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Abstract: For any field F , there is a relation between the factorization of a polynomial f ∈ F [x1, ..., xn] and the

integral decomposition of the Newton polytope of f . We extended this result to polynomial rings R[x1, ..., xn] where

R is any ring containing some elements which are not zero-divisors. Moreover, we have constructed some new families

of integrally indecomposable polytopes in �n giving infinite families of absolutely irreducible multivariate polynomials

over arbitrary fields.
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1. Introduction

Throughout this study, Rn denotes the n-dimensional Euclidean space. Let S be a subset of Rn. The smallest
convex set containing S, denoted by conv(S), is called the convex hull of S. If S = {a1, a2, ..., an} is a finite

set, then we denote conv(S) by conv(a1 , ..., an).

Definition 1.1 For any two sets A and B in Rn, the sum

A + B = {a + b : a ∈ A, b ∈ B}

is called the Minkowski sum or, shortly, the sum of A and B.

The convex hull of finitely many points in Rn is called a polytope. A point in Rn is called integral if
its coordinates are integers. A polytope in Rn is called integral if all of its vertices are integral. An integral
polytope C is called integrally decomposable if there exist integral polytopes A and B such that C = A + B ,
where both A and B have at least two points. Otherwise, C is called integrally indecomposable.

Definition 1.2 Let F be any field and

f(x1 , x2, ..., xn) =
∑

ce1e2...enxe1
1 xe2

2 ...xen
n ∈ F [x1, ..., xn].

The Newton polytope of f, which is denoted by Pf , is defined as the convex hull of the set S = {(e1, ..., en) :

ce1e2...en �= 0} in Rn .
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A polynomial over a field F is called absolutely irreducible if it is irreducible over every algebraic
extension of F .

Lemma 1.3 [7]. Let f, g, h ∈ F [x1, ..., xn] with f �= 0 and f = gh. Then Pf = Pg + Ph.

Proof See e.g. [3, Lemma 2.1]. �

Corollary 1.4 [3, page 507]. Let F be any field and f a nonzero polynomial in F [x1, ..., xn] not divisible by
any xi. If the Newton polytope of f is integrally indecomposable, then f is absolutely irreducible over F.

Infinitely many integrally indecomposable polytopes in Rn and infinite families of absolutely irreducible
polynomials which are associated to these polytopes are presented in [3], [4] and [6] over any field F.

We recall some terminologies. For details, see [2].

Definition 1.5 For α ∈ R, β ∈ Rn the set

H = {x ∈ Rn : β · x = α}

is called a hyperplane, where
β · x = β1x1 + ... + βnxn

is the dot product of the vectors β = (β1 , ..., βn), x = (x1, ..., xn). The closed halfspaces formed by H are defined
as

H− = {x ∈ Rn : β · x ≤ α}, H+ = {x ∈ Rn : β · x ≥ α}.

A hyperplane HK is called a supporting hyperplane of a closed convex set K ⊂ Rn if K ⊂ H+
K or

K ⊂ H−
K and K ∩ HK �= ∅, i.e. HK contains a boundary point of K . A supporting hyperplane HK of K is

called nontrivial if K is not contained in HK . The halfspace that contains K is called a supporting halfspace
of K.

Let C ⊂ Rn be a compact convex set. Then for any nonzero vector v ∈ Rn, the real number s =
supx∈C(x · v) is defined as the maximum value of the set S = {x · v : x ∈ C}.

Let K ⊂ Rn be a nonempty convex compact set. The map

hK : Rn → R, u → sup
x∈K

(x · u)

is called the support function of K.

Let K ⊂ Rn be a nonempty convex compact set. For every fixed nonzero vector u ∈ Rn, the hyperplane
having outer normal vector u defined as

HK(u) = {x ∈ Rn : x · u = hK(u)}

is a supporting hyperplane of K. We know that every supporting hyperplane of K has a representation of this
form, see [2, Page 19].

Let P be a polytope. The intersection of P with a supporting hyperplane HP is called a face of P . A
vertex of P is a face of dimension zero. An edge of P is a face of dimension 1, which is a line segment. A
face F of P is called a facet if dim (F)= dim (P) −1. If u is any nonzero vector in Rn , FP (u) = HP (u) ∩ P

shows the face of P in the direction of u, that is the intersection of P with its supporting hyperplane HP (u)
having outer normal vector u.
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Theorem 1.6 (i) Let K and L be polytopes in Rn such that M = K + L.

(1) M is also a polytope in Rn .

(2) If u is any nonzero vector in Rn , then

FM (u) = FK(u) + FL(u) and HM (u) = HK(u) + HL(u).

(3) If hK and hL are the support functions of K and L, respectively, then hK + hL is the support function of
K + L and hM = hK + hL.

(4) If FM is a face of M, then there exist unique faces FK and FL of K and L, respectively, such that

FM = FK + FL.

In particular, each vertex of M is the sum of unique vertices of K and L, respectively.
(ii) If P is a polytope in Rn with P = Q + R , then so are Q and R, which are called summands of P .

Proof See, e.g., the proof of [2, Chapter IV-Theorem 1.5]. �

2. Polytope method over rings containing elements which are not zero-divisors

We have observed that Lemma 1.3 works also for rings without zero-divisors, especially for integral domains,
instead of fields.

Theorem 2.1 Let R be a ring without zero-divisors and f, g, h ∈ R[x1, x2, ..., xn] with f �= 0 and f = gh.

Then Pf = Pg + Ph.

Proof If R is an integral domain, the result follows from Lemma 1.3 since any integral domain R is contained
in a field F of quotients of R and f, g, h ∈ F [x1, x2, ..., xn].

Now, suppose that R is a ring without zero-divisors and let

f(x1, x2, ..., xn) =
∑

ce1e2...enxe1
1 xe2

2 ...xen
n ,

g(x1, x2, ..., xn) =
∑

c′e′
1e′

2...e′
n
x

e′
1

1 x
e′
2

2 ...x
e′

n
n ,

h(x1, x2, ..., xn) =
∑

c′′e′′
1 e′′

2 ...e′′
n
x

e′′
1

1 x
e′′
2

2 ...x
e′′

n
n .

Then we have

f =
∑

(e′
1,e′

2,...,e′
n)

∑

(e′′
1 ,e′′

2 ,...,e′′
n)

c′e′
1e′

2...e′
n
c′′e′′

1 e′′
2 ...e′′

n
x

e′
1+e′′

1
1 x

e′
2+e′′

2
2 ...x

e′
n+e′′

n
n . (1)

In this expanded product, let us assume that there are r terms containing xe1
1 xe2

2 ...xen
n , and write

S = (d1 + ... + dr)xe1
1 xe2

2 ...xen
n = ce1e2...enxe1

1 xe2
2 ...xen

n . (2)

Note that we may have S = 0 if r ≥ 2, but not if r = 1.

We will prove that the set {(e1, e2, ..., en)} of exponents of the polynomial f and the set {(e′1 + e′′1 , e′2 +

e′′2 , ..., e′n + e′′n)} of exponents of gh determine the same polytope. From relations (1) and (2), we see that every
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element of the set {(e1, e2, ..., en)} is contained in the set {(e′1 + e′′1 , e′2 + e′′2 , ..., e′n + e′′n)} . Therefore, we have
Pf ⊆ Pg + Ph.

To prove the other inclusion Pg + Ph ⊆ Pf , we must show that every member of the set {(e′1 + e′′1 , e′2 +

e′′2 , ..., e′n + e′′n)}, which may be a vertex of or in Pg + Ph, is a member of the set {(e1, e2, ..., en)}. Note that

this fact is not necessarily true, in general, since d1 + ... + dr may be equal to zero if r ≥ 2. But, this follows
from the fact that each vertex of Pg + Ph is uniquely determined,

Let v be any vertex of Pg + Ph. Then, by Theorem 1.6, there are unique vertices v1 of Pg and v2 of Ph

such that v = v1 + v2.

Consequently, if the point v=(e1 , e2, ..., en) is a vertex of Pg+Ph, there is only one term c′e′
1e′

2...e′
n
x

e′
1

1 x
e′
2

2 ...x
e′

n
n

of g(x1, x2, ..., xn) and just one term c′′e′′
1 e′′

2 ...e′′
n
x

e′′
1

1 x
e′′
2

2 ...x
e′′

n
n of h(x1, x2, ..., xn) such that v1 = (e′1, e

′
2, ..., e

′
n) is

the unique vertex of Pg , and v2 = (e′′1 , e′′2 , ..., e′′n) is the unique vertex of Ph satisfying

v = (e1, e2, ..., en) = v1 + v2 = (e′1 + e′′1 , e′2 + e′′2 , ..., e′n + e′′n).

Since, by assumption, c′e′
1e′

2...e′
n
�= 0 and c′′e′′

1 e′′
2 ...e′′

n
�= 0, we must have

c′e′
1e′

2...e′
n
· c′′e′′

1 e′′
2 ...e′′

n
�= 0,

i.e. (e′1 + e′′1 , e′2 + e′′2 , ..., e′n + e′′n) is a member of the set {(e1, e2, ..., en)}. Therefore, there is a unique term in
the expansion of g · h that has v as its exponent vector. Thus, v ∈ Pf . Hence, we have Pg + Ph ⊆ Pf . �

As a result of Theorem 2.1, we have the following irreducibility criterion for multivariate polynomials
over arbitrary rings without zero-divisors.

Corollary 2.2 Let R be a ring without zero-divisors and f ∈ R[x1, x2, ..., xn] a nonzero polynomial not divisible
by any xi. If the Newton polytope Pf of f is integrally indecomposable then f is irreducible over every ring

extension R′ of R.

Proof Since f is not divisible by any xi, it has no factor having only one term. Let f be reducible over a
ring extension R′ of R. This means that f = gh over R′ , where both g and h have at least two nonzero terms.
Therefore, the Newton polytopes of g and h have at least two points. By Theorem 2.1, we have Pf = Pg +Ph,

which is a contradiction. �

Using Theorem 1.6 and Theorem 2.1, we have obtained the following results. All of these results are valid
for any ring R which contains at least one element which is not a zero-divisor. These results are still true if we
take elements which are not left or right zero-divisors instead of elements which are not zero-divisors.

Proposition 2.3 Let R be a ring containing at least one element which is not a zero-divisor and f, g, h nonzero
polynomials in R[x1, x2, ..., xn] with f = gh. If the coefficients of the terms of g which are forming the vertices

of Pg or the coefficients of the terms of h which are forming the vertices of Ph are not zero-divisors in R (in

particular, if they are units in R), then Pf = Pg + Ph.

Proof Let R be a ring and a and b nonzero elements in R. If a or b is not a zero-divisor in R then ab �= 0.

By using this fact and the proof of Theorem 2.1, we see that Pg + Ph ⊆ Pf . By the multiplication property of
polynomials, obviously we have Pf ⊆ Pg + Ph . �

We have the following result of Proposition 2.3.
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Corollary 2.4 Let R be a ring containing at least one element which is not a zero-divisor and f ∈ R[x1, x2, ..., xn]
a nonzero polynomial not divisible by any xi. Suppose that the coefficients of all the terms forming the vertices
of Newton polytope Pf of f are not zero-divisors in R. If Pf is integrally indecomposable then f is irreducible

over every ring extension R′ of R.

Proof If a is not a zero-divisor in R and a = bc for some b, c ∈ R , then both b and c cannot be zero-divisors
in R. With respect to this fact, the result follows directly from Proposition 2.3. �

The following result is a special case of Corollary 2.4.

Proposition 2.5 Let f ∈ Z[x1, x2, ..., xm] be a nonzero polynomial not divisible by any xi and n a positive
integer. Suppose that Newton polytope of f is integrally indecomposable. If the coefficients of all terms of f

which are forming the vertices of Pf are relatively prime to n , then f is irreducible over Zn .

Proof The zero-divisors in Zn are precisely the elements which are relatively prime to n. Therefore, the result
is a consequence of Corollary 2.4. �

Corollary 2.6 Let f ∈ Z[x1, x2, ..., xm] be a nonzero polynomial not divisible by any xi. Assume that Newton
polytope Pf of f is integrally indecomposable. For the prime numbers pi in Z such that pi do not divide the

coefficients of all the terms forming the vertices of Pf of f, f is irreducible over the ring Zpk
i

for any positive

integer k.

Proof For k = 1, the result follows from Corollary 1.4 since Zp is a field if p is a prime number.

Let k ≥ 2 and p be a prime number. In this case, the zero-divisors in Zpk are the elements which are

not divisible by p. Under this condition, the result follows directly from Corollary 2.4. �

We know that Eisenstein-Dumas and Stepanov-Schmidt criteria are special cases of the polytope method,
see [3]. Similarly, [1, Lemma 6.2] is a special case of Corollary 2.6.

Example 2.7 The polynomial

f = 6x375 + 21y154 + 22x2y8 + 13x78 + 9y6 + 10 +
∑

cijx
iyj ∈ Z[x, y],

having Newton polytope Pf = conv((0, 0), (375, 0), (0, 154)), is irreducible over Zn by Proposition 2.5 if gcd(6, n) =

gcd(21, n) = gcd(10, n) = 1, where the operator gcd stands for greatest common divisor. Because, Pf is an

integrally indecomposable triangle in R2 by [3, Corollary 4.12] while gcd(375, 154) = 1 .

Example 2.8 The polynomial f given in Example 2.7 is irreducible over Zpk if p �= 2, 3, 5, 7 since the prime

divisors of 6, 21 and 10 are in the set S = {2, 3, 5, 7}.

Example 2.9 Consider the polynomial

f = b1x
6 + b2y

4 + b3x
14y2 + b4x

18y11 + b5x
9y12 +

∑
cijx

iyj ∈ Z[x, y],

having Newton polytope

Pf = conv((0, 4), (6, 0), (14, 2), (18, 11), (9, 12)),
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which is an integrally indecomposable pentagon by [4, Lemma 13]. If n is a positive integer relatively prime to
coefficients bi for i = 1, ..., 5, then f is irreducible over Zn. In particular, if p is a prime number relatively
prime to b1, ..., b5, then f is irreducible over Zpk for any positive integer k.

Example 2.10 Let a1, a2, a3, a4 and a5 be nonzero integers. Consider the polynomial

f = a1x
5y20 + a2y

7z18 + a3x
14y11 + a4x

8y11z6 + a5xy6z35 +
∑

cijkxiyjzk ∈ Z[x, y, z]

having Newton polytope

Pf = conv((5, 20, 0), (0, 7, 18), (14, 11, 0), (8, 11, 6), (1, 6, 35)),

which is an integrally indecomposable pyramid in R3 by [3, Theorem 4.2]. By Proposition 2.5, g is irreducible

over Zn for any positive integer n such that gcd(n, a1) = gcd(n, a2) = gcd(n, a3) = gcd(n, a4) = gcd(n, a5) = 1.

We can use absolutely irreducible polynomials over any field F given in [3] and [4] to have examples of
irreducible polynomials over Zn . We only need to play with certain coefficients of the terms, which are forming
Newton polytopes of these polynomials, suitably. More precisely, we should change the coefficients of these
related terms which are not zero-divisors over mentioned rings.

Remark 2.11 Let f(x1, ..., xn) ∈ Z[x1, x2, ...xn] be a polynomial not divisible by any xi. If p is a prime number
not dividing the coefficients of the terms of f which are forming Pf , then f is irreducible over Zpk for any

positive integer k.

Consequently, any polynomial f(x1, ..., xn) ∈ Z[x1, x2, ...xn] is absolutely irreducible over Zp for infinitely
many primes p , more precisely, for the prime numbers not dividing the coefficients of the terms of f which are
forming the vertices of Pf .

3. Some families of integrally indecomposable polytopes

Gao gave a criterion for the integral indecomposability of polytopes lying inside a pyramid with an integrally
indecomposable base. Here, we generalized this result to the polytopes lying inside the convex hull of two
polytopes, one of which is integrally indecomposable, which lie in two different hyperplanes.

Gao gave the following result.

Theorem 3.1 [3, Theorem 4.11]. Let Q be an integrally indecomposable polytope in Rn which is contained
in a hyperplane H and having at least two points. Let v ∈ Rn be an arbitrary point which is not contained in
H. If S is any set of integral points in the pyramid conv(v, Q) , then the polytope P = conv(Q, S) is integrally
indecomposable.

Being a more general result, when compared with [5, Theorem 3], our new criterion is given as follows.

Note that in [5, Theorem 3], we require that H1 and H2 are different parallel hyperplanes. But, this is not
necessary in the following result and the former is a special case of the latter.

Theorem 3.2 Let H1 and H2 be different hyperplanes in Rn, and let Q1 be an integrally indecomposable
polytope lying inside H1 and having at least two points. Let Q2 be an integral polytope in Rn such that
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Q2 ⊂ H2 and Q2 ⊂ H+
1 or Q2 ⊂ H−

1 . Assume that the projection of Q2 onto H1 is Q′
2 and there exists a

point v ∈ Rn such that Q′
2 + v � Q1. If S is any set of integral points in the polytope conv(Q1, Q2) , then the

polytope P = conv(Q1, S) is integrally indecomposable.

Proof The proof is very similar to the proof of [3, Theorem 4.11]. For the convenience of the reader, in

order to emphasize the new situation in this theorem, we present a proof here. Let P = conv(Q1, S) be a
polytope which satisfies the required properties. Observe that, since Q1 = P ∩ H1 , Q1 is also a face of P. If
P = K + L for some integral polytopes K and L then, by Theorem 1.6, K and L have unique faces K1 and
L1 respectively such that Q1 = K1 + L1 . While Q1 is integrally indecomposable, K1 or L1 must consist of
only one point, say K1 = {a} for some point a ∈ Rn, and hence L1 = Q1 + (−a). Shifting K and L suitably,
i.e. writing

P = (K + (−a)) + (L + a),

we may suppose that K1 = {0} and L1 = Q1. Our aim is to show that K must contain only one point, i.e.

K = K1 = {0}. But, this is geometrically obvious since, for all nonzero u ∈ Rn, any shifting u + Q1 cannot lie

in the polytope conv(Q1, Q2). �

We demonstrate some examples of the mentioned situation in Theorem 3.2 in Figure 1, Figure 2 and
Figure 3.

Figure 1. Figure 2.

Example 3.3 Let m and n be relatively prime positive integers, and c ≥ 0 and d ≥ n+1 be arbitrary integers.
Then, the quadrangle

Q = conv((m, 0), (m + 1, d + c), (0, d), (0, n))

is integrally indecomposable by Theorem 3.1 or Theorem 3.2. Consequently, by Theorem 3.2, the integral
polytopes

A = conv((m, 0, 0), (m + 1, d + c, 0), (0, d, 0), (0, n, 0), (m, 0, p), (0, d, r), (0, n, q)),

B = conv((m, 0, 0), (m + 1, d + c, 0), (0, d, 0), (0, n, 0), (m, 0, p), (m+ 1, d + c, q), (0, d, r)),
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C = conv((m, 0, 0), (m + 1, d + c, 0), (0, d, 0), (0, n, 0), (m, 0, p), (m+ 1, d + c, r), (0, n, q))

are integrally indecomposable, where p, q and r are arbitrary nonnegative integers, see Figure 4.

For example, for m = 10, n = 21, d = 30, c = 5 and arbitrary nonnegative integers p, q, r , the integral
polytope

P = conv((10, 0, 0), (11, 35, 0), (0, 30, 0), (0, 21, 0), (10, 0, p), (0, 30, q), (0, 21, r))

is integrally indecomposable.

As a result, the family of multivariate polynomials of the form

f = a1x
10 + a2x

11y35 + a3y
30 + a4y

21 + a5x
10zp + a6y

30zq + a7y
21zr +

∑
cijkxiyjzk,

having Newton polytope Pf = P , are absolutely irreducible over any field F by Corollary 1.4.

Figure 3. Figure 4. The polytope A.

Example 3.4 Let m and n be any positive relatively prime integers. By [4, Lemma 13], any pentagon

K = conv((m, 0), (m + 1, n + 1), (m, n + m + 1), (0, n + m), (0, n))

is integrally indecomposable. For any positive integer k, we form the following polygons, which are integrally

indecomposable by [4, Lemma 13], in R3 as

A = conv((m, 0, 0), (m + 1, n + 1, 0), (m, n + m + 1, 0), (0, n + m, 0), (0, n, 0),

B = conv(m, 0, k), (m + 1, n + 1, k), (m, n + m + 1, k), (0, n + m, k)),
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C = conv((m + 1, n + 1, 0), (m, n + m + 1, 0), (0, n + m, 0), (0, n, 0),

D = conv((m, 0, 0), (m + 1, n + 1, 0), (m, n + m + 1, 0), (0, n, 0).

Then, by Theorem 3.2, the polytopes
P = conv(A ∪ B),

Q = conv(A ∪C),

R = conv(A ∪ D)

are integrally indecomposable in R3 , see Figure 5.

Figure 5. The polytope B.

As a result, all multivariate polynomials in F [x1, x2, ..., xn] having these kinds of integrally indecomposable
polytopes are absolutely irreducible over any field F.

Note that [3, Theorem 4.11] does not work for the integral indecomposability of the mentioned polytopes

in Example 3.3 and Example 3.4. Because, none of these polytopes lies inside a pyramid in R3 .

Acknowledgments

We thank the referees for a careful reading of the manuscript and making valuable comments and suggestions.

References

[1] Dinh, H. Q., Permouth, S. R. L.: Cyclic and Negacyclic Codes Over Finite Chain Rings, IEEE Transactions on

Information Theory 50, no.8, 1728–1744 (2004).

[2] Ewald G.: Combinatorial Convexity and Algebraic Geometry, GTM 168, Springer 1996.

[3] Gao S.: Absolute irreducibility of polynomials via Newton polytopes, Journal of Algebra 237, no.2, 501–520 (2001).

[4] Gao, S., Lauder, A. G. B.: Decomposition of Polytopes and Polynomials, Discrete and Computational Geometry

26, no.1, 89–104 (2001).

[5] Koyuncu, F.: Integrally indecomposable polytopes, Selcuk J. of App. Math. 7, no. 1, 3–8 (2006).
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