Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $139-144$
(c) TÜBİTAK

Formulas for the Fourier coefficients of cusp form for some quadratic forms (correction to a paper by Ahmet Tekcan with the same title)

Barış KENDİRLİ ${ }^{*}$

Department of Mathematics, Faculty of Arts and Sciences, Fatih University, İstanbul, Turkey

Received: 16.10.2011

- Accepted: 02.03.2012
- Published Online: 17.12.2012
- Printed: 14.01 .2013

Abstract: In this study $M_{1}\left(\Gamma_{0}(3), \chi-3\right), M_{2}\left(\Gamma_{0}(5), \chi_{5}\right)$ and $M_{3}\left(\Gamma_{0}(7), \chi-7\right)$ have been examined and the formulas for the Fourier Coefficients of theta series and the representation number of positive integers by some quadratic forms $3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}, 5\left(x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2}^{2}+x_{2} x_{3}+x_{2} x_{4}+x_{3}^{2}+x_{3} x_{4}\right)+2 x_{4}^{2}$, and $7\left(x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+\right.$ $x_{1} x_{5}+x_{2}^{2}+x_{2} x_{3}+x_{2} x_{4}+x_{2} x_{5}+x_{3}^{2}+x_{3} x_{4}+x_{3} x_{5}+x_{4}^{2}+x_{4} x_{5}+x_{5}^{2}+7\left(x_{1} x_{6}+x_{2} x_{6}+x_{3} x_{6}+x_{4} x_{6}+x_{5} x_{6}\right)+3 x_{6}^{2}$, are determined. This work is a correction to a paper of the same title by Ahmet Tekcan [5].

Key words: Quadratic forms, representation numbers, theta series, cusp forms 11E25, 11E76

1. Fourier Coefficients of Theta Series of $\mathbf{Q}_{3}, \mathbf{Q}_{5}$ and \mathbf{Q}_{7}

First of all, let's mention the important Theorem about the dimension formulas.

Theorem 1.1 Let k be an integer and χ a Dirichlet character modulo N with $\chi(-1)=(-1)^{k}$. For each prime p dividing N, let r_{p} (respectively, s_{p}) denote the power of p dividing N (respectively, the conductor of $\chi)$. Define

$$
\lambda\left(r_{p}, s_{p}, p\right):=\left\{\begin{array}{c}
p^{r^{\prime}}+p^{r^{\prime}-1} \text { if } 2 s_{p} \leq r_{p}=2 r^{\prime} \\
2 p_{r}^{\prime} \text { if } 2 s_{p} \leq r_{p}=2 r^{\prime}+1 \\
2 p^{r_{p}-s_{p}} \text { if } 2 s_{p}>r_{p}
\end{array}\right.
$$

and

$$
v_{k}:=\left\{\begin{array}{c}
0 \text { if } k \text { is odd } \\
-1 / 4 \text { if } k \equiv 2 \bmod 4 \\
1 / 4 \text { if } k \equiv 0 \bmod 4
\end{array}, \mu_{k}:=\left\{\begin{array}{c}
0 \text { if } k \equiv 1 \bmod 3 \\
-1 / 3 \text { if } k \equiv 2 \bmod 3 \\
1 / 3 \text { if } k \equiv 0 \bmod 3
\end{array} .\right.\right.
$$

Then we have

$$
\begin{aligned}
& \operatorname{dim} M_{k}\left(\Gamma_{0}(N), \chi\right)-\operatorname{dim} S_{2-k}\left(\Gamma_{0}(N), \chi\right)=\frac{(k-1) N}{12} \prod_{p \mid N}\left(1+\frac{1}{p}\right) \\
&+\frac{1}{2} \prod_{p \mid N} \lambda\left(r_{p}, s_{p}, p\right)-v_{2-k} \alpha(\chi)-\mu_{2-k} \beta(\chi)
\end{aligned}
$$

[^0]
KENDİRLİ/Turk J Math

where

$$
\alpha(\chi):=\sum_{\substack{x \bmod N \\ x^{2}+1 \equiv 0 \bmod N}} \chi(x) \text { and } \beta(\chi):=\sum_{\substack{x \bmod N \\ x^{2}+x+1 \equiv 0 \bmod N}} \chi(x) .
$$

Proof See [1].

1.1. Case Q_{3}

For the quadratic form $Q_{3}=3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}($ see $[5$, page 147, line 5$])$

$$
2 Q_{3}=6 x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}=\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}
6 & 3 \\
3 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

the determinant and a cofactor are $D=3, A_{11}=2$. So $\delta=\operatorname{gcd}\left(\frac{A_{i i}}{2}, A_{i j}\right.$, for $\left.1 \leq i \leq j \leq 2\right)=1$, the level $N=\frac{D}{\delta}=3$ and the discriminant is $\Delta=(-1)^{2 / 2} 3=-3$. The character of Q_{3} is the Kronecker symbol

$$
\chi_{-3}(d)=\left(\frac{-3}{d}\right) \text { for } d \in(\mathbb{Z} / 3 \mathbb{Z})^{\times} .
$$

The corresponding theta function $\Theta_{Q_{3}}(q)$ is a modular form of weight 1 with character $\chi_{-3}(d)=\left(\frac{-3}{d}\right)$ for $d=1,2$, i.e., $\Theta_{Q_{3}}(q) \in M_{1}\left(\Gamma_{0}(3), \chi_{-3}\right)$. There is a nonzero Eisenstein series

$$
G_{1,3}(\tau)=\frac{L\left(0, \chi_{-3}\right)}{2}+\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{-3}(d)\right) q^{n}
$$

contained in $M_{1}\left(\Gamma_{0}(3), \chi_{-3}\right)$ and for $k=1, N=3, \chi=\chi_{-3}, p=3$, we have

$$
\begin{gathered}
\operatorname{dim} M_{1}\left(\Gamma_{0}(3), \chi-3\right)-\operatorname{dim} S_{1}\left(\Gamma_{0}(3), \chi-3\right)=\frac{(1-1) \cdot 3}{12}\left(1+\frac{1}{3}\right) \\
+\frac{1}{2} \lambda\left(r_{3}, s_{3}, 3\right)-v_{1} \alpha(\chi)-\mu_{1} \beta(\chi)=\frac{1}{2} 2 \cdot 3^{1-1}-0 \cdot \alpha(\chi)-0 \cdot \beta(\chi)=1
\end{gathered}
$$

by Theorem [1.1]. On the other hand, we can prove the following theorem.
Theorem 1.2 There is no nonzero cusp form of level 3 with character χ_{-3} of weight 1, i.e.,

$$
\operatorname{dim} S_{1}\left(\Gamma_{0}(3), \chi-3\right)=0
$$

Proof By [3, (12.76)], we know that

$$
\operatorname{dim} S_{1}\left(\Gamma_{0}(3), \chi-3\right)=\frac{h-1}{2}+2 s+4 a
$$

where h is the class number of $\mathbb{Q}(\sqrt{-3}), s=$ the number of non-isomorphic quartic fields whose Galois closure has Galois group S_{4} with discriminant -3 , and $a=$ the number of non-isomorphic quintic non-real fields whose Galois closure has Galois group A_{5} with discriminant 9. It is well known that $h=1$. Now let $F=\mathbb{Q}(\alpha)$ be a

KENDİRLİ/Turk J Math

quartic field with primitive α. The discriminant of the minimal polynomial of α is the same as the discriminant of its resolvent cubic polynomial g. Since the Galois group of F is S_{4}, the polynomial g is irreducible. Moreover, its signature is $(1,1)$ since the discriminant -3 is negative. So if the roots of g are real r, and non-real complexes $c \pm d i$, then

$$
\begin{aligned}
((r-(c+d i))(r-(c-d i))(c+d i-(c-d i)))^{2} & = \\
-4 d^{2}\left((r-c)^{2}+d^{2}\right) & =-4\left(1+\frac{(r-c)^{2}}{d^{2}}\right)
\end{aligned}
$$

Since it is always smaller than -3 , it follows that $s=0$. Now, let's look at non-real quintic fields. Since the discriminant 9 is positive, the signature of the quintic field should be $(1,2)$. But in this case, the minimum discriminant of such a field is 1609 by [2], so it follows that $a=0$.

The theta series $\Theta_{Q_{3}}(q)$ associated to Q_{3} is given by the scalar multiple of Eisenstein series

$$
\frac{2}{L(0, \chi-3)}\left(\frac{L(0, \chi-3)}{2}+\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{-3}(d) d^{1-1}\right) q^{n}\right) .
$$

Consequently, the representation number of n by Q_{3} can be given by the simple formula

$$
r(n ; Q)=\frac{2}{L(0, \chi-3)}\left(\sum_{d>0, d \mid n} \chi_{-3}(d)\right) \text { for } n=1,2, \ldots
$$

1.2. Case Q_{5}

For the quadratic form

$$
Q_{5}=5\left(x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2}^{2}+x_{2} x_{3}+x_{2} x_{4}+x_{3}^{2}+x_{3} x_{4}\right)+2 x_{4}^{2}
$$

The determinant of the matrix $D=125, \delta=25$, the level $N=125 / 25=5$ and the discriminant is $\Delta=(-1)^{4 / 2} 125=125$. The character of Q_{5} is the unique Dirichlet character χ such that $\chi(d)=\left(\frac{125}{d}\right)$ for $d \in(\mathbb{Z} / 5 \mathbb{Z})^{\times}$, where $\left(\frac{125}{d}\right)$ is the Kronecker symbol. Obviously, $\chi(d)=\chi_{5}(d)=\left(\frac{5}{d}\right)$ for $d \in(\mathbb{Z} / 5 \mathbb{Z})^{\times}$.

The corresponding theta function $\Theta_{Q_{5}}(q)$ is a modular form of weight 2 with character $\chi_{5}(d)=\left(\frac{5}{d}\right)$ for $d \in(\mathbb{Z} / 5 \mathbb{Z})^{\times}$. Since $k=2, N=5$, we have

$$
\begin{gathered}
\operatorname{dim} M_{2}\left(\Gamma_{0}(5), \chi_{5}\right)-\operatorname{dim} S_{0}\left(\Gamma_{0}(5), \chi_{5}\right)=\frac{(2-1) \cdot 5}{12}\left(1+\frac{1}{5}\right) \\
+ \\
+\frac{1}{2} \lambda\left(r_{5}, s_{5}, 5\right)-v_{0} \alpha(\chi)-\mu_{0} \beta(\chi) \\
=\frac{1}{2}+\frac{1}{2} 2 \cdot 5^{1-1}-\frac{1}{4} \cdot\left(\left(\frac{5}{2}\right)+\left(\frac{5}{3}\right)\right)+\frac{1}{3} \cdot 0=\frac{3}{2}-\frac{1}{4}(-1-1)=2,
\end{gathered}
$$

KENDİRLİ/Turk J Math

by Theorem [1.1]. Since $\operatorname{dim} S_{k}\left(\Gamma_{0}(N), \chi\right)=0$ for $k \leq 0$, the result

$$
\operatorname{dim} M_{2}\left(\Gamma_{0}(5), \chi_{5}\right)=2
$$

follows. By Corollary 2.7 in [1], this space is generated by two linearly independent Eisenstein series

$$
\begin{gathered}
G_{2,5}(q)=\frac{L\left(1-2, \chi_{5}\right)}{2}+\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{5}(d) d^{2-1}\right) q^{n} \\
=\frac{L\left(-1, \chi_{5}\right)}{2}+q+O\left(q^{2}\right), \\
H_{2,5}(q)=\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{5}(n / d) d^{2-1}\right) q^{n}=q+O\left(q^{2}\right) .
\end{gathered}
$$

Therefore, the theta series $\Theta_{Q_{5}}(q)$ associated to Q_{5} is given as a linear combination of Eisenstein series

$$
\begin{gathered}
\frac{2}{L\left(-1, \chi_{5}\right)} G_{2,5}+\left(r\left(1, Q_{5}\right)-\frac{2}{L\left(-1, \chi_{5}\right)}\right) H_{2,5}= \\
\frac{2}{L\left(-1, \chi_{5}\right)}\left(\frac{L\left(-1, \chi_{5}\right)}{2}+\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{5}(d) d^{2-1}\right) q^{n}\right) \\
\quad-\frac{2}{L\left(-1, \chi_{5}\right)} \sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{5}(n / d) d^{2-1}\right) q^{n} \\
=1+\sum_{n=1}^{\infty} \frac{2}{L\left(-1, \chi_{5}\right)}\left(\sum_{d>0, d \mid n}\left(\chi_{5}(d)-\chi_{5}(n / d)\right) d\right) q^{n},
\end{gathered}
$$

since $Q_{5}=1$ doesn't have any integer solutions. Consequently, the representation number can be given by the simple formula

$$
r(n ; Q)=\frac{2}{L\left(-1, \chi_{5}\right)}\left(\sum_{d>0, d \mid n}\left(\chi_{5}(d)-\chi_{5}(n / d)\right) d\right) \text { for } n=1,2, \ldots
$$

1.3. Case Q_{7}

For the quadratic form

$$
\begin{gathered}
Q_{7}=7\left(x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{1} x_{5}+x_{2}^{2}+x_{2} x_{3}+x_{2} x_{4}+x_{2} x_{5}\right. \\
\left.+x_{3}^{2}+x_{3} x_{4}+x_{3} x_{5}+x_{4}^{2}+x_{4} x_{5}+x_{5}^{2}\right)+7\left(x_{1} x_{6}+x_{2} x_{6}+x_{3} x_{6}+x_{4} x_{6}+x_{5} x_{6}\right)+3 x_{6}^{2} .
\end{gathered}
$$

KENDİRLİ/Turk J Math

The determinant of the matrix $D=16807, \delta=2401$, the level $N=16807 / 240125=7$ and the discriminant is $\Delta=(-1)^{6 / 2} 16807=-16807$. The character of Q_{7} is the unique Dirichlet character χ such that $\chi(d)=$ $\left(\frac{-16807}{d}\right)$ for $d \in(\mathbb{Z} / 7 \mathbb{Z})^{\times}$, where $\left(\frac{-16807}{d}\right)$ is the Kronecker symbol. Obviously,

$$
\chi(d)=\chi_{-7}(d)=\left(\frac{-7}{d}\right) \text { for } d \in(\mathbb{Z} / 7 \mathbb{Z})^{\times}
$$

The corresponding theta function $\Theta_{Q_{7}}(q)$ is a modular form of weight 3 with character ($\frac{-7}{d}$) for $d \in(\mathbb{Z} / 7 \mathbb{Z})^{\times}$. Here $k=3, N=7$ and we have

$$
\begin{gathered}
\operatorname{dim} M_{3}\left(\Gamma_{0}(7), \chi_{-7}\right)-\operatorname{dim} S_{-1}\left(\Gamma_{0}(7), \chi_{-7}\right)=\frac{(3-1) \cdot 7}{12}\left(1+\frac{1}{7}\right) \\
+\frac{1}{2} \lambda\left(r_{7}, s_{7}, 7\right)-v_{-1} \alpha(\chi)-\mu_{-1} \beta(\chi) \\
=\frac{4}{3}+\frac{1}{2} 2 \cdot 7^{1-1}-0 \cdot \alpha(\chi)+\frac{1}{3} \cdot\left(\left(\frac{-7}{2}\right)+\left(\frac{-7}{4}\right)\right)=\frac{7}{3}+\frac{1}{3}(1+1)=3,
\end{gathered}
$$

by Theorem [1.1]. Since $\operatorname{dim} S_{k}\left(\Gamma_{0}(N), \chi\right)=0$ for $k \leq 0$, the result $\operatorname{dim} M_{3}\left(\Gamma_{0}(7), \chi-7\right)=3$ follows. By Corollary 2.7 in [1], this space is generated by two linearly independent Eisenstein series:

$$
\begin{gathered}
G_{3,7}(q)=\frac{L\left(1-3, \chi_{-7}\right)}{2}+\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{-7}(d) d^{3-1}\right) q^{n}=\frac{L\left(-2, \chi_{-7}\right)}{2}+q+O\left(q^{2}\right), \\
H_{3,7}(q)=\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n} \chi_{-7}(n / d) d^{3-1}\right) q^{n}=q+O\left(q^{2}\right) .
\end{gathered}
$$

On the other hand, Kachakhidze constructed a basis of cusp forms of

$$
S_{k}\left(\Gamma_{0}(7), \chi_{-7}\right), 3 \leq k \leq 5
$$

in [4, page 66]. Taking $k=3$, we see that there is only one element in the basis, i.e.,

$$
\Theta_{F_{1}, \varphi}(q), \text { where } F_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}, \varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-2 x_{2}^{2}\right) .
$$

Obviously,

$$
\Theta_{F_{1}, \varphi}(q)=\sum_{n=1}\left(\sum_{F_{1}=n}\left(x_{1}^{2}-2 x_{2}^{2}\right)\right) q^{n}
$$

Now after the calculation of

$$
F_{1}=x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}=n
$$

for $n=1,2, \cdots, 19$, we get

$$
\Theta_{F_{1}, \varphi}(q)=q-4 q^{2}+10 q^{4}-14 q^{7}-6 q^{8}+18 q^{9}-12 q^{11}+42 q^{14}-22 q^{16}-54 q^{18}+\cdots
$$

The theta series $\Theta_{Q_{7}}(q)$ associated to Q_{7} is given as linear combination of two Eisenstein series and cusp forms as

$$
\frac{2}{L(-2, \chi-7)} G_{3,7}+c_{2} H_{3,7}+c_{3} \Theta_{F_{1}, \varphi}
$$

Now,

$$
\begin{aligned}
\frac{2}{L\left(-2, \chi_{-7}\right)} \sum_{d>0, d \mid 1} \chi_{-7}(d) d^{2}+c_{2}+c_{3} & =0 \\
\frac{2}{L\left(-2, \chi_{-7}\right)} \sum_{d>0, d \mid 2} \chi_{-7}(d) d^{2}+\left(\sum_{d>0, d \mid 2} \chi_{-7}(2 / d) d^{2}\right) c_{2}-4 c_{3} & =0,
\end{aligned}
$$

since $Q_{7}=1$ and $Q_{7}=2$ doesn't have any integer solutions. We immediately obtain that

$$
c_{2}=-\frac{2}{L(-2, \chi-7)} \text { and } c_{3}=0
$$

Hence, the theta series $\Theta_{Q_{7}}(q)$ associated to Q_{7} is a linear combination of two Eisenstein series as

$$
\begin{gathered}
\Theta_{Q_{7}}(q)=\frac{2}{L\left(-2, \chi_{-7}\right)}\left(G_{3,7}-H_{3,7}\right)= \\
\frac{2}{L\left(-2, \chi_{-7}\right)}\left(\frac{L\left(-2, \chi_{-7}\right)}{2}+\sum_{n=1}^{\infty}\left(\sum_{d>0, d \mid n}\left(\chi_{-7}(d)-\chi_{-7}(n / d)\right) d^{2}\right) q^{n}\right) .
\end{gathered}
$$

So, the representation number $\mathrm{r}\left(Q_{7}, n\right)$ is given by the following simple formula

$$
r\left(n, Q_{7}\right)=\frac{2}{L\left(-2, \chi_{-7}\right)} \sum_{d>0, d \mid n}\left(\chi_{-7}(d)-\chi_{-7}(n / d)\right) d^{2} .
$$

The values

$$
L\left(0, \chi_{-3}\right)=\frac{1}{3}, L\left(-1, \chi_{5}\right)=-\frac{1}{2} B_{2, \chi_{5}}=-2 / 5, L\left(-2, \chi_{-7}\right)=-\frac{1}{3} B_{3, \chi_{-7}}=-16 / 7
$$

follow from direct calculations.

References

[1] Cohen, H. and Oesterle, J.: Dimensions des espaces de formes modulaires. Springer Lect. Notes 627, 69-78, (1977)
[2] Hunter, J.: The minimum discriminants of quintic fields. Glasgow Mathematical Journal, Vol. 3, Issue 02, 57-67, (2009)
[3] Ivaniech, H.: Topics in classical automorphic forms. Graduate Studies in Mathematics American Mathematical Society, (1997)
[4] Kachakhidze, N.: On the representation numbers by the direct sums of some binary quadratic forms. Georgian Mathematical Journal, Vol. 5 No.1, 55-70, (1998)
[5] Tekcan, A.: Formulas for the Fourier coefficients of cusp form for some quadratic forms. Turkish Journal of Mathematics 29, 141-156, (2005)

[^0]: *Correspondence: bkendirli@fatih.edu.tr

