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Abstract: Let R be a ring. A left R -module M is called a c.p. module if every cyclic submodule of M is projective.

This notion is a generalization of left p.p. rings in the general module theoretic setting. The aim of this article is to

investigate these modules. Some characterizations and properties are given. As applications, the connections among

Baer rings, p.p. rings and von Neumann regular rings are studied.
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1. Introduction

Throughout this paper, all rings are associative with unity and all modules are unitary modules. For a ring R ,

RM (MR ) denotes a left (right) R -module (in this article, we abbreviate RM to M if no ambiguity arises),

and module homomorphisms are written on the right (left) of their arguments. The notations N ⊆ M , N ≤ M

or N ≤⊕ M mean that N is a subset, a submodule or a direct summand of M , respectively. M I (M (I)) is

the direct product (sum) of copies of M indexed by a set I . For a module RM and each subset S of M , set

lR(S) = {r ∈ R : rs = 0, ∀s ∈ S} . Let m, n be two positive integers. The set of m × n matrices over R is

denoted by Mm×n(R), in particular, Mn(R) denotes the n × n matrices ring over R . Write Tn(R) for the
ring of all n × n upper triangular matrices over R . Q and Z denote the ring of rational and integer numbers,
respectively. By Zn we denote the ring of integers modulo n . General background material can be found
in [1, 15]. In this paper, we extend the upper triangular matrix ring Tn(R) to the general module theoretic

setting. For a left R -module M , write Tn(M) for the set of all n × n formal upper triangular matrices over

M and define the addition and scalar multiplication via (xij) + (yij) = (xij + yij), (rij)(xij) = (
∑n

k=1 rikxkj)

for any (xij), (yij) ∈ Tn(M) and (rij) ∈ Tn(R). Then Tn(M) is a left Tn(R)-module relative to the addition

and scalar multiplication. Denote (RnX : ξ) = {r ∈ R : rξ ∈ RnX} for any X ∈ Tn(M) and ξ ∈ Mn , where
the operations of RnX are induced naturally by the ones of RM .

A ring R is called a Baer ring [13] if the left annihilator of every nonempty subset of R is a direct
summand of RR . The study of such rings has its roots in functional analysis with close links to C∗ -algebras
and von Neumann algebras and it is well known that the concept is left-right symmetric. Closely related to the
notion of Baer rings is the more general concept of left p.p. rings. R is called left p.p. [7] if each principal left

ideal of R is projective; equivalently, if the left annihilator lR(a) is a direct summand of RR for each a ∈ R . A

number of interesting results on these rings have been obtained (see, for example, [2, 3, 4, 5, 9, 11, 12]). In 1972,
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Evans introduced the notion of c.p. modules in [8], which puts the concept of p.p. rings in the general module

theoretic setting, but not much work on the modules was done. A left R -module M is called a c.p. module [8]

if every cyclic submodule of M is projective, equivalently if the left annihilator lR(x) is a direct summand of

RR for each x ∈ M . In 2010, Lee, Rizvi and Roman [16] introduced the concept of Rickart modules as another
generalization of left p.p. rings by exploiting the connections between a module RM and its endomorphism ring
S = EndR(M). A left R -module M is called a Rickart module if the left annihilator in M of any single element

of S is generated by an idempotent of S . Equivalently, ∀ϕ ∈ S , lM (ϕ) = Kerϕ = Me for some e2 = e ∈ S .

In this paper, we consider the notion of c.p. modules. Apply the results on modules to investigate p.p.
property of rings and the connections among Baer rings, p.p. rings and (von Neumann) regular rings (a ring R is

called regular if every principal left ideal is a direct summand of RR). In Section 2, some characterizations and
properties of c.p. modules are obtained. Such as, direct sums of c.p. left R -modules are c.p. left R -modules.
It is proved that R is Baer if and only if R is p.p. and the direct products of c.p. left R -modules are again c.p.
left R -modules. We provide an example to show that the notion of c.p. modules is distinct from that of Rickart
modules, and prove that every cyclic c.p. left R -module is Rickart. In Section 3, we consider the p.p. property
of the left Tn(R)-module Tn(M). An equivalent condition for Tn(R)Tn(M) to be c.p. is obtained. Moreover,

applying the result to rings in Section 4, we get that R is a regular ring if and only if Tn(R) is left p.p. for

each n ≥ 2 if and only if Tn(R) is left p.p. for some n ≥ 2. An intimate connection among c.p. modules, p.p.
rings and regular rings is established.

2. C.P. modules

In this section, we investigate the notion of a c.p. module which is a generalization of a left (or right) p.p.

ring in the general module theoretic setting. A left R -module M is called a c.p. module [8] if every cyclic

submodule of M is projective, equivalently if lR(x) is a direct summand of RR for each x ∈ M . It is easy to
see that a ring R is a left p.p. ring if RR is a c.p. module. The right analogs are defined similarly.

Each submodule of a c.p. module is again a c.p. module by the definition of c.p. modules. But it is not
true for a factor module. For example, we consider the ring Z of integers. ZZ is a c.p. module, but Z/2Z is
not c.p. as a Z -module.

Example 2.1 (1) Every projective left module over a left semihereditary ring is a c.p. module.

(2) Every regular module (in the sense of Zelmanowitz [20]) is a c.p. module by [20, Theorem 2.2].

Lemma 2.2 Let R be a ring and M a left R -module. Then Ra
⋂

lR(X) = lR(aX)a for any a ∈ R and any
subset X of M .

Proof Suppose a ∈ R and X is a subset of M . For any x ∈ X , we have lR(aX)ax = 0, so lR(aX)a ⊆ lR(X).

Clearly, lR(aX)a ⊆ Ra . Thus lR(aX)a ⊆ Ra
⋂

lR(X). Conversely, if t = ra ∈ lR(X), then raX = 0, i.e.,

r ∈ lR(aX), so t = ra ∈ lR(aX)a . Thus Ra
⋂

lR(X) = lR(aX)a . �

Lemma 2.3 Let RM be a c.p. module. Then Re
⋂

lR(x) is a direct summand of RR for any e2 = e ∈ R and
x ∈ M .

Proof Set e2 = e ∈ R and x ∈ M . By Lemma 2.2, Re
⋂

lR(x) = lR(ex)e . Since RM is a c.p. mod-

ule, lR(ex) = Rf for some idempotent f ∈ R . It is easy to prove that lR(ex)e ⊆ lR(ex), so Rfe =
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lR(ex)e ⊆ lR(ex) = Rf . Thus fe = fef and (fe)2 = fefe = fee = fe is an idempotent of R . Hence

Re
⋂

lR(x) = lR(ex)e = Rfe is a direct summand of RR . �

Theorem 2.4 Let R be a ring and M a left R -module. Then the following are equivalent:

(1) M is a c.p. module.

(2) lR(K) is a direct summand of RR for each finite subset K of M .

Proof (1) ⇒ (2). Suppose K = {x1, x2, · · · , xn} ⊆ M . Denote T = {x1, x2, · · · , xn−1} . We now proceed

by induction on n . If n = 1, then it is clear that lR(K) is a direct summand of RR . Let n > 1 and

assume that the result is true for n − 1, then lR(T ) = Re for some idempotent e ∈ R . By Lemma 2.3,

lR(K) = lR(T )
⋂

lR(xn) = Re
⋂

lR(xn) is a direct summand of RR .

(2) ⇒ (1) is trivial. �

Corollary 2.5 A ring R is a left p.p. ring if and only if the left annihilator of each finitely generated right
ideal is a direct summand of RR .

Corollary 2.6 If R is a left p.p. ring, then the intersection of two direct summands is again a direct summand
of RR .

Proof Suppose e, f are two idempotents in R , then Re
⋂

Rf = l(1 − e)
⋂

l(1 − f) = l((1 − e)R + (1 − f)R)
is a direct summand of RR by Corollary 2.5. �

Theorem 2.7 Let (Mα)α∈A be an indexed set of left R -modules. Then
⊕

A Mα is a c.p. module if and only

if each Mα is a c.p. module.

Proof “ ⇒ ”. It is clear since every submodule of a c.p. module is again a c.p. module.

“ ⇐ ”. Suppose that Mα is c.p. for any α ∈ A and ξ = (xα) ∈ ⊕
A Mα . Set S = {xα : xα 	= 0} ,

then S is a finite set and lR(ξ) = lR(S). Next we show that lR(S) is a direct summand of RR . It suffices to

prove the conclusion in the case S = {xα, xβ} . Since Mα is a c.p. module, lR(xα) = Re for some idempotent

e ∈ R . Now since Mβ is a c.p. module, lR(S) = lR(xα)
⋂

lR(xβ) = Re
⋂

lR(xβ) is a direct summand of RR

by Lemma 2.3. It follows that lR(ξ) is a direct summand of RR and
⊕

A Mα is a c.p. left R -module. �

Applying Theorem 2.7 to rings, the following characterizations of left p.p. rings hold.

Corollary 2.8 [8, Theorem 3.2] For a ring R the following are equivalent:

(1) R is a left p.p. ring.

(2) Every free left R -module is a c.p. module.

(3) Every projective left R -module is a c.p. module.

As is well known, every Baer ring is a p.p. ring, but the converse is not true. The following result shows
that if the direct products of c.p. left R -modules are again c.p. left R -modules, then R being p.p. implies
that R is Baer.
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Theorem 2.9 For a ring R the following are equivalent:

(1) R is a left p.p. ring and every direct product of c.p. left R -modules is a c.p. left R -module.

(2) RRA is a c.p. module for every set A .

(3) R is a Baer ring.

Proof (1) ⇒ (2) is trivial.

(2) ⇒ (3). For any subset S of R , we consider the element γ = (s)s∈S ∈ RS . It is easy to see that

lR(S) = lR(γ). Since RRS is a c.p. module, lR(γ) ≤⊕ R . So lR(S) ≤⊕ R and R is Baer.

(3) ⇒ (1). Clearly, R is left p.p. by hypothesis. Suppose that (Mα)α∈A is an indexed set of c.p. left

R -modules and ξ = (xα) ∈ ∏
A Mα . Since Mα is c.p., lR(xα) = R(1 − eα) = lR(eα) for some idempotent

eα ∈ R . Set S = {eα : α ∈ A} . We have lR(ξ) =
⋂

A lR(xα) =
⋂

A lR(eα) = lR(S) ≤⊕ R because R is Baer.

Hence
∏

A Mα is a c.p. left R -module. �

The next proposition characterizes regular rings and semisimple rings in terms of c.p. modules.

Proposition 2.10 Let R be a ring.

(1) The following are equivalent:

(i) R is regular.

(ii) Every finitely presented left R -module is a c.p. module.

(2) The following are equivalent:

(i) R is semisimple.

(ii) Every left R -module is a c.p. module.

(iii) Every simple left R -module is a c.p. module.

Proof (1). (i) ⇒ (ii). If R is regular, then every left R -module is flat. So each finitely presented left
R -module is projective, and thus c.p. by Corollary 2.8.

(ii) ⇒ (i). Assume that I is a finitely generated left ideal of R . Then R/I is a finitely presented left

R -module, and so it is a c.p. module. Thus I = lR(1R + I) is a direct summand of R . Hence R is regular.

(2). (i) ⇒ (ii). Since every left ideal of a semisimple ring is generated by an idempotent, the result
follows.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i). Let I be a maximal left ideal of R . Then R/I is a simple left R -module, and thus it is c.p.

by hypothesis. So I = lR(1R + I) is a direct summand of R . Therefore R is semisimple. �

Recall that a left R -module M is said to be a Rickart module [16] if the left annihilator in M of any

single element of S is generated by an idempotent of S . Equivalently, ∀ϕ ∈ S , lM (ϕ) = Kerϕ = Me for some

e2 = e ∈ S . This is another generalization of left p.p. rings. The following example is provided to show that
the notion of c.p. modules is distinct from that of Rickart modules.

Example 2.11 The Z-module Q ⊕ Z2 is a Rickart module by [16, Example 2.5]. However, it is not a c.p.

Z-module: lZ(x) = 2Z is not a direct summand of ZZ where x = (0, 1) ∈ Q ⊕ Z2 .

Proposition 2.12 Every cyclic c.p. left R -module is a Rickart module and the ring of its endomorphisms is
a left p.p. ring.
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Proof Suppose RM is a cyclic c.p. module. For each f ∈ EndR(M), Imf is a cyclic submodule of M , and
thus Imf is projective. So Kerf is a direct summand of M . It follows that M is a Rickart module, and then
EndR(M) is a left p.p. ring by [16, Proposition 3.2]. �

We don’t know whether every c.p. left R -module is a Rickart module.

3. C.P. property of Tn(R)Tn(M)

The triangular matrix ring Tn(R) (n ≥ 1) is an important extension of R . A number of interesting papers

have been published on the extension (see [6], [10] et al.). In this section, we extend the extension to the general

module theoretic setting, i.e., for a left R -module M , let Tn(M) be the set of all n×n formal upper triangular

matrices over M . It is easy to see that Tn(M) is a left Tn(R)-module relative to the addition and scalar
multiplication defined via

(xij) + (yij) = (xij + yij), (rij)(xij) = (
n∑

k=1

rikxkj).

We next explore when the left Tn(R)-module Tn(M) is a c.p. module, and then apply the results to investigate

the p.p. property of Tn(R). Firstly the following lemma is given.

Lemma 3.1 Let M be a left R -module, n ≥ 2 , and X =
(

x ξ
0 X1

)
∈ Tn(M) with x ∈ M, ξ ∈ Mn−1, X1 ∈

Tn−1(M) . Then lTn(R)(X) is a direct summand of Tn(R) if and only if lTn−1(R)(X1) is a direct summand of

Tn−1(R) and lR(x)
⋂

(Rn−1X1 : ξ) is a direct summand of R .

Proof Denote Sn = Tn(R) for each n ≥ 1.

“ ⇒ ”. Suppose lTn(R)(X) is a direct summand of Tn(R), i.e., lSn(X) = SnE for some idempotent

E = ( e α
0 E1 ) ∈ Sn , where e ∈ R, α ∈ Rn−1, E1 ∈ Sn−1 . Then e2 = e , E2

1 = E1 and

(
ex eξ+αX1
0 E1X1

)
= ( e α

0 E1 )
(

x ξ
0 X1

)
= EX = 0.

It follows that ex = 0, eξ +αX1 = 0, E1X1 = 0. Hence Re ⊆ lR(x)
⋂

(Rn−1X1 : ξ) and Sn−1E1 ⊆ lSn−1 (X1).

Next we show that lR(x)
⋂

(Rn−1X1 : ξ) ⊆ Re and lSn−1 (X1) ⊆ Sn−1E1 .

For any r ∈ lR(x)
⋂

(Rn−1X1 : ξ), we have rx = 0 and rξ + δX1 = 0 for some δ ∈ Rn−1 . Then

( r δ
0 0 )

(
x ξ
0 X1

)
=

(
rx rξ+δX1
0 0

)
= 0.

So ( r δ
0 0 ) ∈ lSn(X) = SnE and ( r δ

0 0 ) = ( r δ
0 0 ) ( e α

0 E1 ) . Thus r = re ∈ Re , and so

lR(x)
⋂

(Rn−1X1 : ξ) ⊆ Re.

We have proved that lR(x)
⋂

(Rn−1X1 : ξ) = Re is a direct summand of R .

Assume L1 ∈ lSn−1 (X1), then L1X1 = 0. We get that

(
0 0
0 L1

) (
x ξ
0 X1

)
=

(
0 0
0 L1X1

)
= 0.

12
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Then
(

0 0
0 L1

)
∈ lSn(X) = SnE. So

(
0 0
0 L1

)
=

(
0 0
0 L1

)
( e α

0 E1 ) , and L1 = L1E1 ∈ Sn−1E1. Thus lSn−1 (X1) ⊆
Sn−1E1 . Hence lSn−1 (X1) = Sn−1E1 is a direct summand of Sn−1 .

“ ⇐ ”. Let lSn−1 (X1) = Sn−1E1 and lR(x)
⋂

(Rn−1X1 : ξ) = Re for some E2
1 = E1 ∈ Sn−1, e2 = e ∈ R .

We have that ex = 0, E1X1 = 0 and eξ + αX1 = 0 for some α ∈ Rn−1 . Set β = eα(I − E1), where I is the
identity of Sn−1 . Then

eξ + βX1 = eξ + eα(I − E1)X1 = eξ + eαX1 = e(eξ + αX1) = 0

and
eβ + βE1 = e2α(I − E1) + eα(I − E1)E1 = eα(I − E1) = β.

Let E =
(

e β
0 E1

)
, then E2 =

(
e β
0 E1

) (
e β
0 E1

)
=

(
e2 eβ+βE1

0 E2
1

)
=

(
e β
0 E1

)
= E.

Next we show that lSn(X) = SnE . Since EX =
(

e β
0 E1

)(
x ξ
0 X1

)
=

(
ex eξ+βX1
0 E1X1

)
= 0, SnE ⊆ lSn(X).

For any T =
( t γ

0 T1

)
∈ lSn (X),

(
tx tξ+γX1
0 T1X1

)
=

(
t γ
0 T1

) (
x ξ
0 X1

)
= TX = 0.

It follows that tx = 0, tξ + γX1 = 0, T1X1 = 0. So t ∈ lR(x)
⋂

(Rn−1X1 : ξ) = Re and T1 ∈ lSn−1 (X1) =

Sn−1E1 . Then t = te , T1 = T1E1 and

(γ − tβ)X1 = γX1 − tβX1 = γX1 + teξ = γX1 + tξ = 0.

Thus (
γ−tβ

0

)
X1 = 0,

where the first 0 ∈ R(n−2)×(n−1) . So
(

γ−tβ
0

)
∈ lSn−1 (X1) = Sn−1E1, and then

(
γ−tβ

0

)
=

(
γ−tβ

0

)
E1.

Thus γ − tβ = (γ − tβ)E1 and γ = tβ + (γ − tβ)E1. Since eβ + βE1 = β ,

tβ + tβE1 = t(eβ + βE1) = tβ.

So tβE1 = 0 and γ = tβ + γE1 . Hence we get that

T =
( t γ

0 T1

)
=

(
te tβ+γE1
0 T1E1

)
=

( t γ
0 T1

) (
e β
0 E1

)
∈ SnE.

Thus lSn(X) = SnE is a direct summand of Sn and the result follows. �

Corollary 3.2 Let M be a left R -module and X = ( x y
0 z ) ∈ T2(M) . Then lT2(R)(X) is a direct summand of

T2(R) if and only if lR(z) and lR(x)
⋂

(Rz : y) are two direct summands of R .

Lemma 3.3 T2(M) is a c.p. left T2(R)-module if and only if (Rx : y) is a direct summand of R for any
x, y ∈ RM .

13
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Proof “ ⇒ ”. Suppose x, y ∈ M . Set X =
(

0 y
0 x

)
. Then, by hypothesis, lT2(R)(X) is a direct summand of

T2(R). So (Rx : y) = lR(0)
⋂

(Rx : y) is a direct summand of R by Corollary 3.2.

“ ⇐ ”. Since (Rx : y) is a direct summand of R for any x, y ∈ M , lR(y) = (R0 : y) is a direct summand

for any y ∈ M . Thus M is a c.p. module. Set X = ( x y
0 z ) ∈ T2(M), then lR(z) is a direct summand of R .

Write (Rz : y) = Re with e2 = e ∈ R . Since M is c.p., lR(x)
⋂

(Rz : y) = lR(x)
⋂

Re is a direct summand of

R by Lemma 2.3. By Corollary 3.2, lT2(R)(X) is a direct summand of T2(R). Therefore T2(M) is a c.p. left

T2(R)-module. �

Theorem 3.4 Let n be a positive integer and n ≥ 2 . The following are equivalent for a left R -module M :

(1) Tn(M) is a c.p. left Tn(R)-module.

(2) (Rn−1X : ξ) is a direct summand of R for any X ∈ Tn−1(M) , ξ ∈ Mn−1 .

Proof (1) ⇒ (2). Suppose X ∈ Tn−1(M), ξ ∈ Mn−1 . Set X̄ =
(

0 ξ
0 X

)
, then X̄ ∈ Tn(M). Since Tn(M) is a

c.p. left Tn(R)-module, lTn(R)(X̄) is a direct summand of Tn(R). So (Rn−1X : ξ) = lR(0)
⋂

(Rn−1X : ξ) is a

direct summand of R by Lemma 3.1.

(2) ⇒ (1). First we show that, for each 1 ≤ m < n − 1 and any X ∈ Tm(M), ξ ∈ Mm , (RmX : ξ) is a
direct summand of R .

Suppose X ∈ Tm(M), ξ ∈ Mm . Set X̄ = ( 0 0
0 X ) and ξ̄ = (0, ξ) such that X̄ ∈ Tn−1(M), ξ̄ ∈ Mn−1 . By

hypothesis, (Rn−1X̄ : ξ̄) is a direct summand of R . We shall show that (RmX : ξ) = (Rn−1X̄ : ξ̄). Assume

that r ∈ (RmX : ξ), then rξ = αX for some α ∈ Rm . So

rξ̄ = r(0, ξ) = (0, rξ) = (0, αX) = (0, α) ( 0 0
0 X ) = (0, α)X̄,

where (0, α) ∈ Rn−1 . It follows that r ∈ (Rn−1X̄ : ξ̄). Conversely, if r ∈ (Rn−1X̄ : ξ̄), then rξ̄ = ᾱX̄ for some

ᾱ = (α1, α) ∈ Rn−1 , where α1 ∈ Rn−m−1 , α ∈ Rm , i.e.,

(0, rξ) = r(0, ξ) = rξ̄ = ᾱX̄ = (α1, α) ( 0 0
0 X ) = (0, αX).

So rξ = αX , and r ∈ (RmX : ξ). This shows that (RmX : ξ) = (Rn−1X̄ : ξ̄) is a direct summand of R for

each 1 ≤ m < n − 1 and any X ∈ Tm(M), ξ ∈ Mm . In particular, (Rx : y) is a direct summand for any

x, y ∈ M . So T2(M) is a c.p. left T2(R)-module by Lemma 3.3.

Since T2(M) is a c.p. left T2(R)-module and (R2X : ξ) is a direct summand of R for any X ∈ T2(M),

ξ ∈ M2 , using a similar argument as the proof of Lemma 3.3, we have that T3(M) is a c.p. left T3(R)-module

by Lemma 3.1. Proceeding in this way we get that Tm(M) is a c.p. left Tm(R)-module for all 1 ≤ m ≤ n . In

particular, Tn(M) is a c.p. left Tn(R)-module. �

Corollary 3.5 If Tn(M) is a c.p. left Tn(R)-module, then Tm(M) is a c.p. left Tm(R)-module for all
1 ≤ m ≤ n .

Proof By Theorem 3.4, for any X ∈ Tn−1(M), ξ ∈ Mn−1 , (Rn−1X : ξ) is a direct summand of R . Then we

know that, for each 1 ≤ m ≤ n − 1 and any X ∈ Tm(M), ξ ∈ Mm , (RmX : ξ) is a direct summand of R by

the proof of Theorem 3.4. So, again by Theorem 3.4, Tm(M) is a c.p. left Tm(R)-module for each 2 ≤ m ≤ n .

14
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Clearly, T2(M) being a c.p. left T2(R)-module implies that M is a c.p. left R -module by Lemma 3.3. Hence

Tm(M) is a c.p. left Tm(R)-module for all 1 ≤ m ≤ n . �

Corollary 3.6 If R is semisimple, then Tn(R)Tn(M) is c.p. for any left R -module M and each positive integer
n .

Corollary 3.7 If R is semisimple, then Tn(R) is Baer for any n ≥ 1 .

Proof By Corollary 3.6, Tn(R)Tn(R)I ∼= Tn(R)Tn(RI) is a c.p. module for every set I . The result follows by

Theorem 2.9. �

The converse of Corollary 3.7 is not true: The ring R = ZI
2 is not semisimple when I is an infinite set.

But Tn(Z2) is Baer for all n ≥ 1 by Corollary 3.7. Therefore Tn(R) = Tn(ZI
2) ∼= Tn(Z2)I is also Baer for any

n ≥ 1.

Corollary 3.8 Let n ≥ 2 . The following are equivalent for a ring R :

(1) Tn(R) is a left p.p. ring.

(2) (Rn−1A : α) is a direct summand of R for any A ∈ Tn−1(R) , α ∈ Rn−1 .

4. Applications

In [21], Zhang and Chen have shown that R is left semihereditary if and only if Mn(R) is left p.p. for all

positive integers n . In this section, we consider to characterize regular rings in terms of p.p. property of Tn(R)
as an application of Theorem 3.4.

A left R -module M is called feebly Baer [17] if, whenever ax = 0 with a ∈ R and x ∈ M , there exists

e2 = e ∈ R such that ae = a and ex = 0. A ring R is called feebly Baer if RR is a feebly Baer module. From
the definition, we can see that the notion of feebly Baer rings is left-right symmetric. And it is straightforward
to check that a left (or right) p.p. ring is feebly Baer. But the converse is not true by [14, Example 5.8]. In

[17], Lee and Zhou have proved the following result:

Theorem 4.1 [17, Theorem 5] Let n ≥ 2 . The following are equivalent for a ring R :

(1) R is a regular ring.

(2) Tn(R) is a feebly Baer ring.

(3) Mn(R) is a feebly Baer right module over Tn(R) .

(4) Mm×n(R) is a feebly Baer right module over Tn(R) for all m ≥ 1 .

(5) Mn(R) is a feebly Baer left module over Tn(R) .

(6) Mn×m(R) is a feebly Baer left module over Tn(R) for all m ≥ 1 .

In the above result, “feebly Baer ring” and “feebly Baer module” can be changed into “p.p. ring” and
“c.p. module”, respectively.

Theorem 4.2 Let n ≥ 2 . The following are equivalent for a ring R :

(1) R is a regular ring.

(2) Tn(R) is a left p.p. ring.

15



LIU and CHEN/Turk J Math

(3) Mn(R) is a c.p. left module over Tn(R) .

(4) Mn×m(R) is a c.p. left module over Tn(R) for all m ≥ 1 .

Proof (1) ⇒ (2). Since R is regular, R is left coherent. So, by [18, Theorem 2.4], (Rn−1A : α) is a

finitely generated left ideal of R for each n ≥ 2 and any A ∈ Tn−1(R), α ∈ Rn−1 . Again since R is regular,

(Rn−1A : α) is a direct summand of R . Hence Tn(R) is a left p.p. ring by Corollary 3.8.

(2) ⇒ (1). Assume (2), T2(R) is left p.p. by Corollary 3.5. So, by Lemma 3.3, (Ra : b) is a direct

summand of R for any a, b ∈ R . Set b = 1, then Ra = (Ra : 1) is a direct summand of R for any a ∈ R .
Therefore R is a regular ring.

(1) ⇒ (4). From (1) ⇔ (2), we have Tk(R) is a left p.p. ring for each k ≥ 2. Suppose X ∈ Mn×m(R),

set X̄ = ( 0 X
0 0 ) ∈ Tn+m(R). Then there exists an idempotent Ē =

(
E E1
0 E2

)
∈ Tn+m(R) with E ∈ Tn(R)

such that lTn+m(R)(X̄) = Tn+m(R)Ē . It follows that E is an idempotent of Tn(R) and EX = 0. For any

A ∈ lTn(R)(X),

( A 0
0 0 ) ( 0 X

0 0 ) = ( 0 AX
0 0 ) = 0.

Hence ( A 0
0 0 ) ∈ lTn+m(R)(X̄) = Tn+m(R)Ē and

( A 0
0 0 ) = ( A 0

0 0 )
(

E E1
0 E2

)
.

So A = AE ∈ Tn(R)E . Therefore lTn(R)(X) = Tn(R)E is a direct summand of Tn(R) and Mn×m(R) is a c.p.

left Tn(R)-module.

(4) ⇒ (3) is trivial.

(3) ⇒ (2). Since each submodule of a c.p. module is also c.p. and Tn(R) ≤ Mn(R) as left Tn(R)-
modules, the result follows. �

Recall that a ring R is said to be right P -injective if, for each a ∈ R , every right R -homomorphism
from aR to RR can extend to one from RR to RR ; equivalently [19, Lemma 1.1] if lRrR(a) = Ra for each
a ∈ R . It is clear that a regular ring is right P -injective.

Proposition 4.3 For any ring R and each integer n ≥ 2 , Tn(R) is not regular.

Proof Denote S = Tn(R) and Eij (1 ≤ i, j ≤ n) are the matrix units. Set A = E1n ∈ S . It is easy to prove

that SA � lSrS(A). So S is not right P -injective, and thus S is not regular. �

Remark 4.4 For a regular ring R , Tn(R) (n ≥ 2) is a p.p. ring but not regular by Theorem 4.2 and Proposition
4.3. This is an example of the p.p. ring that is not regular.
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