,Z)Y + Ahs(Y,Z)X − Ahs(X,Z)Y. (5.2)

By straightforward calculation, using (5.2) and (2.17), we have, for any V1, X, Y, Z ∈ Γ(TM),

(∇V1R)(X, Y )Z = cg(hl(V1, Y ), Z)X + cg(hl(V1, Z), Y )X − cg(hl(V1, X), Z)Y

−cg(hl(V1, Z), X)Y + (∇V1A)hl(Y,Z)X + (∇V1A)hs(Y,Z)X

−(∇V1A)hl(X,Z)Y − (∇V1A)hs(X,Z)Y + A(∇V1hl)(Y,Z)X

+A(∇V1hs)(Y,Z)X − A(∇V1hl)(X,Z)Y − A(∇V1hs)(X,Z)Y. (5.3)

In the following, we investigate the effect of local symmetry condition on geometry of lightlike submanifolds of
indefinite spaces form.

Theorem 5.1 Let (M, g, S(TM), S(TM⊥)) be a locally symmetric lightlike submanifold of an indefinite space

form (M(c), g) , such that the radical distribution RadTM is integrable and ∇t is a metric linear connection on

tr(TM) . Suppose that RadTM = Span{ξi} , ltr(TM) = Span{Ni} and the following conditions are verified

ANj ξj ∈ Γ(S(TM)) and hs(X, ξ) = 0, ∀ξ ∈ Γ(RadTM), X ∈ Γ(TM).

Then the lightlike second fundamental form hl vanishes identically on M .

Proof By taking Y = Z = ξj into (5.3) and using assumptions, we obtain that

g((∇V1R)(X, ξj)ξj , Nj) = −cg(hl(V1, X), ξj) + g(Ahl(X,∇V1 ξj)ξj , Nj)

= −cg(hl(V1, X), ξj) − g(ANj ξj , h
l(X,∇V1ξj))

= −cg(hl(V1, X), ξj). (5.4)

If M is locally symmetric, we infer from (5.4) that hl(V1, X) = 0, ∀V1, X ∈ Γ(TM). �

For the coisotropic manifolds, we have the following theorem.

Theorem 5.2 Let (M, g, S(TM)) be a coisotropic submanifold of an indefinite space form (M(c), g) , such that

the radical distribution RadTM = TM⊥ is integrable. Suppose that TM⊥ = Span{ξi} , ltr(TM) = Span{Ni}
and ∀j = 1, ..., n , ANj ξj ∈ Γ(S(TM)) . Then M is locally symmetric if and only if it is totally geodesic.
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Proof If M is totally geodesic, since R = R|TM , we obtain that

(∇V1R)(X, Y )Z = (∇V1R)(X, Y )Z = 0,

for any V1, X, Y, Z ∈ Γ(TM). The converse is obtained by virtue of Theorem 5.1. �

Corollary 5.3 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite space form (M(c), g) . Then M

is locally symmetric if and only if it is totally geodesic.

6. Semi-symmetric lightlike submanifolds

In this section we deal with semi-symmetric submanifolds in semi-Riemannian manifolds of constant sectional
curvature. We consider curvature operator on a smooth manifold defined by

R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]. (6.1)

A lightlike submanifold (M, g, S(TM), S(TM⊥)) of a semi-Riemannian manifold (M, g) is said to be semi-

symmetric if the following condition is satisfied (see [10])

(R(V1, V2) · R)(X, Y, Z, W ) = 0 ∀V1, V2, X, Y, Z, W ∈ Γ(TM) (6.2)

where R is the induced Riemann curvature on M . This is equivalent to

−R(R(V1, V2)X, Y, Z, W ) − ...− R(X, Y, Z, R(V1, V2)W ) = 0.

In general the condition (6.2) is not equivalent to (R(V1, V2) ·R)(X, Y )Z = 0 as in the non-degenerate setting.

Indeed, by direct calculation we have for any V1, V2, X, Y, Z, W ∈ Γ(TM),

(R(V1, V2) ·R)(X, Y, Z, W ) =

g((R(V1 , V2) · R)(X, Y )Z, W ) + (R(V1, V2).g)(R(X, Y )Z, W ). (6.3)

Now, let’s consider (M, g, S(TM), S(TM⊥), an m-dimensional lightlike submanifold of an (m+n)-dimensional

indefinite space form (M(c), g) with Rank(RadTM) = r � min{m, n} and suppose that the distribution

RadTM is integrable and ∇t is a metric linear connection on tr(TM). Since the Ricci tensor on M(c) is given

by Ric(X, Y ) = (m + n − 1)cg(X, Y ), from relation (3.1), we obtain that, for any X, Y ∈ Γ(TM),

Ric(X, Y ) = (m − 1)cg(X, Y ) +
r∑

j=1

hl
j(X, Y )trANj −

r∑

j=1

g(ANj X,
∗
Aξj Y )

+
n∑

α=r+1

hs
α(X, Y )trAWα −

n∑

α=r+1

g(AWαX, AWαY ). (6.4)

In the following, we investigate the effect of semi-symmetry condition on geometry of lightlike submanifolds of
indefinite spaces form.
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Theorem 6.1 Let (M, g, S(TM), S(TM⊥)) be a semi-symmetric lightlike submanifold of an indefinite space

form (M(c), g) , such that the radical distribution RadTM is integrable and ∇t is a metric linear connection

on tr(TM) . Suppose that the following conditions are verified:

(1) hs(X, ξ) = 0 and hl(AV ξ, X) = 0 , ∀ξ ∈ Γ(RadTM), X ∈ Γ(TM), V ∈ Γ(tr(TM)) ,

(2) g(AN ξ, AN′ξ) �= 0 , ∀ξ ∈ Γ(RadTM) − {0}, N, N ′ ∈ Γ(ltr(TM)) − {0} .

Then the lightlike second fundamental form hl vanishes identically on M .

Proof Let’s suppose that M is an m-dimensional lightlike submanifold of an (m+n)-dimensional space form

M(c) with Rank(RadTM) = r � min{m, n} . By straightforward calculation, using (5.2), we have, for any

X, Y, Z, T ∈ Γ(TM), ξ ∈ Γ(RadTM),

(R(ξ, X) · R)(ξ, Y, Z, T ) = −
r∑

j=1

hl
j(Ahl(X,Y )ξ, Z)g(ANj ξ, T ) −

n∑

α=1

hs
α(Ahl(X,Y )ξ, Z)g(ANj ξ, PT )

−
r∑

j=1

hl
j(Ahs(X,Y )ξ, Z)g(ANj ξ, T ) −

n∑

α=1

hs
α(Ahs(X,Y )ξ, Z)g(ANj ξ, PT )

−
r∑

j=1

hl
j(Y, Ahl(X,Z)ξ)g(ANj ξ, T ) −

n∑

α=1

hs
α(Y, Ahl(X,Z)ξ)g(ANj ξ, PT )

−
r∑

j=1

hl
j(Y, Ahs(X,Z)ξ)g(ANj ξ, T ) −

n∑

α=1

hs
α(Y, Ahs(X,Z)ξ)g(ANj ξ, PT )

−g(Ahl (Y,Z)ξ, Ahl(X,T )ξ) − g(Ahs(Y,Z)ξ, PAhl(X,T )ξ)

−g(PAhl(Y,Z)ξ, Ahs(X,T )ξ) − g(Ahs(Y,Z)ξ, Ahs(X,T )ξ) (6.5)

In virtue of assumption, using (2.9) and since h = hl + hs , we obtain

(R(ξ, X) · R)(ξ, Y, Z, T ) = −
r∑

j=1

hl
j(Ah(X,Y )ξ, Z)g(ANj ξ, T )

−
r∑

j=1

hl
j(Y, Ah(X,Z)ξ)g(ANj ξ, T ) − g(Ahl(Y,Z)ξ, Ahl(X,T )ξ)

= −g(Ahl(Y,Z)ξ, Ahl(X,T )ξ). (6.6)

Thus, if M is semi-symmetric, by taking X = Z and Y = T into (6.6), we obtain

g(Ahl(X,Y )ξ, Ahl(X,Y )ξ) = 0, that is hl(X, Y ) = 0, ∀X, Y ∈ Γ(TM). �

For the coisotropic submanifolds, we have the following result.

Theorem 6.2 Let (M, g, S(TM)) be a coisotropic submanifold of an indefinite space form (M(c), g) , such that

the radical distribution RadTM = TM⊥ is integrable. Suppose that the following conditions are verified

(1) hl(AN ξ, X) = 0 , ∀ξ ∈ Γ(TM⊥), X ∈ Γ(TM), N ∈ Γ(ltr(TM)) ;

(2) g(AN ξ, AN′ξ) �= 0 , ∀ξ ∈ Γ(TM⊥) − {0}, N, N ′ ∈ Γ(ltr(TM)) − {0} .
Then M is semi-symmetric if and only if it is totally geodesic.

Proof If M is totally geodesic, since R = R|TM , we obtain, for any V1, V2, X, Y, Z, T ∈ Γ(TM), (R(V1, V2)·
R)(X, Y, Z, T ) = (R(V1, V2) ·R)(X, Y, Z, T ) = 0. The converse is obtained in virtue of Theorem 6.1. �
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For the lightlike hypersurfaces, since hl
j(AN ξ, X) = B(AN ξ, X) = −Ric(ξ, X), where B is the local second

fundamental form of M . So, we obtain the following result.

Corollary 6.3 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite space form (M(c), g) , such that
the following conditions are verified:

(1) Ric(ξ, X) = 0 , ∀ξ ∈ Γ(TM⊥), X ∈ Γ(TM) ;

(2) ANξ is a non-null vector field.
Then M is semi-symmetric if and only if it is totally geodesic.

7. Ricci semi-symmetric lightlike submanifolds

In this section, we study Ricci semi-symmetric lightlike submanifolds of semi-Riemannian manifolds of
constant sectional curvature. We prove that Ricci semi-symmetric coisotropic submanifolds are totally geodesic
under some condition.

A lightlike submanifold M of a semi-Riemannian manifold M is said to be Ricci semi-symmetric if the following
is satisfied

(R(V1, V2) · Ric)(X, Y ) = 0, ∀V1, V2, X, Y ∈ Γ(TM), (7.1)

where R and Ric are induced Riemann curvature and Ricci tensor on M , respectively. The latter condition is
equivalent to

−Ric(R(V1, V2)X, Y ) − Ric(X, R(V1, V2)Y ) = 0

Now, let’s consider M , an m-dimensional lightlike submanifold of an (m + n)-dimensional indefinite space

form M(c) with Rank(RadTM) = r � min{m, n} and suppose that the distribution RadTM is integrable

and ∇t is a metric linear connection on tr(TM). Since hl(X, ξ) = 0, ∀ξ ∈ Γ(RadTM) and for any

W ∈ Γ(S(TM⊥)), AW is S(TM)-valued, by straightforward calculation, using (5.2) and (6.4), we obtain

that, for any ξ ∈ Γ(RadTM), X, Y ∈ Γ(TM),

Ric(R(ξ, X)ξ, Y ) = (m − 1)cg(Ahs(X,ξ)ξ, Y ) +
r∑

j=1

hl
j(Ahs(X,ξ)ξ, Y )trANj

−
r∑

j=1

g(ANj Ahs(X,ξ)ξ,
∗
Aξj Y ) +

n∑

α=r+1

hs
α(Ahs(X,ξ)ξ, Y )trAWα

−
n∑

α=r+1

g(AWαAhs(X,ξ)ξ, AWαY ) − (m − 1)cg(Ahs(ξ,ξ)X, Y )

−
r∑

j=1

hl
j(Ahs(ξ,ξ)X, Y )trANj +

r∑

j=1

g(ANj Ahs(ξ,ξ)X,
∗
Aξj Y )

−
n∑

α=r+1

hs
α(Ahs(ξ,ξ)X, Y )trAWα +

n∑

α=r+1

g(AWαAhs(ξ,ξ)X, AWαY ). (7.2)

Also,

Ric(ξ, R(ξ, X)Y ) = cg(X, Y ){
n∑

α=r+1

hs
α(ξ, ξ)trAWα −

n∑

α=r+1

g(AWαξ, AWαξ)}
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−
r∑

j=1

g(ANj ξ,
∗
Aξj Ahl(X,Y )ξ) +

n∑

α=r+1

hs
α(ξ, Ahl(X,Y )ξ)trAWα

−
n∑

α=r+1

g(AWαξ, AWαAhl(X,Y )ξ) −
r∑

j=1

g(ANj ξ,
∗
Aξj Ahs(X,Y )ξ)

+
n∑

α=r+1

hs
α(ξ, Ahs(X,Y )ξ)trAWα −

n∑

α=r+1

g(AWαξ, AWαAhs(X,Y )ξ)

+
r∑

j=1

g(ANj ξ,
∗
Aξj Ahs(ξ,Y )X) −

n∑

α=r+1

hs
α(ξ, Ahs(ξ,Y )X)trAWα

+
n∑

α=r+1

g(AWαξ, AWαAhs(ξ,Y )X). (7.3)

In the following theorem, we give result which shows the effect of Ricci semi-symmetric condition on the geometry
of lightlike submanifolds of indefinite spaces form.

Theorem 7.1 Let (M, g, S(TM), S(TM⊥)) be a Ricci semi-symmetric lightlike submanifold of an indefinite

space form (M(c), g) , such that the radical distribution RadTM is integrable and ∇t is a metric linear

connection on tr(TM) .

If hs(X, ξ) = 0 , ∀ξ ∈ Γ(RadTM), X ∈ Γ(TM) , then at least one of the following holds:

(i) hl vanishes identically on M ,

(ii) Ric(ξ, ANξ) = 0 , for any ξ ∈ Γ(RadTM) , N ∈ Γ(ltr(TM)) ,
where Ric is the induced Ricci tensor on M .

Proof Let’s suppose that M is an m-dimensional Ricci semi-symmetric lightlike submanifold of an (m +n)-

dimensional space form M(c) with Rank(RadTM) = r � min{m, n} . Since hs(X, ξ) = 0, by using relations

(2.9), (7.2) and (7.3), we have, for any X, Y ∈ Γ(TM),

(R(ξ, X) · Ric)(ξ, Y ) = −Ric(R(ξ, X)ξ, Y ) − Ric(ξ, R(ξ, X)Y )

= cg(X, Y )
n∑

α=r+1

g(AWαξ, AWαξ) +
r∑

j=1

g(ANj ξ,
∗
Aξj Ahl(X,Y )ξ)

−
n∑

α=r+1

hs
α(ξ, Ahl(X,Y )ξ)trAWα +

n∑

α=r+1

g(AWαξ, AWαAhl(X,Y )ξ)

+
r∑

j=1

g(
∗
Aξj ANj ξ, Ahs(X,Y )ξ) −

n∑

α=r+1

hs
α(ξ, Ahs(X,Y )ξ)trAWα

+
n∑

α=r+1

g(AWαξ, AWαAhs(X,Y )ξ)

=
r∑

j=1

g(ANj ξ,
∗
Aξj Ahl(X,Y )ξ). (7.4)

From (7.4), using relations (2.13) and (6.4), we obtain,
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0 =
r∑

j=1

hl
j(ANj ξ, Ahl(X,Y )ξ) =

r∑

i=1

r∑

j=1

hl
j(ANj ξ, ANiξ)h

l
i(X, Y )

= −
r∑

i=1

Ric(ξ, ANiξ)h
l
i(X, Y ) = −g(hl(X, Y ),

r∑

i=1

Ric(ξ, ANiξ)ξi).

Since g is non-degenerate, we infer that hl = 0 or Ric(ξ, AN ξ) = 0. �

For the coisotropic submanifold, we have the following result.

Theorem 7.2 Let (M, g, S(TM)) be a coisotropic submanifold of an indefinite space form (M(c), g) , such

that the radical distribution RadTM = TM⊥ is integrable and Ric(ξ, ANξ) �= 0 , for any ξ ∈ Γ(TM⊥) ,

N ∈ Γ(ltr(TM)) . Then M is Ricci semi-symmetric if and only if it is totally geodesic.

Proof If M is totally geodesic, since R = R|TM , we obtain (R(V1, V2) ·Ric)(X, Y ) = (R(V1, V2) ·Ric)(X, Y ) =

0, for any V1, V2, X, Y ∈ Γ(TM). The converse is obtained by virtue of Theorem 7.1. �

For the lightlike hypersurface, we have the following.
Corollary 7.3 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite space form (M(c), g) , such that

Ric(ξ, AN ξ) �= 0 , for any ξ ∈ Γ(TM⊥) , N ∈ Γ(ltr(TM)) . Then M is Ricci semi-symmetric if and only if it
is totally geodesic.
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