Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $145-164$
(C) TÜBİTAK
doi:10.3906/mat-1106-30

Braiding for internal categories in the category of whiskered groupoids and simplicial groups

Erdal ULUALAN*, Sedat PAK
Dumlupınar University, Science Faculty, Department of Mathematics, Kütahya, Turkey

Received: 16.06.2011 • Accepted: 18.11.2011 • Published Online: 17.12.2012 • Printed: 14.01 .2013

Abstract

In this work, we define the notion of 'braiding' for an internal groupoid in the category of whiskered groupoids and we give a relation between this structure and simplicial groups by using higher order Peiffer elements in the Moore complex of a simplicial group.

Key words: Simplicial groups, crossed modules, groupoids

1. Introduction

Brown and Gilbert [12] have defined a braiding map for a regular crossed module over groupoids. They have proved that the category of braided regular crossed modules is equivalent to that of simplicial groups with Moore complex of length 2. Braided monoidal categories were defined by Joyal and Street in [21]. They have also defined crossed semi-modules for monoids with a bracket operation and given an equivalence between the category of braided monoidal categories and the category of crossed semi-modules with bracket operations. For further work about braided monoidal categories see also [8] and [22].

Categorical groups are monoidal groupoids in which every object is invertible, up to isomorphism, with respect to the tensor product (cf. Breen [10] and Joyal-Street [21, 20]). These structures sometimes are equipped with a braiding or a symmetry (cf. [9, 19, 21, 20]). Garzon and Miranda, [19], gave the relation between the category of categorical groups equipped with a braiding and the category of reduced 2 -crossed modules by using Brown-Spencer theorem given in [14]. For these categorical notions see also [5, 6, 13].

In order to define the notion of commutativity for a groupoid and to discuss related questions, Brown in [11] has introduced an extra structure called a 'whiskering operation'. Groupoids with whiskering operations are called 'whiskered groupoids'. To put a braiding on an internal groupoid in the category of whiskered groupoids over the same monoid of objects, we need the notions of left and right multiplications and commutators of two morphisms in a groupoid together with a whiskering operation, similarly to the definition of braiding for a categorical group (cf. [19] and [21]). Brown also in his work [11] has defined these notions for the morphisms in a groupoid by using the whiskering operations.

Thus our aims in this paper are:
(i) to give a definition of 'braiding' for internal groupoids in the category of whiskered groupoids over the same objects set by considering the 'whiskering operations', and

[^0](ii) to give a description of the passage from a simplicial group with Moore complex of length 2 to this internal groupoid equipped with the braiding.

2. Preliminaries

In this section, we recall the basic properties of simplicial groups from [18, 23, 24] and the notion of 'braiding' for a monoidal category (cf. [20]).

2.1. Simplicial groups and Moore complexes

A simplicial group \mathbf{G} consists of a family of groups G_{n} together with face and degeneracy maps $d_{i}^{n}: G_{n} \rightarrow$ $G_{n-1}, 0 \leq i \leq n(n \neq 0)$ and $s_{i}^{n}: G_{n} \rightarrow G_{n+1}, 0 \leq i \leq n$ satisfying the usual simplicial identities given by May [23]. In fact, it can be completely described as a functor $\mathbf{G}: \Delta^{o p} \rightarrow \mathbf{G r p}$ where Δ is the category of finite ordinals. We will denote the category of simplicial groups by $\mathfrak{S i m p} \mathfrak{G} \mathfrak{r p}$.

The Moore complex $(\mathbf{N G}, \partial)$ of a simplicial group \mathbf{G} is a chain complex defined by

$$
(N G)_{n}=\operatorname{ker} d_{0} \cap \operatorname{ker} d_{1} \cap \cdots \cap \operatorname{ker} d_{n-1} \subseteq G_{n}
$$

The differential ∂_{n} is the restriction of the missing face operator d_{n}.
We say that the Moore complex NG of a simplicial group \mathbf{G} is of length k if $N G_{n}=1$ for all $n \geq k+1$. We denote the category of simplicial groups with Moore complex of length k by $\mathfrak{S i m p} \mathfrak{G r p}_{\leq k}$. The Moore complex of a simplicial group carries a lot of fine structure and this has been studied, e.g. by Carrasco-Cegarra [15], Arvasi-Porter [2], Conduché [17], Mutlu-Porter [24] and Arvasi-Ulualan [3].

Mutlu and Porter in [24] defined functions $F_{\alpha, \beta}$ which are variants of Carrasco-Cegarra pairing operators (cf. [15]) called Peiffer Pairings and they have investigated the image $\partial_{n}\left(N_{n}\right)$ for $n=2,3,4$, where N_{n} is a normal subgroup of G_{n} generated by elements $F_{\alpha, \beta}\left(x_{\alpha}, y_{\beta}\right)$, and ∂_{n} is the differential in the Moore complex. They gave a construction of a free simplicial group by using these operators in [25]. For a general construction of these structures over operads, see also [16]. When we construct the relations among simplicial groups and internal groupoids within whiskered groupoids, we use the functions $F_{\alpha, \beta}$.

2.2. Braided categorical groups and crossed modules

Joyal and Street in [21] have defined the notion of braiding for a categorical group. Let A and O be groups and $A \underset{e}{\stackrel{s, t}{\rightleftarrows}} O$ an internal category in the category of groups. A braiding for this structure (cf. [21], [9],
[19]) is a map $\tau_{a, b}: O \times O \rightarrow A$ which satisfies the conditions
(i) $s \tau_{a, b}=a b, t \tau_{a, b}=b a$,
(ii) $x: a \rightarrow a^{\prime}$, and $y: b \rightarrow b^{\prime}$ in $A, \tau_{a^{\prime}, b^{\prime}} \circ x y=y x \circ \tau_{a, b}$,
(iii) $\tau_{a, b c}=\left(I_{b} \tau_{a, c}\right) \circ\left(\tau_{a, b} I_{c}\right)$,
(iv) $\tau_{a b, c}=\left(\tau_{a, c} I_{b}\right) \circ\left(I_{a} \tau_{b, c}\right)$,
(v) $\tau_{1, a}=\tau_{a, 1}=e(a)$,
for $a, b, c \in O$ and $x, y \in A$.
Crossed modules were introduced by Whitehead [27] as models for connected 2-types. A crossed module is a group homomorphism $\partial: M \rightarrow P$ together with an action of P on M, written ${ }^{p} m$ for $p \in P$ and $m \in M$,
satisfying the conditions $\partial\left({ }^{p} m\right)=p \partial(m) p^{-1}$ and ${ }^{m} \partial m^{\prime}=m m^{\prime} m^{-1}$ for all $m, m^{\prime} \in M, p \in P$. Braided regular crossed modules on groupoids were defined by Brown and Gilbert in [12] as models for homotopy connected 3 -types. In [1], the relationship between braided crossed modules and reduced simplicial groups was reproved by use of the functions $F_{\alpha, \beta}$. Also in [4], this construction was extended to the 'regularity'. That is, 'a description of the passage from a simplicial group to a braided regular crossed module by use of the functions $F_{\alpha, \beta}$ '.

From the results of the cited works, the category of braided internal categories in the category of groups is equivalent to that of braided crossed modules and the monoid version of this equivalence was given in [20] as we mentioned above. Furthermore, since the category of braided crossed modules is equivalent to that of reduced simplicial groups with Moore complex of length 2, we can say that the category of braided internal categories within groups is also equivalent to that of reduced simplicial groups with Moore complex of length 2 (cf. [26]). We can consider the groupoid cases of these structures. The groupoid case of a braided crossed module is clearly a braided regular crossed module of groupoids and the category of these objects is equivalent to that of simplicial groups with Moore complex of length 2 (cf. [12]). So, we can ask what is the groupoid case of a braided categorical groups, or how can the notion of braiding for an internal groupoid in the category of groupoids be defined? To define this structure and to give a relationship between this structure and simplicial groups, we need the notion of whiskered groupoid introduced by Brown in [11].

3. Braiding for internal categories in the category of whiskered groupoids

3.1. Whiskered categories

Let \mathfrak{C} be a small category with set of objects written C_{0}. The set of arrows of \mathfrak{C} is written C_{1}. The set of morphisms $x \rightarrow y$ from x to y is written $C_{1}(x, y)$, and x, y are the source and target of such a morphism. The source and target maps are written $s, t: C_{1} \rightarrow C_{0}$. We will write the composition of $f: x \longrightarrow y$ and $g: y \longrightarrow z$ as $g f: x \longrightarrow z$, or $g \circ f$. Then we have $s(g \circ f)=s(f)$ and $t(g \circ f)=t(g)$. We write $C_{1}(x, x)$ as $C_{1}(x)$.

Brown has defined the notion of 'whiskering' for a category \mathfrak{C} and gave the notions of left and right multiplications on a whiskered category \mathfrak{C}. The following definition is due to Brown [11].

Definition 3.1 A whiskering on a category \mathfrak{C} (whose set of objects is C_{0} and set of morphisms is C_{1}) consists of operations

$$
m_{i, j}: C_{i} \times C_{j} \longrightarrow C_{i+j}, i, j=0,1, i+j \leqslant 1
$$

satisfying the following axioms:
Whisk 1. $m_{0,0}$ gives a monoid structure on C_{0};
Whisk 2. $m_{0,1}: C_{0} \times C_{1} \longrightarrow C_{1}$ is a left action of the monoid C_{0} on the category \mathfrak{C} in the sense that, if $x \in C_{0}$ and $a: u \longrightarrow v$ in C_{1}, then

$$
m_{0,1}(x, a): m_{0,0}(x, u) \longrightarrow m_{0,0}(x, v)
$$

in \mathfrak{C}, so that:

$$
\begin{aligned}
& m_{0,1}(1, a)=a, m_{0,1}\left(m_{0,0}(x, y), a\right)=m_{0,1}\left(x, m_{0,1}(y, a)\right) \\
& m_{0,1}(x, a \circ b)=m_{0,1}(x, a) \circ m_{0,1}(x, b), m_{0,1}\left(x, 1_{y}\right)=1_{x y}
\end{aligned}
$$

Whisk 3. $m_{1,0}: C_{1} \times C_{0} \longrightarrow C_{1}$ is a right action of the monoid C_{0} on C_{1} with analogous rules.

Whisk 4.

$$
m_{0,1}\left(x, m_{1,0}(a, y)\right)=m_{1,0}\left(m_{0,1}(x, a), y\right)
$$

for all $x, y, u, v \in C_{0}, a, b \in C_{1}$.
A category \mathfrak{C} together with a whiskering is called a whiskered category.

Recall that a groupoid is a small category in which every arrow is an isomorphism. That is, for any morphism a there exists a (necessarily unique) morphism a^{-1} such that $a \circ a^{-1}=e_{t(a)}$ and $a^{-1} \circ a=e_{s(a)}$, where $e: C_{0} \rightarrow C_{1}$ gives the identity morphism at an object. We write a groupoid as $\left(C_{1}, C_{0}\right)$, where C_{0} is the set of objects and C_{1} is the set of morphisms. For any groupoid C, if $C_{1}(x, y)$ is empty whenever x, y are distinct (that is, if $s=t$), then C is called totally disconnected. A groupoid (C_{1}, C_{0}) together with the whiskering operations $m_{i, j}: C_{i} \times C_{j} \rightarrow C_{i+j}$ for $i+j \leqslant 1$ satisfying the conditions (Whisk $1 \ldots$ Whisk 4) is called a whiskered groupoid. We denote a whiskered groupoid by $\left(C_{1}, C_{0}, m_{i, j}\right)$.

Let $\partial: M \rightarrow P$ be a crossed module. By using the action of P on M, we can consider the semi-direct product group $M \rtimes P$. Then, by taking $C_{0}=P$ and $C_{1}=M \rtimes P$ we can create a whiskered groupoid as follows: The source and target maps from C_{1} to C_{0} are given by $s(m, p)=p$ and $t(m, p)=\partial(m) p$ for all $(m, p) \in C_{1}$. The groupoid composition is given by $\left(m^{\prime}, p^{\prime}\right) \circ(m, p)=\left(m^{\prime} m, p\right)$ if $p^{\prime}=\partial(m) p$. Finally, the whiskering operations $m_{0,1}$ and $m_{1,0}$ are given, respectively, $m_{0,1}\left(p,\left(m, p^{\prime}\right)\right)=\left({ }^{p} m, p p^{\prime}\right)$ and $m_{1,0}\left(\left(m, p^{\prime}\right), p\right)=\left(m, p^{\prime} p\right)$ for all $m \in M, p, p^{\prime} \in P$.

Proposition 3.2 In a whiskered groupoid $\left(C_{1}, C_{0}, m_{i, j}\right)$, if the monoid of objects C_{0} is a group with the multiplication $m_{0,0}$, then
(i) the set $K=\left\{a \in C_{1}: t(a)=1_{C_{0}}\right\}$ is a group with the group operation given for any $a, b \in K$ by $a b=b \circ m_{1,0}(a, s(b))$,
(ii) the source map s from K to C_{0} is a homomorphism of groups,
(iii) C_{0} acts on K by ${ }^{p} a=m_{0,1}\left(p, m_{1,0}\left(a, p^{-1}\right)\right)$ or $\left.{ }^{p} a=m_{1,0}\left(m_{0,1}(p, a), p^{-1}\right)\right)$ for $a \in K, p \in C_{0}$, and C_{0} acting on itself by conjugation,
(iv) the homomorphism s is C_{0}-equivariant relative to the left action of C_{0} on K given above.

Proof (Sketch)

(i) We leave it to the reader.
(ii) For $a, b \in K$, we have $s(a b)=s\left(b \circ m_{1,0}(a, s(b))\right)=s\left(m_{1,0}(a, s(b))\right)$. From axiom Whisk 3.), we have

$$
m_{1,0}(a, s(b)): m_{0,0}(s(a), s(b)) \longrightarrow m_{0,0}(t(a), t(b)),
$$

and then we obtain $s\left(m_{1,0}(a, s(b))\right)=m_{0,0}(s(a), s(b))=s(a) s(b)$.
(iii) For $p_{1}, p_{2} \in C_{0}$ and $a \in K$, we have

$$
\begin{aligned}
p_{1}\left({ }^{p_{2}} a\right) & ={ }^{p_{1}}\left(m_{0,1}\left(p_{2}, m_{1,0}\left(a, p_{2}^{-1}\right)\right)\right) \\
& =m_{0,1}\left(p_{1}, m_{1,0}\left(m_{0,1}\left(p_{2}, m_{1,0}\left(a, p_{2}^{-1}\right)\right), p_{1}^{-1}\right)\right) \\
& =m_{0,1}\left(p_{1}, m_{0,1}\left(p_{2}, m_{1,0}\left(m_{1,0}\left(a, p_{2}^{-1}\right), p_{1}^{-1}\right)\right)\right) \quad \text { (due to Whisk 4.) } \\
& =m_{0,1}\left(p_{1}, m_{0,1}\left(p_{2}, m_{1,0}\left(a, p_{2}^{-1} p_{1}^{-1}\right)\right)\right) \quad \text { (due to Whisk 2.) } \\
& =m_{0,1}\left(p_{1} p_{2}, m_{1,0}\left(a, p_{2}^{-1} p_{1}^{-1}\right)\right) \quad \text { (due to Whisk 2.) } \\
& =p_{1} p_{2} a
\end{aligned}
$$

and

$$
\begin{aligned}
{ }^{\left(1_{C_{0}}\right)} a & =m_{0,1}\left(1, m_{1,0}(a, 1)\right) \\
& =m_{1,0}(a, 1) \quad \text { (due to Whisk 2.) } \\
& =a . \quad \text { (due to Whisk 3.) }
\end{aligned}
$$

For $a, b \in K$ and $p \in C_{0}$, we have

$$
\begin{aligned}
\left({ }^{p} a\right)\left({ }^{p} b\right) & =\left[m_{0,1}\left(p, m_{1,0}\left(a, p^{-1}\right)\right)\right]\left[m_{0,1}\left(p, m_{1,0}\left(b, p^{-1}\right)\right)\right] \\
& =m_{0,1}\left(p, m_{1,0}\left(b, p^{-1}\right)\right) \circ m_{1,0}\left(m_{0,1}\left(p, m_{1,0}\left(a, p^{-1}\right)\right), p s(b) p^{-1}\right) \\
& =m_{0,1}\left(p, m_{1,0}\left(b, p^{-1}\right)\right) \circ m_{0,1}\left(p, m_{1,0}\left(m_{1,0}(a, s(b)), p^{-1}\right)\right) \quad \text { (due to Whisk 4.) } \\
& =m_{0,1}\left(p, m_{1,0}\left(b \circ m_{1,0}(a, s(b)), p^{-1}\right)\right) \quad(\text { due to Whisk 2.) } \\
& =m_{0,1}\left(p, m_{1,0}\left(a b, p^{-1}\right)\right) \\
& ={ }^{p}(a b) .
\end{aligned}
$$

(iv) For $p \in C_{0}$ and $a \in K$, we have

$$
\begin{aligned}
s\left({ }^{p} a\right) & =s\left(m_{0,1}\left(p, m_{1,0}\left(a, p^{-1}\right)\right)\right) \\
& =p s\left(m_{1,0}\left(a, p^{-1}\right)\right) \quad \text { (due to Whisk 2.) } \\
& =p s(a) p^{-1} . \quad \text { (due to Whisk 3.) }
\end{aligned}
$$

Let WGp be the category of whiskered groupoids. Define a subcategory of WGp whose objects are whiskered groupoids over the same monoid of objects C_{0}. We will denote this subcategory by WGp/ $\mathbf{C}_{\mathbf{0}}$. In what follows, Cat-WGp/ $\mathbf{C o}_{0}$ will denote the category of internal categories in the category of whiskered groupoids over the same monoid of objects C_{0}. An object of Cat-WGp/ $\mathbf{c}_{\mathbf{o}}$ will be represented by the diagram

where $\left(C_{1} \underset{e^{\prime}}{\stackrel{s, t}{\rightleftarrows}} C_{0}, 0, m_{i j}^{\prime}\right)$ and ($D_{1} \underset{e}{\stackrel{s, t}{\rightleftarrows}} C_{0}, o, m_{i j}$) are whiskered groupoids,

$$
\left(C_{1} \underset{I}{\stackrel{\varepsilon_{0}, \varepsilon_{1}}{\rightleftarrows}} D_{1}, *\right)
$$

gives a small category, and the maps $\epsilon_{0}, \epsilon_{1}$ are identities on C_{0}. A 2-morphism x in the category (C_{1}, D_{1}) between the 1-morphisms $a, a^{\prime}: u \rightarrow v \in D_{1}(u, v)$ is represented by $x: a \Rightarrow a^{\prime}$, where $\epsilon_{0}(x)=a$ and $\epsilon_{1}(x)=a^{\prime}$, and for 2-morphisms $x, y \in\left(C_{1}, D_{1}\right), \epsilon_{0}(x * y)=\epsilon_{0}(y)$ and $\epsilon_{1}(x * y)=\epsilon_{1}(x)$ when $\epsilon_{0}(x)=\epsilon_{1}(y)$.

To define the notion of braiding on an object in the category Cat-WGp/ C_{0}, the notions of left and right multiplications on the whiskered groupoid ($D_{1} \stackrel{s, t}{\rightleftarrows} C_{0}, m_{i j}$) must be defined.

We can take from [11] the left and right multiplications on a whiskered category

$$
\mathfrak{C}:\left(D_{1} \stackrel{s, t}{\rightleftarrows} C_{0}, m_{i j}\right)
$$

for any $a, b \in D_{1}$, by

$$
l(a, b)=m_{0,1}(t(a), b) \circ m_{1,0}(a, s(b))
$$

and

$$
r(a, b)=m_{1,0}(a, t(b)) \circ m_{0,1}(s(a), b),
$$

where $s, t: D_{1} \longrightarrow C_{0}$ are the source and target maps.
If

$$
\mathfrak{C}:\left(D_{1} \underset{e}{\stackrel{s, t}{\rightleftarrows}} C_{0}, m_{i j}\right)
$$

is a whiskered groupoid, the commutators are defined by

$$
[a, b]=r(a, b) \circ l(a, b)^{-1}
$$

for $a, b \in D_{1}$.
Definition 3.3 Let \mathbf{C} be an internal category in the category $\mathbf{W G p} / \mathrm{C}_{0}$ represented by a diagram

as given above. The morphisms $\epsilon_{0}, \epsilon_{1}$ and I are identity morphisms on the objects set C_{0} and they preserve the whiskering structure on the groupoids C_{1} and D_{1}.

Braiding on this internal category is a map

$$
\begin{gathered}
\tau_{a, b}: \quad\left(D_{1}, C_{0}\right) \times\left(D_{1}, C_{0}\right) \longrightarrow\left(C_{1}, C_{0}\right) \\
(a, b) \longmapsto \tau_{a, b}
\end{gathered}
$$

satisfying the following conditions.
BW1. For $a, b \in D_{1}, \epsilon_{0} \tau_{a, b}=r(a, b)$, and $\epsilon_{1} \tau_{a, b}=l(a, b)$. Thus we have

$$
\tau_{a, b}: r(a, b) \rightarrow l(a, b),
$$

and from this axiom we can give the commutator of two morphisms a, b in the groupoid D_{1} by

$$
[a, b]=\left(\epsilon_{0} \tau_{a, b}\right) \circ\left(\epsilon_{1} \tau_{a, b}\right)^{-1}
$$

BW2. For $a \in D_{1}$ and $p \in C_{0}, \tau_{e(p), a}=m_{0,1}^{\prime}(p, I(a))$, and $\tau_{a, e(p)}=m_{1,0}^{\prime}(I(a), p)$.
BW3. For $a, b, c \in D_{1}$, with $t(c)=s(b)$ the following diagram is commutative:

or equivalently,

$$
\tau_{a, b \circ c}=\left[m_{0,1}^{\prime}(t(a), I(b)) \circ \tau_{a, c}\right] *\left[\tau_{a, b} \circ m_{0,1}^{\prime}(s(a), I(c))\right] .
$$

BW4. For $a, b, c \in D_{1}$ with $t(b)=s(a)$, the following diagram is commutative

or equivalently

$$
\tau_{a \circ b, c}=\left[\tau_{a, c} \circ m_{1,0}^{\prime}(I(b), s(c))\right] *\left[m_{1,0}^{\prime}(I(a), t(c)) \circ \tau_{b, c}\right] .
$$

BW5. For the 2-morphisms $x: a \Rightarrow a^{\prime}$ and $y: b \Rightarrow b^{\prime} \in\left(C_{1}, D_{1}\right)$,

$$
\epsilon_{i}\left(l(x, y) * \tau_{a, b}\right)=\epsilon_{i}\left(\tau_{a^{\prime}, b^{\prime}} * r(x, y)\right)
$$

for $i=0,1$.
An internal category \mathbf{C} together with a braiding is called a braided internal category within whiskered groupoids.

Example 3.4 Let

be a braided internal category in the category of whiskered groupoids over the same monoid of objects C_{0} together with the braiding $\tau: D_{1} \times D_{1} \rightarrow C_{1}$. If the monoid of objects C_{0} is a trivial monoid, then the left and right actions of C_{0} on C_{1}, D_{1} determined by the whiskering operations $m_{i, j}$ are trivial actions, and C_{1}, D_{1} are groups. Then we have $r(a, b)=a b, l(a, b)=b a$ for $a, b \in D_{1}$, and $[a, b]=r(a, b) l(a, b)^{-1}=a b a^{-1} b^{-1}$. Thus the braiding axioms above reduce the following conditions:
(i) $\epsilon_{0}\left(\tau_{a, b}\right)=a b$ and $\epsilon_{1}\left(\tau_{a, b}\right)=b a$, that is, $\tau_{a, b}: a b \rightarrow b a$,
(ii) $x: a \rightarrow a^{\prime}$, and $y: b \rightarrow b^{\prime}, \tau_{a^{\prime}, b^{\prime}} \circ x y=y x \circ \tau_{a, b}$,
(iii) $\tau_{a, b c}=\left(I_{b} \tau_{a, c}\right) \circ\left(\tau_{a, b} I_{c}\right)$,
(iv) $\tau_{a b, c}=\left(\tau_{a, c} I_{b}\right) \circ\left(I_{a} \tau_{b, c}\right)$,
(v) $\tau_{1, a}=\tau_{a, 1}=I(a)$,
for $a, b, c \in D_{1}$ and $x, y \in C_{1}$.
This is the reduced case of braided internal groupoids within whiskered groupoids and gives a braided categorical group as given in [9, 19, 21, 20].

4. Simplicial groups and braided internal categories within whiskered groupoids

In this section we will give a description of the passage from a simplicial group to a braided internal category in the category of whiskered groupoids. First, we recall the semi-direct product groupoids (cf. [12]).

Let C and H be groupoids over the same object set C_{0} and H totally disconnected. Suppose that the groupoid C has a left action on the groupoid H. Then, we can define the semi-direct product as follows: Let $h \in H_{1}(y)$ and $c \in C_{1}(x, y)$, then, for $x, y \in C_{0}$

$$
(H \tilde{\times} C)(x, y)=H(y) \times C(x, y)
$$

is a groupoid and composition is defined by

$$
(h, c) \circ\left(h^{\prime}, c^{\prime}\right)=\left(h \circ^{c} h^{\prime}, c \circ c^{\prime}\right) .
$$

Now, we can give a description of the passage from simplicial groups to braided internal categories in the category of whiskered groupoids.

Let \mathbf{G} be a simplicial group with Moore complex (NG, ∂). From this Moore complex, we will construct a braided internal category within whiskered groupoids over the same monoid of objects C_{0} denoting it by the diagram

Let $C_{0}=N G_{0}=G_{0}$. Using the action of G_{0} via s_{0}, we define the semi-direct product $D_{1}=$ $N G_{1} \rtimes s_{0} N G_{0}$. Notice that s_{0} is a section of d_{0} and $N G_{1}$ is the kernel of d_{0} the group G_{1} is the semidirect product $G_{1}=D_{1}=N G_{1} \rtimes G_{0}$. For $(g, p) \in D_{1}$, we define the source, target and identity maps by $s(g, p)=p, t(g, p)=d_{1}(g) p$ and $e(p)=(1, p)$, respectively, and where $d_{1}=d_{1}^{1}=\partial_{1}$ the differential of the Moore complex restricted to $N G_{1}$. Thus we have

$$
\cdot p \xrightarrow{(g, p)} \cdot \partial_{1}(g) p
$$

is a morphism in D_{1}. The groupoid composition on D_{1} can be given by

$$
\left(g^{\prime}, p^{\prime}\right) \circ(g, p)=\left(g^{\prime} g, p\right)
$$

when $s\left(g^{\prime}, p^{\prime}\right)=p^{\prime}=t(g, p)=\left(\partial_{1} g\right) p$. Then we have $s\left(\left(g^{\prime}, p^{\prime}\right) \circ(g, p)\right)=s\left(\left(g^{\prime} g, p\right)\right)=p=s(g, p)$ and $t\left(\left(g^{\prime}, p^{\prime}\right) \circ(g, p)\right)=t\left(\left(g^{\prime} g, p\right)\right)=\partial_{1}\left(g^{\prime}\right) \partial_{1}(g) p=\partial_{1}\left(g^{\prime}\right) p^{\prime}=t\left(g^{\prime}, p^{\prime}\right)$. Furthermore, the inverse a^{-1} of the morphism $a=(g, p): p \rightarrow d_{1} g p$ can be defined by $a^{-1}=\left(g^{-1}, d_{1} g p\right): d_{1} g p \rightarrow p$. Thus we have $a \circ a^{-1}=$ $(g, p) \circ\left(g^{-1}, d_{1} g p\right)=\left(1, d_{1} g p\right)=e\left(d_{1} g p\right)=e(t(a))$ and $a^{-1} \circ a=\left(g^{-1}, d_{1} g p\right) \circ(g, p)=(1, p)=e(p)=e(s(a))$. Thus we have the following proposition.

Proposition 4.1 The groupoid

$$
\mathfrak{D}:\left(D_{1} \underset{e}{\stackrel{s, t}{\rightleftarrows}} C_{0}\right)
$$

constructed above is a whiskered groupoid together with the operations on \mathfrak{D} given by

$$
\begin{array}{ll}
m_{0,1}: & C_{0} \times D_{1} \longrightarrow D_{1} \\
& (p,(g, q)) \longmapsto\left(s_{0} p g s_{0} p^{-1}, p q\right) \\
m_{1,0}: & D_{1} \times C_{0} \longrightarrow D_{1} \\
& ((g, q), p) \longmapsto(g, q p)
\end{array}
$$

for $p, q \in C_{0}$ and $(g, q) \in D_{1}$, and

$$
m_{0,0}: C_{0} \times C_{0} \longrightarrow C_{0}
$$

is the group operation on $N G_{0}$.
The left and right multiplications l, r on the whiskered groupoid

$$
\mathfrak{D}:\left(D_{1} \underset{e}{\stackrel{s, t}{\rightleftarrows}} C_{0}, m_{i j}\right)
$$

for the morphisms $a=(g, p): p \rightarrow d_{1}(g) p$ and $b=(h, q): q \rightarrow d_{1}(h) q$ in D_{1} can be given by

$$
\begin{aligned}
l(a, b) & =m_{0,1}(t(a), b) \circ m_{1,0}(a, s(b)) \\
& =m_{0,1}\left(\partial_{1} g p,(h, q)\right) \circ m_{1,0}((g, p), q) \\
& =\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1} s_{0} d_{1} g^{-1}, d_{1} g p q\right) \circ(g, p q) \\
& =\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1}\left(s_{0} d_{1} g^{-1}\right) g, p q\right),
\end{aligned}
$$

and

$$
\begin{aligned}
r(a, b) & =m_{1,0}(a, t(b)) \circ m_{0,1}(s(a), b) \\
& =m_{1,0}\left((g, p), d_{1} h q\right) \circ m_{0,1}(p,(h, q)) \\
& =\left(g, p d_{1} h q\right) \circ\left(s_{0} p h s_{0} p^{-1}, p q\right) \\
& =\left(g s_{0} p h s_{0} p^{-1}, p q\right) .
\end{aligned}
$$

Now, we continue the construction. Using the action of $N G_{0}$ on $N G_{2} / \partial_{3}\left(N G_{3} \cap D_{3}\right)=N G_{2}^{\prime}$ via $s_{0} s_{0}=s_{1} s_{0}$, we can construct

$$
C_{1}^{\prime}=N G_{2}^{\prime} \rtimes N G_{0}
$$

together with the source, target and identity maps given by

$$
s(\bar{l}, p)=p=t(\bar{l}, p), e(p)=(1, p)
$$

for $\bar{l}=l\left(\partial_{3}\left(N G_{3} \cap D_{3}\right)\right) \in N G_{2}^{\prime}$ and $p \in N G_{0}$. The groupoid composition on C_{1}^{\prime} can be given by $\left(\overline{l_{1}}, p\right) \circ\left(\overline{l_{2}}, p\right)=$ $\left(\overline{l_{1} l_{2}}, p\right)$ for $l_{1}, l_{2} \in N G_{2}$. Thus we have the following result.

Proposition 4.2 The diagram

$$
\mathfrak{C}:\left(C_{1}^{\prime} \underset{e}{\stackrel{s, t}{\rightleftarrows}} C_{0}\right)
$$

becomes a whiskered groupoid together with the maps $\sigma_{0,0}=m_{0,0}$

$$
\sigma_{0,1}: C_{0} \times C_{1}^{\prime} \rightarrow C_{1}^{\prime}
$$

given by $(p,(\bar{l}, q)) \mapsto\left(\overline{\left(s_{1} s_{0} p\right) l\left(s_{1} s_{0} p^{-1}\right)}, p q\right)$ and

$$
\sigma_{1,0}: C_{1}^{\prime} \times C_{0} \rightarrow C_{1}^{\prime}
$$

given by $((\bar{l}, q), p) \longmapsto(\bar{l}, q p)$, for $(\bar{l}, q) \in C_{1}^{\prime}$ and $p \in C_{0}$.
Thus far we have constructed two whiskered groupoids

$$
\mathfrak{C}:\left(C_{1}^{\prime} \underset{e}{\stackrel{s, t}{\rightleftarrows}} C_{0}, \sigma_{i j}\right)
$$

and

$$
\mathfrak{D}:\left(D_{1} \stackrel{s, t}{\rightleftarrows} C_{0}, m_{i j}\right),
$$

over the same objects set C_{0} where the groupoid \mathfrak{C} is a totally disconnected groupoid.
The groupoid action of $(g, q) \in D_{1}$ on $(\bar{l}, q) \in C_{1}^{\prime}$ can be given by

$$
{ }^{(g, q)}(\bar{l}, q)=\left(\overline{s_{1} g l s_{1} g^{-1}}, d_{1} g q\right)
$$

By using this groupoid action of \mathfrak{D} on \mathfrak{C}, we can define the semi-direct product groupoid

$$
C_{1}(x, y)=\left(C_{1}^{\prime} \tilde{\times} D_{1}\right)(x, y)=C_{1}^{\prime}(y) \times D_{1}(x, y)
$$

for $x, y \in C_{0}$, on the object set C_{0}, together with the vertical composition given by

$$
\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right) \circ\left(\left(\overline{l^{\prime}}, d_{1} g^{\prime} q^{\prime}\right),\left(g^{\prime}, q^{\prime}\right)\right)=\left(\left(\overline{l s_{1} g l^{\prime} s_{1} g^{-1}}, d_{1} g q\right),\left(g g^{\prime}, q^{\prime}\right)\right)
$$

when $q=\left(d_{1} g^{\prime}\right) q^{\prime}$. The source and target maps $s^{\prime}, t^{\prime}: C_{1} \rightarrow C_{0}$ are defined by $s^{\prime}\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)=q$ and $t^{\prime}\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)=d_{1} g q$ for any 2-morphism $\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)$ in C_{1}. Thus, for any $x=\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)$ and $y=\left(\left(\overline{l^{\prime}}, d_{1} g^{\prime} q^{\prime}\right),\left(g^{\prime}, q^{\prime}\right)\right)$ in C_{1} with $s^{\prime}(x)=q=d_{1} g^{\prime} q^{\prime}=t^{\prime}(y)$, we have $s^{\prime}(x \circ y)=q^{\prime}=s^{\prime}(y)$ and $t^{\prime}(x \circ y)=d_{1} g d_{1} g^{\prime} q^{\prime}=d_{1} g q=t^{\prime}(x)$.

Furthermore, the diagram

$$
C_{1} \underset{I}{\stackrel{\varepsilon_{0}, \varepsilon_{1}}{\rightleftarrows}} D_{1},
$$

together with the maps

$$
\begin{aligned}
& \epsilon_{0}\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)=(g, q): q \rightarrow d_{1} g q \\
& \epsilon_{1}\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)=\left(d_{2} l g, q\right): q \rightarrow d_{1} d_{2} l d_{1} g q=d_{1} g q
\end{aligned}
$$

and

$$
I(g, q)=\left(\left(1, d_{1} g q\right),(g, q)\right)
$$

for $\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right) \in C_{1}$, gives an internal category in the category of whiskered groupoids over the same objects set C_{0}. Thus $\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right) \in C_{1}$ is a 2-morphism from the 1-morphism (g, q) to the 1-morphism $\left(d_{2} l g, q\right)$. The horizontal composition is given by

$$
x * y=\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right) *\left(\left(\overline{l^{\prime}}, d_{1} g^{\prime} q\right),\left(g^{\prime}, q\right)\right)=\left(\left(\overline{l l^{\prime}}, d_{1} g^{\prime} q\right),\left(g^{\prime}, q\right)\right)
$$

when $(g, q)=\left(d_{2} l^{\prime} g^{\prime}, q\right)$, and hence $d_{1} g q=d_{1} g^{\prime} q$. We thus obtain $\epsilon_{0}(x * y)=\left(g^{\prime}, q\right)=\epsilon_{0}(y)$ and $\epsilon_{1}(x * y)=\left(d_{2} l d_{2} l^{\prime} g^{\prime}, q\right)=\left(d_{2} l g, q\right)=\epsilon_{1}(x)$ and $\epsilon_{0} I=\epsilon_{1} I=i d_{D_{1}}$.

Proposition 4.3 The semi-direct product groupoid over the objects set C_{0}

$$
C_{1}=C_{1}^{\prime} \tilde{\times} D_{1} \stackrel{s, t}{\rightleftarrows} C_{0}
$$

is a whiskered groupoid together with the maps $m_{0,1}^{\prime}: C_{0} \times C_{1} \rightarrow C_{1}$ given by

$$
\left(p,\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right)\right) \mapsto\left(\left(\overline{s_{1} s_{0} p l s_{1} s_{0} p^{-1}}, p d_{1} g q\right),\left(s_{0} p g s_{0} p^{-1}, p q\right)\right)
$$

and $m_{1,0}^{\prime}: C_{1} \times C_{0} \rightarrow C_{1}$ given by

$$
\left(\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right), p\right) \mapsto\left(\left(\bar{l}, d_{1} g q p\right),(g, q p)\right)
$$

for $\left(\left(\bar{l}, d_{1} g q\right),(g, q)\right) \in C_{1}$ and $p \in C_{0}$.
Thus far we have an internal category in the category of whiskered groupoids over the same monoid of objects C_{0} as

Proposition 4.4 The braiding

$$
\tau:\left(D_{1}, C_{0}\right) \times\left(D_{1}, C_{0}\right) \rightarrow\left(C_{1}, C_{0}\right)
$$

can be given by

$$
\left.\tau_{a, b}=\left(\overline{\left(s_{0} g s_{1} s_{0} p s_{1} h s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}\right.}, d_{1} g p d_{1} h q\right),\left(g s_{0} p h s_{0} p^{-1}, p q\right)\right)
$$

for $a=(g, p), b=(h, q) \in D_{1}$.
Proof We now show that all axioms of braiding given in Definition 3.3 are satisfied. We display the elements omitting the overlines in our calculation to save from complication.
BW1. For $a=(g, p), b=(h, q) \in D_{1}$, we have

$$
\begin{aligned}
\epsilon_{0} \tau_{a, b} & =\left(g s_{0} p h s_{0} p^{-1}, p q\right) \\
& =r(a, b),
\end{aligned}
$$

and

$$
\begin{aligned}
\epsilon_{1} \tau_{a, b} & =\left(d_{2}\left(s_{0} g s_{1} s_{0} p s_{1} h s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}\right) g s_{0} p h s_{0}^{-1}, p q\right) \\
& =\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1} s_{0} d_{1} g^{-1} g s_{0} p h^{-1} s_{0} p^{-1} g^{-1} g s_{0} p h s_{0} p^{-1}, p q\right) \\
& =\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1} s_{0} d_{1} g^{-1} g, p q\right) \\
& =l(a, b) .
\end{aligned}
$$

BW2. For $p \in C_{0}$, and $a=(h, q) \in D_{1}$, we have

$$
\begin{aligned}
\tau_{e(p), a} & =\left(\left(s_{0}(1) s_{1} s_{0} p s_{1} h s_{1} s_{0} p^{-1} s_{0}(1)^{-1} s_{1}(1) s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1} s_{1}(1)^{-1}, p d_{1} h q\right),\left(1 s_{0} p h s_{0} p^{-1}, p q\right)\right) \\
& =\left(\left(1, p d_{1} h q\right),\left(s_{0} p h s_{0} p^{-1}, p q\right)\right) \\
& =m_{0,1}^{\prime}\left(p,\left(\left(1, d_{1} h q\right),(h, q)\right)\right) \\
& =m_{0,1}^{\prime}(p, I(a))
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{a, e(p)} & =\left(\left(s_{0} h s_{1} s_{0} p s_{1} s_{0} p^{-1} s_{0} h^{-1} s_{1} h s_{1} s_{0} p s_{1} s_{0} p^{-1} s_{1} h^{-1}, d_{1} h q p\right),(h, q p)\right) \\
& =\left(\left(1, d_{1} h q p\right),(h, q p)\right) \\
& =m_{1,0}^{\prime}\left(\left(\left(1, d_{1} h q\right),(h, q)\right), p\right) \\
& =m_{1,0}^{\prime}(I(a), p)
\end{aligned}
$$

BW3. It is easily checked from [24] that

$$
\begin{equation*}
s_{0}\left(x_{0}\right) x_{1} s_{0}\left(x_{0}\right)^{-1}=\left(s_{1} s_{0} d_{1}\left(x_{0}\right)\right) x_{1}\left(s_{1} s_{0} d_{1}\left(x_{0}\right)\right)^{-1} \tag{*}
\end{equation*}
$$

for $x_{0} \in N G_{1}$ and $x_{1} \in N G_{2}$, so the action ${ }^{\partial_{1}\left(x_{0}\right)} x_{1}$ is that via s_{0}.
Now, for $a=(g, p), b=(h, q)$ and $c=(k, m) \in D_{1}$ with $t(c)=d_{1} k m=q=s(b)$, we have

$$
\begin{aligned}
m_{0,1}^{\prime}(t(a), I(b)) & =m_{0,1}^{\prime}\left(d_{1} g p,\left(\left(1, d_{1} h q\right),(h, q)\right)\right. \\
& =\left(\left(1, d_{1} g p d_{1} h q\right),\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1} s_{0} d_{1} g^{-1}, d_{1} g p q\right)\right)
\end{aligned}
$$

and

$$
\tau_{a, c}=\left(\left(s_{0} g s_{1} s_{0} p s_{1} k s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} k^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, d_{1} g p d_{1} k m\right),\left(g s_{0} p k s_{0} p^{-1}, p m\right)\right)
$$

Thus we obtain

$$
\begin{aligned}
& m_{0,1}^{\prime}(t(a), I(b)) \circ \tau_{a, c} \\
& \qquad \begin{array}{l}
\left(\left(s_{1} s_{0} d_{1} g\left(s_{1} s_{0} p s_{1} h s_{1} s_{0} p^{-1}\right) s_{1} s_{0} d_{1} g^{-1} s_{0} g s_{1} s_{0} p s_{1} k s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g\right.\right. \\
\left.s_{1} s_{0} p s_{1} k s_{1} s_{0} p^{-1} s_{1} g^{-1}\left(s_{1} s_{0} d_{1} g\left(s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1}\right) s_{1} s_{0} d_{1} g^{-1}\right), d_{1} g p d_{1} h q\right) \\
\left.\quad\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1} s_{0} d_{1} g^{-1} g s_{0} p k s_{0} p^{-1}, p m\right)\right) \\
=\left(\left(s_{0} g s_{1} s_{0} p s_{1} h s_{1} k s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} k^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1} s_{0} g\right.\right. \\
\left.s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1} s_{0} g^{-1}, d_{1} g p d_{1} h q\right),\left(s_{0} d_{1} g s_{0} p h s_{0} p^{-1} s_{0} d_{1} g^{-1} g s_{0} p k s_{0} p^{-1}, p m\right) \quad(\text { since }(*)) .
\end{array}
\end{aligned}
$$

On the other hand, we obtain

$$
m_{0,1}^{\prime}(s(a), I(c))=\left(\left(1, p d_{1} k m\right),\left(s_{0} p k s_{0} p^{-1}, p m\right)\right)
$$

and

$$
\tau_{a, b}=\left(\left(s_{0} g s_{1} s_{0} p s_{1} h s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, d_{1} g p d_{1} h q\right),\left(g s_{0} p h s_{0} p^{-1}, p q\right)\right)
$$

Thus,

$$
\begin{aligned}
\tau_{a, b} \circ m_{0,1}^{\prime}(s(a) & , I(c)) \\
& =\left(\left(\left(s_{0} g s_{1} s_{0} p s_{1} h s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} h^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, d_{1} g p d_{1} h q\right),\left(g s_{0} p h k s_{0} p^{-1}, p m\right)\right)\right.
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
{\left[m_{0,1}^{\prime}(t(a), I(b)) \circ \tau_{a, c}\right] * } & {\left[\tau_{a, b} \circ m_{0,1}^{\prime}(s(a), I(c))\right] } \\
& =\left(\left(s_{0} g s_{1} s_{0} p s_{1}(h k) s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1}(h k)^{-1} s_{1} s_{0} p^{-1}\right.\right. \\
& \left.\left.s_{1} g^{-1}, d_{1} g p d_{1} h d_{1} k m\right),\left(g s_{0} p(h k) s_{0} p^{-1}, p m\right)\right) \quad\left(\text { since } q=d_{1} k m\right) \\
& =\tau_{(g, p),(h k, m)} \\
& =\tau_{a, b o c}
\end{aligned}
$$

BW4. For $a=(g, p), b=(h, q)$ and $c=(k, m) \in D_{1}$ with $t(b)=d_{1} h q=p=s(a)$, we have

$$
\tau_{a, c}=\left(\left(s_{0} g s_{1} s_{0} p s_{1} k s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} k^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, d_{1} g p d_{1} k m\right),\left(g s_{0} p k s_{0} p^{-1}, p m\right)\right)
$$

and

$$
m_{1,0}^{\prime}(I(b), s(c))=\left(\left(1, d_{1} h q m\right),(h, q m)\right)
$$

Thus we obtain $\tau_{a, c} \circ m_{1,0}^{\prime}(I(b), s(c))=\left(\left(s_{0} g s_{1} s_{0} p s_{1} k s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} k^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, d_{1} g p d_{1} k m\right),\left(g s_{0} p k s_{0} p^{-1} h, q m\right)\right)$.

On the other hand, we have

$$
m_{1,0}^{\prime}(I(a), t(c))=\left(\left(1, d_{1} g p d_{1} k m\right),\left(g, p d_{1} k m\right)\right)
$$

and

$$
\tau_{b, c}=\left(\left(s_{0} h s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1} s_{0} h^{-1} s_{1} h s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1} s_{1} h^{-1}, d_{1} h q d_{1} k m\right),\left(h s_{0} q k s_{0} q^{-1}, q m\right)\right)
$$

Thus we have

$$
\begin{aligned}
& m_{1,0}^{\prime}(I(a), t(c)) \circ \tau_{b, c} \\
& \quad=\left(\left(s_{1} g s_{0} h s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1} s_{0} h^{-1} s_{1} h s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1} s_{1} h^{-1} s_{1} g^{-1}, d_{1} g p d_{1} k m\right),\left(g h s_{0} q k s_{0} q^{-1}, q m\right)\right)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& {\left[\tau_{a, c} \circ m_{1,0}^{\prime}(I(b), s(c))\right] *\left[m_{1,0}^{\prime}(I(a), t(c)) \circ \tau_{b, c}\right]} \\
& =\left(\left(s_{0} g s_{1} s_{0} p s_{1} k s_{1} s_{0} p^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} p s_{1} k^{-1} s_{1} s_{0} p^{-1} s_{0} h s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1}\right.\right. \\
& \left.\left.\quad s_{0} h^{-1} s_{1} h s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1} s_{1} h^{-1} s_{1} g^{-1}, d_{1} g p d_{1} k m\right),\left(g h s_{0} q k s_{0} q^{-1}, q m\right)\right)
\end{aligned}
$$

$=\left(\left(s_{0} g s_{1} s_{0} d_{1} h\left(s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1}\right) s_{1} s_{0} d_{1} h^{-1} s_{0} g^{-1} s_{1} g\right.\right.$
$s_{1} s_{0} d_{1} h\left(s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1}\right) s_{1} s_{0} d_{1} h^{-1} s_{0} h s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1}$

$$
\left.\left.s_{0} h^{-1} s_{1} h s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1} s_{1} h^{-1} s_{1} g^{-1}, d_{1} g d_{1} h q d_{1} k m\right),\left(g h s_{0} q k s_{0} q^{-1} q m\right)\right) \quad\left(\text { since } p=d_{1} h q\right)
$$

$$
\begin{aligned}
& =\left(\left(s_{0} g s_{0} h\left(s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1}\right) s_{0} h^{-1} s_{0} g^{-1} s_{1} g s_{0} h\left(s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1}\right) s_{0} h^{-1}\right.\right. \\
& \qquad s_{0} h\left(s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1}\right) s_{0} h^{-1} s_{1} h s_{1} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1} \\
& =\left(\left(s_{0} g s_{0} h s_{1} s_{0} q s_{1} k s_{1} s_{0} q^{-1} s_{0} h^{-1} s_{0} g^{-1} s_{1} g s_{1} h\right.\right. \\
& \\
& \left.\left.\quad s_{1} h^{-1} s_{1} g^{-1}, d_{1} g d_{1} h q d_{1} k m\right),\left(g h s_{0} q k s_{0} q^{-1}, q m\right)\right) \quad(\text { since }(*)) \\
& \left.\left.=\tau_{(g h, q),(k, m)} s_{0} q s_{1} k^{-1} s_{1} s_{0} q^{-1} s_{1} h^{-1} s_{1} g^{-1}, d_{1}(g h) q d_{1} k m\right),\left(g h s_{0} q k s_{0} q^{-1}, q m\right)\right) \\
& =\tau_{a \circ b, c .}
\end{aligned}
$$

BW5. Let

$$
x=((l, p),(g, q)): a=(g, q) \Rightarrow\left(d_{2} l g, q\right)=a^{\prime}
$$

and

$$
y=\left(\left(l^{\prime}, p^{\prime}\right),\left(g^{\prime}, q^{\prime}\right)\right): b=\left(g^{\prime}, q^{\prime}\right) \Rightarrow\left(d_{2} l^{\prime} g^{\prime}, q^{\prime}\right)=b^{\prime}
$$

be 2-morphisms in C_{1} with $p=d_{1} g q$ and $p^{\prime}=d_{1} g^{\prime} q^{\prime}$. We obtain

$$
\begin{aligned}
l(x, y) & =m_{0,1}^{\prime}\left(t^{\prime}(x), y\right) \circ m_{1,0}^{\prime}\left(x, s^{\prime}(y)\right) \\
& =\left(\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} l s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1}, p p^{\prime}\right),\left(s_{0} p g^{\prime} s_{0} p^{-1} g, q q^{\prime}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
r(x, y) & =m_{1,0}^{\prime}\left(x, t^{\prime}(y)\right) \circ m_{0,1}^{\prime}\left(s^{\prime}(x), y\right) \\
& =\left(\left(l s_{1} g s_{1} s_{0} q l^{\prime} s_{1} s_{0} q^{-1} s_{1} g^{-1}, p p^{\prime}\right),\left(g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right)\right)
\end{aligned}
$$

On the other hand, we obtain

$$
\tau_{a, b}=\left(\left(s_{0} g s_{1} s_{0} q s_{1} g^{\prime} s_{1} s_{0} q^{-1} s_{0} g^{-1} s_{1} g s_{1} s_{0} q s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} q^{-1}, d_{1} g q d_{1} g^{\prime} q^{\prime}\right),\left(g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right)\right)
$$

and

$$
\begin{aligned}
& \tau_{a^{\prime}, b^{\prime}}=\left(\left(s_{0} d_{2} l s_{0} g s_{1} s_{0} q s_{1} d_{2} l^{\prime} s_{1} g^{\prime} s_{1} s_{0} q^{-1} s_{0} g^{-1} s_{0} d_{2} l^{-1}\right.\right. \\
& \\
& \left.\left.\quad s_{1} d_{2} l s_{1} g s_{1} s_{0} q s_{1}\left(g^{\prime}\right)^{-1} s_{1} d_{2}\left(l^{\prime}\right)^{-1} s_{1} s_{0} q^{-1} s_{1} g^{-1} s_{1} d_{2} l^{-1}, d_{1} g q d_{1} g^{\prime} q^{\prime}\right),\left(d_{2} l g s_{0} q d_{2} l g^{\prime} s_{0} q^{-1}, q q^{\prime}\right)\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \tau_{a^{\prime}, b^{\prime}} * r(x, y)=\left(\left(s_{0} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} q l^{\prime} s_{1} g^{\prime} s_{1} s_{0} q^{-1}\right) s_{0} d_{2}\left(l s_{1} g\right)^{-1}\right.\right. \\
& s_{1} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} q l^{\prime} s_{1} g^{\prime} s_{1} s_{0} q^{-1}\right)^{-1} s_{1} d_{2}\left(l s_{1} g\right)^{-1} \\
& \left.\left.\quad\left(l s_{1} g\right) s_{1} s_{0} q l^{\prime} s_{1} s_{0} q^{-1} s_{1} g^{-1}, p p^{\prime}\right),\left(g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right)\right)
\end{aligned}
$$

and

$$
l(x, y) * \tau_{a, b}=\left(\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} l s_{1} g s_{1} s_{0} q s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} q^{-1} s_{1} g^{-1}, p p^{\prime}\right),\left(g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right)\right)
$$

From the definitions of ϵ_{0} and ϵ_{1}, we obtain

$$
\begin{aligned}
\epsilon_{0}\left(\tau_{a^{\prime}, b^{\prime}} * r(x, y)\right) & =\left(g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right) \\
& =r(a, b) \\
& =\epsilon_{0}\left(l(x, y) * \tau_{a, b}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\epsilon_{1}\left(\tau_{a^{\prime}, b^{\prime}} * r(x, y)\right)= & \left(s_{0} d_{1} g s_{0} q d_{2} l^{\prime} g^{\prime} s_{0} q^{-1} s_{0} d_{1} g^{-1} d_{2} l g s_{0} q\left(g^{\prime}\right)^{-1} d_{2}\left(l^{\prime}\right)^{-1} s_{0} q^{-1} g^{-1} d_{2} l^{-1} d_{2} l g\right. \\
& \left.s_{0} q d_{2} l^{\prime} s_{0} q^{-1} g^{-1} g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right) \\
= & \left(s_{0}\left(d_{1} g q\right) d_{2} l^{\prime} g^{\prime} s_{0}\left(d_{1} g q\right)^{-1} d_{2} l g, q q^{\prime}\right) \\
= & l\left(a^{\prime}, b^{\prime}\right) \\
= & \left(d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} l s_{1} g s_{1} s_{0} q s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} q^{-1} s_{1} g^{-1}\right) g s_{0} q g^{\prime} s_{0} q^{-1}, q q^{\prime}\right) \\
= & \epsilon_{1}\left(l(x, y) * \tau_{a, b}\right) .
\end{aligned}
$$

Therefore we obtained a braided internal category in the category of whiskered groupoids from a simplicial group.

Notice that, in general, there is no the equality $\tau_{a^{\prime}, b^{\prime}} * r(x, y)=l(x, y) * \tau_{a, b}$. To have this equality, we give the following result.

Proposition 4.5 Let $x: a \Rightarrow a^{\prime}$ and $y: b \Rightarrow b^{\prime}$ be 2-morphisms in \mathbf{C}. If the Moore complex of the simplicial group \mathbf{G} is of length 2, and $a, a^{\prime}, b, b^{\prime} \in D_{1}(p, p)$ for any $p \in C_{0}$, then $x, y \in C_{1}(p, p)$ and $\tau_{a^{\prime}, b^{\prime}} * r(x, y)=l(x, y) * \tau_{a, b}$.
Proof Let

$$
x=((l, p),(g, p)): a=(g, p) \Rightarrow\left(d_{2} l g, p\right)=a^{\prime}
$$

and

$$
y=\left(\left(l^{\prime}, p\right),\left(g^{\prime}, p\right)\right): b=\left(g^{\prime}, p\right) \Rightarrow\left(d_{2} l^{\prime} g^{\prime}, p\right)=b^{\prime}
$$

be 2 -morphisms in C_{1}. If the 1 -morphism $a=(g, p)$ is a morphism from p to p in D_{1}, we must have $g \in \operatorname{ker} d_{1}$. That is, $a=(g, p)$ is a morphism from p to p in D_{1} for any $p \in C_{0}$ if $g \in \operatorname{ker} d_{1}$. Then, we have also $a^{\prime}=\left(d_{2} l g, p\right): p \rightarrow d_{1} d_{2}(l) d_{1}(g) p=p$. Thus, if $g \in \operatorname{ker} d_{1}$, we have $s^{\prime}(x)=p=t^{\prime}(x)$, that is $x \in C_{1}(p, p)$. Similarly, the morphisms b, b^{\prime} are from p to p in D_{1} if $g^{\prime} \in \operatorname{ker} d_{1}$. So, we have $s^{\prime}(y)=p=t^{\prime}(y)$, that is $y \in C_{1}(p, p)$ if $g^{\prime} \in \operatorname{ker} d_{1}$.

Therefore, if $g, g^{\prime} \in \operatorname{ker} d_{1}$, we have

$$
l(x, y) * \tau_{a, b}=\left(\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} l s_{1} g s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, p p\right),\left(g s_{0} p g^{\prime} s_{0} p^{-1}, p p\right)\right)
$$

and

$$
\begin{aligned}
& \tau_{a^{\prime}, b^{\prime}} * r(x, y) \\
& =\left(\left(s_{0} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right) s_{0} d_{2}\left(l s_{1} g\right)^{-1}\right.\right. \\
& s_{1} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right)^{-1} s_{1} d_{2}\left(l s_{1} g\right)^{-1} \\
& \left.\left.\quad\left(l_{1} g\right)\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right) s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}, p p\right),\left(g s_{0} p g^{\prime} s_{0} p^{-1}, p p\right)\right) .
\end{aligned}
$$

To obtain the required equality, we must have

$$
\begin{aligned}
& s_{0} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right) s_{0} d_{2}\left(l s_{1} g\right)^{-1} \\
& \qquad s_{1} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right)^{-1} s_{1} d_{2}\left(l s_{1} g\right)^{-1} \\
& \left(l s_{1} g\right)\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right) s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1} \\
& =s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} l s_{1} g s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}
\end{aligned}
$$

To obtain this equality, we will use the functions $F_{\alpha, \beta}$ from [24].
For any $x_{2}, y_{2} \in N G_{2}$, from [24], we have

$$
\partial_{3}\left(F_{(0)(1)}\left(x_{2}, y_{2}\right)\right)=s_{0} d_{2} x_{2} s_{1} d_{2} y_{2} s_{0} d_{2} x_{2}^{-1} s_{1} d_{2} x_{2} s_{1} d_{2} y_{2}^{-1} s_{1} d_{2} x_{2}^{-1} x_{2} y_{2} x_{2}^{-1} y_{2}^{-1} \in \partial_{3}\left(N G_{3} \cap D_{3}\right)
$$

Now, we take $x_{2}=l s_{1} g$ and $y_{2}=s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}$. Then we have

$$
\begin{aligned}
& s_{0} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right) s_{0} d_{2}\left(l s_{1} g\right)^{-1} \\
& \qquad s_{1} d_{2}\left(l s_{1} g\right) s_{1} d_{2}\left(s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1}\right)^{-1} s_{1} d_{2}\left(l s_{1} g\right)^{-1} \\
& \quad\left(l s_{1} g\right) s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1} \\
& =s_{0} d_{2} x_{2} s_{1} d_{2} y_{2} s_{0} d_{2} x_{2}^{-1} s_{1} d_{2} x_{2} s_{1} d_{2} y_{2}^{-1} s_{1} d_{2} x_{2}^{-1} x_{2} y_{2}\left(s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}\right) \\
& \equiv y_{2} x_{2}\left(s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}\right) \quad \bmod \left(\partial_{3}\left(N G_{3} \cap D_{3}\right)\right) \\
& =s_{1} s_{0} p l^{\prime} s_{1} g^{\prime} s_{1} s_{0} p^{-1} l s_{1} g s_{1} s_{0} p s_{1}\left(g^{\prime}\right)^{-1} s_{1} s_{0} p^{-1} s_{1} g^{-1}
\end{aligned}
$$

Thus, we obtain $\tau_{a^{\prime}, b^{\prime}} * r(x, y) \equiv l(x, y) * \tau_{a, b} \bmod \partial_{3}\left(N G_{3} \cap D_{3}\right)$.
Since the Moore complex is of length 2, we have $N G_{3}=\{1\}$, and $\partial_{3}\left(N G_{3} \cap D_{3}\right)=\{1\}$, and thus we obtain the required equality.

Recall from [7] and [22] that a strict 2-category is a category enriched over Cat, where Cat is treated as the 1-category of strict categories. That is, a strict 2-category consists of objects, 1-morphisms between objects, and 2 -morphisms between 1-morphisms. The 1-morphisms can be composed along the objects, while the 2-morphisms can be composed in two different directions: along the objects and along the 1-morphisms. The composition of morphisms between objects is called the vertical composition, and the composition of morphisms between 1-morphisms is called the horizontal composition. Thus it has a collection of objects and for each pair of objects x, y a category $\operatorname{hom}(x, y)$, and the objects of these hom-categories are the 1-morphisms, and the morphisms of these hom-categories are the 2 -morphisms. We also have the interchange law, because the horizontal composition is a functor it commutes with composition in the hom-categories.

Similarly, a strict 2-groupoid is a groupoid enriched over groupoids. In more detail, a strict 2-groupoid X consists of
(a) a set X_{0} of objects;
(b) for each $x, y \in X_{0}$, a set $X_{1}(x, y)$ of 1-morphisms from x to y, and a composition of 1-morphisms denoted by \circ;
(c) for the 1-morphisms $f, g: x \rightarrow y$, a set X_{2} of 2-morphisms $f \Rightarrow g$ from f to g, a vertical composition and a horizontal composition of 2-morphisms, denoted by \circ and $*$ respectively.
such that $\left(X_{i}, X_{j}\right)$ are groupoids for $i=1,2, j=0,1, j<i$, and for 2-morphisms $\alpha, \beta, \gamma, \delta \in X_{2}$, the interchange law holds:

$$
(\alpha * \beta) \circ(\gamma * \delta)=(\alpha \circ \gamma) *(\beta \circ \delta)
$$

Thus, for the category \mathbf{C}, according to the above calculations, we can take $X_{0}=C_{0},\left(X_{1}, X_{0}\right)=$ $\left(D_{1}, C_{0}\right),\left(X_{2}, X_{0}\right)=\left(C_{1}, C_{0}\right)$ and $\left(X_{2}, X_{1}\right)=\left(C_{1}, D_{1}\right)$. The only thing remaining is to check the interchange law.

Proposition 4.6 If the Moore complex of the simplicial group \mathbf{G} is of length 2, then the category \mathbf{C} has an interchange law between the horizontal and vertical compositions of 2-morphisms.

Proof By using the image of $F_{\alpha, \beta}$ functions given in [24], we shall show that the interchange law holds for 2-morphisms in C. Let

$$
\alpha=\left(\left(l, d_{1} g q\right),(g, q)\right):(g, q) \Rightarrow\left(d_{2} l g, q\right)
$$

and

$$
\beta=\left(\left(l^{\prime}, d_{1} g^{\prime} q\right),\left(g^{\prime}, q\right)\right):\left(g^{\prime}, q\right) \Rightarrow\left(d_{2} l^{\prime} g^{\prime}, q\right)
$$

be 2-morphisms in \mathbf{C} with $(g, q)=\left(\left(d_{2} l^{\prime}\right) g^{\prime}, q\right)$ and hence $d_{1} g q=d_{1} g^{\prime} q$.
Similarly, let

$$
\gamma=\left(\left(l_{1}, d_{1} g_{1} q_{1}\right),\left(g_{1}, q_{1}\right)\right):\left(g_{1}, q_{1}\right) \Rightarrow\left(d_{2} l_{1} g_{1}, q_{1}\right)
$$

and

$$
\delta=\left(\left(l_{1}^{\prime}, d_{1} g_{1}^{\prime} q_{1}\right),\left(g_{1}^{\prime}, q_{1}\right)\right):\left(g_{1}^{\prime}, q_{1}\right) \Rightarrow\left(d_{2} l_{1}^{\prime} g_{1}^{\prime}, q_{1}\right)
$$

be 2-morphisms in \mathbf{C} with $\left(g_{1}, q_{1}\right)=\left(\left(d_{2} l_{1}^{\prime}\right) g_{1}^{\prime}, q_{1}\right)$, and hence $d_{1} g_{1} q_{1}=d_{1} g_{1}^{\prime} q_{1}$
We must show that

$$
(\alpha * \beta) \circ(\gamma * \delta)=(\alpha \circ \gamma) *(\beta \circ \delta)
$$

We obtain

$$
\begin{aligned}
\alpha * \beta & =\left(\left(l l^{\prime}, d_{1} g^{\prime} q\right),\left(g^{\prime}, q\right)\right) \\
\gamma * \delta & =\left(\left(l_{1} l_{1}^{\prime}, d_{1} g_{1}^{\prime} q_{1}\right),\left(g_{1}^{\prime}, q_{1}\right)\right)
\end{aligned}
$$

and

$$
(\alpha * \beta) \circ(\gamma * \delta)=\left(\left(l l^{\prime} s_{1} g^{\prime} l_{1} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}, d_{1} g^{\prime} q\right),\left(g^{\prime} g_{1}^{\prime}, q_{1}\right)\right)
$$

when $q=d_{1} g_{1}^{\prime} q_{1}$. On the other hand, we obtain

$$
\begin{aligned}
& \alpha \circ \gamma=\left(\left(l s_{1} g l_{1} s_{1} g^{-1}, d_{1} g q\right),\left(g g_{1}, q_{1}\right)\right) \\
& \beta \circ \delta=\left(\left(l^{\prime} s_{1} g^{\prime} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}, d_{1} g^{\prime} q\right),\left(g^{\prime} g_{1}^{\prime}, q_{1}\right)\right)
\end{aligned}
$$

when $q=d_{1} g_{1} q_{1}=d_{1} g_{1}^{\prime} q_{1}$ and

$$
(\alpha \circ \gamma) *(\beta \circ \delta)=\left(\left(l s_{1} g l_{1} s_{1} g^{-1} l^{\prime} s_{1} g^{\prime} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}, d_{1} g^{\prime} q\right),\left(g^{\prime} g_{1}^{\prime}, q_{1}\right)\right)
$$

To obtain required equality, we must show the following equality:

$$
l s_{1} g l_{1} s_{1} g^{-1} l^{\prime} s_{1} g^{\prime} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}=l l^{\prime} s_{1} g^{\prime} l_{1} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}
$$

We know from [24], for $x, y \in N G_{2}$, that

$$
\begin{aligned}
F_{(1),(2)}(x, y) & =\left[s_{1} x, s_{2} y\right]\left[s_{2} x, s_{2} y\right] \\
& =s_{1} x s_{2} y\left(s_{1} x\right)^{-1} s_{2} x\left(s_{2} y\right)^{-1}\left(s_{2} x\right)^{-1} \in N G_{3} \cap D_{3}
\end{aligned}
$$

and

$$
\partial_{3}\left(F_{(1),(2)}(x, y)\right)=s_{1} d_{2}(x) y\left(s_{1} d_{2} x\right)^{-1} x y^{-1} x^{-1} \in \partial_{3}\left(N G_{3} \cap D_{3}\right),
$$

and

$$
s_{1} d_{2}(x) y\left(s_{1} d_{2} x\right)^{-1} \equiv x y x^{-1} \quad \bmod \partial_{3}\left(N G_{3} \cap D_{3}\right)
$$

Furthermore, since $(g, q)=\left(d_{2}\left(l^{\prime}\right) g^{\prime}, q\right)$, we have

$$
\begin{aligned}
l s_{1} g l_{1} s_{1} g^{-1} l^{\prime} s_{1} g^{\prime} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1} & =l\left(s_{1} d_{2} l^{\prime}\left(s_{1} g^{\prime} l_{1} s_{1}\left(g^{\prime}\right)^{-1}\right) s_{1} d_{2}\left(l^{\prime}\right)^{-1}\right) l^{\prime}\left(s_{1} g^{\prime} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}\right) \\
& \equiv l l^{\prime}\left(s_{1} g^{\prime} l_{1} s_{1}\left(g^{\prime}\right)^{-1}\right)\left(l^{\prime}\right)^{-1} l^{\prime}\left(s_{1} g^{\prime} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}\right) \quad \bmod \partial_{3}\left(N G_{3} \cap D_{3}\right) \\
& =l l^{\prime} s_{1} g^{\prime} l_{1} l_{1}^{\prime} s_{1}\left(g^{\prime}\right)^{-1}
\end{aligned}
$$

and thus we obtain

$$
(\alpha \circ \gamma) *(\beta \circ \delta) \equiv(\alpha * \beta) \circ(\gamma * \delta) \quad \bmod \partial_{3}\left(N G_{3} \cap D_{3}\right)
$$

Since the Moore complex of the simplicial group \mathbf{G} is of length 2, we have $N G_{3} \cap D_{3}=\{1\}$ and $\partial_{3}\left(N G_{3} \cap D_{3}\right)=$ $\{1\}$, and thus we obtain

$$
(\alpha * \beta) \circ(\gamma * \delta)=(\alpha \circ \gamma) *(\beta \circ \delta)
$$

Acknowledgements

The authors would like to thank Professor Ronald Brown for his valuable suggestions.

References

[1] Arvasi, Z., Koçak, M. and Ulualan, E.: Braided crossed modules and reduced simplicial groups. Taiwanese Journal of Mathematics. 9, 3, 477-488, (2005).
[2] Arvasi, Z. and Porter, T.: Higher dimensional Peiffer elements in simplicial commutative algebras. Theory and Applications of Categories. 3, 1, 1-23, (1997).
[3] Arvasi, Z. and Ulualan, E.: On algebraic models for homotopy 3-types. Journal of Homotopy and Related Structures. 1, 1, 1-27, (2006).
[4] Arvasi, Z. and Ulualan, E.: 3-types of simplicial groups and braided regular crossed modules. Homology, Homotopy and Applications. 9, 1, 139-161, (2007).

ULUALAN and PAK/Turk J Math

[5] Baez, J.C. and Crans, A.S.: Higher dimensional algebra VI: Lie 2-algebras. Theory and Applications of Categories. 12, 15, 492-538, (2004).
[6] Baez, J.C. and Lauda, A.D.: Higher dimensional algebra V:2-groups. Theory and Applications of Categories. 12, 423-492, (2004).
[7] Baez, J.C. and Neuchl, M.: Higher-dimensional algebra I: Braided monoidal 2-categories. Adv. Math. 121, 196-244, (1996).
[8] Berger, C.: Double loop spaces, braided monoidal categories and algebraic 3-types of spaces. Contemporary Mathematics. 227, 46-66, (1999).
[9] Bullejos, M., Carrasco, P. and Cegarra, A.M.: Cohomology with coefficients in symmetric cat-groups. An extension of Eilenberg-MacLane's classification theorem. Math. Proc. Camb. Phil. Soc. 114, 163-189, (1993).
[10] Breen, L.: Théorie de Schreier supérieure. Ann. Sci. Ecol Norm. Sup. 25, 465-514, (1992).
[11] Brown, R.: Possible connections between whiskered categories and groupoids, Leibniz algebras, automorphism structures and local-to-global questions. Journal of Homotopy and Related Structures. 5, 1, 305-318, (2010).
[12] Brown, R. and Gilbert, N.D.: Algebraic models of 3-types and automorphism structures for crossed modules. Proc. London Math. Soc., 3, 59, 51-73, (1989).
[13] Brown, R. and İçen, İ.: Homotopies and automorphisms of crossed modules over groupoids. Appl. Categorical Structure, 11, 185-206, (2003).
[14] Brown, R. and Spencer, C.B.: \mathcal{G}-Groupoids, crossed modules and the fundamental groupoid of a topological group. Proc. Konink. Neder. Akad. van Wetenschappen Amsterdam, 79, 4, (1976).
[15] Carrasco, P. and Cegarra, A.M.: Group-theoretic algebraic models for homotopy types. Journal Pure Appl. Algebra, 75, 195-235, (1991).
[16] Castiglioni, J.L. and Ladra, M.: Peiffer elements in simplicial groups and algebras, Jour. Pure and Applied Algebra $212,9,2115-2128$, (2008).
[17] Conduché, D.: Modules croisés généralisés de longueur 2. Jour. Pure and Applied Algebra, 34, 155-178, (1984).
[18] Duskin, J.: Simplicial methods and the interpretation of triple cohomology. Memoirs A.M.S. 3, 163, (1975).
[19] Garzon, A.R. and Miranda, J.G.: Homotopy theory for (braided) cat-groups. Chaiers de Topologie Geometrie Differentielle Categorique, XXXVIII-2, (1997).
[20] Joyal, A. and Street, R.: Braided monoidal categories. Macquarie Mathematics Report, 860081, Macquarie University, (1986).
[21] Joyal, A. and Street, R.: Braided tensor categories. Advances in Math, 1, 82, 20-78, (1993).
[22] Kapranov, M. and Voevodsky, V.: Braided monoidal 2-categories and Manin-Schechtman higher braid groups. Jour. Pure Appl. Algebra, 92 241-267, (1994).
[23] May, J.P.: Simplicial objects in algebraic topology. Math. Studies, 11, Van Nostrand, (1967).
[24] Mutlu, A. and Porter, T.: Applications of Peiffer pairings in the Moore complexes of a simplicial group. Theory and Applications of Categories, 4, 7, 148-173, (1998).
[25] Mutlu, A. and Porter, T.: Freeness conditions for 2-crossed modules and complexes. Theory and Applications of Categories, 4, 8, 174-194, (1998).
[26] Ulualan, E.: Relations among algebraic models of 1-connected homotopy 3-types. Turk. J Math., 31, 23-41, (2007).
[27] Whitehead, J.H.C.: Combinatorial homotopy II. Bull. Amer. Math. Soc., 55, 453-496, (1949).

[^0]: *Correspondence: eulualan@dumlupinar.edu.tr
 2000 AMS Mathematics Subject Classification: 13D25, 18G30, 18G50, 18G55.

