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Abstract: In this paper, we consider the nonlocal parabolic equation

ut = Δu +
λH(1 − u)

� �
Aρ,R

H(1− u)dx
�2 , x ∈ Aρ,R ⊂ �2, t > 0,

with a homogeneous Dirichlet boundary condition, where λ is a positive parameter, H is the Heaviside function and

Aρ,R is an annulus. It is shown for the radial symmetric case that: there exist two critical values λ∗ and λ∗ , so that for

0 < λ < λ∗ , u(x, t) is global in time and the unique stationary solution is globally asymptotically stable; for λ∗ < λ < λ∗

there also exists a steady state and u(x, t) is global in time; while for λ > λ∗ there is no steady state and u(x, t) “blows

up” (in some sense) for any appropriate (u0(x) ≤ 1) initial data.
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1. Introduction
In this paper we study the radially symmetric solutions to the nonlocal parabolic problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = Δu +
λH(1 − u)( ∫

Aρ,R
H(1 − u)dx

)2 , x ∈ Aρ,R, t > 0,

u(x, t) = 0, x ∈ ∂Aρ,R, t > 0,

u(x, 0) = u0(x), x ∈ Aρ,R,

(1.1)

where u(x, t) = u(x, t; λ) = u(|x|, t) stands for the dimensionless temperature of a conductor when an electric

current flows through it [7, 14, 15, 17, 23], H denotes the Heaviside function:

H(s) =
{

1, s > 0,
0, s ≤ 0,
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Aρ,R is the annulus

Aρ,R = {x ∈ R
2 : 0 < ρ <| x |< R},

and u0(x) = u0(r)(r = |x|) is a radial symmetric function which will be specified later.

For the derivation of the model of a nonlocal problem, we refer to [15, 16, 23] and references therein. In

1995, Lacey [15] derived the following nonlocal parabolic model related to Ohmic, or Joule heating

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − Δu =
λf(u)

(
∫
Ω

f(u)dx)2
, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.2)

The equation comes from a more general parabolic-elliptic system,

{
ut −∇(κ(u)∇u) = σ(u)|∇φ|2, x ∈ Ω, t > 0,

∇ · (σ(u)∇φ) = 0, x ∈ Ω, t > 0,
(1.3)

where φ is the electric potential. For the study of system (1.3), we refer to [1, 4, 5, 10, 11, 25] and references

therein. For problem (1.2) in one dimension (−1 < x < 1), in [15, 16], among other things, it was proved

that for the case of decreasing f(s), (i) if
∫ ∞
0

f(s)ds = ∞ , there is a unique steady state which is globally

asymptotically stable; (ii) if
∫ ∞
0

f(s)ds = 1 (which is scaled from
∫ ∞
0

f(s)ds < ∞), (a) there is a unique steady

state which is globally asymptotically stable if λ < 8, (b) there is no steady state and u is unbounded if λ = 8,

(c) there is no steady state and u blows up in finite time for all −1 < x < 1, if λ > 8. For problem (1.2) in one

dimensions (0 < x < 1) radially symmetric case, Tzanetis [23] first studied the case of f(s) = H(1 − s), and

obtained that there exist two critical values λ∗ = 4π2 and λ∗ = 8π2 , so that for 0 < λ < λ∗ , u(x, t) = u(r, t)
is global in time and the unique stationary solution is globally asymptotically stable; for λ > λ∗ the solution u

“blows up” (in some sense, i.e., it ceases to be less than 1) in finite time.

In [12], Kavallaris and Tzanetis considered the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − uxx + ux =
λf(u)

(
∫ 1

0 f(u)dx)2
, 0 < x < 1, t > 0,

B(u) = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x), 0 < x < 1,

(1.4)

and its associated steady-state problem

⎧⎪⎨
⎪⎩

w′′ − w′ +
λf(w)

(
∫ 1

0 f(w)dx)2
= 0, 0 < x < 1,

B(w) = 0, x = 0, 1,

where f(s) is positive and monotonic and B is a suitable linear boundary operator. They have obtained similar

results as in [15, 16]. Problem (1.4) was first considered in [19], where the stability of different models was

studied. Related material can be found in [2, 6, 8, 12, 20, 22, 26]. In [13], Kavallaris and Tzanetis considered

problem (1.4) for the case of f(s) = H(1−s), and found that there exist two critical values λ∗ and λ∗ , so that
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for 0 < λ < λ∗ , u(x, t) is global in time and the unique stationary solution is globally asymptotically stable;
for λ∗ < λ < λ∗ there exist two steady states, while for λ > λ∗ there is no steady state. They also proved that
for λ > λ∗ or for λ∗ < λ < λ∗ and initial data sufficiently large, the solution u “blows up” (in some sense).

In general, the Heaviside function is a good approximation for a number of physical quantities [21, 24]. The

existence and uniqueness of a “weak” (classical a.e.) solution to (1.1) is obtained by using an approximating

regularized version of this problem, see [13, 15] and the references therein. Hence, taking into account this
remark, in the following we can use comparison arguments in the classical sense.

Our main results are as follows.

• If 0 < λ < λ∗ , there exists a unique stationary solution; if λ∗ < λ < λ∗ there also exists a unique
two-parameter family of steady state given by (2.4) while λ > λ∗ there is no steady state.

• If 0 < λ < λ∗ , then the solution u(r, t) of problem (2.1) is global in time and the unique steady state is

globally asymptotically stable for any initial data 0 ≤ u0(r) ≤ 1 and no u0(r) = 1 for r ∈ (ρ, R).

• If λ∗ < λ < λ∗ then the solution u(r, t) of problem (2.1) is global in time for any initial data 0 ≤ u0(r) ≤ 1.

• If λ > λ∗ , then the solution u(r, t) of problem (2.1) “blows up” (in some sense, actually ceases to be less

than 1 in (ρ; R)) in finite time for any initial data 0 ≤ u0(r) ≤ 1.

This work follows the ideas and techniques which have been used in the one-dimensional case [13, 15, 16]

and the two-dimensional radially symmetric case [23]. In contrast to [13], we obtain that λ(s1 , s2) is decreasing

function with s1 (see Section 2). Therefore, for λ∗ < λ < λ∗ , the solution u(r, t) of problem (2.1) is global in

time for any initial data 0 ≤ u0(r) ≤ 1. Also, in contrast to [13, 15, 16], here we have to modify their arguments

because of the extra technical difficulties encountered in this two-dimensional problem; in contrast to [23], we
examine an asymmetric case which is connected with a two-parameter family of steady states, resulting in more
technical difficulties.

This paper is organized as follows. In Section 2 we consider the steady-state problem corresponding to
(1.1). Section 3 is devoted to the stability and “blows up” (in some sense).

2. Steady-state problem

Since we consider radial solutions, we can rewrite problem (1.1) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − urr −
1
r
ur =

λH(1 − u)

4π2(
∫ R

ρ
H(1 − u)rdr)2

, ρ < r < R, t > 0,

u(ρ, t) = u(R, t) = 0, t > 0,

u(r, 0) = u0(r), ρ < r < R,

(2.1)

where u0(r) and u′
0(r) are bounded with u0(r) ≥ 0 in [ρ, R] . Concerning the existence of radial solutions, it is

worth to notice that this is true for positive and bounded solutions for a circular disk by [9], while in case of an

annulus the symmetry may be breakdown [18]. Using the same properties as in [9], it is also possible to obtain,
both for the parabolic and elliptic problems, similar results concerning the radial symmetry of solutions. There
may exist under some circumstances no radially symmetric (asymmetric) solutions as well. Also, for simplicity,
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we assume 0 ≤ u0(r) ≤ 1 for r ∈ [ρ, R] , then 0 ≤ u(r, t) ≤ 1 by the maximum principle. In particular, the

first equation of problem (2.1) is equivalent to

ut − urr −
1
r
ur =

{
0, for u ≥ 1,
λ/m2(t), for u < 1,

where m(t) is the measure of the subset of the annuli Aρ,R where u < 1.

The steady states of the problem (2.1) play an important role in the description of the asymptotic

behavior of the solutions of (2.1) and the construction of the lower and upper solutions, hence we first consider

the stationary problem of (2.1). Now we distinguish two cases:

1. u < 1 for every r ∈ [ρ, R] , then the first equation of problem (2.1) becomes

ut − urr −
1
r
ur =

λ

π2(R2 − ρ2)2

and the corresponding steady problem is

⎧⎨
⎩w′′ +

1
r
w′ +

λ

π2(R2 − ρ2)2
= 0, ρ < r < R,

w(ρ) = w(R) = 0.
(2.2)

2. u = 1 in a subinterval (S1(t), S2(t)) of [ρ, R] , then there exist ρ < s1 ≤ s2 < R such that the
corresponding steady problem has the form:

⎧⎪⎪⎨
⎪⎪⎩

w′′ +
1
r
w′ +

λ

π2(R2 − ρ2 + s2
1 − s2

2)2
= 0, ρ < r < s1, or s2 < r < R,

w(r) = 1, s1 ≤ r ≤ s2,

w(ρ) = w(R) = 0,

(2.3)

where S1 = S1(t), S2 = S2(t) are dependent on t and S1(t) → s1± and S2(t) → s2± as t → ∞ . Throughout

the paper, we will write S1 and S2 to denote the time-dependent variables S1(t) and S2(t), respectively.

The solution of (2.2) is

w1(r) = w1(r; λ) =

⎧⎪⎨
⎪⎩

cr2
0

2
(ln r − lnρ) − c

4
(r2 − ρ2), ρ ≤ r ≤ r0,

c

4
(R2 − r2) − cr2

0

2
(ln R − ln r), r0 ≤ r ≤ R,

where

c =
λ

π2(R2 − ρ2)2
, r0 =

√
R2 − ρ2

2(ln R − ln ρ)
.

Obviously, w1(r) takes its unique maximum at r0 point, that is

w1(r0) = max
ρ≤r≤R

w1(r) =
λ[2r2

0(ln r0 − lnρ) − (r2
0 − ρ2)]

4π2(R2 − ρ2)2
.
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If w1(r0) < 1, we have

λ <
4π2(R2 − ρ2)2

2r2
0(ln r0 − lnρ) − (r2

0 − ρ2)
= λ∗.

On the other hand, equation (2.3) gives a two-parameter family of stationary solutions of the form

w2(r) = w2(r; λ) = w2(r; s1, s2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 +
d

4
(s2

1 − r2) − ds2
1

2
(ln s1 − ln r), ρ ≤ r < s1,

1, s1 ≤ r ≤ s2,

1 +
ds2

2

2
(ln r − ln s2) −

d

4
(r2 − s2

2), s2 < r ≤ R,

(2.4)

where d = λ/[π2(R2 − ρ2 + s2
1 − s2

2)
2] . For w2(ρ; s1, s2) = w2(R; s1, s2) = 0, the first branch implies

λ(s1 , s2) =
4π2(R2 − ρ2 + s2

1 − s2
2)2

2s2
1(ln s1 − lnρ) − (s2

1 − ρ2)
, (2.5)

and the third branch gives

λ(s1, s2) =
4π2(R2 − ρ2 + s2

1 − s2
2)2

R2 − s2
2 − 2s2

2(ln R − ln s2)
. (2.6)

The relations (2.5) and (2.6) imply

2s2
1(ln s1 − lnρ) − (s2

1 − ρ2) = R2 − s2
2 − 2s2

2(lnR − ln s2), (2.7)

provided that s1 �= ρ and s2 �= R .

Lemma 2.1 Assume s1, s2 satisfy (2.7), then s1 → ρ+ as s2 → R−, s1 → r0− as s2 → r0+ and vice versa.

The proof is obvious, so we omit it here.

From (2.7) we have F (s1, s2) = R2 − s2
2 − 2s2

2(lnR − ln s2) + s2
1 − ρ2 − 2s2

1(ln s1 − lnρ) = 0 for

(s1 , s2) ∈ (ρ, r0) × (r0, R). Also ∂F (s1, s2)/∂s2 = −4s2(ln R − ln s2) �= 0, then from the implicit function

theorem we have s2 = ϕ(s1) for all (s1, s2) ∈ (ρ, r0) × (r0, R) and

ϕ′(s1) =
s1(ln ρ− ln s1)
s2(lnR − ln s2)

< 0. (2.8)

Lemma 2.2 Assume s1, s2 satisfy (2.7), then we have s1(ln s1 − ln ρ)−s2(ln R− ln s2) ≥ 0 for any (s1, s2) ∈
(ρ, r0) × (r0, R) , that is to say ϕ′(s1) ≤ −1 for any s1 ∈ (ρ, r0) .

Proof Let f(s1 , s2) = s1(ln s1 − lnρ) − s2(ln R − ln s2) and assume that there exist some points such that

f(s1 , s2) < 0. Set

c = min{s1 | s1 ∈ (ρ, r0), f(s1 , s2) = f(s1 , ϕ(s1)) < 0}.

Since f(s1 , ϕ(s1)) is continuous function for s1 ∈ (ρ, r0) and f(ρ, ϕ(ρ)) = f(ρ, R) = 0, c exists and satisfies
∂f
∂s1

|s1=c< 0. On the other hand, by the assumption we have −1 < ϕ′(c) < 0. Then

∂f

∂s1
|s1=c= [ln c − lnρ + 1 − (ln R − ln ϕ(c))ϕ′(c) + ϕ′(c)] > 0,
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which yields a contradiction. �

Theorem 2.3 Assume s1, s2 satisfy (2.7), then we have

1 . ∂λ(s1 , s2)/∂s1 < 0 and ∂λ(s1 , s2)/∂s2 > 0 for (s1, s2) ∈ (ρ, r0) × (r0, R) .
2 .

lim
s1→ρ+

λ(s1, s2) = 8π2(ρ2 + R2)2 = λ∗,

and

lim
s1→r0−

λ(s1 , s2) =
4π2(R2 − ρ2)2

2r2
0(ln r0 − lnρ) − (r2

0 − ρ2)
= λ∗.

Proof 1. By using (2.8), we have

∂λ(s1 , s2)
∂s1

=
16π2s1(R2 − ρ2 + s2

1 − s2
2)

[2s2
1(ln s1 − ln ρ) − (s2

1 − ρ2)]2

[
(
2s2

1(ln s1 − lnρ) − s2
1 + ρ2

)
(1 +

ln s1 − lnρ

ln R − ln s2
)

−(R2 − ρ2 + s2
1 − s2

2)(ln s1 − lnρ)]

= K(s1 , s2)G(s1, s2), (2.9)

where

K(s1, s2) =
16π2s1(R2 − ρ2 + s2

1 − s2
2)

[2s2
1(ln s1 − ln ρ) − (s2

1 − ρ2)]2
> 0

for (s1, s2) ∈ (ρ, r0) × (r0, R), and

G(s1, s2) =[2s2
1(ln s1 − lnρ) − s2

1 + ρ2](1 +
ln s1 − lnρ

ln R − ln s2
)

− (R2 − ρ2 + s2
1 − s2

2)(ln s1 − ln ρ).

By (2.7) and (2.8), we get

∂G

∂s1
= 4s1(ln s1 − lnρ)(1 +

ln s1 − ln ρ

lnR − ln s2
)

+[2s2
1(ln s1 − lnρ) − s2

1 + ρ2]
s2
2(ln R − ln s2)2 − s2

1(ln s1 − lnρ)2

s1s2
2(lnR − ln s2)3

−[4s1(ln s1 − lnρ) +
2s2

2(ln R − ln s2)
s1

− 2s2ϕ
′(s1)(ln s1 − lnρ)]

=
2s2

1(ln s1 − lnρ)2 − 2s2
2(ln R − ln s2)2

s1(ln R − ln s2)

+[(2s2
1(ln s1 − lnρ) − s2

1 + ρ2 ]
s2
2(ln R − ln s2)2 − s2

1(ln s1 − ln ρ)2

s1s
2
2(lnR − ln s2)3

=
s2
1(ln s1 − ln ρ)2 − s2

2(lnR − ln s2)2

s1s2
2(ln R − ln s2)3

G1(s1, s2), (2.10)
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where G1(s1, s2) = 2s2
2(ln R − ln s2)2 − 2s2

1(ln s1 − lnρ) + s2
1 − ρ2 . Moreover,

∂G1

∂s1
= 4s2ϕ

′(s1)(lnR − ln s2)2 − 4s2ϕ
′(s1)(lnR − ln s2) − 4s1(ln s1 − lnρ)

= −4s1(ln s1 − ln ρ)(lnR − ln s2) < 0,

and
∂G1

∂s2
=

∂G1

∂s1

∂s1

∂s2
=

∂G1

∂s1

1
ϕ′(s1)

> 0,

which imply G1(s1, s2) < G1(ρ, R) = 0 for (s1, s2) ∈ (ρ, r0) × (r0, R). From Lemma 2.2 and (2.10), we have

∂G/∂s1 < 0 which yields G(s1, s2) < G(ρ, R) = 0 for (s1, s2) ∈ (ρ, r0) × (r0, R). Hence we have

∂λ(s1 , s2)/∂s1 < 0 and ∂λ(s1 , s2)/∂s2 = ∂λ(s1 , s2)/∂s1
1

ϕ′(s1)
> 0.

2. From Lemma 2.1 we get

lim
s1→ρ

ϕ′(s1) = lim
s1→ρ

ln s1 − ln ρ− 1
ϕ′(s1)(lnR − ln s2 − 1)

= lim
s1→ρ

1
ϕ′(s1)

. (2.11)

Combining (2.8) with (2.11), we have lims1→ρ ϕ′(s1) = −1. Hence

lim
s1→ρ+

λ(s1, s2) = 4π2(ρ + R) lim
s1→ρ+

R2 − ρ2 + s2
1 − s2

2

s1(ln s1 − lnρ)

= 4π2(ρ + R) lim
s1→ρ+

2s1 − 2s2ϕ
′(s1)

1 + ln s1 − lnρ
= 8π2(ρ + R)2 = λ∗.

By using Lemma 2.1, we have lims1→r0− s2 = r0 which implies

lim
s1→r0−

λ(s1 , s2) =
4π2(R2 − ρ2)2

2r2
0(ln r0 − lnρ) − (r2

0 − ρ2)
= λ∗.

The proof is completed. �

If we denote by ‖ w′ ‖= sup w′ , then ‖ w′ ‖= w′(ρ). Thus

w′
1(ρ; λ) =

λ(r2
0 − ρ2)

2π2ρ(R2 − ρ2)2
for 0 < λ < λ∗,

w′
2(ρ; r0, r0) = w′

2(ρ; λ∗) =
λ∗(r2

0 − ρ2)
2π2ρ(R2 − ρ2)2

,

w′
2(ρ; ρ, R) = w′

2(ρ; λ∗) =
1

2π2ρ
lim

s1→ρ+

s2
1 − ρ2

(R2 − ρ2 + s2
1 − s2

2)2
= ∞.

According to the above analysis, we have the existence theorem for the steady-state problem (2.1).

Theorem 2.4 If 0 < λ < λ∗ , there exists a unique stationary solution; if λ∗ < λ < λ∗ there also exists a
unique radial symmetric two-parameter family of steady state given by (2.4) while for λ ≥ λ∗ there is no steady
state.
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3. Stability and “blow-up”

Firstly we consider problem (2.1) with 0 < λ < λ∗ . From Theorem 2.4, w1(r) is the unique radial symmetric
stationary solution.

Theorem 3.1 If 0 < λ < λ∗ , then the solution u(r, t) of problem (2.1) is global in time and the unique steady

state is globally asymptotically stable for any initial data 0 ≤ u0(r) ≤ 1 .

Proof In the case of 0 < u0(r) ≤ w1(r), the function

z(r, t) =

⎧⎪⎪⎨
⎪⎪⎩

α(t)[2r2
0(ln r − lnρ) − (r2 − ρ2)]

4π2(R2 − ρ2)2
, ρ ≤ r ≤ r0, t > 0,

α(t)[R2 − r2 − 2r2
0(ln R − ln r)]

4π2(R2 − ρ2)2
, r0 ≤ r ≤ R, t > 0,

is a lower solution to problem (2.1) provided that α(t) satisfies

α′(t) = a(λ − α(t)), t > 0; α(0) = α0, (3.1)

where a = 4/[2r2
0(ln r0 − ln ρ) − (r2

0 − ρ2)] and α0 is a suitable chosen constant so that 0 ≤ α0 ≤ λ and

z(r, 0) ≤ u0(r). The solution to (3.1) is

α(t) = λ + (α0 − λ)e−at → λ − as t → ∞.

Hence z(r, t) → w1(r) as t → ∞ uniformly for r ∈ [ρ, R] . Since z(r, t) ≤ u(r, t) ≤ w1(r) and z(r, t) → w1(r)

as t → ∞ uniformly for r ∈ [ρ, R] , we see that u(r, t) exists globally in time and u(r, t) → w1(r) as t → ∞
uniformly for r ∈ [ρ, R] .

For w1(r) < u0(r) ≤ 1, our prospective comparison function V (r, t) is

V (r, t) = w2(r; S1, S2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
S2

1 − r2 − 2S2
1 (lnS1 − ln r)

2S2
1 (lnS1 − lnρ) − S2

1 + ρ2
, ρ ≤ r < S1, 0 < t < t1,

1, S1 ≤ r ≤ S2, 0 < t < t1,

1 +
2S2

2(ln r − lnS2) − r2 + S2
2

R2 − S2
2 − 2S2

2(ln R − ln S2)
, S2 < r ≤ R, 0 < t < t1,

and

V (r, t) = w1(r; β(t)) =

⎧⎪⎪⎨
⎪⎪⎩

β(t)[2r2
0(ln r − lnρ) − (r2 − ρ2)]

4π2(R2 − ρ2)2
, ρ ≤ r ≤ r0, t > t1,

β(t)[R2 − r2 − 2r2
0(lnR − ln r)]

4π2(R2 − ρ2)2
, r0 ≤ r ≤ R, t > t1,

where S1 and S2 are functions of t which satisfy ρ < S1(t) ≤ S2(t) < R and relation (2.7). For 0 < t < t1 , let

S′
1(t) ≥ 0, then by (2.7) and (2.8) we have

Vt =
4S1S

′
1[(lnS1 − ln r)(S2

1 − ρ2) − (lnS1 − ln ρ)(S2
1 − r2)]

[2S2
1(ln S1 − lnρ) − S2

1 + ρ2]2

≥ −4S1S
′
1(ln S1 − lnρ)(S2

1 − ρ2 + R2 − S2
2)

[2S2
1(ln S1 − ln ρ) − S2

1 + ρ2 ]2
, ρ ≤ r < S1, 0 < t < t1,
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and

Vt =
4S2S

′
2[(ln r − ln S2)(R2 − S2

2 ) − (lnR − ln S2)(r2 − S2
2 )]

[R2 − S2
2 − 2S2

2 (lnR − lnS2)]2

≥ 4S2S
′
2(lnR − lnS2)(R2 − S2

2)
[2S2

1(lnS1 − ln ρ) − S2
1 + ρ2]2

= − 4S1S
′
1(ln S1 − lnρ)(R2 − S2

2)
[2S2

1(ln S1 − ln ρ) − S2
1 + ρ2]2

,

≥ −4S1S
′
1(ln S1 − ln ρ)(S2

1 − ρ2 + R2 − S2
2)

[2S2
1(lnS1 − ln ρ) − S2

1 + ρ2]2
, S2 < r ≤ R, 0 < t < t1,

which imply that V (r, t) is an upper solution to problem (2.1) as long as S1(t) satisfies

S′
1(t) =

(λ(S1 , ϕ(S1)) − λ)[2S2
1 (lnS1 − ln ρ) − S2

1 + ρ2]2

4π2S1(lnS1 − lnρ)(S2
1 − ρ2 + R2 − ϕ2(S1))3

, 0 < t < t1; S1(0) = s0, (3.2)

where s0 > ρ so that λ(s0 , ϕ(s0)) > λ and V (r, 0) = w2(r; s0, ϕ(s0)) ≥ u0(r). Problem (3.2) has a unique

solution, since the same holds for its equivalent transcendental equation for S1(t):

∫ S1(t)

s0

4π2σ(ln σ − ln ρ)(σ2 − ρ2 + R2 − ϕ2(σ))3

(λ(σ) − λ)[2σ2(ln σ − lnρ) − σ2 + ρ2]2
dσ = t, 0 < t < t1. (3.3)

Note that the function

G(ξ) =
∫ ξ

s0

4π2σ(ln σ − ln ρ)(σ2 − ρ2 + R2 − ϕ2(σ))3

(λ(σ) − λ)[2σ2(lnσ − ln ρ) − σ2 + ρ2]2
dσ

is a C1 -diffeomorphism from [s0, r0] to [0, T ] (see [3]), where

T =
∫ r0

s0

4π2σ(ln σ − ln ρ)(σ2 − ρ2 + R2 − ϕ2(σ))3

(λ(σ) − λ)[2σ2(ln σ − ln ρ) − σ2 + ρ2]2
dσ < ∞.

For t > t1 , we require β(t) to satisfy

β′(t) = a(λ − β(t)), t > t1; β(t1) = λ∗, (3.4)

then V (r, t) is an upper solution to problem (2.1) for t > t1 . (3.4) is equivalent to β(t) = λ+(λ∗−λ)ea(t1−t) →
λ+ as t → ∞ , which implies V (r, t) → w1(r)− as t → ∞ uniformly for r ∈ [ρ, R] . Since w1(r) ≤ u(r, t) ≤
V (r, t), we have u(r, t) → w1(r)− as t → ∞ uniformly for r ∈ [ρ, R] . As this holds for any initial data

0 ≤ u0(r) ≤ 1, it is clear that the unique steady state w1(r) is a globally asymptotically state. The proof is
completed. �

Next we consider problem (2.1) with λ∗ < λ < λ∗ . From Theorem 2.4, there exists a unique two-

parameter family of steady state w2(r) = w2(r; λ) := w2(r; S1, S2). Then we have:

Theorem 3.2 If λ∗ < λ < λ∗ and 0 ≤ u0(r) ≤ w2(r) , then the solution u(r, t) of problem (2.1) is global in
time.

The proof is obvious, we omit it.
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Remark 3.1 Since λ(S1, ϕ(S1)) is strictly decreasing for S1 ∈ (ρ, r0) , we cannot construct a lower solution to

problem (2.1) which is increasing in time t of a form similar to the steady state. Therefore, it seems difficult

to verify that w2(r; λ) is globally asymptotically stable for the case of λ∗ < λ < λ∗ and 0 ≤ u0(r) ≤ w2(r) as

in [13, 15, 16, 23].

Let (sλ, ϕ(sλ)) be the unique solution of λ = λ(S1, S2) (since ∂λ/∂S1 < 0).

Lemma 3.3 Assume λ∗ < λ < λ∗ , then we have

lim
S1→sλ

λ(S1, S2) − λ

S1 − sλ
= lim

S1→sλ

λ(S1, S2) − λ(sλ, ϕ(sλ))
S1 − sλ

= C,

where C is a negative constant.

Proof From (2.9), we have

lim
S1→sλ

λ(S1, S2) − λ

S1 − sλ
= lim

S1→sλ

K(S1 , S2)G(S1, S2) = K(sλ, ϕ(sλ))G(sλ, ϕ(sλ)) = C.

�

Theorem 3.4 If λ∗ < λ < λ∗ and w2(r) < u0(r) ≤ 1 , then the solution u(r, t) of problem (2.1) is global in
time.
Proof Assume the solution u(r, t) of problem (2.1) “blows up” (in some sense) in finite time t∗ < ∞ . We

look for comparison function V (r, t) of the form

V (r, t) = w2(r; S1, S2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
S2

1 − r2 − 2S2
1(lnS1 − ln r)

2S2
1(lnS1 − ln ρ) − S2

1 + ρ2
, ρ ≤ r < S1,

1, S1 ≤ r ≤ S2,

1 +
2S2

2(ln r − ln S2) − r2 + S2
2

R2 − S2
2 − 2S2

2(ln R − ln S2)
, S2 < r ≤ R,

where S1 and S2 satisfy ρ < S1(t) ≤ S2(t) < R and relation (2.7). If S1(t) satisfies

⎧⎨
⎩S′

1(t) = h(S1) ≡
(λ(S1, ϕ(S1)) − λ)[2S2

1(ln S1 − lnρ) − S2
1 + ρ2]2

4π2S1(ln S1 − lnρ)(S2
1 − ρ2 + R2 − ϕ2(S1))3

, t > 0,

S1(0) = ρ1,

(3.5)

where 0 < ρ1 < sλ such that V (r, 0) = w2(r; ρ1, ϕ(ρ1)) ≥ u0(r), then V (r, t) is an upper solution to problem

(2.1).

Now we show that V (r, t) exists globally in time. Indeed, problem (3.5) is equivalent to the transcendental

equation for S1(t):

∫ S1(t)

ρ1

4π2σ(ln σ − ln ρ)(σ2 − ρ2 + R2 − ϕ2(σ))3

(λ(σ, ϕ((σ)) − λ)[2σ2(ln σ − lnρ) − σ2 + ρ2]2
=

∫ S1(t)

ρ1

dσ

g(σ)
= t,

where g(σ) = h(σ). Let T ∗ be the value such that S1(t) becomes sλ . By Lemma 3.3, we have

T ∗ =
∫ sλ

ρ1

dσ

g(σ)
= ∞,
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which implies that V (r, t) exists globally in time. This is a contradiction. �

Finally we consider the case of λ > λ∗ where there is no stationary solution, then we prove that u(r, t)

“blows up” (in some sense) in finite time.

Definition 3.1 We say that the solution to (2.1) “blows up” in finite time T ∗ < ∞ if u(r; t) ceases to be less

than 1 in some subinterval of (ρ; R) i.e., there exists T ∗ < ∞ such that limt→T∗ u(r; t) = 1 for all r ∈ (ρ; R) .

Theorem 3.5 If λ > λ∗ , then the solution u(r, t) of problem (2.1) “blows up” (in some sense) in finite time

for any initial data 0 ≤ u0(r) ≤ 1 .

Proof We only need to construct a lower solution which “blows up” (in some sense) in finite time, therefore
we consider the function

z(r, t) =

⎧⎪⎪⎨
⎪⎪⎩

α(t)[2r0(ln r − ln ρ) − (r2 − ρ2)]
4π2(R2 − ρ2)2

, ρ ≤ r ≤ r0, 0 < t < t1,

α(t)[R2 − r2 − 2r0(ln R − ln r)]
4π2(R2 − ρ2)2

, r0 ≤ r ≤ R, 0 < t < t1.

The function z(r, t) is a lower solution to problem (2.1) provided α(t) satisfies:

α′(t) = a(λ − α(t)), 0 < t < t1; α(0) = 0,

where a = 4/[2r2
0(ln r0 − lnρ)− (r2

0 − ρ2)] and t1 is such that α(t1) = λ∗ . Since λ > λ∗ , t1 = a−1[lnλ− ln(λ−
λ∗)] < ∞ . If u(r, t) exists (u < 1) at t = t1 , then we define z(r, t) for t > t1 , such that

z(r, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
S2

1 − r2 − 2S2
1(ln S1 − ln r)

2S2
1(ln S1 − lnρ) − S2

1 + ρ2
, ρ ≤ r < S1,

1, S1 ≤ r ≤ S2,

1 +
2S2

2(ln r − ln S2) − r2 + S2
2

R2 − S2
2 − 2S2

2 (lnR − lnS2)
, S2 < r ≤ R,

where S1 and S2 satisfy ρ < S1(t) ≤ S2(t) < R and relation (2.7). If S1(t) satisfies

⎧⎨
⎩S′

1(t) = h(r) ≡ (λ(S1 , ϕ(S1)) − λ)[2S2
1(lnS1 − ln ρ) − S2

1 + ρ2]2

4π2S1(lnS1 − ln ρ)(S2
1 − ρ2 + R2 − ϕ2(S1))3

, t > t1,

S1(t1) = r0,

(3.6)

then the function z(r, t) is a lower solution to problem (2.1). Using (3.6), we have

T ∗
1 =

∫ r0

ρ

dσ

g(σ)
+ t1 < ∞, (3.7)

where g(σ) = −h(σ) and T ∗
1 satisfies S1(T ∗

1 ) = ρ (or equivalently S2(T ∗
1 ) = R). (3.7) holds since

limσ→ρ+ g(σ) = (λ − λ∗)/[8π2(ρ + R)3] is bounded. This implies that u(r, t) → 1− as t → t∗1− ≤ T ∗
1

uniformly for every r ∈ (ρ, R), that is u(r, t) “blows up” in finite time. �
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4. Discussion
In this paper, we consider the nonlocal parabolic equation

ut = Δu +
λH(1 − u)( ∫

Aρ,R
H(1 − u)dx

)2
, x ∈ Aρ,R ⊂ R

2, t > 0,

with a homogeneous Dirichlet boundary condition, where H is the Heaviside function, u(x, t) = u(x, t; λ) =

u(|x|, t) stands for the dimensionless temperature of a conductor when an electric current flows through it

[14, 15, 17]. Since H(1 − s) is decreasing, comparison techniques can be applied. In this problem there exist
two critical values λ∗ and λ∗ , so that for λ > λ∗ or for 0 < λ∗ < λ < λ∗ and sufficiently “warm” initial
conditions the solution “blows up” in the sense that it becomes 1 at a finite time except for the points assigned
zero boundary conditions. Regarding the original physical problem, this means that the food (or the substance

undergoing the heating) loses all resistivity at temperature u = 1, that is the heating ceases across the channel
after finite time.
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[10] González Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem under the Wiedemann-Franz

law with metallic conduction. Discrete Contin. Dyn. Syst. Ser. B 8, 901–923 (2007).

[11] Hieber, M., Rehberg, J.: Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains.

SIAM J. Math. Anal. 40, 292–305 (2008).

48



LIANG et al./Turk J Math

[12] Kavallaris, N.I., Tzanetis, D.E.: Blow-up and stability of a nonlocal diffusion-convection problem arising in Ohmic

heating of foods. Diff. Integ. Eqns 15, 271–288 (2002).

[13] Kavallaris, N.I., Tzanetis, D.E.: An Ohmic heating non-local diffusion-convection problem for the Heaviside

function. ANZIAM J. 40(E), 114–142 (2002).

[14] Kavallaris, N.I., Tzanetis, D.E.: On the blow-up of the non-local thermistor problem. Proc. Edinb. Math. Soc. 50,

389–4089 (2007).

[15] Lacey, A.A.: Thermal runaway in a non-local problem modelling Ohmic heating. I. Model derivation and some

special cases. European J. Appl. Math. 6, 127–144 (1995).

[16] Lacey, A.A.: Thermal runaway in a non-local problem modelling Ohmic heating. II. General proof of blow-up and

asymptotics of runaway. European J. Appl. Math. 6, 201–224 (1995).

[17] Liu, Q.L., Liang F., Li, Y.X.: Asymptotic behaviour for a non-local parabolic problem. European J. Appl. Math.

20, 247–267 (2009).

[18] Lin, S.S.: On non-radially symmetric bifurcation in the annulus. Journal of Differential Equations. 80, 251–279

(1989).

[19] Please, C.P., Schwendeman, D.W., Hagan, P.S.: Ohmic heating of foods during aseptic processing. IMA J. Maths.

Bus. Ind. 5, 283–301 (1994).

[20] Skudder, P., Biss, S.: Aseptic processing of food products using Ohmic heating. The Chemical Engineer. 2, 26–28

(1987).

[21] Stakgold, S.: Boundary Value Problems of Mathematical Physics. Vol. I, The Macmillan Company, Collier-

Macmillan, London, (1970).

[22] Stirling, R.: Ohmic heating-a new process for the food industry. Power Eng. J. 6, (1987).

[23] Tzanetis, D.E.: Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating. Electron.

J. Differential Equations. 11, 1–26 (2002).

[24] Tzanetis, D.E., Vlamos, P.M.: Some interesting special cases of a nonlocal problem modelling Ohmic heating with

variable thermal conductivity, Proc. Edinb. Math. Soc. 44, 585–595 (2001).

[25] Xu, X.S.: Local regularity theorems for the stationary thermistor problem with oscillating degeneracy. J. Math.

Anal. Appl. 338, 274–284 (2008).

[26] Zhang, L., Fryer, P.J.: Models for the electrical heating of solid-liquid food mixtures. Chem.Eng. Sci. 48, 633–642

(1998).

49


