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Abstract: We introduce generalized class invariants as quotients of Thetanullwerte, which realize the computation of

class polynomials more efficiently than as quotients of values of the Dedekind η -function. Furthermore, we prove that

these invariants are units in the corresponding class field as most of their classical counterparts.
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1. Introduction

Construction of class fields using special values of analytical functions goes back to Hilbert, who gave the first
complete proof of Kronecker-Weber theorem [9]. This theorem states that every finite abelian extension of Q

is a subfield of a suitable cyclotomic field, and that each such field lies in a field generated by the special values

of the exponential function z �→ e2πiz .

Kronecker-Weber Theorem is the raison d’être of Kronecker’s “Jugendtraum”∗ . He asks to generate
all abelian extensions of a given imaginary quadratic number field by special (the so-called singular) values of
elliptic modular functions. Kronecker’s Jugendtraum can be seen, in that sense, as a special fact of the Hilbert’s

famous 12 th problem, which asks to generate all abelian extensions of a given number field by values of suitable
analytical functions.

The theory of complex multiplication realizes Kronecker’s Jugendtraum. At the first step, one needs to
construct the maximal abelian unramified extension (the so-called Hilbert class field HK ) of the imaginary
quadratic number field K as an intermediate field in order to obtain the other abelian extensions of K by
Weber functions. These functions can be seen as the generalization of the exponential function; see [16] for
more details. This intermediate step is not necessary in the case of Q , as its class group is trivial.

By the main theorem of complex multiplication, the value j(τ ) of the modular function j generates the
Hilbert class field HK if τ is an element of the maximal order OK of K with discriminant D . The minimal
polynomial HD(x) of j(τ ) has integer coefficients, as this value is an algebraic integer by the theory of elliptic

modular functions. The Galois group of HK/K is isomorphic to the class group ClK of K by class field theory.

Hence, the degree of HD(x) is just the class number hK of K . By the theory of complex multiplication,

the conjugates of j(τ ) are j(τi), 1 ≤ i ≤ hK , where [τi, 1] are the representatives of the ideal classes of K .

Hilbert’s 12 th problem remains open for all other types of number fields.

∗Correspondence: osmanbey.uzunkol@uni-oldenburg.de
∗ Kronecker’s youthful dream
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Coefficients of the Hilbert class polynomial HD(x) grow exponentially in the size of the discriminant of
the field. Moreover, the polynomial has very large coefficients even for comparably small discriminants. For
example, for D = −260 we have

H−260(x) = x8 − 9997874035270492198400 · x7−

999896161895842101863690217472000 · x6−

21507054600723946274941348498171494400000 · x5+

463238908732347767153420578775505775886336000000 · x4+

14865557804649865113150034077076664167379763200000000 · x3+

85980083235988029405783249092189509918128078848000000000 · x2+

305486088367929951707960768526477860306636557516800000000000 · x+

3302947505675715028946774256661472679426359558144000000000000.

(1)

Weber introduced in his famous book ‘Lehrbuch der Algebra’ [19] the use of other modular functions
of higher level whose values, the so-called class invariants, generate HK . The minimal polynomials of these
values have significantly smaller coefficients than HD(x). Most statements are given without rigorous proofs in

[19]. Schertz proved later in [14] that these values are indeed class invariants. For example, the polynomial

W−260(x) = x8 − 8 · x7 + 12 · x6 + 8 · x5 − 27 · x4 + 8 · x3 + 12 · x2 − 8 · x + 1, (2)

which is the minimal polynomial of a suitable class invariant, generates the same field as the polynomial (1)
over K .

These modular functions are defined classically as quotients of the Dedekind η -function

η(τ ) = q
1
24

∞∏
k=1

(1 − qk), q = exp(2πiτ) with �(τ ) > 0. (3)

In [11] and [18] we introduced the possibility to represent these invariants as quotients of ‘Thetanullwerte’.

Using the AGM-algorithm of Dupont [4], [5], we showed that the class polynomials can be computed more
efficiently using this new representation than using the classical representation of class invariants as quotients
of values of the η -function. Furthermore, it is proven in [11] that most class invariants are units in the
corresponding ring class fields.

In this paper, we improve and generalize the results of [11].

In Section 2, we recall some basic facts about modular functions, theta functions and class field theory,
which is necessary to explain the results in the subsequent sections.

In Section 3, we summarize the generalization of class invariants, which were introduced in the earlier
articles.

We prove an identity between values of the η -quotients and the quotients of suitable Thetanullwerte in
Section 4, which improves the result of [11] and enables to compute class polynomials, and hence class fields,
more efficiently using the corresponding quotient of Thetanullwerte. Moreover, we introduce the identities
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between generalized Weber class invariants and suitable quotients of Thetanullwerte, which leads to use the
faster techniques of [5] to compute the generalized class polynomials. Furthermore, we analyze and compare
our results with the existing algorithms.

Using a theorem of Deuring, we prove in Section 5 that the generalized class invariants are units in the
corresponding class fields, which can also be seen as a generalization of the results of [11], loc. cit. Theorem
20, 22.

In the last section, we give examples and a comparison table of the results we obtained.

2. Basics
For the basic properties of modular functions and the theory of complex multiplication we refer to [10] and [15].
Moreover, if not stated explicitly, the results of this section can be found in these references.

Let Ot be the order of an imaginary quadratic number field K of conductor t ∈ N . The Galois group G

of the ring class field Ωt of K modulo t is isomorphic to the ring class group Clt of Ot by class field theory.
Hence, the degree of Ωt over K is equal to the class number ht of Ot .

Let τ ∈ Ot be an element of the upper half plane

τ ∈ H = {z ∈ C : �(z) > 0} (4)

with discriminant D := t2d , where d is the field discriminant. Using Ramanujan’s modular discriminant
function

Δ(τ ) := g2(τ )3 − 27g3(τ )2, (5)

the value of modular j -function at τ ∈ H is defined as

j(τ ) := 2633g2(τ )3Δ(τ )−1, (6)

where the functions g2 are g3 are the classical Eisenstein series; see for example [3, p. 3]. The value j(τ )
generates the ring class field Ωt over K by the main theorem of complex multiplication.

More precisely, the field extension Ωt over K corresponds to the subgroup Ut of the ideal group of K

generated by the ideals of the form (λ), λ ∈ Z with gcd(λ, t) = 1 and λ ≡ r mod t for a suitable r ∈ Z [14, p.

327].

The values j(τi), i = 1, · · · , ht, coming from the representatives [τi, 1] of the ideals in Clt with τ := τ1 ,

form a complete system of conjugate numbers not only over K but also over Q , [10, Remark 1, p. 133]. Since

the values j(τ ) for all τ ∈ H are algebraic integers, the minimal polynomial of j(τ ) has coefficients in Z .

Hence, the minimal polynomial

HD(x) =
ht∏

i=1

(x − ji) ∈ Z[x] with ji = j(τi) (7)

can be computed explicitly using the numerical values of the j -function.

In order to compute Hilbert’s class polynomial using (7), an upper bound for the precision is needed to

recognize the integer coefficients of the polynomial, which is given in [1, p. 285] as follows:

⎡
⎢⎢⎢log2

⎛
⎝2.48ht + π

√
|D|

∑
(a,b,c)∈H(D)

1
a

⎞
⎠

⎤
⎥⎥⎥ + 1, (8)
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where we abbreviate with H(D) the form class group of reduced binary quadratic forms of discriminant D .

We remind that the form class group is isomorphic to the ring class group Clt ; see for example [17].

We need to compute approximately
√
|D| coefficients by the Brauer-Siegel theorem, which implies that

ht grows like |D|1/2+o(1) ; see [2]. As discussed in the introduction, the coefficients of HD(x) are very large

compared to the discriminant. Worse, the coefficients grow exponentially in |D| .
Weber used other modular functions of higher level, whose values generate Ωt . These values have class

polynomials having smaller coefficients than HD(x). Using reciprocity law of Shimura, it is easy to check

whether g(τ ) is a class invariant or not; see [18] and the references therein.

Definition 1 A value g(τ ) of a modular function g is said to be class invariant if K(g(τ )) = K(j(τ )) .

The following definition and proposition of [14, p. 329, 335] are useful to write down the conjugates of

such a class invariant g(τ ) so as to compute the minimal polynomial of g(τ ) numerically. These new class

polynomials are called Weber class polynomials and they are abbreviated by WD(x).

Definition & Proposition 2

1. An imaginary quadratic integer τ ∈ H∩K is the zero of a quadratic equation of the form Ax2+Bx+C = 0 ,
which is uniquely determined by τ if we postulate the following normalization assumption:

A, B, C ∈ Z, gcd(A, B, C) = 1, A > 0.

Such an equation is called primitive.

2. Let N ∈ Z>0 and τ1, τ2, · · · , τht ∈ H, so that

[τ1, 1], [τ2, 1], · · · , [τht, 1]

is a system of representatives of Clt . Furthermore, let Aix
2 + Bix + Ci = 0 be primitive equations for τi

which satisfy the properties

gcd(Ai, N) = 1, Bi ≡ Bj mod 2N, 1 ≤ i, j ≤ ht.

Then the elements τ1, τ2, · · · , τht are called an N -system modulo t .

3. There exists an N -system for every natural number.

3. Generalized class invariants
3.1. Classical class invariants
Let

γ2(τ ) := 3
√

j(τ ), γ3(τ ) :=
√

j(τ ) − 123. (9)

The Schläfli functions f, f1 and f2 of Weber are the following quotients of values of the Dedekind η -
function:

f(τ ) = exp
(
−πi

24

)
η( τ+1

2 )
η(τ )

, f1(τ ) =
η( τ

2 )
η(τ )

, f2(τ ) =
√

2
η(2τ )
η(τ )

. (10)

These functions satisfy the following identities:
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Theorem 3 Let τ ∈ H. We have

1. f(τ )8 = f1(τ )8 + f2(τ )8,

2. f(τ )f1(τ )f2(τ ) =
√

2,

3. γ2 = f
24−16

f8
= f

24
1 +16

f81
= f

24
2 +16

f82
,

4. f1(2τ )f2(τ ) =
√

2,

5. f(τ )f2( τ+1
2 ) =

√
2 exp(πi

24).

Proof The first two results follow by [19, p. 114] and the third identity is the result of [14, p. 327].

Assertion (4) follows immediately from definition of f1 and f .

For the last identity, we use the transformation formula η(τ + 1) = exp(πi
12)η(τ ), [14, Proposition 2, p.

335], which implies that

f1(τ + 1) =
η( τ+1

2 )
η(τ + 1)

= exp
(−πi

12

)
η( τ+1

2 )
η(τ )

= exp
(−πi

24

)
f(τ ). (11)

From identity (4), the last assertion follows:

f(τ )f2

(
τ + 1

2

)
=

√
2

f(τ )
f1(τ + 1)

=
√

2 exp
(

πi

24

)
.

�

It follows from Theorem 3 and Definitions (9) and (10) that Q(j(τ )) ⊆ Q(g(τ )), if g is one of the
functions f, f1, f2, γ2 and γ3 .

The following theorem of Schertz gives the complete list of class invariants introduced by Weber, which
implies that Q(j(τ )) = Q(g(τ )) and K(j(τ )) = K(g(τ )), [14, p. 329]:

Theorem 4 Let τ ∈ H be a zero of a primitive equation

Ax2 + Bx + C = 0, gcd(A, 2) = 1, B ≡ 0 mod 32

with the special discriminant D(τ ) = t2d =: −4m, m ∈ N . Then the following numbers g(τ ) are class
invariants:

•
((

2
A

)
1√
2
f(τ )2

)3

if m ≡ 1 mod 8,

• f(τ )3 if m ≡ 3 mod 8,

•
(

1
2 f(τ )4

)3 if m ≡ 5 mod 8,

•
((

2
A

)
1√
2
f(τ )

)3

if m ≡ 7 mod 8,
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•
((

2
A

)
1√
2
f1(τ )2

)3

if m ≡ 2 mod 4,

•
((

2
A

)
1

2
√

2
f1(τ )4

)3

if m ≡ 4 mod 8,

where the factor
(

2
A

)
denotes the Legendre symbol.

If τ = τ1, · · · , τht is a 16-system modulo t , then the singular values g(τi) above form a complete system
of conjugates over Q. Therefore, the minimal polynomial over Q is

WD(τ)(x) =
ht∏

i=1

(x − gi), where gi := g(τi) .

Moreover, this polynomial has integer coefficients.

3.2. Generalization

The generalized Schläfli functions are defined as follows:

ml(τ ) =
√

l
η(lτ )
η(τ )

, mj(τ ) = ζ
η( τ+j

l )
η(τ )

, 0 ≤ j ≤ l − 1, l > 2 (12)

where ζ is a suitable root of unity; see [7, p. 73].

The singular values of suitable powers of these functions yield class invariants by [6] as in Theorem 4.

Level l = 3 : For this case, we have the functions

g0(τ ) =
η( τ

3 )
η(τ )

, g1(τ ) = ζ−1
24

η( τ+1
3 )

η(τ )
, g2(τ ) =

η( τ+2
3 )

η(τ )
, g3(τ ) =

√
3
η(3τ )
η(τ )

. (13)

We have now the following theorem.

Theorem 5 Let τ ∈ H. Then the following identities hold:

1. g0(τ )g1(τ )g2(τ )g3(τ ) =
√

3 ,

2.
∏3

i=0(x − gi(τ )12) = x4 + 36x3 + 270x2 + (756 − j(τ ))x + 36 ,

3. g0(3τ )g3(τ ) =
√

3 ,

4. g3( τ+1
3 )g1(τ ) =

√
3 ,

5. g3( τ+2
3 )g2(τ ) = ζ12

√
3 .

Proof We refer to [19, p. 255] for the proof of the first two identities. The third one follows from

g0(3τ )g3(τ ) =
√

3
η(τ )
η(3τ )

η(3τ )
η(τ )

=
√

3.

Using the transformation formula for the Dedekind η -function η(τ + 1) = ζ24η(τ ), τ ∈ H , we obtain
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g3

(
τ + 1

3

)
g1(τ ) =

√
3ζ−1

24

η(τ + 1)
η( τ+1

3 )
η( τ+1

3 )
η(τ )

=
√

3ζ−1
24 ζ24 =

√
3.

The last assertion follows similarly. �

The following theorem generalizes Theorem 4 to the case l = 3 for gi , 0 ≤ i ≤ 2, see [7, p. 73]:

Theorem 6 Let OK = [τ, 1] be the maximal order of an imaginary quadratic number field K of discriminant

D with TrK/Q(τ ) ∈ {−1, 0} .

Then the following values are class invariants, whose class polynomials have integer coefficients:

D ≡ 1 mod 9 D ≡ 4 mod 9 D ≡ 7 mod 9 D ≡ 3 mod 9 D ≡ 6 mod 9
D ≡ 1(4) ζ3g

2
0, ζ

2
3g2

1 g2
0, g

2
1 ζ2

3g2
0, ζ3g

2
1

1
3
√−3

g6
2

1√−3
g2
2

D ≡ 0(8) ζ2
3 ζ4g

2
1, ζ3ζ4g

2
2 ζ3ζ4g

2
1, ζ

2
3g2

2 ζ4g
2
1, ζ4g

2
2

1
3
√

3
g6
0

1√
3
g2
0

D ≡ 4(8) ζ3g
4
1, ζ

2
3g4

2 ζ2
3g4

1, ζ3g
4
2 g4

1, g
4
2

1
33 g12

0
1
3g4

0

Level l = 5 : In this case, the functions are:

h0(τ ) =
η( τ

5
)

η(τ )
, h1(τ ) = ζ8

η( τ+1
5

)
η(τ )

, h2(τ ) = ζ12

η( τ+2
5

)
η(τ )

, (14)

h3(τ ) = ζ24
η( τ+3

5 )
η(τ )

, h4(τ ) = ζ−1
3

η( τ+4
5 )

η(τ )
, h5(τ ) =

√
5
η(5τ )
η(τ )

.

The following theorem holds for these functions:

Theorem 7 Let τ ∈ H. Then, we have the following identities:

1. h0(τ )h1(τ )h2(τ )h3(τ )h4(τ )h5(τ ) =
√

5,

2. h0(τ )6 + h1(τ )6 + h2(τ )6 + h3(τ )6 + h4(τ )6 + h5(τ )6 = −30 ,

3. h0(5τ )h5(τ ) =
√

5 ,

4. h5( τ+1
5 )h1(τ ) = ζ6

√
5 ,

5. h5( τ+2
5 )h2(τ ) = ζ8

√
5 ,

6. h5( τ+3
5 )h3(τ ) = ζ12

√
5 ,

7. h5( τ+4
5

)h4(τ ) = ζ−1
3 ζ24

√
5 .

Proof For the proof of the first two identities we refer to [8, p. 439, 440]. The third identity follows from

h0(5τ )h5(τ ) =
√

5
η(τ )
η(5τ )

η(5τ )
η(τ )

=
√

5.

By the transformation η(τ + 1) = ζ24η(τ ), we obtain
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h5(
τ + 1

5
)h1(τ ) =

√
5ζ8

η(τ + 1)
η( τ+1

5 )
η( τ+1

5 )
η(τ )

=
√

5ζ8ζ24 = ζ6

√
5.

The other identities follow similarly. �

The following theorem generalizes 4 for the function h2
5 , see [6, p. 17]:

Theorem 8 Let Ot = [τ, 1] be on order of an imaginary quadratic number field K of discriminant D = t2dK ,

where dK is the discriminant of K . Then h2
5(τ ) is a class invariant if 3 � |D .

In contrast to other class invariants, the coefficients of the class polynomial of h2
5 in Theorem 8 are not

integers. They lie in OK , see [6].

Remark 9 We refer to [6] for other generalized class invariants of level l . The sufficient conditions of having

class polynomials with integer coefficients are also given in [6, Theorem 10, 11].

4. Theta representation

4.1. Classical case

We improve in this section our results in [11] for classical class invariants by introducing other identities between
some quotients of Thetanullwerte and third powers of Schläfli functions. The reason for using Thetanullwerte
instead of values of the Dedekind η -function is that the asymptotically fastest algorithm to compute the n

most significant digits of values of Schläfli functions is based on a computation using an identity between
Thetanullwerte and the values of the Dedekind η -function. This algorithm uses the AGM method to compute
the Thetanullwerte, see [4] and [5]. Hence, we can directly compute the invariants by using the identities which

we show in this section. We refer to [11] for a more detailed analysis. The comparison will be given in the last
section.

The following functions are the even Thetanullwerte, also known as Jacobi theta functions.

Definition 10 Let τ ∈ H. We define

1. θ00(τ ) :=
∑

n∈Z
qn2/2,

2. θ10(τ ) :=
∑

n∈Z
q(n+ 1

2 )2/2,

3. θ01(τ ) :=
∑

n∈Z
(−1)nqn2/2.

By [19, p. 112, 114] we have the following identities:

Theorem 11 The following assertions hold for τ ∈ H:

1. θ00(τ ) = η(τ )f(τ )2,

2. θ01(τ ) = η(τ )f1(τ )2,

3. θ10(τ ) = η(τ )f2(τ )2.

Definition 12 Let τ ∈ H. We define the modified Schläfli functions as follows:
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1. F(τ ) = 2 exp(πi
8

) θ00(τ)

θ10(
τ+1
2 )

,

2. F1(τ ) = 2θ01(τ)
θ10(τ/2) ,

3. F2(τ ) =
√

2θ10(τ)
θ01(2τ) .

The following theorem gives identities between classical Schläfli functions and modified Schläfli functions.

Theorem 13 The following identities hold for all τ ∈ H:

1. F(τ ) = f(τ )3,

2. F1(τ ) = f1(τ )3,

3. F2(τ ) = f2(τ )3.

Proof
By multiplying the three functions θ00, θ01, θ10 we obtain by using Theorems 3.(2) and 11 :

θ00(τ )θ01(τ )θ10(τ ) = η(τ )3(f(τ )f1(τ )f2(τ ))2 = (
√

2)2η(τ )3 = 2η(τ )3.

Hence, we have

η(τ )3 =
θ00(τ )θ01(τ )θ10(τ )

2
.

Now, by Theorem 11.(1), the third power of θ00(τ ) can be written as follows: θ00(τ )3 = η(τ )3f(τ )6. It means
that

f(τ )6 =
θ00(τ )3

η(τ )3
=

2θ00(τ )3

θ00(τ )θ01(τ )θ10(τ )
=

2θ00(τ )2

θ01(τ )θ10(τ )
.

Using Theorem 11.(3) and (4), we obtain similarly

f1(τ )6 =
2θ01(τ )2

θ00(τ )θ10(τ )
, f2(τ )6 =

2θ10(τ )2

θ00(τ )θ01(τ )
.

On the other hand, we obtain the duplication formula of θ00(τ ) and θ01(τ ) using Definition 10 and the

identity 2(n2 + m2) = (n + m)2 + (n − m)2 (see also [13, p. 63]):

θ10(τ )2 = 2θ00(2τ )θ10(2τ ). (15)

Therefore, we have

f1(τ )6 =
2θ01(τ )2

θ00(τ )θ10(τ )
=

4θ01(τ )2

θ10(τ/2)2
=

(
2θ01(τ )
θ10(τ/2)

)2

= F1(τ )2.

It follows by comparing the sign of q -expansions of both side of the identity:

F1(τ ) = f1(τ )3.
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Now, Theorem 3.(4) implies that

f2(τ )3 =
2
√

2
f1(2τ )3

=
2
√

2θ10(τ )
2θ01(2τ )

= F2(τ ).

Considering the third power of f(τ ), it follows by Theorem 3.(5) that

f(τ )3 =
e

πi
8 2

√
2

f2( τ+1
2

)3
=

e
πi
8 2

√
2θ01(τ + 1)√

2θ10( τ+1
2 )

= F(τ ).

�

We immediately obtain the following theorem by Theorem 4 and Theorem 13, which enables to compute
class polynomials using the new representations of Theorem 13:

Theorem 14 Let τ ∈ H be a zero of a primitive equation

Ax2 + Bx + C = 0 gcd(A, 2) = 1, B ≡ 0 mod 32

with the special discriminant D(τ ) = t2d =: −4m. Then the following numbers g(τ ) are class invariants:

1.
(

2
A

)
1

2
√

2
F(τ )2 if m ≡ 1 mod 8,

2. F(τ ) if m ≡ 3 mod 8,

3. 1
8F(τ )4 if m ≡ 5 mod 8,

4.
(

2
A

)
1

2
√

2
F(τ ) if m ≡ 7 mod 8,

5.
(

2
A

)
1

2
√

2
F1(τ )2 if m ≡ 2 mod 4,

6.
(

2
A

)
1

16
√

2
F1(τ )4 if m ≡ 4 mod 8,

where the factor
(

2
A

)
denotes the Legendre symbol.

As before if τ = τ1, · · · , τht is a 16-system modulo t , then the singular values g(τi) above form a complete
system of conjugates over Q. Therefore, the minimal polynomial over Q is

WD(τ)(x) =
ht∏

i=1

(x − gi), where gi := g(τi) ,

and has integer coefficients.

4.2. Generalized invariants

We will derive identities to represent the Schläfli functions of level l = 3 and l = 5 as quotients of Thetanullwerte.

Level l = 3 : We have the following theorem in this case.

Theorem 15 For τ ∈ H, we have:
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1. g0(τ ) = θ10(τ/6)
θ10(τ/2)

f1(τ/3)
f1(τ)

, g0(τ )3 = θ10(τ/6)2

θ10(τ/2)2
θ01(τ/3)
θ01(τ)

,

2. g1(τ ) = ζ48
θ10(

τ+1
6 )f1(

τ+1
3 )

θ10(τ+1
2 )f(τ)

, g1(τ )3 = θ10(
τ+1
6 )2θ01( τ+1

3 )

θ10(
τ+1
2 )2θ00(τ)

,

3. g2(τ ) = θ10(
τ+2
6 )f1(

τ+2
3 )

θ10(
τ
2 )f1(τ) , g2(τ )3 = θ10(

τ+2
6 )2θ01(

τ+2
3 )

θ10(
τ
2 )2θ01(τ) ,

4. g3(τ ) =
√

3 θ10(
3τ
2 )f1(3τ)

θ10(
τ
2 )f1(τ) , g3(τ )3 = 3

√
3θ10(

3τ
2 )2θ01(3τ)

θ10(
τ
2 )2θ01(τ) .

Proof We showed in the proof of Theorem 13 that the identity

η(τ )3 =
θ00(τ )θ01(τ )θ10(τ )

2

holds. This implies that

g0(τ )3 =
θ00(τ/3)θ01(τ/3)θ10(τ/3)

θ00(τ )θ01(τ )θ10(τ )
.

By the duplication formula (15) and Theorem 11.(2), we obtain

g0(τ )3 =
θ10(τ/6)2θ01(τ/3)
θ10(τ/2)2θ01(τ )

=
η(τ/3)
η(τ )

θ10(τ/6)2f1(τ/3)2

θ10(τ/2)2f1(τ )2
= g0(τ )

θ10(τ/6)2f1(τ/3)2

θ10(τ/2)2f1(τ )2
.

Hence by comparing the sign of the both sides, we get

g0(τ ) =
θ10(τ/6)f1(τ/3)
θ10(τ/2)f1(τ )

.

Moreover, by Theorem 5.(3), we have:

g3(τ ) =
√

3
g0(3τ )

=
√

3
θ10(3τ

2
)f1(3τ )

θ10( τ
2
)f1(τ )

,

and

g3(τ )3 =
3
√

3
g0(3τ )3

= 3
√

3
θ10(3τ

2 )2θ01(3τ )
θ10( τ

2 )2θ01(τ )
.

Theorem 5.(4) and the transformation (11) imply the identities

g1(τ ) =
√

3
g3( τ+1

3
)

=
θ10( τ+1

6
)f1( τ+1

3
)

θ10( τ+1
2

)f1(τ + 1)
= ζ48

θ10( τ+1
6

)f1( τ+1
3

)
θ10( τ+1

2
)f(τ )

,

and

g1(τ )3 =
3
√

3
g3( τ+1

3 )3
=

θ10( τ+1
6 )2θ01( τ+1

3 )
θ10( τ+1

2 )2θ01(τ + 1)
.

We obtain now the second part of the second assertion

g1(τ )3 =
θ10( τ+1

6
)2θ01( τ+1

3
)

θ10( τ+1
2

)2θ00(τ )
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with the transformation formulas for Thetanullwerte

θ01(τ + 1) = θ00(τ ), θ00(τ + 1) = θ01(τ ), θ10(τ + 1) = ζ8θ10(τ ). (16)

Theorem 5.(5) implies that

g2(τ ) =
ζ12

√
3

g3( τ+2
3 )

= ζ12
θ10( τ+2

6 )f1( τ+2
3 )

θ10( τ+2
2 )f1(τ + 2)

.

By transformation formulas (11) and (16), the following identities hold:

f1(τ + 2) = ζ−1
48 f(τ + 1) = ζ−1

24

η( τ+2
2 )

η(τ + 1)
= ζ−1

24 f1(τ ), θ10

(
τ + 2

2

)
= ζ8θ10(τ/2).

Hence, we have the first part of the third assertion:

g2(τ ) = ζ12

θ10( τ+2
6

)f1( τ+2
3

)
θ10( τ+2

2 )f1(τ + 2)
= ζ12

θ10( τ+2
6

)f1( τ+2
3

)
ζ8θ10( τ

2 )ζ−1
24 f1(τ )

=
θ10( τ+2

6
)f1( τ+2

3
)

θ10( τ
2
)f1(τ )

.

Lastly, we get by using Theorem 5.(5)

g2(τ )3 =
ζ43

√
3

g3( τ+2
3 )3

= ζ4
θ10( τ+2

6 )2θ01( τ+2
3 )

θ10( τ+2
2 )2θ01(τ + 2)

holds. By formula (16), the last identity follows:

g2(τ )3 = ζ4
θ10( τ+2

6 )2θ01( τ+2
3 )

ζ4θ10( τ
2 )2θ01(τ )

=
θ10( τ+2

6 )2θ01( τ+2
3 )

θ10( τ
2 )2θ01(τ )

.

�
Level l = 5 : We can represent also the Schläfli functions of level 5 using some quotients of Thetanull-

werte with the help of the following theorem, whose proof follows under the consideration of transformations of
f1 together with the transformation formulas (16), similar to the proof of Theorem 15.

Theorem 16 We have the following identities for τ ∈ H:

1. h0(τ ) = θ10(τ/10)
θ10(τ/2)

f1(τ/5)
f1(τ)

, h0(τ )3 = θ10(τ/10)2

θ10(τ/2)2
θ01(τ/5)
θ01(τ)

,

2. h1(τ ) = ζ6ζ48
θ10(

τ+1
10 )f1(

τ+1
5 )

θ10(
τ+1
2 )f(τ)

, h1(τ )3 = −θ10( τ+1
10 )2θ01(

τ+1
5 )

θ10(τ+1
2 )2θ00(τ)

,

3. h2(τ ) = ζ24
θ10(

τ+2
10 )f1( τ+2

5 )

θ10(
τ
2 )f1(τ) , h2(τ )3 = ζ8

θ10( τ+2
10 )2θ01(

τ+2
5 )

θ10(
τ
2 )2θ01(τ) ,

4. h3(τ ) = ζ48
θ10(

τ+3
10 )f1( τ+3

5 )

θ10(
τ+1
2 )f(τ)

, h3(τ )3 = θ10(
τ+3
10 )2θ01(

τ+3
5 )

θ10(
τ+1
2 )2θ00(τ)

,

5. h4(τ ) = ζ−1
24

θ10(
τ+4
10 )f1(

τ+4
5 )

θ10(
τ
2 )f1(τ)

, h4(τ )3 = ζ8
θ10(

τ+4
10 )2θ01(

τ+4
5 )

θ10(
τ
2 )2θ01(τ)

,

6. h5(τ ) =
√

5θ10(
5τ
2 )f1(5τ)

θ10(
τ
2 )f1(τ)

, h5(τ )3 = 5
√

5 θ10(
5τ
2 )2θ01(5τ)

θ10(
τ
2 )2θ01(τ)

.
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Arbitrary level l : We can represent the following generalized Schläfli functions of arbitrary level 	 as
quotients of Thetanullwerte using the same method of the proof of Theorem 15:

m�(τ ) =
√

	
η(	τ)
η(τ )

, m0(τ ) =
η( τ

� )
η(τ )

. (17)

Theorem 17 For τ ∈ H, we have:

1. m0(	τ)m�(τ ) =
√

	,

2. m0(τ ) = θ10(τ/2�)f1(τ/�)
θ01(τ/2)f1(τ)

,

3. m0(τ )3 = θ10(τ/2�)2

θ10(τ/2)2
θ01(τ/�)
θ01(τ) ,

4. m�(τ ) =
√

	θ10(�τ/2)f1(�τ)
θ10(τ/2)f1(τ)

,

5. m�(τ )3 = 	
√

	θ10(�τ/2)2θ01(�τ)
θ10(τ/2)2θ01(τ) .

Remark 18 The function

ζ
η( τ+k

� )
η(τ )

,

of arbitrary level 	 can be represented by Theorem 17 by using suitable roots of unity ζ and the transformation
formula (16) as quotients of some Thetanullwerte.

5. Unit property

In this section we prove that the invariants of Theorem 6 are units in the corresponding Hilbert class fields. This
result generalizes the results of [11, Theorem 20, 21], in which we proved that most of the invariants introduced
in Theorem 14 are units in the corresponding ring class fields.

For the modular discriminant function and the Dedekind η -function, we have the following identity,
which we will need later:

Δ(τ ) = (2π)12η(τ )24. (18)

Furthermore, let P be a primitive matrix of determinant p , where p is a prime number, that is

P =
(

a b
c d

)
∈ Z2×2 with det(P ) = p and gcd(a, b, c, d) = 1.

For the quotient (see [3, p. 11])

ϕP (τ ) := p12

Δ
(

P

(
ω1

ω2

))

Δ
(

ω1

ω2

) where Δ
(

ω1

ω2

)
= ω−12

2 Δ(τ ), (19)

we have the following two cases of theorem of Deuring [3, p. 43], which we need in order to prove our claim

stated at the beginning. (For the other cases we refer to [3, p. 43].):
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Theorem 19 Let t > 0 be an integer, p be a prime number and l ≥ 0 be the greatest power of p with pl|t .

Let further a, b, c and d be integers such that the matrix P :=
(

a b
c d

)
has determinant p . Assume that

{ω1, ω2} is a basis of a fractional Ot -ideal I with τ := ω1
ω2

∈ H.

1. Let l = 0 . If p splits completely in K , (p) = pp , then we have:

if P

(
ω1

ω2

)
is a basis of the ideal IOtpOt (or IOtpOt

), then ϕP (τ)

p
12 (resp. ϕP (τ)

p12 ) is a unit.

2. If p ramifies in K , (p) = p2 , then we have:

ϕP (τ)
p6 is a unit if P

(
ω1

ω2

)
is a basis of the ideal IOtpOt .

We have now the following theorem:

Theorem 20 The class invariants introduced in Theorem 6 are units in the corresponding Hilbert class fields.

Proof Firstly, we consider the cases D ≡ 1 mod 3 and D ≡ 1 mod 4. It follows that D ≡ 1 mod 12.

Hence, we get OK = Z[ 1+
√

D
2 ] and that 3 splits in OK .

For the number l in Theorem 19, the equality l = 0 holds, since the conductor t = 1 by Theorem 6.

By Theorem 19.(1) the quotients ϕP (τ)
312 and ϕQ(τ)

312 are units with the matrices P =
(

1 0
0 3

)
and

Q =
(

1 1
0 3

)
, respectively.

We obtain now by identity (19) the units

ϕP (τ )
312

= 3−12 Δ(τ/3)
3−12Δ(τ )

=
Δ(τ/3)
Δ(τ )

and
ϕQ(τ )
312

=
Δ( τ+1

3 )
Δ(τ )

.

Due to the identity (18), the 12th roots of these units are class invariants for the cases D ≡ 1 mod 4 and
D ≡ 1, 4, 7 mod 9.

Similarly, one can obtain for D ≡ 0, 4 mod 8 and D ≡ 1, 4, 7 mod 9 that the corresponding invariants
are units, because we have D ≡ 4 mod 12. This is due to the fact that 3 splits in Ok and we can consider the

matrices Q and R =
(

1 2
0 3

)
.

By 19.(1) it follows that g2(τ )2 is a unit.

It follows D ≡ 0 mod 12 for the cases D ≡ 0 mod 3 and D ≡ 0 mod 4.
Hence, 3 is ramified in Ok . We obtain the following unit by Theorem 19.(2) and the identity (19) with

using the matrix P =
(

1 0
0 3

)

ϕP (τ )
36

=
1
36

Δ( τ
3
)

Δ(τ )
.
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By the identity (19), the following holds:

(
g0(τ )2√

3

)12

=
1
36

Δ( τ
3
)

Δ(τ )
.

Altogether the class invariants

g0(τ )2√
3

,
g0(τ )4

3
,

g0(τ )6

3
√

3
and

g0(τ )12

33

are units for D ≡ 24 mod 72, D ≡ 60 mod 72, D ≡ 48 mod 72, D ≡ 12 mod 72, respectively.

From the last two cases, D ≡ 1 mod 4 and D ≡ 0 mod 3, we have the property D ≡ 9 mod 12, and hence

3|D . We have the following again by Theorem 19.(2) and the identity (19) with the matrix R =
(

1 2
0 3

)
:

ϕR(τ )
36

=
1
36

Δ( τ+2
3

)
Δ(τ )

,

and by the identity (19) (
g2(τ )2√

3

)12

=
1
36

Δ( τ+2
3 )

Δ(τ )
.

Therefore, the class invariants

g2(τ )2√−3
and

g2(τ )6

3
√−3

are units when D ≡ 33 mod 72 and D ≡ 57 mod 72, respectively. �

6. Examples

We compare in this section the time needed to compute the class polynomials as quotients of values of the
Dedekind η−function by Theorem 4 with the time needed when using the different representations of class
invariants using Thetanullwerte (the representations in [11] and in Theorem 14).

We introduced the following representation of class invariants using Thetanullwerte, [11, Theorem 8, p.

4]:

Theorem 21 For τ ∈ H, we have:

G(τ ) :=
2θ00(τ )2

θ01(τ )θ10(τ )
= f(τ )6, G1(τ ) :=

2θ01(τ )2

θ00(τ )θ10(τ )
= f1(τ )6,

and

G2(τ ) :=
2θ10(τ )2

θ00(τ )θ01(τ )
= f2(τ )6.

We compute the class polynomials using the invariants of Theorems 4, 21 and 14 with a fixed precision
for several discriminants. We obtained the following table using MAGMA, see [12]. Moreover, the values of

η -functions are computed by [11, Theorem 18, p. 9].
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Let D denote the discriminant, hD the class number, Prec the fixed precision, η , old−θ , new−θ the
time in seconds needed to compute the class polynomial using Theorems 4, 21 and 14, respectively. Then, we
computed the following table of examples:

D hD Prec η old-θ new-θ
−740 16 40 0.11 0.03 0.02
−1040 21 45 0.12 0.04 0.03
−3188 30 90 0.23 0.06 0.04
−7196 50 120 0.48 0.11 0.09
−7796 70 149 0.69 0.16 0.13
−12344 84 94 0.59 0.14 0.12
−42800 108 201 1.44 0.32 0.26
−43316 128 355 3.72 0.93 0.70
−66404 168 403 4.74 1.05 0.87
−204716 264 679 16.34 3.95 3.69
−345236 340 1073 55.15 13.12 9.70
−825020 504 1329 147.18 34.87 27.80
−1057124 1032 1756 423.55 96.76 73.19
−14123480 1752 5179 16715.51 1835.23 1386.31

These examples show also experimentally that the computations can be performed more efficiently using
Theorem 14.
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