Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2013) 37: $60-70$
(c) TÜBİTAK
doi:10.3906/mat-1011-533

G-frames as special frames

Abas ASKARIZADEH, Mohammad Ali DEHGHAN*
Department of Mathematics, Vali-e-Asr University, Rafsanjan, Iran

Received: 18.03.2011 • Accepted: 18.07.2011 • Published Online: 17.12.2012 • Printed: 14.01 .2013

Abstract

G-frames are generalizations of ordinary frames for Hilbert spaces. In the present paper we study frames, and operators on a special separable Hilbert C^{*}-module, $B(H, K)$, where H and K are Hilbert spaces, and we prove that every g-frame for H is a frame for $B(H, K)$ and vice versa. Also, we derive some relationships between g -Riesz bases for H and Riesz bases in $B(H, K)$. Similar results for orthogonal bases will be discussed.

Key words: Hilbert C^{*}-module, Frame, g-Frame, Riesz basis, g-Riesz basis, Orthogonal basis, g-Orthonormal basis

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [5] in the study of nonharmonic Fourier series. More than thirty years later, Young [17] and Daubechies et al. [4] reintroduced frames and used them as bases in Hilbert spaces, especially $L^{2}(\mathrm{R})$. Recent research has shown that frame theory has applications in pure $[2,8]$ and applied mathematics [7], harmonic analysis [3] and even quantum communication [1].

Generalizations of frames have also been used in many applications. The best-known generalizations of frames, called g-frames, were defined by Sun [15]. The class of g-frames includes the class of ordinary frames. Also, frames in Hilbert C^{*}-modules were extended to unital C^{*}-algebras by Frank and Larson [6].

For Hilbert spaces H and K, the Banach space $B(H, K)$ of all bounded linear operators from H into K is a Hilbert $B(K)$-module.

The goal of this paper is to show that a sequence of operators in $B(H, K)$ is a g-frame for H if and only if it is a frame for $B(H, K)$. We then conclude that g -frames are frames. Also, we illustrate some differences between g-orthonormal and g-Riesz bases. We show that the set of Riesz bases in $B(H, K)$ contains the set of g -Riesz bases, but that the sets are not equal. The same relation is true for orthogonal bases and g-orthonormal bases.

The rest of the paper is organized as follows. In Section 2, we review Hilbert C^{*}-modules and some properties of the operators on $B(H, K)$, which will be used in Section 3. In Section 3, we offer a necessary and sufficient condition for a sequence of operators in $B(H, K)$ to be a g-frame. Also, we study the relations between orthogonal and Riesz bases in $B(H, K)$ considered as a Hilbert C^{*}-module with g-orthogonal and g-Riesz bases for H.

Throughout the paper, I and \mathbb{C} denote the sets of all integers and all complex numbers, respectively.

[^0]
2. Frames in Hilbert C^{*}-modules and $B(H, K)$

2.1. Review of the Hilbert C^{*}-modules

Hilbert C^{*} - modules form a category between the category of Banach spaces and the category of Hilbert spaces. The basic idea was to study modules over C^{*} - algebras instead of linear spaces and to allow an inner product to take its values in a more general C^{*} - algebra than that of the complex numbers \mathbb{C}. The structure was used by Kaplansky [9] in 1952 and was investigated in detail by Rieffel [13] and Paschke [12] in 1972-73.

We shall give only a brief introduction to the theory of Hilbert C^{*} - modules to make our explanations selfcontained. For a comprehensive account, readers are referred to the books by Lance [10] and Wegge-Olsen [16].

Let A be a C^{*}-algebra and H be a (left) A-module. Suppose that the linear structures given on A and H are compatible, i.e., $\lambda(a x)=a(\lambda x)$ for every $\lambda \in \mathbb{C}, a \in A$ and $x \in H$. If there exists a mapping $\langle.,\rangle:. H \times H \longrightarrow A$ with the properties,
(i) $\langle x, x\rangle \geq 0 \quad$ for every $x \in H$,
(ii) $\langle x, x\rangle=0 \quad$ if and only if $x=0$,
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*} \quad$ for every $x, y \in H$,
(iv) $\langle a x, y\rangle=a\langle x, y\rangle \quad$ for every $a \in A$ and $x, y \in H$,
(v) $\langle x+y, z\rangle=\langle x, y\rangle+\langle x, z\rangle \quad$ for every $x, y, z \in H$,
then the pair $\{H,\langle.,\rangle$.$\} is called a (left) pre-Hilbert A-module. The map \langle.,$.$\rangle is called an A-valued inner$ product. If the pre-Hilbert A-module $\{H,\langle.,\rangle$.$\} is complete with respect to the norm \|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$, then it is called a Hilbert C^{*}-module over A, or a Hilbert A-module. For example, the C^{*}-algebra A itself can be recognized to become a Hilbert A-module if the inner product is defined by $\langle a, b\rangle=a b^{*}$, for all $a, b \in A$.

Frames, orthogonal bases and Riesz bases for Hilbert C^{*}-modules were defined by Frank and Larson [6].
Let A be a unital C^{*}-algebra. A sequence $\left\{x_{i}\right\}_{i \in I}$ of elements in a Hilbert A-module H is called a frame for H if there exist two constants $C, D>0$, such that

$$
C\langle x, x\rangle \leq \sum_{i \in I}\left\langle x, x_{i}\right\rangle\left\langle x_{i}, x\right\rangle \leq D\langle x, x\rangle, \quad \forall x \in H
$$

where the sum converges weakly. The constants C and D are called the lower and upper frame bounds, respectively.
The frame $\left\{x_{i}\right\}_{i \in I}$ is called a tight frame if $C=D$, and is said to be a Parseval or normalizes tight frame if $C=D=1$. Likewise, $\left\{x_{i}\right\}_{i \in I}$ is called a Bessel sequence for H with positive bound D if

$$
\sum_{i \in I}\left\langle x, x_{i}\right\rangle\left\langle x_{i}, x\right\rangle \leq D\langle x, x\rangle, \quad \forall x \in H .
$$

A sequence $\left\{x_{i}\right\}_{i \in I}$ in a Hilbert A-module H is called an orthogonal basis for H if it is a generating set (i.e., the A-linear hull of $\left\{x_{i}\right\}_{i \in I}$ is weak-dense in H) such that
i) $\left\langle x_{i}, x_{j}\right\rangle=0 \quad$ for each $i \neq j$,
ii) $\left\|x_{i}\right\|=1 \quad$ for each $i \in I$,
iii) the A-linear combinations $\sum_{i \in S} a_{i} x_{i}$ with coefficients $\left\{a_{i}: i \in S\right\} \subseteq A$ and $S \subseteq I$ are equal to zero if and only if every summand $a_{i} x_{i}$ is equal to zero, $i \in S$.

A sequence $\left\{x_{i}\right\}_{i \in I}$ in a separable Hilbert A-module H is called a Riesz basis for H if it a frame and a generating set with the additional property that A-linear combinations $\sum_{i \in I} a_{i} x_{i}$ with coefficients $\left\{a_{i}: i \in S\right\} \subseteq A$ and $S \subseteq I$ are equal to zero if and only if every summand $a_{i} x_{i}$ is equal to zero, $i \in S$.

2.2. Positive operators in $B(H, K)$

In the rest of this paper, let H and K be separable Hilbert spaces and let $B(H, K)$ be the set of all bounded linear operators from H into $K . B(H, K)$ is a Hilbert $B(K)$-module with a $B(K)$-valued inner product $\langle S, T\rangle=S T^{*}$ for all $S, T \in B(H, K)$, and with a linear operation of $B(K)$ on $B(H, K)$ by the composition of operators. On the other hand, $B(H, K)$ is also a Banach space with respect to the operator norm $\|T\|_{o}=\sup \{\|T x\|:\|x\| \leq 1, x \in H\}$, for all $T \in B(H, K)$. The norm in $B(H, K)$ considered as a Hilbert $B(K)$-module is defined by

$$
\|T\|_{c^{*}}=\|\langle T, T\rangle\|_{o}^{\frac{1}{2}}=\left\|T T^{*}\right\|_{o}^{\frac{1}{2}}=\|T\|_{o}
$$

Therefore, the norms in $B(H, K)$ considered as a Hilbert A-module and as a Banach space are the same. However, $B(H, K)$ is not a Hilbert space, and some facts that are true for Hilbert spaces may not hold for $B(H, K)$.

In the study of frame operators on $B(H, K)$, we need to know some facts about operators and, especially, positive operators on $B(H, K)$.

Proposition 2.1 Let S be an operator on $B(H, K)$, then $\langle S U, U\rangle=0$ for all $U \in B(H, K)$ if and only if $S=0$.
Proof Clearly if $S=0$, then $\langle S U, U\rangle=0$ for all $U \in B(H, K)$. On the other hand, we have

$$
\langle S(U+V), U+V\rangle=0, \quad \forall U, V \in B(H, K)
$$

so that $\langle S V, U\rangle+\langle S U, V\rangle=0$. If V changes with $i V$, we have

$$
i\langle S V, U\rangle-i\langle S U, V\rangle=0
$$

that implies $2 i\langle S U, V\rangle=0$ or $\langle S U, V\rangle=0$. By setting $V=S U$, we conclude that $S U=0$ for all $U \in B(H, K)$ and so $S=0$.

A map S on $B(H, K)$ is said to be adjointable if there exists a map S^{*} on $B(H, K)$ such that

$$
\langle S U, V\rangle=\left\langle U, S^{*} V\right\rangle, \quad \forall U, V \in B(H, K)
$$

Such a map S^{*} is called the adjoint of S. It follows that S and S^{*} are bounded linear $B(K)$-module maps. By $B(B(H, K))$ we denote the set of all adjointable linear $B(K)$-module maps on $B(H, K)$, and $B_{b}(B(H, K))$
denotes the set of all bounded linear $B(K)$-module maps on $B(H, K)$. An adjointable map S on $B(H, K)$ is said to be self-adjoint if $S=S^{*}$ [16].

Proposition 2.2 Let S be a adjointable linear $B(K)$-module map on $B(H, K)$. Then
i) S is self adjoint if and only if $\langle S U, U\rangle$ is self adjoint for all $U \in B(H, K)$,
ii) S is self adjoint if and only if for all $U \in B(H ; K),\langle S U, U\rangle$ is normal and the spectrum of $\langle S U, U\rangle$ is a subset of the real line.

Proof i) If S is self adjoint, then

$$
\langle S U, U\rangle=\langle U, S U\rangle=\langle S U, U\rangle^{*} \quad \forall U \in B(H, K)
$$

Conversely, if $\langle S U, U\rangle=\langle S U, U\rangle^{*}$ for all $U \in B(H, K)$, then

$$
\langle S U, U\rangle=\langle U, S U\rangle=\left\langle S^{*} U, U\right\rangle
$$

or

$$
\langle S U, U\rangle=\left\langle S^{*} U, U\right\rangle \quad \forall U \in B(H, K)
$$

and this means $S=S^{*}$.
ii) If $S=S^{*}$, then

$$
\langle S U, U\rangle=\left\langle U, S^{*} U\right\rangle=\langle U, S U\rangle=\langle S U, U\rangle^{*}
$$

is a self adjoint operator on $B(K)$ for each $U \in B(H, K)$, and by [14] its spectrum is a subset of the real line. Conversely, let the spectrum of $\langle S U, U\rangle$ be a subset of the real line for all $U \in B(H, K)$. For $\alpha \in \mathbb{C}$ and $U, V \in B(H, K)$ we have

$$
\langle S(U+\alpha V), U+\alpha V\rangle=\langle S U, U\rangle+\bar{\alpha}\langle S V, U\rangle+\alpha\langle S U, V\rangle+|\alpha|^{2}\langle S V, V\rangle .
$$

Since the spectrum of $\langle S(U+\alpha V), U+\alpha V\rangle$ is a subset of the real line,

$$
\langle S(U+\alpha V), U+\alpha V\rangle=\langle S(U+\alpha V), U+\alpha V\rangle^{*}
$$

and

$$
\begin{aligned}
\alpha\langle S V, U\rangle+\bar{\alpha}\langle S U, V\rangle & =\bar{\alpha}\langle S V, U\rangle^{*}+\alpha\langle S U, V\rangle^{*} \\
& =\bar{\alpha}\langle U, S V\rangle+\alpha\langle V, S U\rangle \\
& =\bar{\alpha}\left\langle S^{*} U, V\right\rangle+\alpha\left\langle S^{*} V, U\right\rangle .
\end{aligned}
$$

By setting $\alpha=1$ and $\alpha=i$,

$$
\begin{gathered}
\langle S V, U\rangle+\langle S U, V\rangle=\left\langle S^{*} U, V\right\rangle+\left\langle S^{*} V, U\right\rangle, \\
i\langle S V, U\rangle-i\langle S U, V\rangle=-i\left\langle S^{*} U, V\right\rangle+i\left\langle S^{*} V, U\right\rangle .
\end{gathered}
$$

Now by product i in the second equality, we obtain $\langle S U, V\rangle=\left\langle S^{*} U, V\right\rangle$. Therefore, $S=S^{*}$.

Remark 2.3 An element $S \in B(B(H, K))$ is said to be positive if $S=S^{*}$ and the spectrum of S is contained in the positive real line [11]. Wegge-Olsen [16] has shown that $S \geq 0$ if and only if the spectrum of $\langle S T, T\rangle$ is a subset of $[0, \infty)$ for all $T \in B(H, K)$.

Proposition 2.4 Let S be a positive operator in $B(B(H, K))$. Then

$$
\|S\|=\sup _{\|T\| \leq 1}\|\langle S T, T\rangle\| .
$$

Proof Since $B(B(H, K))$ is a C^{*}-algebra [16] and S is positive, $S^{\frac{1}{2}}$ exists. Then, we have

$$
\begin{aligned}
\sup _{\|T\| \leq 1}\|\langle S T, T\rangle\| & =\sup _{\|T\| \leq 1}\left\|\left\langle S^{\frac{1}{2}} S^{\frac{1}{2}} T, T\right\rangle\right\| \\
& =\sup _{\|T\| \leq 1}\left\|\left\langle S^{\frac{1}{2}} T, S^{\frac{1}{2}} T\right\rangle\right\| \\
& =\sup _{\|T\| \leq 1}\left\|S^{\frac{1}{2}} T\right\|^{2} \\
& =\left\|S^{\frac{1}{2}}\right\|^{2}=\left\|S^{\frac{1}{2}}\left(S^{\frac{1}{2}}\right)^{*}\right\| \\
& =\left\|S^{\frac{1}{2}} S^{\frac{1}{2}}\right\|=\|S\|
\end{aligned}
$$

Lemma 2.5 Let $\Lambda \in B(H)$. Then Λ is positive if and only if $T \Lambda T^{*} \in B(K)$ is positive for all $T \in B(H, K)$. Proof Let Λ be positive. Since $B(H)$ is a C^{*} - algebra, there is $\Gamma \in B(H)$ such that $\Lambda=\Gamma \Gamma^{*}$, and so

$$
T \Lambda T^{*}=T \Gamma \Gamma^{*} T^{*}=T \Gamma(T \Gamma)^{*}
$$

On the other hand, for all $f \in H$, we have

$$
\left\langle T \Gamma(T \Gamma)^{*} f, f\right\rangle=\left\langle(T \Gamma)^{*} f,(T \Gamma)^{*} f\right\rangle=\left\|(T \Gamma)^{*} f\right\|^{2} \geq 0
$$

Hence $T \Lambda T^{*}$ is positive.
Conversely, let $f \in H$ be arbitrary. We can find $g \in K$ and $T \in B(H, K)$ such that $T^{*} g=f$. Then by the positivity of $T \Lambda T^{*}$,

$$
\langle\Lambda f, f\rangle=\left\langle T \Lambda T^{*} g, g\right\rangle \geq 0
$$

Therefore, Λ is positive.
3. Operator sequences, g-sequences and their relations

3.1. Frames

A sequence $\left\{T_{i} \in B(H, K): i \in I\right\}$ is said to be a frame for $\mathrm{B}(\mathrm{H}, \mathrm{K})$ if there exist $0<A, B<\infty$ such that

$$
\begin{equation*}
A\langle T, T\rangle \leq \sum_{i \in I}\left\langle T, T_{i}\right\rangle\left\langle T_{i}, T\right\rangle \leq B\langle T, T\rangle, \quad \forall T \in B(H, K) \tag{3.1}
\end{equation*}
$$

where the series converges in the strong operator topology. The frame operator on $B(H, K)$ is defined by

$$
\begin{gathered}
S: B(H, K) \longrightarrow B(H, K), \\
S T=\sum_{i \in I}\left\langle T, T_{i}\right\rangle T_{i}=\sum_{i \in I} T T_{i}^{*} T_{i} .
\end{gathered}
$$

Proposition 2.2, Remark 2.3 and (3.1) assert that S is a positive, self adjoint and invertible operator, and

$$
\langle S T, T\rangle=\sum_{i \in I} T T_{i}^{*} T_{i} T^{*}=\sum_{i \in I}\left\langle T, T_{i}\right\rangle\left\langle T_{i}, T\right\rangle .
$$

Therefore, we have

$$
A\langle T, T\rangle \leq\langle S T, T\rangle \leq B\langle T, T\rangle .
$$

Convergence in the definition of frames, Bessel sequences, orthogonal and Riesz bases in $B(H, K)$ as a Hilbert $B(K)$-module is in the strong operator topology.

Various generalizations of frames have been studied by many authors. Sun [15] introduced a type of frames called g -frames, and showed that most generalizations of frames can be regarded as special cases of g -frames. Here we point out that g -frames can be regarded as frames in $B(H, K)$ with the same bounds.

A sequence $\left\{\Lambda_{i} \in B\left(H, K_{i}\right): i \in I\right\}$ is called a generalized frame, or simply a g-frame for H with respect to a sequence of Hilbert spaces $\left\{K_{i}\right\}_{i \in I}$ if there exist two positive constants A and B such that

$$
B\|f\|^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2} \leq A\|f\|^{2}, \quad \forall f \in H
$$

A and B are called the lower and upper g -frame bounds, respectively. A g -frame is called tight if $A=B$ and Parseval g -frame if $A=1$. In simple terms, $\left\{\Lambda_{i}\right\}_{i \in I}$ is called a g -frame for H whenever the space sequence $\left\{K_{i}: i \in I\right\}$ is clear, and also a g -frame for H with respect to K whenever $K_{i}=K$ for each $i \in I$. A sequence $\Lambda_{i} \in B\left(H, K_{i}\right): i \in I$ is called a g-Bessel sequence with bound B if we have only an upper bound in the definition of g -frames. The space $\left(\sum_{i \in I} \oplus K_{i}\right)_{l_{2}}$ is defined by

$$
\left(\sum_{i \in I} \oplus K_{i}\right)_{l_{2}}=\left\{\left\{f_{i}\right\}_{i \in I}: f_{i} \in K_{i}, \quad i \in I \quad \text { and } \quad \sum_{i \in I}\left\|f_{i}\right\|^{2} \leq \infty\right\}
$$

and has the inner product,

$$
\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i \in I}\left\langle f_{i}, g_{i}\right\rangle .
$$

It is clear that $\left(\sum_{i \in I} \oplus K_{i}\right)_{l_{2}}$ is a Hilbert space and contains K_{i} as a subspace, $i \in I$.
Remark 3.1 Let $\left\{\Lambda_{i}\right\}_{i \in I}$ be a g-frame for H with respect to $\left\{K_{i}\right\}_{i \in I}$ and let $K=\left(\sum_{i \in I} \oplus K_{i}\right) l_{2}$. For $i \in I$, define $\Lambda_{i}^{\prime}: H \longmapsto K$ by

$$
\Lambda_{i}^{\prime} f=\left(\ldots, 0,0,0, \Lambda_{i} f, 0,0,0, \ldots\right), \quad \forall f \in H
$$

Then

$$
\left\|\Lambda_{i}^{\prime} f\right\|=\left\|\Lambda_{i} f\right\|, \quad \forall i \in I, \forall f \in H
$$

Hence $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame for H with respect to $\left\{K_{i}\right\}_{i \in I}$ if and only if $\left\{\Lambda_{i}^{\prime}\right\}_{i \in I}$ is a g-frame for H with respect to K. Therefore, without loss of generality, we may deal with g-frames for H with respect to K.

Now we shall show that a g-frame for H with respect to K is a frame for $B(H, K)$, and vice versa.
Theorem 3.2 Let $\left\{\Lambda_{i} \in I\right\}_{i \in I}$ be a sequence in $B(H, K)$. Then it is a frame for $B(H, K)$ considered as a Hilbert C^{*}-module if and only if it is a g-frame for H with respect to K.

Proof Let $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ be a g-frame for H with respect to K. Then there are positive constants A and B, such that

$$
B\langle f, f\rangle \leq \sum_{i \in I}\left\langle\Lambda_{i} \Lambda_{i}^{*} f, f\right\rangle \leq A\langle f, f\rangle, \quad \forall f \in H
$$

Hence

$$
B I_{H} \leq \sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} \leq A I_{H}
$$

Lemma 2.5 asserts that the inequality

$$
B T T^{*} \leq \sum_{i \in I} T \Lambda_{i}^{*} \Lambda_{i} T^{*} \leq A T T^{*}
$$

satisfies for all $T \in B(H, K)$. Thus,

$$
B\langle T, T\rangle \leq \sum_{i \in I}\left\langle T, \Lambda_{i}\right\rangle\left\langle\Lambda_{i}, T\right\rangle \leq A\langle T, T\rangle, \quad \forall T \in B(H, K)
$$

and $\left\{\Lambda_{i}\right\}_{i \in I}$ is a frame for $B(H, K)$. Conversely, let $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ be a frame for $B(H, K)$ and $f \in H$. We can choose T in $\mathrm{B}(\mathrm{H}, \mathrm{K})$ and g in K such that $T^{*} g=f$. Therefore,

$$
\begin{aligned}
\left\langle\sum_{i \in I}\left\langle T, \Lambda_{i}\right\rangle\left\langle\Lambda_{i}, T\right\rangle g, g\right\rangle & =\left\langle\sum_{i \in I} T \Lambda_{i}^{*} \Lambda_{i} T^{*} g, g\right\rangle \\
& =\sum_{i \in I}\left\langle T \Lambda_{i}^{*} \Lambda_{i} T^{*} g, g\right\rangle \\
& =\sum_{i \in I}\left\langle\Lambda_{i} T^{*} g, \Lambda_{i} T^{*} g\right\rangle \\
& =\sum_{i \in I}\left\langle\Lambda_{i} f, \Lambda_{i} f\right\rangle \\
& =\sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2}
\end{aligned}
$$

Also we have

$$
\langle B\langle T, T\rangle g, g\rangle=\left\langle B T T^{*} g, g\right\rangle=B\left\langle T^{*} g, T^{*} g\right\rangle=B\langle f, f\rangle=B\|f\|^{2}
$$

Thus

$$
B\langle T, T\rangle \leq \sum_{i \in I}\left\langle T, \Lambda_{i}\right\rangle\left\langle\Lambda_{i}, T\right\rangle \leq A\langle T, T\rangle,
$$

implies that

$$
B\|f\|^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2} \leq A\|f\|^{2}, \quad \forall f \in H,
$$

as desired.
The following are immediate consequences.
Corollary 3.3 The sequence $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ is a tight frame for $B(H, K)$ if and only if it is a g-tight frame for H with respect to K.

Corollary 3.4 The sequence $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ is a Bessel sequence for $B(H, K)$ if and only if it is a g-Bessel sequence for H with respect to K.

Remark 3.5 Let $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ be a g-frame for H. The g-frame operator of $\left\{\Lambda_{i}\right\}_{i \in I}$ is defined by

$$
S_{g}: H \longrightarrow H, \quad f \longmapsto \sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} f .
$$

Also, the frame operator of the frame $\left\{\Lambda_{i}\right\}_{i \in I}$ is defined by $S T=\sum_{i \in I} T \Lambda_{i}^{*} \Lambda_{i}$. Therefore, $S T=T S_{g}$, and from this equation, for any $T \in B(H, K)$ a reconstruction formula is derived by $T=S^{-1} T S_{g}$.

3.2. Orthonormal bases and Riesz bases

Now, we study the relations between g -orthonormal bases and g -Riesz bases for H with respect to K with orthogonal bases and Riesz bases for $B(H, K)$ considered as a Hilbert C^{*}-module.

A sequence $\left\{\Lambda_{i}: i \in I\right\}$ is called a g -orthonormal basis for H with respect to K if it satisfies the following:

1) $\left\langle\Lambda_{i}^{*} f, \Lambda_{j}^{*} g\right\rangle=\delta_{i, j}\langle f, g\rangle, \quad \forall i, j \in I$ and $f, g \in H$,
2) $\sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2}=\|f\|^{2}, \quad \forall f \in H$.

If $\left\{\Lambda_{i}: i \in I\right\}$ is a sequence in $B(H, K)$ and $\left\{f: \Lambda_{i} f=0, i \in I\right\}=\{0\}$, then $\left\{\Lambda_{i}: i \in I\right\}$ is called g -complete.

A sequence $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ is called a g -Riesz basis for H with respect to K if it is g -complete and there are positive constants A and B such that

$$
A \sum_{i \in I_{1}}\left\|g_{i}\right\|^{2} \leq\left\|\sum_{i \in I_{1}} \Lambda_{i}^{*} g_{i}\right\|^{2} \leq B \sum_{i \in I_{1}}\left\|g_{i}\right\|^{2},
$$

for any finite subset I_{1} of I and $\left\{g_{i}\right\}_{i \in I_{1}} \subseteq K$ [15].
The following theorem provide that every g -orthonormal basis for H is an orthogonal basis for $B(H, K)$. We will give an example to show that the converse of the theorem is not correct.

Theorem 3.6 If $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ is a g-orthonormal basis for H with respect to K, then it is an orthogonal basis for $B(H, K)$ considered as a Hilbert C^{*}-module.
Proof Since $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-orthonormal basis for H, for $i \neq j$, we have $\left\langle\Lambda_{i}, \Lambda_{j}\right\rangle=\Lambda_{i} \Lambda_{j}^{*}=0$ and $\left\|\Lambda_{i}\right\|^{2}=\left\|\left\langle\Lambda_{i}, \Lambda_{i}\right\rangle\right\|=\left\|\Lambda_{i} \Lambda_{i}^{*}\right\|=\left\|I_{K}\right\|=1$, where I_{K} is the identity operator on K. Now suppose that $\sum_{i \in I} T_{i} \Lambda_{i}=0$ where $T_{i} \in B(K), i \in I$. We have

$$
\begin{aligned}
0=\left\langle\sum_{i \in I} T_{i} \Lambda_{i}, \Lambda_{j}\right\rangle & =\sum_{i \in I}\left\langle T_{i} \Lambda_{i}, \Lambda_{j}\right\rangle \\
& =\sum_{i \in I} T_{i}\left\langle\Lambda_{i}, \Lambda_{j}\right\rangle \\
& =T_{j}\left\langle\Lambda_{j}, \Lambda_{j}\right\rangle \\
& =T_{j} I_{H}=T_{j}
\end{aligned}
$$

Therefore, $T_{j}=0$ and $T_{j} \Lambda_{j}=0$, for each $j \in I$. It remains to show that every $T \in B(H, K)$ can be generated by $\left\{\Lambda_{i}\right\}_{i \in I}$. The second condition of g-orthonormal basis, $\sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2}=\|f\|^{2}$ for all $f \in H$, implies that $\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i}=I_{H}$. Then, for every $T \in B(H, K)$ we have

$$
\begin{aligned}
T=T I_{H} & =T \sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} \\
& =\sum_{i \in I} T \Lambda_{i}^{*} \Lambda_{i} \\
& =\sum_{i \in I}\left\langle T, \Lambda_{i}\right\rangle \Lambda_{i} \\
& =\sum_{i \in I} U_{i} \Lambda_{i}
\end{aligned}
$$

where $U_{i}=\left\langle T, \Lambda_{i}\right\rangle$ belongs to $B(K)$, for each $i \in I$. This completes the proof of the theorem.
The relation between Riesz bases for $B(H, K)$ and g-Riesz bases for H with respect to K is similar to the above theorem.

Theorem 3.7 If $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ is a g-Riesz basis for H with respect to K, then it is a Riesz basis for $B(H, K)$ considered as a Hilbert C^{*}-module.
Proof Let $\left\{\Lambda_{i} \in B(H, K): i \in I\right\}$ be a g-Riesz basis for H with respect to K. By ([15], Corollary 3.3) $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame and by Theorem 3.2 it is a frame for $B(H, K)$. It is clear that $\Lambda_{i} \neq 0$ for each $i \in I$. Now let $\sum_{i \in I} T_{i} \Lambda_{i}=0$, where $T_{i} \in B(K)$. We have $\sum_{i \in I} \Lambda_{i}^{*} T_{i}^{*}=0$, therefore, $\sum_{i \in I} \Lambda_{i}^{*} T_{i}^{*} g=0$, for each $g \in K$. By the definition of g-Riesz basis, $\sum_{i \in I}\left\|T_{i}^{*} g\right\|^{2}=0$, then $\left\|T_{i}^{*} g\right\|^{2}=0$, for each $i \in I$ and $g \in K$. Therefore, $T_{i}=0$ and hence $T_{i} \Lambda_{i}=0$ for each $i \in I$. The invertibility of the frame operator S implies that

$$
T=\sum_{i \in I}\left\langle S^{-1} T, \Lambda_{i}\right\rangle \Lambda_{i}, \quad \forall T \in B(H, K)
$$

Thus, $\left\{\Lambda_{i}\right\}_{i \in I}$ is a generating set for $B(H, K)$ and the proof is complete.
By an example we show that the converse of Theorem 3.5 and Theorem 3.6 is not true.

Example 3.8 Let H be a Hilbert space and $\left\{\varphi_{i}\right\}_{i \in I}$ be an orthonormal basis for H. For $i \in I$, define Λ_{i} and Λ_{i}^{*} by

$$
\begin{array}{ll}
\Lambda_{i}: H \mapsto \mathbb{C}^{2}, & f \longmapsto\left(\left\langle f, \varphi_{i}\right\rangle, 0\right), \\
\Lambda_{i}^{*}: \mathbb{C}^{2} \mapsto H, & \left(c_{1}, c_{2}\right) \longmapsto c_{1} \varphi_{1}
\end{array}
$$

Since

$$
\sum_{i \in I} T \Lambda_{i}^{*} \Lambda_{i} T^{*}=T T^{*}, \quad \text { for all } T \in B\left(H, \mathbb{C}^{2}\right)
$$

the sequence $\left\{\Lambda_{i}\right\}_{i \in I}$ is a Parseval frame for $B\left(H, \mathbb{C}^{2}\right)$. Now let $\left\{T_{i}\right\}_{i \in I}$ be a sequence in $B\left(\mathbb{C}^{2}\right)$ and $\sum_{i \in I} T_{i} \Lambda_{i}=0$. Then, for each $f \in H$ we have

$$
0=\sum_{i \in I} T_{i} \Lambda_{i} f=\sum_{i \in I} T_{i}\left(\left\langle\varphi_{i}, f\right\rangle, 0\right)=\sum_{i \in I}\left\langle\varphi_{i}, f\right\rangle T_{i}(1,0)
$$

By the orthonormality of $\left\{\varphi_{i}\right\}_{i \in I}, T_{i}(1,0)=0$, hence, $T_{i} \Lambda_{i}=0$ for all $i \in I$. Also, $\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i}=I_{H}$ implies that

$$
T=\sum_{i \in I} T \Lambda_{i}^{*} \Lambda_{i}=\sum_{i \in I}\left\langle T, \Lambda_{i}\right\rangle \Lambda_{i} .
$$

This shows that $\left\{\Lambda_{i}\right\}_{i \in I}$ generates $B\left(H, \mathbb{C}^{2}\right)$ as $B\left(\mathbb{C}^{2}\right)$-module. Therefore, all conditions of a Riesz basis are satisfied and $\left\{\Lambda_{i}\right\}_{i \in I}$ is a Riesz basis for $B\left(H, \mathbb{C}^{2}\right)$. But $\left\{\Lambda_{i}\right\}_{i \in I}$ is not a g-Riesz basis since $\Lambda_{i}^{*}(0,1)=0$, which implies that $A=0$ in the definition of a g-Riesz basis.

$$
\text { However, }\left\langle\Lambda_{i}, \Lambda_{i}\right\rangle(0,1)=\Lambda_{i} \Lambda_{i}^{*}=(0,0), \Lambda_{i} \Lambda_{i}^{*} \neq I_{\mathbb{C}^{2}},\left\|\Lambda_{i}\right\|=1 \text { and }\left\langle\Lambda_{i}, \Lambda_{j}\right\rangle=0 \text { for } i \neq j
$$ Therefore, $\left\{\Lambda_{i}\right\}_{i \in I}$ is an orthogonal basis for $B\left(H, \mathbb{C}^{2}\right)$. On the other hand, $\left\langle\Lambda_{i}^{*}(0,1), \Lambda_{i}^{*}(0,1)\right\rangle=0$ and $\delta_{i i}\langle(0,1),(0,1)\rangle=1$, imply that $\left\{\Lambda_{i}\right\}_{i \in I}$ is not a g-orthonormal basis for H with respect to K.

References

[1] Bodmann, B.G., Kribs, D.W., Paulsen, V.I.: Decoherence-insensitive quantum communication by optimal C^{*} encoding. IEEE Trans. Inform. Theory 53, 4738-4749 (2007).
[2] Christensen, O.: An Introduction to Frames and Riesz Bases. Boston-Basel-Berlin. Birkhäuser 2002.
[3] D'Attellis, C.E., Fernfedez-Berdaguer, E.M.: Wavelet Theory and Harmonic Analysis in Applied Sciences. Boston - Basel - Berlin. Birkhäuser 1997.
[4] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271-1283 (1986).
[5] Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341-366 (1952).
[6] Frank, M., Larson, D.: Frames in Hilbert C^{*}-modules and C^{*}-algebra. J. Operator Theory 48, 273-314 (2002).
[7] Gröchenig, K.: Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Boston. MA, Birkhäuser 2001.
[8] Hemmat, A. A., Gabardo, J. P.: Properties of oblique dual frames in shift-invariant systems. J. Math. Anal. Appl. 356, 346-354 (2009).
[9] Kaplansky, I.: Algebra of type I. Ann. Math. 56, 460-472 (1952).
[10] Lance, E.: Hilbert C^{*}-modules - a Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series v. 210. Cambridge, England. Cambridge University Press 1995.

ASKARIZADEH and DEHGHAN/Turk J Math

[11] Murphy, G. J.: C^{*}-algebra and Operator Theory. London. Academic Press 1990.
[12] Paschke, W.: Inner product modules over B^{*}-algebra. Trans. Amer. Math. Soc. 182, 443-468 (1973).
[13] Rieffel, M.: Morita equivalence for C^{*}-algebra. J. Pure Applied Algebra 5, 51-96 (1974).
[14] Rudin, W.: Functional Analysis. New York. McGraw-Hill Book Company 1973.
[15] Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. 322, 437-452 (2006).
[16] Wegga-Olsen, N.: K-theory and C^{*}-algebra - a Friendly Approach. Oxford, England. Oxford University Press 1993.
[17] Young, R.: An Introduction to Nonharmonic Fourier Series. New York. Academic Press 1980.

[^0]: *Correspondence: dehghan@vru.ac.ir
 2000 AMS Mathematics Subject Classification: Primary 46L99; Secondary 47A05, 42C15, 46H25.

