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Abstract: In this paper, we study the degree of approximation by an iterative combination Tn,k of the beta operators

introduced by Upreti [8].
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1. Introduction
Let M [0,∞) be the linear space of functions f(t) defined for all t ≥ 0 and bounded and Lebesgue measurable

in every interval [r, R] (0 < r < R < ∞).

For f ∈ M [0,∞), Upreti [8] proposed a sequence of linear positive operators, e.g. Beta operators, defined
as

Bn(f ; x) =

∞∫
0

bn(x, u)f(1/u) du, (1.1)

where

bn(x, u) =
xn

B(n, n)
un−1

(1 + xu)2n

and B(n, n) = ((n − 1)!)2/(2n − 1)! is the beta function.

Next, let H [0,∞) be the linear space of functions f(x) ∈ M [0,∞), for which |f(x)| ≤ Pxα (P > 0, α >

0, x > 0).

Upreti [8] studied some approximation properties of the operators (1.1). Later on, Zhou [9] obtained the

direct and inverse theorems for these operators in Lp[0,∞), 1 ≤ p ≤ ∞, using the K-functional technique.

It turns out that the Beta operators are saturated with O(n−1). So, in order to improve the rate of
convergence by these operators we apply the technique of iterative combinations to these operators. Several
researchers have used these combinations to improve the order of approximation for some other sequences of
linear positive operators (e.g. see [1], [2], [5] and [6]).
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For f ∈ H [0,∞), following [3], the iterative combination Tn,k(f ; x) of the operators Bn(f ; x) is defined
as

Tn,k(f(t); x) =
(
I − (I − Bn)k

)
(f ; x)

=
k∑

r=1

(−1)r+1

(
k

r

)
Br

n(f(t); x),

where B0
n = I and Br

n = Bn(Br−1
n ) for r ∈ N.

In the present paper, we establish some direct results in the ordinary approximation by the operators
Tn,k(. ; x). Further, C denotes a constant which is not the same at each occurrence.

2. Preliminary results

In this section, we give some definitions and auxiliary results which are useful in establishing our main results.

For m ∈ N
0 (the set of non-negative integers), the mth order moment for the operators Bn is defined as

μn,m(x) = Bn((t − x)m; x)

=

∞∫
0

bn(x, t)
(

1
t
− x

)m

dt.

Lemma 1 For the function μn,m(x), we have the following:

(i) it is a polynomial in x of degree exactly m;

(ii) for each x ∈ [0,∞),

μn,m(x) = O
(
n−[(m+1)/2]

)
, as n → ∞,

where [β] is the integer part of β.

Proof It is easy to see that

r∑
j=0

(
r

j

)
(−1)r−jjm =

{
0, m = 0, 1, 2, ...r− 1
r!, m = r. (2.2)

We know that

Bn(tj ; x) =
n(n + 1)...(n + j − 1)

(n − 1)(n − 2)...(n− j)
xj, for j = 1, 2, 3, ...

Hence,

μn,m(x) = Bn((t − x)m; x)

=
m∑

j=0

(
m

j

)
(−1)m−jxm−jBn(tj; x)

= (−x)m +
m∑

j=1

(
m

j

)
(−1)m−jxm−j n(n + 1)...(n + j − 1)

(n − 1)(n − 2)...(n− j)
xj.
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(i) If m = 2r , for sufficiently large n , we have

μn,2r(x) = x2r + x2r
2r∑

j=1

(
2r

j

)
(−1)2r−j (1 + 1

n
)(1 + 2

n
)...(1 + j−1

n
)

(1 − 1
n)(1 − 2

n )...(1− j
n)

= x2r + x2r
2r∑

j=1

(
2r

j

)
(−1)2r−j

(
1 +

1
n

p1(j) +
1
n2

p2(j) + ... +
1
nj

pj(j)
)
×

(
1 +

1
n

q1(j) +
1
n2

q2(j) + ...

)
, (2.3)

where p1(j), q1(j) are polynomials in j of second degree and p2(j), q2(j) are polynomials in j of fourth degree,
and so on.

Therefore, μn,2r(x) is a polynomial in x of degree exactly 2r and the coefficient of n−s, s ∈ N in the

right hand side of (2.3) is

x2r
2r∑

j=1

(
2r

j

)
(−1)2r−j

s∑
i=0

pi(j)qs−i(j),

where p0(j) = q0(j) = 1, ∀j = 1, ..., 2r.

Hence, by applying the identity (2.2) to μn,2r, we obtain

μn,2r(x) = O(n−r), as n → ∞.

(ii) Similarly, when m = 2r − 1, r ∈ N , it follows that μn,2r−1(x) is a polynomial in x of degree exactly

(2r − 1) and

μn,2r−1(x) = O(n−r), as n → ∞.

Hence, in view of μn,0(x) = 1, we obtain the required result. �

For every m ∈ N
0 and p ∈ N , the m-th order moment μ

[p]
n,m(x) for the operators Bp

n is defined as

μ
[p]
n,m(x) = Bp

n((t − x)m; x). We denote μ
[1]
n,m(x) by μn,m(x).

Lemma 2 There holds the recurrence relation

μ[p+1]
n,m (x) =

m∑
j=0

(
m

j

) m−j∑
i=0

1
i!

Di
(
μ

[p]
n,m−j(x)

)
μn,i+j(x),

where D denotes d
dx

.

Proof By binomial expansion, we may write

μ[p+1]
n,m (x) = Bp+1

n ((t − x)m; x)

= Bn (Bp
n((t − x)m; u); x)

= Bn (Bp
n((t − u + u − x)m; u); x)

=
m∑

j=0

(
m

j

)
Bn

(
(u − x)jμ

[p]
n,m−j(u); x

)
. (2.4)
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Now, applying Lemma 1, it follows that μ
[p]
n,m−j(u) is a polynomial in u of degree (m− j), therefore by

Taylor’s expansion, we have

μ
[p]
n,m−j(u) =

m−j∑
i=0

(u − x)i

i!
Di

(
μ

[p]
n,m−j(x)

)
. (2.5)

On combining (2.4) and (2.5), the required result follows. �

Lemma 3 For p ∈ N, m ∈ N
0 and x ∈ [0,∞) , we have

μ[p]
n,m(x) = O

(
n−[(m+1)/2]

)
. (2.6)

Proof For p = 1, the result follows from Lemma 1. Suppose (2.6) is true for a certain p . Then μ
[p]
n,m−j(x) =

O
(
n−[(m−j+1)/2]

)
, ∀ 0 ≤ j ≤ m.

Also, since μ
[p]
n,m−j(x) is a polynomial in x of degree (m − j), we have

Di
(
μ

[p]
n,m−j(x)

)
= O

(
n−[(m−j+1)/2]

)
, ∀ 0 ≤ i ≤ m − j.

Now, applying Lemma 2 and Lemma 1, we obtain

μ[p+1]
n,m (x) =

m∑
j=0

m−j∑
i=0

O
(
n−[(m−j+1)/2]

)
O

(
n−[(i+j+1)/2]

)

= O
(
n−[(m+1)/2]

)
.

Thus, the result holds for p + 1. Hence, the lemma is proved by induction ∀ p ∈ N . �

Let 0 < a < b < ∞, f ∈ C[a, b] and [a1, b1] ⊂ (a, b). Then, for sufficiently small η > 0, the Steklov mean
fη,m of the m-th order corresponding to f is defined as follows:

fη,m(t) = η−m

η/2∫
−η/2

· · ·
η/2∫

−η/2

(
f(t) + (−1)m−1Δm�

m
i=1 ti

f(t)
) m∏

i=1

dti, t ∈ [a1, b1],

where Δm
h is the m-th order forward difference operator with step length h.

Lemma 4 [7] For the function fη,m , we have

(a) fη,m has derivatives up to order m over [a1, b1] ;

(b) ‖f(r)
η,m‖C[a1,b1] ≤ Cr η−rωr(f, η, [a, b]), r = 1, 2, ...,m;

(c) ‖f − fη,m‖C[a1,b1] ≤ Cm+1 ωm(f, η, [a, b]) ;
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(d) ‖f(m)
η,m‖C[a1,b1] ≤ Cm+2 η−m‖f‖C[a,b];

(e) ‖fη,m‖C[a1,b1] ≤ Cm+3 ‖f‖C[a,b],

where C ′
i s are certain constants that depend on i but are independent of f and η.

Lemma 5 For l -th moment (l ∈ N) of Tn,k , we find that

Tn,k((t − x)l : x) = O(n−k).

Proof For k = 1, the result holds from Lemma 1. Let us assume that it is true for a certain k, then by the
definition of Tn,k we get

Tn,k+1

(
(t − x)l; x

)
=

k+1∑
r=1

(−1)r+1

(
k + 1

r

)
Br

n((t − x)l; x)

= Tn,k

(
(t − x)l; x

)

+
k+1∑
r=1

(−1)r+1

(
k

r − 1

)
Br

n((t − x)l; x)

= I1 + I2, say. (2.7)

Now, by Lemma 2, the second sum on the right of (2.7) is equal to

k∑
r=0

(−1)r

(
k

r

)
μ

[r+1]
n,l (x) = μn,l(x) −

l∑
j=1

l−j∑
i=0

(
l

j

)
1
i!

[
DiTn,k

(
(t − x)l−j ; x

)]
μn,i+j(x)

−
l∑

i=0

1
i!

[
DiTn,k

(
(t − x)l; x

)]
μn,i(x)

= −
l−1∑
j=1

l−j∑
i=0

(
l

j

)
1
i!

[
DiTn,k

(
(t − x)l−j ; x

)]
μn,i+j(x)

−
l∑

i=1

1
i!

[
DiTn,k

(
(t − x)l; x

)]
μn,i(x) − Tn,k

(
(t − x)l; x

)
. (2.8)

Hence, on combining (2.7–2.8) and then using Lemma 1, we obtain

Tn,k+1

(
(t − x)l; x

)
= O

(
n−(k+1)

)
.

Thus, the result holds for k + 1. Hence, the lemma follows by induction for all k ∈ N. �

3. Main results

First, we establish Voronovskaja type asymptotic formula for the operators Tn,k(.; x).
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Theorem 1 Let f be bounded and integrable on [0,∞) , admitting a

derivative of order 2k at a point x ∈ [0,∞). Then we have

lim
n→∞

nk[Tn,k(f ; x) − f(x)] =
2k∑

ν=1

f(ν)(x)
ν !

Q(ν, k, x) (3.9)

and
lim

n→∞
nk[Tn,k+1(f ; x) − f(x)] = 0, (3.10)

where Q(ν, k, x) are certain polynomials in x of degree at most ν . Further, the limits in (3.9) and (3.10) hold

uniformly in [a, b] if f(2k)(x) is continuous on (a − η, b + η) ⊂ [0,∞), η > 0 .

Proof By a partial Taylor’s expansion of f , we have

f(t) =
2k∑

ν=0

f(ν)(x)
ν !

(t − x)ν + ε(t, x)(t− x)2k, (3.11)

where ε(t, x) → 0 as t → x .

Operating by Tn,k on both sides of (3.11), we get

nk [Tn,k(f ; x) − f(x)] = nk
2k∑

ν=1

f(ν)(x)
ν !

Tn,k ((t − x)ν ; x)

+ nkTn,k

(
ε(t, x)(t − x)2k; x

)
= I1 + I2, say.

Making use of Lemma 5, we obtain

I1 =
2k∑

ν=1

f(ν)(x)
ν !

Q(ν, k, x) + o(1),

where Q(ν, k, x) is the coefficient of n−k in Tn,k ((t − x)ν ; x) , ν = 1, 2, ..., 2k.

For a given ε′ > 0, we can find a δ > 0 such that |ε(t, x)| < ε′ whenever 0 < |t−x| < δ and for |t−x| ≥ δ,

|ε(t, x)| ≤ K for some K > 0. Suppose χ(t) is the characteristic function of the interval (x − δ, x + δ), then

|I2| ≤ nk
k∑

r=1

(
k

r

)
Br

n

(
|ε(t, x)|(t− x)2kχ(t); x

)

+ nk
k∑

r=1

(
k

r

)
Br

n

(
|ε(t, x)|(t− x)2k(1 − χ(t)); x

)

= I3 + I4, say.

In view of Lemma 3, we have I3 = ε′O(1).
Again, using Lemma 3,
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I4 ≤ Knk
k∑

r=1

(
k

r

)
Br

n

(
(t − x)2sδ2k−2s; x

)

≤ Knkδ2k−2s
k∑

r=1

(
k

r

)
Br

n

(
(t − x)2s; x

)

= O(nk−s) = o(1), for any integer s > k.

Thus, due to the arbitrariness of ε′ , it follows that |I2| = o(1).

Combining the estimates of I1 and I2, we obtain (3.9). Assertion (3.10) follows along the same lines by using
the fact that

Tn,k+1 ((t − x)ν ; x) = O
(
n−(k+1)

)
, for all ν ∈ N.

The uniformity assertion follows due to the uniform continuity of f(2k) on [a, b] which enables δ to

become independent of x and the uniformness of the term o(1) in the estimate of I1. �

In our next result, we obtain an estimate of the degree of approximation of a function with specified
smoothness.

Theorem 2 Let p ∈ N, 1 ≤ p ≤ 2k and f be bounded and integrable on [0,∞) . If f(p) exists and is continuous

on (a − η, b + η) ⊂ [0,∞), for some η > 0, then

‖Tn,k(f ; x) − f(x)‖C[a,b] ≤ max
{

C1 n−p/2ω
(
f(p), n−1/2

)
, C2 n−k

}
, (3.12)

where C1 = C1(k, p) , C2 = C2(k, p, f) and ω
(
f(p), δ

)
is the modulus of continuity of f(p) on (a − η, b + η).

Proof By our hypothesis, we may write for all t ∈ [0,∞) and x ∈ [a, b]

f(t) =
p∑

ν=0

f(ν)(x)
ν !

(t − x)ν +
f(p)(ξ) − f(p)(x)

p!
(t − x)pχ(t)

+ F (t, x) (1 − χ(t)) , (3.13)

where χ(t) is the characteristic function of (a − η, b + η), ξ lies between t and x and F (t, x) is defined as

F (t, x) = f(t) −
p∑

ν=0

f(ν)(x)
ν !

(t − x)ν,

∀ t ∈ [0,∞) \ (a − η, b + η) and x ∈ [a, b].

Now, operating by Tn,k on both sides of (3.13), we get

Tn,k(f(t); x) =
p∑

ν=0

f(ν)(x)
ν !

Tn,k((t − x)ν ; x) + Tn,k

(
f(p)(ξ) − f(p)(x)

p!
(t − x)pχ(t); x

)

+ Tn,k

(
F (t, x) (1 − χ(t)) ; x

)
= I1 + I2 + I3, say.
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On an application of Lemma 5, we obtain

I1 = f(x) + O(n−k), uniformly in x ∈ [a, b].

Next, applying Schwarz inequality and Lemma 3, we get

|I2| ≤
k∑

r=1

(
k

r

)
ω

(
f(p), δ

)
p!

Br
n

(
|t− x|p +

|t − x|p+1

δ
; x

)

= ω
(
f(p), δ

)
[O(n−p/2) + δ−1O(n−(p+1)/2)]

= ω
(
f(p), n−1/2

)
O(n−p/2),

uniformly in x ∈ [a, b], on choosing δ = n−1/2 .

Lastly, to estimate I3 = Tn,k (F (t, x)(1− χ(t))x), we proceed as follows:

On an application of Lemma 3, for any integer s > max{ p
2
, k} , we obtain

|I3| ≤ M

k∑
r=1

(
k

r

)
Br

n (|t − x|p; x)

≤ M

k∑
r=1

(
k

r

)
Br

n

(
(t − x)2s

δ2s−p
; x

)

=
M

δ2s−p

k∑
r=1

(
k

r

)
μ

[r]
n,2s(x)

= O(n−s) = o(n−k), uniformly in x ∈ [a, b].

Now, combining the estimates of I1, I2 and I3, (3.12) is established. This completes the proof. �

In our next result, we obtain an estimate of the degree of approximation of a function in terms of higher
order modulus of continuity which is an improvement of Theorem 2.

Theorem 3 Let f be bounded and integrable on [0,∞) . If f is continuous on (a − λ, b + λ) ⊂ (0,∞), for
some λ > 0, then

∥∥Tn,k(f ; .) − f
∥∥

C[a,b]
� C1n

−k + C2ω2k

(
f ; n−1/2; (a − λ, b + λ)),

where C1 and C2 are independent of f and n .

Proof Let fη,2k be the Steklov mean of 2k -th order corresponding to f . Then we can write

‖Tn,k(f ; .) − f‖C[a,b] ≤ ‖Tn,k (f − fη,2k; .)‖C[a,b] +
∥∥Tn,k (fη,2k; .)− fη,2k

∥∥
C[a,b]

+ ‖f − fη,2k

∥∥
C[a,b]

= S1 + S2 + S3, say.
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By property (c) of the Steklov mean, we get

S3 ≤ C ω2k(f, η, (a − λ, b + λ)).

Next, applying Theorem 1 and the interpolation property [4], for each
ν = 1, 2, ..., 2k, it follows that

S2 ≤ C n−k
2k∑

ν=1

∥∥f
(ν)
η,2k

∥∥
C[a,b]

� C n−k
(∥∥fη,2k

∥∥
C[a,b]

+
∥∥f

(2k)
η,2k

∥∥
C[a,b]

)
.

Hence, by properties (b) and (e) of Steklov mean, we have

S2 � Cn−k + C ′η−2kn−kω2k(f, η, (a − λ, b + λ)).

Let a∗ and b∗ be such that a − λ < a∗ < a < b < b∗ < b + λ and ψ be the characteristic function of
[a∗, b∗]. Then, by using Hölder’s inequality, Lemma 1 and property (c) of Steklov mean, we get

S1 ≤ ‖Tn,k

(
ψ(t)(f(t) − fη,2k(t)); .

)
‖C[a,b] + ‖Tn,k

(
(1 − ψ(t))(f(t) − fη,2k(t)); .

)
‖C[a,b]

≤ C
(
‖f − fη,2k‖C[a∗,b∗] + n−m

)
, ∀m > 0

≤ C
(
ω2k(f, η, (a − λ, b + λ)) + n−m

)
.

Now, choosing m ≥ k and η = n−1/2 in the estimates of S1, S2 and S3, the result follows. �
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