Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2013) 37: $27-36$
(c) TÜBİTAK
doi:10.3906/mat-1102-25

On pseudo semi-projective modules

Truong Cong QUYNH*

Department of Mathematics, Da Nang University, 459 Ton Duc Thang, Da Nang City, Vietnam

| Received: 15.02 .2011 | Accepted: 03.10 .2011 | Published Online: 17.12 .2012 | Printed: 14.01 .2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

A right R-module M is called semi-projective if, for any submodule N of M, every epimorphism $\pi: M \rightarrow N$ and every homomorphism $\alpha: M \rightarrow N$, there exists a homomorphism $\beta: M \rightarrow M$ such that $\pi \beta=\alpha$ (see [11]). In this paper, we consider some generalizations of semi-projective module, that is quasi pseudo principally projective module. Some properties of this class of module are studied.

Key words: Semi-projective module, pseudo principally projective module

1. Introduction

Throughout the paper, R represents an associative ring with identity $1 \neq 0$ and all modules are unitary R modules. We write M_{R} (resp., ${ }_{R} M$) to indicate that M is a right (resp., left) R-module. We also write $J(R)$ for the Jacobson radical of R. If N is a submodule of M (resp., proper submodule) we denote by $N \leq M$ (resp., $N<M$). Moreover, we write $N \leq^{e} M, N \ll M$ to indicate that N is an essential submodule, a small submodule, respectively. A module M is called uniform if $M \neq 0$ and every non-zero submodule of M is essential in M. A module M has finite uniform dimension if M has an essential submodule which is a finite direct sum of uniform submodules or, equivalently, M contains no infinite direct sum of nonzero submodules. In case that $\oplus_{i=1}^{n} M_{i} \leq^{e} M$ for each M_{i} uniform, we write $\operatorname{dim}(M)=n$. A right R-module N is called M-generated if there exists an epimorphism $M^{(I)} \rightarrow N$ for some index set I. If I is finite, then N is called finitely M-generated. In particular, N is called M-cyclic if it is isomorphic to M / L for some submodule L of M. Hence, any M-cyclic submodule X of M can be considered as the image of an endomorphism of M. Following Wisbauer ([11]), $\sigma[M]$ denotes the full subcategory of $\operatorname{Mod}-R$, whose objects are the submodules of M-generated modules.

A right R-module N is called pseudo M-principally injective if every monomorphism from an M-cyclic submodule of M to N can be extended to a homomorphism from M to N. Equivalently, for any homomorphism $\alpha \in \operatorname{End}(M)$, every monomorphism from $\alpha(M)$ to N can be extended to a homomorphism from M to N (see [9]). A module M is called pseudo semi-injective if M is pseudo M-principally injective. A ring R is called right pseudo semi-injective if R_{R} is pseudo semi-injective. Some characterizations of pseudo semi-injective module are studied and developed.

Next we will introduce the dual notion of pseudo M-principally injective. Following Clark et al. (see [2] or [5]), a right R-module N is called epi- M-projective if for any submodule A of M, every epimorphism

[^0]$N \rightarrow M / A$ can be lifted to a homomorphism $N \rightarrow M$. A module M is called epi-projective if M is epi- M-projective. Authors studied some properties and characterizations of class epi-projective modules. Following Wisbauer ([11]), a right R-module M is called semi-projective if, for any submodule N of M, every epimorphism $\pi: M \rightarrow N$ and every homomorphism $\alpha: M \rightarrow N$, there exists a homomorphism $\beta: M \rightarrow M$ such that $\pi \alpha=\beta$ or equivalently, for any endomorphism γ of M, and every homomorphism $\alpha: M \rightarrow \gamma(M)$, there exists a homomorphism $\beta: M \rightarrow M$ such that $\gamma \beta=\alpha$. Naturally we consider module M with the following property: For any endomorphism γ of M, and every epimorphism $\alpha: M \rightarrow \gamma(M)$, there exists a homomorphism $\beta: M \rightarrow M$ such that $\gamma \beta=\alpha$.

If module M has this property, M is said to be quasi pseudo principally projective (or pseudo semi-projective). Thus the notion pseudo semi-projective is generalization notion of semi-projective and dual notion of pseudo semi-injective. In this paper, we study some properties and characterizations of pseudo semi-projective module. Moreover, we consider relations of pseudo semi-projective module with its endomorphism ring.

General background material can be found in [1], [3], [6], [7] and [11].

2. On pseudo M-principally projective

Definition 2.1 A right R-module N is called pseudo M-principally projective if, for any endomorphism ε of M, every epimorphism $p: M \rightarrow \varepsilon(M)$ and every epimorphism $f: N \rightarrow \varepsilon(M)$, there exists a homomorphism $h: N \rightarrow M$ such that $p h=f$.

or equivalently if, for any endomorphism ε of M and every epimorphism $f: N \rightarrow M /$ Ker ε, there exists a homomorphism $h: N \rightarrow M$ such that $\pi h=f$ with $\pi: M \rightarrow M /$ Ker the natural projection.

A module M is called quasi pseudo principally projective (or pseudo semi-projective) if M is pseudo M-principally projective. A module M is called pseudo principally projective if M is pseudo N-principally projective for all right R-module N.

Then we have the relations:

$$
\text { self-projective } \Rightarrow \text { semi-projective } \Rightarrow \text { pseudo semi-projective. }
$$

Note that there is the pseudo semi-projective module but not self-projective module (see [2, Exercise $4.45(8)]$). Until now, we do not know a discriminate example of pseudo semi-projective module and semiprojective module.

Next we will give some characterizations of pseudo M-principally projective modules.

Lemma 2.2 Let M, N be right R-modules and $S=\operatorname{End}(M)$. Then the following are equivalent:

1. N is pseudo M-principally projective.
2. For all $\alpha \in S$,

$$
\{\beta \in \operatorname{Hom}(N, M) \mid \operatorname{Im}(\alpha)=\operatorname{Im}(\beta)\} \subseteq \alpha \operatorname{Hom}(N, M)
$$

3. For all $\alpha \in S$,

$$
\{\beta \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \beta=\operatorname{Im} \alpha\}=\alpha\{\beta \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \beta+\operatorname{Ker} \alpha=M\}
$$

Proof $(1) \Rightarrow(2)$. Assume that N is pseudo M-principally projective and for each $\alpha \in S$. Let $\beta \in \operatorname{Hom}(N, M)$ with $\operatorname{Im} \alpha=\operatorname{Im} \beta$. We consider the epimorphism $\beta: N \rightarrow \operatorname{Im} \beta=\operatorname{Im} \alpha$.

By our hypothesis, there exists $h \in \operatorname{Hom}(N, M)$ such that $\beta=\alpha h$. Therefore $\beta=\alpha \operatorname{Hom}(N, M)$.
$(2) \Rightarrow(3)$. It is easy to see that

$$
\alpha\{\beta \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \beta+\operatorname{Ker} \alpha=M\} \subseteq\{\gamma \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \gamma=\operatorname{Im} \alpha\}
$$

Conversely, for each $\gamma \in \operatorname{Hom}(N, M)$ such that $\operatorname{Im} \gamma=\operatorname{Im} \alpha$. Then by (2) there exists $h \in \operatorname{Hom}(N, M)$ such that $\gamma=\alpha h$. It follows that

$$
h \in\{\beta \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \beta+\operatorname{Ker} \alpha=M\}
$$

which implies

$$
\{\gamma \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \gamma=\operatorname{Im} \alpha\} \subseteq \alpha\{\beta \in \operatorname{Hom}(N, M) \mid \operatorname{Im} \beta+\operatorname{Ker} \alpha=M\}
$$

$(3) \Rightarrow(1)$. For any endomorphism $\gamma \in S$, every epimorphism $\alpha: M \rightarrow \gamma(M)$ and every epimorphism $\phi: N \rightarrow \gamma(M)$.

Then $\operatorname{Im} \phi=\operatorname{Im} \alpha=\operatorname{Im} \gamma$. By (3), there exists $h \in \operatorname{Hom}(N, M)$ such that $\phi=\alpha h$. Thus N is pseudo $M-$ principally projective.

Corollary 2.3 Module N is pseudo M-principally projective if and only if for any endomorphism ε of M and every epimorphism $f: N \rightarrow \varepsilon(M)$, there exists a homomorphism $h: N \rightarrow M$ such that $\varepsilon h=f$.

Next, we have some properties of pseudo M-principally projective modules.

Proposition 2.4 Let M and N be R-modules.

1. If N is pseudo M-principally projective if and only if N is pseudo K-principally projective for each M-cyclic submodule K of M.
2. If N is pseudo M-principally projective, P is pseudo M-principally projective for each direct summand P of N.
3. Assume that $N=\oplus_{i \in I} N_{i}$. Then N is pseudo M-principally projective if and only if N_{i} is pseudo M-principally projective for all $i \in I$.
4. If $N \simeq N^{\prime}$ and N is pseudo M-principally projective, N^{\prime} is also pseudo M-principally projective.

Proof (1) (\Rightarrow). Let $K=s(M)$ for some $s \in S=\operatorname{End}(M)$. For each $\alpha \in \operatorname{End}(K)$ and $\beta \in \operatorname{Hom}(N, K)$ with $\operatorname{Im} \alpha=\operatorname{Im} \beta$. Then $\alpha s \in S, \iota \beta \in \operatorname{Hom}(N, M)$ and $\operatorname{Im} \alpha s=\operatorname{Im} \iota \beta$, with $\iota: s(M) \rightarrow M$ the inclusion monomorphism. It follows that $\iota \beta=(\alpha s) g$ for some $g \in \operatorname{Hom}(N, M)$ by Lemma 2.2. Thus $\beta \in \alpha \operatorname{Hom}(N, s(M))$. That means N is pseudo K-principally projective.
(\Leftarrow) is obvious.
(2), (3) and (4) are clear.

Theorem 2.5 Let M and N be modules and $X=M \oplus N$. The following conditions are equivalent:

1. N is pseudo M-principally projective.
2. For each submodule K of X such that $X / K \simeq A$ with $A \leq M$ and $K+M=K+N=X$, there exists $C \leq K$ such that $M \oplus C=X$.

Proof $(1) \Rightarrow(2)$. Let $f: N \rightarrow M /(M \cap K)$ via $f(n)=m+M \cap K$ for all $n=k+m \in N$ with $k \in K, m \in M$. Then f is an epimorphism. We get $M /(M \cap K) \simeq(M+K) / K \simeq X / K \simeq A$ with $A \leq M$, then we may regard $M /(M \cap K)$ as a M-cyclic submodule of M. Since N is pseudo M-principally projective, there exists $h: N \rightarrow M$ such that $\pi h=f$ with $\pi: M \rightarrow M /(M \cap K)$ the natural projection. Let $C=\{n-h(n) \mid n \in N\}$. Then $C \leq K$ and $M \oplus C=X$.
(2) \Rightarrow (1). Let $\alpha \in \operatorname{End}(M), f: N \rightarrow M / \operatorname{Ker} \alpha$ an epimorphism and $\pi: M \rightarrow M / \operatorname{Ker} \alpha$ the natural projection. Let $K=\{n+m \mid f(n)=-\pi(m)\}$. It is easy to see that $K+M=K+N=X$ and $K \cap M=\operatorname{Ker} \alpha$. Then $X / K \simeq M /(M \cap K)=M / \operatorname{Ker} \alpha \simeq \operatorname{Im} \alpha$. By (2), there exists $C \leq K$ such that $M \oplus C=X$. Let $p: M \oplus C \rightarrow M$ be the canonical projection. It follows that $\left.\pi p\right|_{N}=f$. Thus N is pseudo M-principally projective.

3. Some results on pseudo semi-projective modules

In this section, we study some properties of pseudo semi-projective module and its endomorphism ring.
Firstly, following Lemma 2.2, we get this next lemma.
Lemma 3.1 Let M be a right R-module and $S=\operatorname{End}(M)$. Then the following are equivalent:

1. M is pseudo semi-projective.
2. For all $\alpha, \beta \in S$ with $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta), \alpha S=\beta S$.
3. For all $\alpha, \beta \in S$, we have:

$$
\{\gamma \in S \mid \operatorname{Im}(\beta \gamma)=\operatorname{Im}(\beta \alpha)\} \subseteq \alpha S+\{\theta \in S \mid \operatorname{Im} \theta \leq \operatorname{Ker} \beta\} .
$$

When $M \oplus M$ is pseudo semi-projective, we have
Proposition 3.2 If $M \oplus M$ is pseudo semi-projective then M is semi-projective.
Proof Let $\bar{M}=M \oplus M$ be pseudo semi-projective, we show that M is semi-projective. Let $s \in \operatorname{End}(M)$, and $f: M \rightarrow s(M)$ be a homomorphism. Let $g: \bar{M} \rightarrow s(M)$ with $g\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+s\left(m_{2}\right)$ for all $m_{1} \in M, m_{2} \in M$. Then g is an epimorphism. By Proposition $2.4, \bar{M}$ is pseudo M-principally projective, there is a homomorphism $h: \bar{M} \rightarrow M$ such that $g=s h$. Let $\iota: M \rightarrow \bar{M}$ be the canonical inclusion. Therefore $s(h \iota)=g \iota=f$. Thus M is semi-projective.

Corollary 3.3 For any integer $n \geq 2$, if M^{n} is pseudo semi-projective then M is semi-projective.

Proposition 3.4 Let M be pseudo semi-projective and $\alpha \in \operatorname{End}(M)$. Then $\operatorname{Ker} \alpha$ is a direct summand of M if and only if $\alpha(M)$ is pseudo M-principally projective.

Proof Assume that $\operatorname{Ker} \alpha$ is a direct summand of M. Then $M / \operatorname{Ker} \alpha$ is isomorphic to a direct summand of M. It follows that $\alpha(M) \simeq M / \operatorname{Ker} \alpha$ is pseudo M-principally projective by Proposition 2.4. Conversely, we consider the diagram

with p the canonical projection. Since $\alpha(M) \simeq M / \operatorname{Ker} \alpha$ is pseudo M-principally projective, there exists $h: M / \operatorname{Ker} \alpha \rightarrow M$ such that $p h=i d$. It follows that $\operatorname{Ker} \alpha$ is a direct summand of M.
A module M is called D2 if, for any submodule A of M for which M / A is isomorphic to a direct summand of M then A is a direct summand of M. From the Proposition 3.4, we get

Corollary 3.5 If M is pseudo semi-projective then M has D2.

Proposition 3.6 Assume that M is pseudo semi-projective and $\alpha, \beta \in S=\operatorname{End}(M)$. If $\alpha(M) \simeq \beta(M)$ then $\alpha S \simeq \beta S$.
Proof Let $f: \alpha(M) \rightarrow \beta(M)$ be an isomorphism. We consider the following diagram

It is easy to see that $f \alpha$ is an epimorphism. Since M is pseudo semi-projective, there exists $h: M \rightarrow M$ such that $\beta h=f \alpha$. Let $\phi: \alpha S \rightarrow \beta S$ via $\phi(\alpha s)=\beta h s$ for all $s \in S$. Then ϕ is a S-monomorphism. On the other hand, $\beta(M)=f(\alpha(M))=\beta(h(M))=\beta h(M)$ by Lemma 3.1, whence $\beta S=\beta h S=\operatorname{Im} \phi$. It follows that ϕ is an epimorphism.
Recall that M_{R} is a principal self-generator (briefly, self p-generator) if every element $m \in M$ has the form $m=\lambda\left(m_{1}\right)$ for some $\lambda: M_{R} \longrightarrow m R$ and $m_{1} \in M$ (see [8]).

Lemma 3.7 Let M be self p-generator and pseudo semi-projective with $S=\operatorname{End}(M)$. If N is essential in L with $L \leq M, \operatorname{Hom}(M, N)$ is essential in right S-module $\operatorname{Hom}(M, L)$.

Proof Let $f \in \operatorname{Hom}(M, L)$ and $\operatorname{Hom}(M, N) \cap f S=0$. Assume that $f(m) \in N \cap \operatorname{Im} f$. Since M is self p-generator, there exist epimorphisms $g: M \rightarrow f(m) R$ and $s: M \rightarrow m R$. Then $g(M)=f s(M)$. It follows that $g S=f s S$ by Lemma 3.1. Thus $g=f$ st for some $t \in S$, whence $g \in \operatorname{Hom}(M, N) \cap f S=0$ or $f(m)=0$. It means we proved that $N \cap \operatorname{Im} f=0$. However, $N \leq^{e} L, \operatorname{Im} f=0$ or $f=0$. Thus $\operatorname{Hom}(M, N)$ is essential in right S-module $\operatorname{Hom}(M, L)$.
Now we consider the relation of finite uniform dimension of M and its endomorphism ring.

Theorem 3.8 Assume that M is a self p-generator and pseudo semi-projective module with $S=\operatorname{End}(M)$. Then M has finite uniform dimension if and only if S_{S} has finite uniform dimension. Moreover in this case, $\operatorname{dim}\left(M_{R}\right)=\operatorname{dim}\left(S_{S}\right)$

Proof (\Rightarrow) Assume that $\operatorname{dim}\left(M_{R}\right)=k$. There exists $U_{i} \leq M, i=1,2, \ldots, k$ such that $U_{1} \oplus U_{2} \oplus \cdots \oplus U_{k} \leq^{e} M$, with U_{i} uniform. By Lemma 3.7 we have

$$
\operatorname{Hom}\left(M, U_{1} \oplus U_{2} \oplus \cdots \oplus U_{k}\right) \leq^{e} S_{S} .
$$

Since M is self p-generator, pseudo semi-projective and U_{i} uniform, $\operatorname{Hom}\left(M, U_{i}\right)$ is uniform as right S-module for each $i=1,2, \ldots, k$. In fact, assume that for elements $f, g \in \operatorname{Hom}\left(M, U_{i}\right)$ such that $f S \cap g S=0$. Then if $m \in f(M) \cap g(M), m=f\left(m_{1}\right)=g\left(m_{2}\right)$ for some $m_{1}, m_{2} \in M$. Therefore $m R=f\left(m_{1} R\right)=g\left(m_{2} R\right)$. Since M is self p-generator, there exists $h, h^{\prime} \in S$ such that $m_{1} R=h(M), m_{2} R=h^{\prime}(M)$, whence $m R=f h(M)=$ $g h^{\prime}(M)$. It follows that $f h S=g h^{\prime} S \leq f S \cap g S=0$ or $f h=0$ and hence $m=0$. Thus $f(M) \cap g(M)=0$. But M_{i} is uniform, $f(M)=0$ or $g(M)=0$. Moreover, we also have

$$
\operatorname{Hom}\left(M, U_{1} \oplus U_{2} \oplus \cdots \oplus U_{k}\right)=\operatorname{Hom}\left(M, U_{1}\right) \oplus \operatorname{Hom}\left(M, U_{2}\right) \oplus \cdots \oplus \operatorname{Hom}\left(M, U_{k}\right)
$$

and hence $\operatorname{Hom}\left(M, U_{1}\right) \oplus \operatorname{Hom}\left(M, U_{2}\right) \oplus \cdots \oplus \operatorname{Hom}\left(M, U_{k}\right) \leq^{e} S_{S}$. It follows that S_{S} has finite uniform dimension and $\operatorname{dim}\left(S_{S}\right)=k$.
(\Leftarrow) Assume that M contains a infinite direct sum of nonzero submodules $\oplus_{i \in I} M_{i}$. Then S contains the infinite direct sum of right ideals $\oplus_{i \in I} \operatorname{Hom}\left(M, M_{i}\right)$, a contradiction. In fact, for all $f \in \operatorname{Hom}\left(M, M_{i}\right) \cap$ $\Sigma_{i \in I, i \neq j} \operatorname{Hom}\left(M, M_{j}\right)$, then $f=f_{j_{1}}+\cdots+f_{j_{n}}$, with $j_{1}, \ldots, j_{n} \in\{j \in I \mid j \neq i\}$ and $f_{j_{l}} \in \operatorname{Hom}\left(M, M_{i_{l}}\right)$. Hence, for all $m \in M, f(m)=\left(f_{j_{1}}+\cdots+f_{j_{n}}\right)(m)=f_{j_{1}}(m)+\cdots+f_{j_{n}}(m) \in M_{i} \cap\left(M_{j_{1}}+\cdots+M_{j_{n}}\right)=0$, whence $f(m)=0$ or $f=0$. Thus M contains no infinite direct sums of submodules or M has finite uniform dimension.

Remark. In [10, Theorem 3.1], authors proved that: Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Then, M has finite uniform dimension if and only if $S=\operatorname{End}(M)$ has finite uniform dimension. Moreover in this case, $\operatorname{dim}\left(M_{R}\right)=\operatorname{dim}\left(S_{S}\right)$. It is well known if M is self-generator, quasiprojective, then M is retractable and semi-projective. On the other hand, if M is a semi-projective module, then $\operatorname{Hom}(M, s(M))=s$ for any s in S. And if M is retractable, then $\operatorname{Hom}(M, N)$ is nonzero for all nonzero submodule N of M. Therefore the Theorem 3.8 is also true in case M retractable semi-projective. Thus we have the following result: "Let M be a semi-projective, right R-module which is retractable. Then, M has finite uniform dimension if and only if $S=\operatorname{End}(M)$ has finite uniform dimension and $\operatorname{dim}\left(M_{R}\right)=\operatorname{dim}\left(S_{S}\right)$ ". This result and Theorem 3.8 are new results. But is Theorem 3.8 true for M retractable, pseudo semi-projective?

The following is an application for the above results.

Example 3.9 Let R be a ring with $\operatorname{dim}\left(R_{R}\right)=k$, n be a positive integer and S be a ring of $n \times n$ matrices with entries in R. Then $\operatorname{dim}\left(S_{S}\right)=n k$.

Proof By the hypothesis, $\operatorname{dim}\left(R_{R}^{n}\right)=n k$. Since ring S is isomorphic to endomorphism ring of R^{n}, we also get $\operatorname{dim}\left(S_{S}\right)=n k$.

It is well known that endomorphism ring of a self-projective, Artinian module is semiprimary. We also have a similar result for pseudo semi-projective module and is given by the following theorem.

Theorem 3.10 If M is pseudo semi-projective and Artinian then $S=\operatorname{End}(M)$ is semiprimary.

Proof Assume that

$$
s_{1} S \geq s_{2} S \geq \cdots
$$

with $s_{i} \in S$. Then we also $s_{1}(M) \geq s_{2}(M) \geq \cdots$. Since M is Artinian, there exists $n \in \mathbb{N}$ such that $s_{n}(M)=s_{n+k}(M), \forall k \in \mathbb{N}$. It follows that $s_{n} S=s_{n+k} S, \forall k \in \mathbb{N}$ by pseudo semi-projectivity of M. Thus S is left perfect.

We will claim that $J(S)$ is nilpotent. In fact, we have chain submodules of M

$$
J(S)(M) \geq J(S)^{2}(M) \geq \cdots
$$

Since M is Artinian, there exists $n \in \mathbb{N}$ such that $J(S)^{n}(M)=J(S)^{n+k}(M), \forall k \in \mathbb{N}$. Let $I=J(S)^{n}$, hence we get $I M=I^{2} M$. Assume that $J(S)$ is not nilpotent. There exists $s \in I$ such that $s I \neq 0$. Let $s_{0} M$ be minimal in the set $\{s M \mid s \in I, s I \neq 0\}$. Since $s_{0} I M=s_{0} I I M$, there exists $t \in s_{0} I \leq I$ such that $t I \neq 0$ and $t M \leq s_{0} I M \leq s_{0} M$. It follows that $t M=s_{0} M$ by minimality of $s_{0} M$ and hence $s_{0} M=s_{0} g M$ for some $g \in I$. On the other hand, M is pseudo semi-projective, there exists $f \in S$ with $s_{0}=s_{0} g f$ for some $f \in S$. It follows that $s_{0}(1-g f)=0$. Since $g f \in J(S), s_{0}=0$, a contradiction. Thus S is semiprimary.

Remark. In [11, 31.11], author proved that endomorphism ring of a self-projective, Artinian module is semiprimary. But in this proof, author used the property " $\operatorname{Hom}(M, s(M))=s$ for any s in $S=\operatorname{End}(M)$ " to show that S is a left perfect. In Theorem 3.10, we only used the property " $f(M)=g(M)$ if and only if $S f=S g$ for all $f, g \in S "$ to prove that S is a left perfect. Moreover, if M is semi-projective then M is pseudo semi-projective. Thus Theorem 3.10 is extension of [11, 31.11].

Next, we get some characterizations of semisimple ring via pseudo semi-projectivity. The following result is similar to Theorem 2.11 in [4].

Theorem 3.11 The following conditions are equivalent for ring R.

1. R is semisimple.
2. Every pseudo semi-projective module is projective.
3. Every direct sum of any family of pseudo semi-projective modules is projective.
4. The direct sum of two pseudo semi-projective modules is projective.

Proof $(1) \Rightarrow(2)$ by [1, Exercise 16.9] and $(2) \Rightarrow(3) \Rightarrow(4)$ is obvious.
$(4) \Rightarrow(1)$. Let M be a simple right R-module. It follows that M is pseudo semi-projective. Then $M \oplus R_{R}$ is projective by our assumption and hence M is projective. Thus R is semisimple by [1, Exercise 16.9].

Note that the direct sum of two pseudo semi-projective modules need not be semi-projective. For example \mathbb{Z}-module $M=\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ is direct sum of two pseudo semi-projective, but M is not pseudo semi-projective (see [5, Example 3.1]).

It is well known a ring R is right perfect if and only if every right R-module has projective cover. We also have a similar result for pseudo semi-projective modules in the following theorem.

Theorem 3.12 The following conditions are equivalent for ring R :

1. R is right perfect.

2. For any right R-module M, there exists an epimorphism $f: N \rightarrow M$ such that N is pseudo semiprojective and $\operatorname{Ker} f \ll N$.

Proof $(1) \Rightarrow(2)$ is obviously.
$(2) \Rightarrow(1)$ Let M be a right R-module. There exists a free module F and an epimorphism $\psi: F \rightarrow M$. By (2), there exists an epimorphism $\phi: S \rightarrow F \oplus M$ such that S is pseudo semi-projective and Ker $\phi \ll S$. Denote $p_{1}: F \oplus M \rightarrow F$ and $p_{2}: F \oplus M \rightarrow M$ the natural projections. Then $p_{1} \phi: S \rightarrow F$ is an epimorphism. By projectivity of $F, S=\operatorname{Ker}\left(p_{1} \phi\right) \oplus T$ with $T \leq S$. Let $M^{\prime}=\operatorname{Ker}\left(p_{1} \phi\right)$. We get $S / M^{\prime} \simeq F$ and $S / M^{\prime} \simeq T$ and hence $F \simeq T$. From this, we can regard $S=M^{\prime} \oplus F$. We get $f=\left.\phi\right|_{M^{\prime}}: M^{\prime} \rightarrow M$ is an epimorphism. Now we will show that M^{\prime} is a projective cover of M. Assume that $A+\operatorname{Ker} f=M^{\prime}$. Since $\operatorname{Ker} f \leq \operatorname{Ker} \phi$, $F+A+\operatorname{Ker} \phi=M^{\prime}+F=S$ whence $F+A=F+M^{\prime}$. Hence $A=M^{\prime}$ or $\operatorname{Ker} f \ll M^{\prime}$.

On the other hand, F is projective, there exists $\bar{\psi}: F \rightarrow M^{\prime}$ such that $f \bar{\psi}=\psi$. But $\operatorname{Ker} f \ll M^{\prime}$ and so $\bar{\psi}$ is an epimorphism. Let $\pi_{1}: S \rightarrow F, \pi_{2}: S \rightarrow M^{\prime}$ the natural projections. We consider the diagram

Since M^{\prime} is a direct summand of S (and so M^{\prime} is a S-cyclic submodule of S) and S is pseudo semi-projective, there exists $h: S \rightarrow S$ such that $\bar{\psi} \pi_{1} h=\pi_{2}$. Let $g=\pi_{1} h \iota$ with $\iota: M^{\prime} \rightarrow S$ the natural inclusion. Then $\bar{\psi} g=i d$, and M^{\prime} is isomorphic to a direct summand of F and hence M^{\prime} is projective. Thus M^{\prime} is the projective cover of M.
From the Theorem 3.12, we get the following corollaries:

Corollary 3.13 The following conditions are equivalent for ring R :

1. R is semiperfect.
2. For any finitely generated right R-module M, there exists an epimorphism $f: N \rightarrow M$ such that N is pseudo semi-projective and $\operatorname{Ker} f \ll N$.

Corollary 3.14 For ring R. The following conditions are equivalent:

1. R is semiregular.
2. For any finitely presented right R-module M, there exists an epimorphism $f: N \rightarrow M$ such that N is pseudo semi-projective and $\operatorname{Ker} f \ll N$.
Proof Note that in proof of Theorem 3.12 , if M is finitely presented, $M \simeq F / K$ with F free and both F and K finitely generated. Then $F \oplus M$ is also finitely presented. Thus M has a projective cover. It follows that R is semiregular by [7, Theorem B.56].

Acknowledgment

I would like to give thanks to Professor Nguyen Van Sanh for his suggestion of Theorem 3.8. The authors would like to thank the referee for his/her many valuable suggestions and comments.

References

[1] Anderson, F.W., and Fuller, K.R.: Rings and Categories of Modules. Springer-Verlag. New York 1974.
[2] Clark, J., Lomp, J., Vanaja, N. and Wisbauer, R.: Lifting Modules Supplements and Projectivity in Module Theory. Frontiers in Math. Boston. Birkhäuser. 2006.
[3] Dung, N.V., Huynh, D.V., Smith, P.F., and Wisbauer, R.: Extending Modules. Pitman 1996.
[4] Keskin, D.: A generalization of quasi-projective modules. Far East J. Math. Sci. 2, 483-488 (2000).
[5] Keskin, D., and Kuratomi, Y.: On epi-projective modules. East-West J. Math. 10, 27-35 (2008).
[6] Mohammed, S.H., and Müller, B.J.: Continuous and Discrete Modules. London Math. Soc. LN 147. Cambridge Univ. Press. 1990.
[7] Nicholson, W.K., and Yousif, M.F.: Quasi-Frobenius Rings. Cambridge Univ. Press. 2003.
[8] Nicholson, W.K., Park, J.K. and Yousif, M.F.: Principally quasi-injective modules. Comm. Algebra 27, 1683-1693 (1999).
[9] Samruam, B., Hai, H.D., and Sanh, N.V.: On pseudo-P-injectivity. to appear in South. Asian Bull. Math. (2010).
[10] Sanh, N.V., Asawasamri, S., Ahmed, K.F., and Thao, P.L.: On prime and semiprime Goldie modules. AsianEuropean J. of Math. 4, 321-334 (2011).
[11] Wisbauer, R.: Foundations of Module and Ring Theory. Gordon and Breach. Reading 1991.

[^0]: *Correspondence: tcquynh@live.com
 2010 AMS Mathematics Subject Classification: 16D40, 16D50, 16L60.

