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doi:10.3906/mat-1110-32

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Formulas for the Fourier coefficients of cusp form for some quadratic forms

(correction to a paper by Ahmet Tekcan with the same title)
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Abstract: In this study M1 (Γ0 (3) , χ−3) , M2 (Γ0 (5) , χ5) and M3 (Γ0 (7) , χ−7) have been examined and the formulas

for the Fourier Coefficients of theta series and the representation number of positive integers by some quadratic forms
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determined. This work is a correction to a paper of the same title by Ahmet Tekcan [5].
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1. Fourier Coefficients of Theta Series of Q3, Q5 and Q7

First of all, let’s mention the important Theorem about the dimension formulas.

Theorem 1.1 Let k be an integer and χ a Dirichlet character modulo N with χ(−1) = (−1)k . For each

prime p dividing N , let rp (respectively, sp ) denote the power of p dividing N (respectively, the conductor of

χ). Define

λ (rp, sp, p) :=

⎧⎨
⎩

pr′
+ pr′−1 if 2sp ≤ rp = 2r′

2p′r if 2sp ≤ rp = 2r′ + 1
2prp−sp if 2sp > rp,

and

vk :=

⎧⎨
⎩

0 if k is odd
−1/4 if k ≡ 2 mod 4
1/4 if k ≡ 0 mod 4

, μk :=

⎧⎨
⎩

0 if k ≡ 1 mod 3
−1/3 if k ≡ 2 mod 3
1/3 if k ≡ 0 mod 3

.

Then we have

dimMk (Γ0 (N) , χ) − dimS2−k (Γ0 (N) , χ) =
(k − 1)N

12

∏
p|N

(
1 +

1
p

)

+
1
2

∏
p|N

λ (rp, sp, p)− v2−kα (χ) − μ2−kβ (χ) ,
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where

α (χ) :=
∑

x mod N
x2+1≡0 mod N

χ (x) and β (χ) :=
∑

x mod N
x2+x+1≡0 mod N

χ (x) .

Proof See [1] . �

1.1. Case Q3

For the quadratic form Q3 = 3x2
1 + 3x1x2 + x2

2 ( see [5, page 147, line 5])

2Q3 = 6x2
1 + 6x1x2 + 2x2

2 = (x1, x2)
(

6 3
3 2

)(
x1

x2

)
,

the determinant and a cofactor are D = 3, A11 = 2. So δ = gcd(Aii

2 , Aij, for1 ≤ i ≤ j ≤ 2) = 1, the level

N = D
δ = 3 and the discriminant is Δ = (−1)2/2 3 = −3. The character of Q3 is the Kronecker symbol

χ−3 (d) =
(−3

d

)
for d ∈ (Z/3Z)× .

The corresponding theta function ΘQ3 (q) is a modular form of weight 1 with character χ−3 (d) =
(−3

d

)
for d = 1, 2 , i.e.,ΘQ3 (q) ∈ M1 (Γ0 (3) , χ−3) . There is a nonzero Eisenstein series

G1,3 (τ ) =
L (0, χ−3)

2
+

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
χ−3 (d)

⎞
⎠ qn

contained in M1 (Γ0 (3) , χ−3) and for k = 1, N = 3, χ = χ−3, p = 3, we have

dimM1 (Γ0 (3) , χ−3) − dimS1 (Γ0 (3) , χ−3) =
(1 − 1) · 3

12

(
1 +

1
3

)

+
1
2
λ (r3, s3, 3) − v1α (χ) − μ1β (χ) =

1
2
2 · 31−1 − 0 · α (χ) − 0 · β (χ) = 1,

by Theorem [1.1] . On the other hand, we can prove the following theorem.

Theorem 1.2 There is no nonzero cusp form of level 3 with character χ−3 of weight 1, i.e.,

dimS1 (Γ0 (3) , χ−3) = 0.

Proof By [3, (12.76)], we know that

dimS1 (Γ0 (3) , χ−3) =
h − 1

2
+ 2s + 4a,

where h is the class number of Q
(√

−3
)
, s =the number of non-isomorphic quartic fields whose Galois closure

has Galois group S4 with discriminant −3, and a =the number of non-isomorphic quintic non-real fields whose
Galois closure has Galois group A5 with discriminant 9. It is well known that h = 1. Now let F = Q (α) be a

140
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quartic field with primitive α. The discriminant of the minimal polynomial of α is the same as the discriminant
of its resolvent cubic polynomial g. Since the Galois group of F is S4, the polynomial g is irreducible. Moreover,
its signature is (1,1) since the discriminant −3 is negative. So if the roots of g are real r , and non-real complexes
c ± di , then

((r − (c + di)) (r − (c − di)) (c + di − (c − di)))2 =

−4d2
(
(r − c)2 + d2

)
= −4

(
1 +

(r − c)2

d2

)
.

Since it is always smaller than −3, it follows that s = 0. Now, let’s look at non-real quintic fields. Since the
discriminant 9 is positive, the signature of the quintic field should be (1, 2) . But in this case, the minimum

discriminant of such a field is 1609 by [2] , so it follows that a = 0. �

The theta series ΘQ3 (q) associated to Q3 is given by the scalar multiple of Eisenstein series

2
L (0, χ−3)

⎛
⎝L (0, χ−3)

2
+

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
χ−3 (d) d1−1

⎞
⎠ qn

⎞
⎠ .

Consequently, the representation number of n by Q3 can be given by the simple formula

r (n; Q) =
2

L (0, χ−3)

⎛
⎝ ∑

d>0,d|n
χ−3 (d)

⎞
⎠ for n = 1, 2, . . . .

1.2. Case Q5

For the quadratic form

Q5 = 5(x2
1 + x1x2 + x1x3 + x1x4 + x2

2 + x2x3 + x2x4 + x2
3 + x3x4) + 2x2

4.

The determinant of the matrix D = 125, δ = 25, the level N = 125/25 = 5 and the discriminant is

Δ = (−1)4/2 125 = 125. The character of Q5 is the unique Dirichlet character χ such that χ (d) =
(

125
d

)
for d ∈ (Z/5Z)× , where

(
125
d

)
is the Kronecker symbol. Obviously, χ (d) = χ5 (d) =

(
5
d

)
for d ∈ (Z/5Z)× .

The corresponding theta function ΘQ5 (q) is a modular form of weight 2 with character χ5 (d) =
(

5
d

)
for

d ∈ (Z/5Z)× . Since k = 2, N = 5, we have

dimM2 (Γ0 (5) , χ5) − dimS0 (Γ0 (5) , χ5) =
(2 − 1) · 5

12

(
1 +

1
5

)

+
1
2
λ (r5, s5, 5) − v0α (χ) − μ0β (χ)

=
1
2

+
1
2
2 · 51−1 − 1

4
·
((

5
2

)
+

(
5
3

))
+

1
3
· 0 =

3
2
− 1

4
(−1 − 1) = 2,
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by Theorem [1.1] . Since dimSk (Γ0 (N) , χ) = 0 for k ≤ 0, the result

dimM2 (Γ0 (5) , χ5) = 2

follows. By Corollary 2.7 in [1] , this space is generated by two linearly independent Eisenstein series

G2,5 (q) =
L (1 − 2, χ5)

2
+

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
χ5 (d) d2−1

⎞
⎠ qn

=
L (−1, χ5)

2
+ q + O

(
q2

)
,

H2,5 (q) =
∞∑

n=1

⎛
⎝ ∑

d>0,d|n
χ5 (n/d) d2−1

⎞
⎠ qn = q + O

(
q2

)
.

Therefore, the theta series ΘQ5 (q) associated to Q5 is given as a linear combination of Eisenstein series

2
L (−1, χ5)

G2,5 +
(

r (1, Q5) −
2

L (−1, χ5)

)
H2,5 =

2
L (−1, χ5)

⎛
⎝L (−1, χ5)

2
+

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
χ5 (d) d2−1

⎞
⎠ qn

⎞
⎠

− 2
L (−1, χ5)

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
χ5 (n/d)d2−1

⎞
⎠ qn

= 1 +
∞∑

n=1

2
L (−1, χ5)

⎛
⎝ ∑

d>0,d|n
(χ5 (d) − χ5 (n/d)) d

⎞
⎠ qn,

since Q5 = 1 doesn’t have any integer solutions. Consequently, the representation number can be given by the
simple formula

r (n; Q) =
2

L (−1, χ5)

⎛
⎝ ∑

d>0,d|n
(χ5 (d) − χ5 (n/d)) d

⎞
⎠ for n = 1, 2, . . . .

1.3. Case Q7

For the quadratic form

Q7 = 7(x2
1 + x1x2 + x1x3 + x1x4 + x1x5 + x2

2 + x2x3 + x2x4 + x2x5

+x2
3 + x3x4 + x3x5 + x2

4 + x4x5 + x2
5) + 7 (x1x6 + x2x6 + x3x6 + x4x6 + x5x6) + 3x2

6.
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The determinant of the matrix D = 16807, δ = 2401, the level N = 16807/240125 = 7 and the discriminant

is Δ = (−1)6/2 16807 = −16807. The character of Q7 is the unique Dirichlet character χ such that χ (d) =(−16807
d

)
for d ∈ (Z/7Z)× , where

(−16807
d

)
is the Kronecker symbol. Obviously,

χ (d) = χ−7 (d) =
(−7

d

)
for d ∈ (Z/7Z)× .

The corresponding theta function ΘQ7 (q) is a modular form of weight 3 with character
(−7

d

)
for

d ∈ (Z/7Z)× . Here k = 3, N = 7 and we have

dimM3 (Γ0 (7) , χ−7) − dimS−1 (Γ0 (7) , χ−7) =
(3 − 1) · 7

12

(
1 +

1
7

)

+
1
2
λ (r7, s7, 7) − v−1α (χ) − μ−1β (χ)

=
4
3

+
1
2
2 · 71−1 − 0 · α (χ) +

1
3
·
((−7

2

)
+

(−7
4

))
=

7
3

+
1
3

(1 + 1) = 3,

by Theorem [1.1] . Since dimSk (Γ0 (N) , χ) = 0 for k ≤ 0, the result dim M3 (Γ0 (7) , χ−7) = 3 follows. By

Corollary 2.7 in [1] , this space is generated by two linearly independent Eisenstein series:

G3,7 (q) =
L (1 − 3, χ−7)

2
+

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
χ−7 (d)d3−1

⎞
⎠ qn =

L (−2, χ−7)
2

+ q + O
(
q2

)
,

H3,7 (q) =
∞∑

n=1

⎛
⎝ ∑

d>0,d|n
χ−7 (n/d) d3−1

⎞
⎠ qn = q + O

(
q2

)
.

On the other hand, Kachakhidze constructed a basis of cusp forms of

Sk (Γ0 (7) , χ−7) , 3 ≤ k ≤ 5

in [4, page 66]. Taking k = 3, we see that there is only one element in the basis, i.e.,

ΘF1,ϕ (q) , where F1 (x1, x2) = x2
1 + x1x2 + 2x2

2, ϕ (x1, x2) =
(
x2

1 − 2x2
2

)
.

Obviously,

ΘF1,ϕ (q) =
∑
n=1

( ∑
F1=n

(
x2

1 − 2x2
2

))
qn.

Now after the calculation of
F1 = x2

1 + x1x2 + 2x2
2 = n

for n = 1, 2, · · · , 19, we get

ΘF1,ϕ (q) = q − 4q2 + 10q4 − 14q7 − 6q8 + 18q9 − 12q11 + 42q14 − 22q16 − 54q18 + · · · .
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The theta series ΘQ7 (q) associated to Q7 is given as linear combination of two Eisenstein series and
cusp forms as

2
L (−2, χ−7)

G3,7 + c2H3,7 + c3ΘF1,ϕ.

Now,

2
L (−2, χ−7)

∑
d>0,d|1

χ−7 (d) d2 + c2 + c3 = 0

2
L (−2, χ−7)

∑
d>0,d|2

χ−7 (d)d2 +

⎛
⎝ ∑

d>0,d|2
χ−7 (2/d) d2

⎞
⎠ c2 − 4c3 = 0,

since Q7 = 1 and Q7 = 2 doesn’t have any integer solutions. We immediately obtain that

c2 = − 2
L (−2, χ−7)

and c3 = 0.

Hence, the theta series ΘQ7 (q) associated to Q7 is a linear combination of two Eisenstein series as

ΘQ7 (q) =
2

L (−2, χ−7)
(G3,7 − H3,7) =

2
L (−2, χ−7)

⎛
⎝L (−2, χ−7)

2
+

∞∑
n=1

⎛
⎝ ∑

d>0,d|n
(χ−7 (d) − χ−7 (n/d)) d2

⎞
⎠ qn

⎞
⎠ .

So, the representation number r(Q7, n) is given by the following simple formula

r (n, Q7) =
2

L (−2, χ−7)

∑
d>0,d|n

(χ−7 (d) − χ−7 (n/d)) d2.

The values

L (0, χ−3) =
1
3
, L (−1, χ5) = −1

2
B2,χ5 = −2/5, L (−2, χ−7) = −1

3
B3,χ−7 = −16/7

follow from direct calculations.
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