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Abstract: G-frames are generalizations of ordinary frames for Hilbert spaces. In the present paper we study frames,

and operators on a special separable Hilbert C∗ -module, B(H, K) , where H and K are Hilbert spaces, and we prove

that every g-frame for H is a frame for B(H,K) and vice versa. Also, we derive some relationships between g-Riesz

bases for H and Riesz bases in B(H,K) . Similar results for orthogonal bases will be discussed.
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1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [5] in the study of nonharmonic Fourier series.

More than thirty years later, Young [17] and Daubechies et al. [4] reintroduced frames and used them as bases

in Hilbert spaces, especially L2(R). Recent research has shown that frame theory has applications in pure [2, 8]

and applied mathematics [7], harmonic analysis [3] and even quantum communication [1].

Generalizations of frames have also been used in many applications. The best-known generalizations of
frames, called g-frames, were defined by Sun [15]. The class of g-frames includes the class of ordinary frames.

Also, frames in Hilbert C∗ -modules were extended to unital C∗ -algebras by Frank and Larson [6].

For Hilbert spaces H and K , the Banach space B(H, K) of all bounded linear operators from H into

K is a Hilbert B(K)-module.

The goal of this paper is to show that a sequence of operators in B(H, K) is a g-frame for H if and only

if it is a frame for B(H, K). We then conclude that g-frames are frames. Also, we illustrate some differences

between g-orthonormal and g-Riesz bases. We show that the set of Riesz bases in B(H, K) contains the set of
g-Riesz bases, but that the sets are not equal. The same relation is true for orthogonal bases and g-orthonormal
bases.

The rest of the paper is organized as follows. In Section 2, we review Hilbert C∗ -modules and some
properties of the operators on B(H, K), which will be used in Section 3. In Section 3, we offer a necessary

and sufficient condition for a sequence of operators in B(H, K) to be a g-frame. Also, we study the relations

between orthogonal and Riesz bases in B(H, K) considered as a Hilbert C∗ -module with g-orthogonal and
g-Riesz bases for H .

Throughout the paper, I and C denote the sets of all integers and all complex numbers, respectively.

∗Correspondence: dehghan@vru.ac.ir

2000 AMS Mathematics Subject Classification: Primary 46L99; Secondary 47A05, 42C15, 46H25.

60



ASKARIZADEH and DEHGHAN/Turk J Math

2. Frames in Hilbert C∗ -modules and B(H, K)

2.1. Review of the Hilbert C∗ -modules

Hilbert C∗ - modules form a category between the category of Banach spaces and the category of Hilbert spaces.
The basic idea was to study modules over C∗ - algebras instead of linear spaces and to allow an inner product
to take its values in a more general C∗ - algebra than that of the complex numbers C . The structure was used
by Kaplansky [9] in 1952 and was investigated in detail by Rieffel [13] and Paschke [12] in 1972–73.

We shall give only a brief introduction to the theory of Hilbert C∗ - modules to make our explanations self-
contained. For a comprehensive account, readers are referred to the books by Lance [10] and Wegge-Olsen [16].

Let A be a C∗ -algebra and H be a (left) A-module. Suppose that the linear structures given on A

and H are compatible, i.e., λ(ax) = a(λx) for every λ ∈ C , a ∈ A and x ∈ H . If there exists a mapping

〈., .〉 : H × H −→ A with the properties,

(i) 〈x, x〉 ≥ 0 for every x ∈ H ,

(ii) 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈x, y〉 = 〈y, x〉∗ for every x ,y ∈ H ,

(iv) 〈ax, y〉 = a 〈x, y〉 for every a ∈ A and x, y ∈ H ,

(v) 〈x + y, z〉 = 〈x, y〉 + 〈x, z〉 for every x, y, z ∈ H ,

then the pair {H, 〈., .〉} is called a (left) pre-Hilbert A-module. The map 〈., .〉 is called an A-valued inner

product. If the pre-Hilbert A-module {H, 〈., .〉} is complete with respect to the norm ‖x‖ = ‖ 〈x, x〉 ‖ 1
2 , then

it is called a Hilbert C∗ -module over A , or a Hilbert A-module. For example, the C∗ -algebra A itself can be
recognized to become a Hilbert A-module if the inner product is defined by 〈a, b〉 = ab∗ , for all a, b ∈ A .

Frames, orthogonal bases and Riesz bases for Hilbert C∗ -modules were defined by Frank and Larson [6].

Let A be a unital C∗ -algebra. A sequence {xi}i∈I of elements in a Hilbert A-module H is called a
frame for H if there exist two constants C, D > 0, such that

C 〈x, x〉 ≤
∑
i∈I

〈x, xi〉 〈xi, x〉 ≤ D 〈x, x〉 , ∀x ∈ H,

where the sum converges weakly. The constants C and D are called the lower and upper frame bounds, re-
spectively.
The frame {xi}i∈I is called a tight frame if C = D , and is said to be a Parseval or normalizes tight frame if

C = D = 1. Likewise, {xi}i∈I is called a Bessel sequence for H with positive bound D if

∑
i∈I

〈x, xi〉 〈xi, x〉 ≤ D 〈x, x〉 , ∀x ∈ H.

A sequence {xi}i∈I in a Hilbert A-module H is called an orthogonal basis for H if it is a generating

set (i.e., the A-linear hull of {xi}i∈I is weak-dense in H ) such that
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i) 〈xi, xj〉 = 0 for each i 
= j,

ii) ‖xi‖ = 1 for each i ∈ I,

iii) the A-linear combinations
∑

i∈S aixi with coefficients {ai : i ∈ S} ⊆ A and S ⊆ I are equal to zero

if and only if every summand aixi is equal to zero, i ∈ S .

A sequence {xi}i∈I in a separable Hilbert A-module H is called a Riesz basis for H if it is a frame

and a generating set with the additional property that A-linear combinations
∑

i∈I aixi with coefficients

{ai : i ∈ S} ⊆ A and S ⊆ I are equal to zero if and only if every summand aixi is equal to zero, i ∈ S .

2.2. Positive operators in B(H, K)

In the rest of this paper, let H and K be separable Hilbert spaces and let B(H, K) be the set of all

bounded linear operators from H into K . B(H, K) is a Hilbert B(K)-module with a B(K)-valued inner

product 〈S, T 〉 = ST ∗ for all S, T ∈ B(H, K), and with a linear operation of B(K) on B(H, K) by the

composition of operators. On the other hand, B(H, K) is also a Banach space with respect to the operator

norm ‖T‖o = sup{‖Tx‖ : ‖x‖ ≤ 1, x ∈ H} , for all T ∈ B(H, K). The norm in B(H, K) considered as a Hilbert

B(K)-module is defined by

‖T‖c∗ = ‖ 〈T, T 〉 ‖
1
2
o = ‖TT ∗‖

1
2
o = ‖T‖o.

Therefore, the norms in B(H, K) considered as a Hilbert A-module and as a Banach space are the same.

However, B(H, K) is not a Hilbert space, and some facts that are true for Hilbert spaces may not hold for

B(H, K).

In the study of frame operators on B(H, K), we need to know some facts about operators and, especially,

positive operators on B(H, K).

Proposition 2.1 Let S be an operator on B(H, K) , then 〈SU, U〉 = 0 for all U ∈ B(H, K) if and only if
S = 0 .
Proof Clearly if S = 0, then 〈SU, U〉 = 0 for all U ∈ B(H, K). On the other hand, we have

〈S(U + V ), U + V 〉 = 0, ∀U, V ∈ B(H, K),

so that 〈SV, U〉 + 〈SU, V 〉 = 0. If V changes with iV , we have

i 〈SV, U〉 − i 〈SU, V 〉 = 0,

that implies 2i 〈SU, V 〉 = 0 or 〈SU, V 〉 = 0. By setting V = SU , we conclude that SU = 0 for all U ∈ B(H, K)
and so S = 0. �

A map S on B(H, K) is said to be adjointable if there exists a map S∗ on B(H, K) such that

〈SU, V 〉 = 〈U, S∗V 〉 , ∀U, V ∈ B(H, K).

Such a map S∗ is called the adjoint of S . It follows that S and S∗ are bounded linear B(K)-module maps.

By B(B(H, K)) we denote the set of all adjointable linear B(K)-module maps on B(H, K), and Bb(B(H, K))
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denotes the set of all bounded linear B(K)-module maps on B(H, K). An adjointable map S on B(H, K) is

said to be self-adjoint if S = S∗ [16].

Proposition 2.2 Let S be a adjointable linear B(K)-module map on B(H, K) . Then

i) S is self adjoint if and only if 〈SU, U〉 is self adjoint for all U ∈ B(H, K) ,

ii) S is self adjoint if and only if for all U ∈ B(H ; K), 〈SU, U〉 is normal and the spectrum of 〈SU, U〉
is a subset of the real line.

Proof i) If S is self adjoint, then

〈SU, U〉 = 〈U, SU〉 = 〈SU, U〉∗ ∀U ∈ B(H, K).

Conversely, if 〈SU, U〉=〈SU, U〉∗ for all U ∈ B(H, K), then

〈SU, U〉 = 〈U, SU〉 = 〈S∗U, U〉

or
〈SU, U〉 = 〈S∗U, U〉 ∀U ∈ B(H, K)

and this means S = S∗.
ii) If S = S∗ , then

〈SU, U〉 = 〈U, S∗U〉 = 〈U, SU〉 = 〈SU, U〉∗

is a self adjoint operator on B(K) for each U ∈ B(H, K), and by [14] its spectrum is a subset of the real

line. Conversely, let the spectrum of 〈SU, U〉 be a subset of the real line for all U ∈ B(H, K). For α ∈ C and

U, V ∈ B(H, K) we have

〈S(U + αV ), U + αV 〉 = 〈SU, U〉 + ᾱ 〈SV, U〉 + α 〈SU, V 〉 + |α|2 〈SV, V 〉 .

Since the spectrum of 〈S(U + αV ), U + αV 〉 is a subset of the real line,

〈S(U + αV ), U + αV 〉 = 〈S(U + αV ), U + αV 〉∗ ,

and

α 〈SV, U〉 + ᾱ 〈SU, V 〉 = ᾱ 〈SV, U〉∗ + α 〈SU, V 〉∗

= ᾱ 〈U, SV 〉 + α 〈V, SU〉

= ᾱ 〈S∗U, V 〉 + α 〈S∗V, U〉 .

By setting α = 1 and α = i ,

〈SV, U〉 + 〈SU, V 〉 = 〈S∗U, V 〉 + 〈S∗V, U〉 ,

i 〈SV, U〉 − i 〈SU, V 〉 = −i 〈S∗U, V 〉 + i 〈S∗V, U〉 .

Now by product i in the second equality, we obtain 〈SU, V 〉 = 〈S∗U, V 〉 . Therefore, S = S∗ . �
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Remark 2.3 An element S ∈ B(B(H, K)) is said to be positive if S = S∗ and the spectrum of S is contained

in the positive real line [11]. Wegge-Olsen [16] has shown that S ≥ 0 if and only if the spectrum of 〈ST, T 〉 is

a subset of [0,∞) for all T ∈ B(H, K) .

Proposition 2.4 Let S be a positive operator in B(B(H, K)) . Then

‖S‖ = sup
‖T‖≤1

‖〈ST, T 〉‖ .

Proof Since B(B(H, K)) is a C∗ -algebra [16] and S is positive, S
1
2 exists. Then, we have

sup
‖T‖≤1

‖〈ST, T 〉‖ = sup
‖T‖≤1

∥∥∥〈
S

1
2 S

1
2 T, T

〉∥∥∥
= sup

‖T‖≤1

∥∥∥〈
S

1
2 T, S

1
2 T

〉∥∥∥
= sup

‖T‖≤1

∥∥∥S
1
2 T

∥∥∥2

=
∥∥∥S

1
2

∥∥∥2

=
∥∥∥S

1
2 (S

1
2 )∗

∥∥∥
=

∥∥∥S
1
2 S

1
2

∥∥∥ = ‖S‖ .

�

Lemma 2.5 Let Λ ∈ B(H) . Then Λ is positive if and only if TΛT ∗ ∈ B(K) is positive for all T ∈ B(H, K) .

Proof Let Λ be positive. Since B(H) is a C∗ - algebra, there is Γ ∈ B(H) such that Λ = ΓΓ∗ , and so

TΛT ∗ = TΓΓ∗T ∗ = TΓ(TΓ)∗.

On the other hand, for all f ∈ H , we have

〈TΓ(TΓ)∗f, f〉 = 〈(TΓ)∗f, (TΓ)∗f〉 = ‖(TΓ)∗f‖2 ≥ 0.

Hence TΛT ∗ is positive.

Conversely, let f ∈ H be arbitrary. We can find g ∈ K and T ∈ B(H, K) such that T ∗g = f . Then by
the positivity of TΛT ∗ ,

〈Λf, f〉 = 〈TΛT ∗g, g〉 ≥ 0.

Therefore, Λ is positive. �

3. Operator sequences, g-sequences and their relations

3.1. Frames

A sequence {Ti ∈ B(H, K) : i ∈ I} is said to be a frame for B(H,K) if there exist 0 < A, B < ∞ such that

A 〈T, T 〉 ≤
∑
i∈I

〈T, Ti〉 〈Ti, T 〉 ≤ B 〈T, T 〉 , ∀T ∈ B(H, K), (3.1)
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where the series converges in the strong operator topology. The frame operator on B(H,K) is defined by

S : B(H, K) −→ B(H, K),

ST =
∑
i∈I

〈T, Ti〉 Ti =
∑
i∈I

TT ∗
i Ti.

Proposition 2.2, Remark 2.3 and (3.1) assert that S is a positive, self adjoint and invertible operator, and

〈ST, T 〉 =
∑
i∈I

TT ∗
i TiT

∗ =
∑
i∈I

〈T, Ti〉 〈Ti, T 〉 .

Therefore, we have

A 〈T, T 〉 ≤ 〈ST, T 〉 ≤ B 〈T, T 〉 .

Convergence in the definition of frames, Bessel sequences, orthogonal and Riesz bases in B(H,K) as a Hilbert

B(K)-module is in the strong operator topology.

Various generalizations of frames have been studied by many authors. Sun [15] introduced a type of
frames called g-frames, and showed that most generalizations of frames can be regarded as special cases of
g-frames. Here we point out that g-frames can be regarded as frames in B(H, K) with the same bounds.

A sequence {Λi ∈ B(H, Ki) : i ∈ I} is called a generalized frame, or simply a g-frame for H with respect

to a sequence of Hilbert spaces {Ki}i∈I if there exist two positive constants A and B such that

B‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ A‖f‖2, ∀f ∈ H.

A and B are called the lower and upper g-frame bounds, respectively. A g-frame is called tight if A = B and
Parseval g-frame if A = 1. In simple terms, {Λi}i∈I is called a g-frame for H whenever the space sequence

{Ki : i ∈ I} is clear, and also a g-frame for H with respect to K whenever Ki = K for each i ∈ I . A

sequence Λi ∈ B(H, Ki) : i ∈ I is called a g-Bessel sequence with bound B if we have only an upper bound in

the definition of g-frames. The space (
∑

i∈I ⊕Ki)l2 is defined by

(∑
i∈I

⊕Ki

)
l2

=

{
{fi}i∈I : fi ∈ Ki, i ∈ I and

∑
i∈I

‖fi‖2 ≤ ∞
}

and has the inner product,

〈{fi}, {gi}〉 =
∑
i∈I

〈fi, gi〉 .

It is clear that (
∑

i∈I ⊕Ki)l2 is a Hilbert space and contains Ki as a subspace, i ∈ I .

Remark 3.1 Let {Λi}i∈I be a g-frame for H with respect to {Ki}i∈I and let K = (
∑

i∈I ⊕Ki)l2 . For i ∈ I ,

define Λ′
i : H �−→ K by

Λ′
if = (..., 0, 0, 0, Λif, 0, 0, 0, ...), ∀f ∈ H.
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Then
‖Λi

′f‖ = ‖Λif‖, ∀i ∈ I, ∀f ∈ H.

Hence {Λi}i∈I is a g-frame for H with respect to {Ki}i∈I if and only if {Λ′
i}i∈I is a g-frame for H with

respect to K . Therefore, without loss of generality, we may deal with g-frames for H with respect to K .

Now we shall show that a g-frame for H with respect to K is a frame for B(H, K) , and vice versa.

Theorem 3.2 Let {Λi ∈ I}i∈I be a sequence in B(H,K). Then it is a frame for B(H, K) considered as a
Hilbert C∗ -module if and only if it is a g-frame for H with respect to K .

Proof Let {Λi ∈ B(H, K) : i ∈ I} be a g-frame for H with respect to K . Then there are positive constants
A and B , such that

B 〈f, f〉 ≤
∑
i∈I

〈ΛiΛi
∗f, f〉 ≤ A 〈f, f〉 , ∀f ∈ H.

Hence

BIH ≤
∑
i∈I

Λ∗
i Λi ≤ AIH .

Lemma 2.5 asserts that the inequality

BTT ∗ ≤
∑
i∈I

TΛ∗
i ΛiT

∗ ≤ ATT ∗,

satisfies for all T ∈ B(H, K). Thus,

B 〈T, T 〉 ≤
∑
i∈I

〈T, Λi〉 〈Λi, T 〉 ≤ A 〈T, T 〉 , ∀T ∈ B(H, K),

and {Λi}i∈I is a frame for B(H, K). Conversely, let {Λi ∈ B(H, K) : i ∈ I} be a frame for B(H, K) and

f ∈ H . We can choose T in B(H,K) and g in K such that T ∗g = f . Therefore,〈∑
i∈I

〈T, Λi〉 〈Λi, T 〉g, g

〉
=

〈∑
i∈I

TΛ∗
i ΛiT

∗g, g

〉

=
∑
i∈I

〈TΛ∗
i ΛiT

∗g, g〉

=
∑
i∈I

〈ΛiT
∗g, ΛiT

∗g〉

=
∑
i∈I

〈Λif, Λif〉

=
∑
i∈I

‖Λif‖2
.

Also we have
〈B 〈T, T 〉 g, g〉 = 〈BTT ∗g, g〉 = B 〈T ∗g, T ∗g〉 = B 〈f, f〉 = B ‖f‖2

.
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Thus

B 〈T, T 〉 ≤
∑
i∈I

〈T, Λi〉 〈Λi, T 〉 ≤ A 〈T, T 〉 ,

implies that

B‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ A‖f‖2, ∀f ∈ H,

as desired. �

The following are immediate consequences.

Corollary 3.3 The sequence {Λi ∈ B(H, K) : i ∈ I} is a tight frame for B(H, K) if and only if it is a g-tight
frame for H with respect to K .

Corollary 3.4 The sequence {Λi ∈ B(H, K) : i ∈ I} is a Bessel sequence for B(H, K) if and only if it is a
g-Bessel sequence for H with respect to K .

Remark 3.5 Let {Λi ∈ B(H, K) : i ∈ I} be a g-frame for H . The g-frame operator of {Λi}i∈I is defined by

Sg : H −→ H, f �−→
∑
i∈I

Λ∗
i Λif.

Also, the frame operator of the frame {Λi}i∈I is defined by ST =
∑

i∈I TΛ∗
i Λi . Therefore, ST = TSg , and

from this equation, for any T ∈ B(H, K) a reconstruction formula is derived by T = S−1TSg .

3.2. Orthonormal bases and Riesz bases

Now, we study the relations between g-orthonormal bases and g-Riesz bases for H with respect to K with
orthogonal bases and Riesz bases for B(H, K) considered as a Hilbert C∗ -module.

A sequence {Λi : i ∈ I} is called a g-orthonormal basis for H with respect to K if it satisfies the following:

1)
〈
Λ∗

i f, Λ∗
jg

〉
= δi,j 〈f, g〉 , ∀i, j ∈ I and f, g ∈ H ,

2)
∑

i∈I ‖Λif‖2 = ‖f‖2 , ∀f ∈ H .

If {Λi : i ∈ I} is a sequence in B(H, K) and {f : Λif = 0, i ∈ I} = {0} , then {Λi : i ∈ I} is called
g-complete.

A sequence {Λi ∈ B(H, K) : i ∈ I} is called a g-Riesz basis for H with respect to K if it is g-complete
and there are positive constants A and B such that

A
∑
i∈I1

‖gi‖2 ≤ ‖
∑
i∈I1

Λ∗
i gi‖2 ≤ B

∑
i∈I1

‖gi‖2,

for any finite subset I1 of I and {gi}i∈I1 ⊆ K [15].

The following theorem provide that every g-orthonormal basis for H is an orthogonal basis for B(H, K).
We will give an example to show that the converse of the theorem is not correct.

67



ASKARIZADEH and DEHGHAN/Turk J Math

Theorem 3.6 If {Λi ∈ B(H, K) : i ∈ I} is a g-orthonormal basis for H with respect to K , then it is an

orthogonal basis for B(H, K) considered as a Hilbert C∗ -module.

Proof Since {Λi}i∈I is a g-orthonormal basis for H, for i 
= j , we have 〈Λi, Λj〉 = ΛiΛ∗
j = 0 and

‖Λi‖2 = ‖ 〈Λi, Λi〉 ‖ = ‖ΛiΛ∗
i ‖ = ‖IK‖ = 1, where IK is the identity operator on K . Now suppose that∑

i∈I TiΛi = 0 where Ti ∈ B(K), i ∈ I . We have

0 =

〈∑
i∈I

TiΛi, Λj

〉
=

∑
i∈I

〈TiΛi, Λj〉

=
∑
i∈I

Ti 〈Λi, Λj〉

= Tj 〈Λj, Λj〉
= TjIH = Tj.

Therefore, Tj = 0 and TjΛj = 0, for each j ∈ I . It remains to show that every T ∈ B(H, K) can be generated

by {Λi}i∈I . The second condition of g-orthonormal basis,
∑

i∈I ‖Λif‖2 = ‖f‖2 for all f ∈ H , implies that∑
i∈I Λ∗

i Λi = IH . Then, for every T ∈ B(H, K) we have

T = TIH = T
∑
i∈I

Λ∗
i Λi

=
∑
i∈I

TΛ∗
i Λi

=
∑
i∈I

〈T, Λi〉Λi

=
∑
i∈I

UiΛi

where Ui = 〈T, Λi〉 belongs to B(K), for each i ∈ I . This completes the proof of the theorem. �

The relation between Riesz bases for B(H, K) and g-Riesz bases for H with respect to K is similar to the
above theorem.

Theorem 3.7 If {Λi ∈ B(H, K) : i ∈ I} is a g-Riesz basis for H with respect to K , then it is a Riesz basis for

B(H, K) considered as a Hilbert C∗ -module.

Proof Let {Λi ∈ B(H, K) : i ∈ I} be a g-Riesz basis for H with respect to K . By ([15], Corollary 3.3)

{Λi}i∈I is a g-frame and by Theorem 3.2 it is a frame for B(H, K). It is clear that Λi 
= 0 for each i ∈ I . Now

let
∑

i∈I TiΛi = 0, where Ti ∈ B(K). We have
∑

i∈I Λ∗
i T

∗
i = 0, therefore,

∑
i∈I Λ∗

i T
∗
i g = 0, for each g ∈ K .

By the definition of g-Riesz basis,
∑

i∈I ‖T ∗
i g‖2 = 0, then ‖T ∗

i g‖2 = 0, for each i ∈ I and g ∈ K . Therefore,

Ti = 0 and hence TiΛi = 0 for each i ∈ I . The invertibility of the frame operator S implies that

T =
∑
i∈I

〈
S−1T, Λi

〉
Λi, ∀T ∈ B(H, K).

Thus, {Λi}i∈I is a generating set for B(H, K) and the proof is complete. �

By an example we show that the converse of Theorem 3.5 and Theorem 3.6 is not true.
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Example 3.8 Let H be a Hilbert space and {ϕi}i∈I be an orthonormal basis for H . For i ∈ I , define Λi and
Λ∗

i by

Λi : H �→ C
2, f �−→ (〈f, ϕi〉 , 0),

Λ∗
i : C

2 �→ H, (c1, c2) �−→ c1ϕ1.

Since ∑
i∈I

TΛ∗
i ΛiT

∗ = TT ∗, for all T ∈ B(H, C2),

the sequence {Λi}i∈I is a Parseval frame for B(H, C2) . Now let {Ti}i∈I be a sequence in B(C2) and∑
i∈I TiΛi = 0 . Then, for each f ∈ H we have

0 =
∑
i∈I

TiΛif =
∑
i∈I

Ti(〈ϕi, f〉 , 0) =
∑
i∈I

〈ϕi, f〉Ti(1, 0).

By the orthonormality of {ϕi}i∈I , Ti(1, 0) = 0 , hence, TiΛi = 0 for all i ∈ I . Also,
∑

i∈I Λ∗
i Λi = IH implies

that

T =
∑
i∈I

TΛ∗
i Λi =

∑
i∈I

〈T, Λi〉Λi.

This shows that {Λi}i∈I generates B(H, C2) as B(C2)-module. Therefore, all conditions of a Riesz basis are

satisfied and {Λi}i∈I is a Riesz basis for B(H, C2) . But {Λi}i∈I is not a g-Riesz basis since Λ∗
i (0, 1) = 0 ,

which implies that A = 0 in the definition of a g-Riesz basis.

However, 〈Λi, Λi〉 (0, 1) = ΛiΛ∗
i = (0, 0) , ΛiΛ∗

i 
= IC2 , ‖Λi‖ = 1 and 〈Λi, Λj〉 = 0 for i 
= j .

Therefore, {Λi}i∈I is an orthogonal basis for B(H, C2) . On the other hand, 〈Λ∗
i (0, 1), Λ∗

i (0, 1)〉 = 0 and

δii 〈(0, 1), (0, 1)〉 = 1 , imply that {Λi}i∈I is not a g-orthonormal basis for H with respect to K .
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