

Research Article

Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry

Djavvat KHADJIEV, İdris ÖREN*, Ömer PEKŞEN

Department of Mathematics, Karadeniz Technical University,

Trabzon, 61080, Turkey

Received: 27.04.2011	•	Accepted: 09.08.2011	٠	Published Online: 17.12.2012	٠	Printed: 14.01.2013
----------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: Let M(n, p) be the group of all motions of an *n*-dimensional pseudo-Euclidean space of index *p*. It is proved that the complete system of M(n,p)-invariant differential rational functions of a path (curve) is a generating system of the differential field of all M(n, p)-invariant differential rational functions of a path (curve), respectively. A fundamental system of relations between elements of the complete system of M(n,p)-invariant differential rational functions of a path (curve) is described.

Key words: Curve, differential invariant, pseudo-Euclidean geometry, Minkowski geometry

1. Introduction

The present paper is a continuation of our paper [18]. Let E_p^n be the *n*-dimensional pseudo-Euclidean space of index p (that is the space \mathbb{R}^n with the scalar product $\langle x, y \rangle = -x_1y_1 - \cdots - x_py_p + x_{p+1}y_{p+1} + \cdots + x_ny_n$), O(n, p) is the group of all pseudo-orthogonal transformations of E_p^n , $M(n, p) = \{F : E_p^n \to E_p^n \mid Fx = gx + b, g \in O(n, p), b \in E_p^n\}$ and $SM(n, p) = \{F \in M(n, p) : \det g = 1\}$.

Here, for groups G = M(n, p) and G = SM(n, p), we prove that the complete system of G-invariant differential rational functions of a path (curve) obtained in [18, Theorems 2–3 and Corollaries 1–2] is a generating system of the differential field of all G-invariant differential rational functions of a path (respectively, curve). We describe a fundamental system of relations between elements of the complete system of G-invariant functions of a path (curve) (i.e., global existence theorems for a path and a curve).

For groups G = M(n,0) and G = SM(n,0), the generating system of the differential field of all Ginvariant differential rational functions of a path in the Euclidean space E_0^n was obtained in [16]. The Frenet-Serret equation for both time-like and space-like curves in spaces E_1^3 and E_1^4 is given in [12, 13, 22]. In papers [1, 4, 5, 8, 14, 19, 20], the Frenet-Serret equation is extended from non-null curves in E_1^3 , E_1^4 and E_2^4 to null (lightlike, isotropic) curves. For arbitrary n, the Frenet-Serret equation is obtained for the Lorentz space E_1^n in [2], [9, pp. 52–76]. The Frenet-Serret equation in E_p^n for arbitrary n and index p is considered in [3, 6, 7]. Existence and rigidity (that is uniqueness) theorems for curves in spaces E_1^3 and E_1^4 are studied in [5] and thesis [13] (in the case with constant coefficients). In papers [5, 14], existence and rigidity theorems are

^{*} Correspondence: or en@ktu.edu.tr

²⁰⁰⁰ AMS Mathematics Subject Classification: 53A04, 53A35, 53A40, 53A55.

extended from non-null curves in E_1^3 and E_1^4 to null curves. For arbitrary n, existence and rigidity theorems are extended to the Lorentz space E_1^n and to the space E_2^n in [9, pp. 52–76]; and [10, 11]. For arbitrary nand index p, existence and rigidity theorems for curves in E_p^n are considered in the paper [6]. In these papers, existence theorems are local. The rigid group in the rigidity theorem is given in [6, 12, 14]. The rigid groups in papers [14, 12, 6] are SM(3, 1), SM(4, 1) and SM(n, p), respectively.

This paper is organized as follows. In Section 2, a definition of the differential field of all G-invariant differential rational functions of a path (curve) is given. For groups G = M(n, p), SM(n, p), it is proved that the complete system of G-invariant differential rational functions of a path (curve) obtaining in [18, Theorems 2 and 3 and Corollaries 1 and 2] is a generating system of the differential field of all G-invariant differential rational functions of a path (curve), respectively. (Theorems 1, 2). In Section 3, the description of a fundamental system of relations between elements of the complete system of G-invariant functions of a path (curve) is given (Theorems 3–4 and Corollary 4).

In this paper we use definitions and notations of the paper [18].

2. Invariant differential rational functions of paths and curves

Below we cite some notation and facts from the differential algebra (see [15-17]) in a form which is convenient for our considerations. Let R be a field of real numbers. Consider the ring $R[y_0, y_1 \ldots, y_n, \ldots]$ of polynomials with real coefficients in the countable set of variables $\{y_0, y_1 \ldots, y_n, \ldots\}$. We let $y_0 = y, y_1 = y', \ldots, y_{m+1} = (y_m)' = y^{(m+1)}$. The operation ': $y_m \to y'_m$ will be called the differentiation of an element y_m . Using the Leibniz rule, this operation can be uniquely extended to the ring $R[y_0, y_1 \ldots, y_n, \ldots]$. As a result, we obtain a differential R-algebra (d-algebra), which will be denoted by $R\{y\}$. Elements of this d-algebra are called differential polynomials in y with coefficients from R. We denote elements of $R\{y\}$ by $f\{y\}$. The element yis called the differential variable (unknown).

Differential polynomials $f \{z_1, \ldots, z_n\}$ and the *d*-algebra $R \{z_1, \ldots, z_n\}$ in a finite number of differential variables z_1, \ldots, z_n are defined in a similar manner.

We denote by $C^{\infty}(J)$ the set of all infinitely differentiable functions on an interval J = (a, b). Let $f \{y\}$ be a differential polynomial in a differential variable, and let $y(t) \in C^{\infty}(J)$. In the expression $f \{y\}$, let y to y(t) and polynomial term $y^{(n)}$ to $\frac{d^n y(t)}{dt^n}$ (n = 1,2,...). We denote the obtained expression by $f \{y(t)\}$. The expression $f \{y(t)\}$ is a polynomial in y(t) and a finite number of derivatives of y(t). For $f_1, f_2 \in R\{y\}$, $f_1 = f_2$ if and only if $f_1\{y(t)\} = f_2\{y(t)\}$ for all $y(t) \in C^{\infty}(J)$.

The set of all expressions $f\{y(t)\}$, where $f \in R\{y\}$, will be denoted by $R\{y(t)\}$. $R\{y(t)\}$ is an R-algebra with respect to the standard operations of addition and multiplication of functions and multiplication of a function by a real number. $R\{y(t)\}$ becomes a differential R-algebra if $\frac{d}{dt}$ is taken as the operation of differentiation. One can easily see that the mapping $f\{y\} \to f\{y(t)\}$ is an isomorphism of differential R-algebras $R\{y\}$ and $R\{y(t)\}$. A similar fact takes place for differential polynomials $f\{z_1, \ldots, z_n\}$ in several variables z_1, \ldots, z_n . Let us replace in $f\{z_1, \ldots, z_n\}$ the element z_i $(i = 1, 2, \ldots, n)$ by $z_i(t) \in C^{\infty}(J)$ and the element $z_i^{(m)}$ by the function $\frac{d^m z_i(t)}{dt^m}$ $(m = 1, 2, 3, \ldots)$. Denote the obtained expression by $f\{z_1(t), \ldots, z_n(t)\}$. We denote by $R\{z_1(t), \ldots, z_n(t)\}$ the set of all $f\{z_1(t), \ldots, z_n(t)\}$, where $f \in R\{z_1, \ldots, z_n\}$. $R\{z_1(t), \ldots, z_n(t)\}$ is a differential R-algebra with respect to the standard operations over

functions and the operation $\frac{d}{dt}$. The differential algebras $R\{z_1, \ldots, z_n\}$ and $R\{z_1(t), \ldots, z_n(t)\}$ are isomorphic, and to the operation of differentiation in $R\{z_1, \ldots, z_n\}$ the operation $\frac{d}{dt}$ in $R\{z_1(t), \ldots, z_n(t)\}$ corresponds.

The transition from $f\{z_1, \ldots, z_n\}$ to $f\{z_1(t), \ldots, z_n(t)\}$ will be called a parametric representation of a differential polynomial $f\{z_1, \ldots, z_n\}$. The inverse transition will be called the abstract representation of $f\{z_1(t), \ldots, z_n(t)\}$. The system (z_1, z_2, \ldots, z_n) of differential variables z_1, z_2, \ldots, z_n will be called an *n*-dimensional differential vector. For brevity, an ordered system (x_1, x_2, \ldots, x_m) of differential vectors x_1, x_2, \ldots, x_m will be denoted by x. We let $R\{x_1, \ldots, x_m\} = R\{x\}$. $R\{x\}$ is an integral domain. We denote its field of quotients by $R\langle x \rangle$. The differentiation in $R\{x\}$ is uniquely extended to a differentiation in $R\langle x \rangle$, and $R\langle x \rangle$ is a differential field. An element of $R\langle x \rangle$ is called a differential rational function of x and denoted by $h\langle x \rangle$.

Let G be a subgroup of M(n, p).

Definition 1 A differential rational function h < x > will be called G-invariant if h < gx >= h < x > for all $g \in G$.

The set of all G-invariant differential rational functions of x forms a differential subfield of R < x >. We denote it by $R < x >^G$.

Definition 2 Let α be a curve in \mathbb{R}^n and x is a *G*-invariant parametrization of α . An element $h \in \mathbb{R} < x >^G$ is called a *G*-invariant differential rational function of a curve α .

Let $\langle x, y \rangle$ be the inner product of vectors $x, y \in E_p^n$.

Definition 3 A subset S of $R < x >^G$ will be called a system of generators of differential field $R < x >^G$ if the least differential subfield in $R < x >^G$ containing S coincides with $R < x >^G$.

Theorem 1 The system

$$\left\{ < x^{(k)}(t), x^{(k)}(t) >, k = 1, 2, \dots, n \right\}$$
(1)

is a system of generators of $R < x >^{M(n,p)}$.

Proof Let R < x' > be the differential field of all differential rational functions of $x' = \frac{\partial}{\partial t}x$ and O(n, p) is the group of all pseudo-orthogonal $n \times n$ -matrices.

First we prove several lemmas.

Lemma 1 $R < x >^{M(n,p)} = R < x' >^{O(n,p)}$.

Proof Let $h < x >= h(x, x', ..., x^{(m)}) \in R < x >^{M(n,p)}$. Then it is invariant with respect to parallel translations in E_p^n . This implies that $h(x, x', ..., x^{(m)}) = h < x' >$. It is also O(n, p)-invariant. Hence it is an O(n, p)-invariant differential rational function of x'. Conversely, assume that h is an O(n, p)-invariant differential rational function of x'. Then it is invariant with respect to parallel translations in E_p^n . Hence it is M(n, p)-invariant.

Lemma 2 Let $f \in R < x' > O(n,p)$. Then differential polynomials $f_1, f_2 \in R < x' > O(n,p)$ exist such that $f = f_1/f_2$.

Proof A proof is similar to the proof in ([16], p. 106).

Let N be the set of all natural numbers.

Lemma 3 The system of all elements $\langle x^{(m)}, x^{(q)} \rangle$, where $m \ge 1, q \ge 1, m \in N, q \in N$, is a generating system of $R < x >^{M(n,p)}$ as a field.

Proof Let $R[x^{(m)}, m \in N]^{O(n,p)}$ be the *R*-algebra of all O(n, p)-invariant polynomials of the system $\{x^{(m)}, m \in N\}$. It is obvious that $R[x^{(m)}, m \in N]^{O(n,p)} = R\{x'\}^{O(n,p)}$. According to the First Main Theorem for O(n, 0) ([21, p. 53]) and O(n, p) ([21, p. 65,66]), the system $\{\langle x^{(m)}, x^{(q)} \rangle; m, q \in N\}$ is a generating system of the *R*-algebra $R[x^{(m)}, m \in N]^{O(n,p)} = R\{x'\}^{O(n,p)}$. Using Lemmas 1 and 2, we obtain that the system $\{\langle x^{(m)}, x^{(q)} \rangle; m, q \in N\}$ is a generating system of R < x' > O(n,p) = R < x > M(n,p) as a field. \Box

Lemma 4 Let $1 \le i, j, i + j \le 2n + 1$. Then, for each differential polynomial $\langle x^{(i)}, x^{(j)} \rangle$, a differential polynomial $P_{ij}\{y_1, ..., y_k\}$ exists such that

$$< x^{(i)}, x^{(j)} >= P_{ij} \left\{ < x^{'}, x^{'} >, ..., < x^{(k)}, x^{(k)} > \right\},$$

where $k = \left[\frac{i+j}{2}\right]$.

Proof We will prove the existence of P_{ij} by induction on q = i + j. Since $i \ge 1, j \ge 1$, we have $i + j \ge 2$. In the case i + j = 2, the desired existence of P_{11} is obvious. Assume that a differential polynomial P_{ij} exists for all i, j such that i + j < q. Let $i \le j$ and q = 2b, where b is an integer. Then $\langle x^i, x^j \rangle = \langle x^{(b-h)}, x^{(b+h)} \rangle$ for some $h \ge 0$. Using the equality

$$< x^{(b-h)}, x^{(b+h)} > = < x^{(b-h-1)}, x^{(b+h)} >^{'} - < x^{(b-h-1)}, x^{(b+h+1)} >$$

and applying the inductions on q = i + j and h, we conclude that $\langle x^{(i)}, x^{(j)} \rangle$ is a differential polynomial in $\langle x', x' \rangle, ..., \langle x^{(k)}, x^{(k)} \rangle$, where $k \leq b$.

Let q = 2b + 1. Then $\langle x^{(b)}, x^{(b)} \rangle' = 2 \langle x^{(b)}, x^{(b+1)} \rangle$. Using the equality

$$< x^{(b-h)}, x^{(b+h+1)} > = < x^{(b-h-1)}, x^{(b+h+1)} >^{'} - < x^{(b-h-1)}, x^{(b+h+2)} >$$

and applying the inductions on q = i + j and h, we conclude that $\langle x^{(i)}, x^{(j)} \rangle$ is a differential polynomial of $\langle x', x' \rangle, ..., \langle x^{(k)}, x^{(k)} \rangle$, where $k \leq b$. \Box

Denote by $\Delta = \Delta_x$ the determinant det $\|\langle x^{(i)}, x^{(j)} \rangle\|_{i,j=1,2,...,n}$. Let V be the system equation (1). Denote by $R\{V\}$ the differential R-subalgebra of $R \langle x' \rangle^{O(n,p)}$ generated by elements of the system V.

Lemma 5 $\Delta \in R\{V\}$.

Proof By the definition of $V, \langle x^{(i)}, x^{(i)} \rangle \in V$ for all $1 \leq i \leq n$. According to Lemma 4, $\langle x^{(i)}, x^{(j)} \rangle \in V$ for all $1 \leq i, j \leq n$. Hence $\Delta \in R\{V\}$.

Denote by $R\{V, \Delta^{-1}\}$ the differential *R*-subalgebra of R < x' > O(n,p) generated by elements of the system *V* and the function Δ^{-1} . According to Lemmas 1 and 3, for a proof of our theorem, it is enough to prove that $< x^{(m)}, x^{(q)} > \in R\{V, \Delta^{-1}\}$ for all $m, q \in N$.

Denote by $\operatorname{Gr}(y_1, y_2, \ldots, y_m; z_1, z_2, \ldots, z_m)$ the Gram matrix $\|\langle y_i, z_j \rangle\|_{i,j=1,2,\ldots,m}$ of vectors $y_1, y_2, \ldots, y_m; z_1, z_2, \ldots, z_m$ in E_p^n . Let det $\operatorname{Gr}(y_1, y_2, \ldots, y_m; z_1, z_2, \ldots, z_m)$ be the determinant of $\operatorname{Gr}(y_1, y_2, \ldots, y_m; z_1, z_2, \ldots, z_m)$. The following is known.

Lemma 6 The equality,

$$detGr(y_1, y_2, \dots, y_{n+1}; z_1, z_2, \dots, z_{n+1}) = det|| < y_i, z_j > ||_{i,j=1,2,\dots,n+1} = 0$$

holds for all vectors $y_1, y_2, \ldots, y_{n+1}, z_1, z_2, \ldots, z_{n+1}$ in \mathbb{R}^n .

Proof A proof is given in [16, p. 106–107], [21, p. 75].

Proof Using Lemma 6 to vectors

$$y_1 = z_1 = x', y_2 = z_2 = x^{(2)}, \dots, y_n = z_n = x^{(n)}, y_{n+1} = x^{(b)}, z_{n+1} = x^{(c)},$$

we obtain the equality $\det A = 0$, where

$$A = \| \langle y_i, z_j \rangle \|_{i,j=1,2,\dots,n+1}.$$

Let D_{n+1j} be the cofactor of the element $\langle y_{n+1}, z_j \rangle$ of the matrix A for j = 1, 2, ..., n+1. The equality det A = 0 implies the equality

$$< y_{n+1}, z_1 > D_{n+11} + < y_{n+1}, z_2 > D_{n+12} + \dots + < y_{n+1}, z_n > D_{n+1n} +$$
(2)
 $< y_{n+1}, z_{n+1} > D_{n+1n+1} = 0.$

Since $\Delta = D_{n+1n+1}$, equation (2) implies the equality

$$< y_{n+1}, z_{n+1} > = < x^{(b)}, x^{(c)} > =$$

$$-\frac{< y_{n+1}, z_1 > D_{n+11} + < y_{n+1}, z_2 > D_{n+12} + \dots + < y_{n+1}, z_n > D_{n+1n}}{\Delta}.$$
(3)

In equation (3), by the assumption of the lemma, $\langle y_{n+1}, z_j \rangle = \langle x^{(b)}, x^j \rangle \in R\{V, \Delta^{-1}\}$ for each $j: 1 \leq j \leq n$. We prove that $D_{n+1s} \in R\{V, \Delta^{-1}\}$ for every $s: 1 \leq s \leq n$. We have $D_{n+1s} = (-1)^{n+1+s} \det \operatorname{Gr}(y_1, y_2, \ldots, y_n; z_1, z_2, \ldots, z_{s-1}, z_{s+1}, \ldots, z_n, z_{n+1}))$. By the definition of $V, \langle y_i, z_j \rangle \in V \subset R\{V\}$ for all $i, j: 1 \leq i, j \leq n$. By the assumption of our lemma, we have $\langle y_i, z_{n+1} \rangle = \langle x^{(i)}, x^c \rangle \in R\{V, \Delta^{-1}\}$

84

for every $i: 1 \leq i \leq n$. Hence $D_{n+1s} \in R\{V, \Delta^{-1}\}$ for every $s: 1 \leq s \leq n$ and equation (3) implies $\langle y_{n+1}, z_{n+1} \rangle \in R\{V, \Delta^{-1}\}.$

Lemma 8 $< x^{(b)}, x^{(i)} > \in R\{V, \Delta^{-1}\}$ for all $b \in N$ and $1 \le i \le n$.

Proof We prove this assertion by induction on b. By the definition of V and Lemma 4, we obtain that $\langle x^{(c)}, x^{(i)} \rangle \in R\{V, \Delta^{-1}\}$ for all $1 \leq c \leq n+1, 1 \leq i \leq n$. This implies that the assertion holds for all b = c = 1, 2, ..., n+1.

Assume that the assertion of the theorem holds for b-1. Then $\langle x^{(b-1)}, x^{(i)} \rangle \in R\{V, \Delta^{-1}\}$ for all $1 \leq i \leq n$. Using $\langle x^{(b-1)}, x^{(i)} \rangle \in R\{V, \Delta^{-1}\}$ and $\langle x^{(c)}, x^{(i)} \rangle \in R\{V, \Delta^{-1}\}$ for all $1 \leq c \leq n+1, 1 \leq i \leq n$, by Lemma 7, we obtain $\langle x^{(b-1)}, x^{(c)} \rangle \in R\{V, \Delta^{-1}\}$ for all $1 \leq c \leq n+1$. Since $\langle x^{(b-1)}, x^{(i)} \rangle \in R\{V, \Delta^{-1}\}$ for all $1 \leq i \leq n$, the equality

$$\frac{\partial}{\partial t} < x^{(b-1)}, x^{(i)} > = < x^{(b)}, x^{(i)} > + < x^{(b-1)}, x^{(i+1)} >$$

and $\langle x^{(b-1)}, x^{(i+1)} \rangle \in R\{V, \Delta^{-1}\}$ for all $1 \leq i \leq n$ imply $\langle x^{(b)}, x^{(i)} \rangle \in R\{V\}$ for all $1 \leq i \leq n$. This means that the assertion is proved for b.

We complete the proof of our theorem. Using Lemmas 8 and 7, we obtain $\langle x^{(b)}, x^{(c)} \rangle \in R \{V, \Delta^{-1}\}$ for all $b, c \in N$. By Lemma 5, $\Delta \in R\{V\}$. Since R < V > is a field, we obtain $\Delta^{-1} \in R < V >$. Hence $R\{V, \Delta^{-1}\} \subset R < V >$. By Lemma 3, the system of all elements $\langle x^{(b)}, x^{(c)} \rangle$, where $b, c \in N$, is a generating system of $R < x >^{M(n,p)}$ as a field. Hence $R < V > = R < x >^{M(n,p)}$. The theorem is completed. \Box

Remark 1 In the paper [18] was proved that the system (1) in Theorem 1 is a complete system of M(n,p)invariants of a paths ([18, Theorem 2]). Then, by Theorem 1 in [18], the system (1) in Theorem 1, where $x = x(t_s(x))$ is an invariant parametrization of a curve α , is a complete system of M(n,p)-invariants of a curve α ([18, Corollary 1]). There are relations in the form of inequalities between elements of the system 1. These relations will be found later.

For vectors $a_k \in \mathbb{R}^n$, where $a_k = (a_{k1}, \ldots, a_{kn})$ and $k = 1, \ldots, n$, the determinant $\det(a_{kj})$ will be denoted by $[a_1a_2\ldots a_n]$. So $\left[x'(t)x^{(2)}(t)\ldots x^{(n)}(t)\right]$ is the determinant of derivatives of a path x(t).

Theorem 2 The system

$$\left\{ \left[x'(t)x^{(2)}(t)\dots,x^{(n)}(t) \right], < x^{(k)}(t), x^{(k)}(t) >, k = 1,\dots, n-1 \right\}$$
(4)

is a generating system of R < x > SM(n,p).

Proof Let $SO(n, p) = \{F \in O(n, p) : \det F = 1\}$. First we prove several lemmas. \Box

Lemma 9 $R < x >^{SM(n,p)} = R < x' >^{SO(n,p)}$.

Proof A proof is similar to the proof of Lemma 1.

L' > SO(n, n) There SO(n, n) inversion to differential matrices in the formula to the

Lemma 10 Let $f \in R < x' > SO(n,p)$. Then SO(n,p)-invariant differential polynomials f_1, f_2 exist such that $f = f_1/f_2$.

Proof A proof is similar to the proof in [16, p. 106].

Lemma 11 The system of all elements

$$\left[x^{(m_1)}x^{(m_2)}\cdots x^{(m_n)}\right], < x^{(q)}, x^{(r)} >,$$
(5)

where $m_i, q, r \in N$, is a generating system of $R < x' >^{SO(n,p)}$ as a field.

Proof Let $R[x^{(m)}; m \in N]^{SO(n,p)}$ be the *R*-algebra of all SO(n,p)-invariant polynomials of the system $\{x^{(m)}; m \in N\}$. According to the First Main Theorem for SO(n,p) ([21, p.p. 53; 65–66]), the system equation (5) is a generating system of $R[x^{(m)}; m \in N]^{SO(n,p)}$. Lemma 10 implies that the system equation (5) is a generating system of R < x' > SO(n,p) as a field. \Box

Denote by Z the system equation (4) of differential polynomials. Let $R\{Z\}$ be the differential R-subalgebra of R < x' > SO(n,p) generated by elements of the system Z.

Let $\delta = \delta_x$ be the determinant of the matrix $Gr(y_1, y_2, \dots, y_{n-1}; z_1, z_2, \dots, z_{n-1})$, where $y_1 = z_1 = x', y_2 = z_2 = x^{(2)}, \dots, y_{n-1} = z_{n-1} = x^{(n-1)}$.

Lemma 12 $\langle y_i, z_j \rangle \in R\{Z\}$ for all $1 \leq i, j, i+j \leq 2n-1$, $\delta \in R\{Z\}$ and $\delta^{-1} \in R < Z >$.

Proof Using Lemma 4, we get $\langle x^{(i)}, x^{(j)} \rangle \in R\{Z\}$ for all $1 \leq i, j, i+j \leq 2n-1$. The element $\langle y_i, z_j \rangle$ of the determinant δ is the functions $\langle x^{(i)}, x^{(j)} \rangle$, where $1 \leq i, j \leq n-1$. Hence $\delta \in R\{Z\}$ and $\delta^{-1} \in R < Z \rangle$.

In sequel, we need the following lemma.

Lemma 13 The equality

$$(-1)^{p}[y_{1}\ldots y_{n}][z_{1}\ldots z_{n}] = det ||\langle y_{i}, z_{j}\rangle||_{i,j=1,2,\ldots,n}$$

holds for all vectors $y_1, \ldots, y_n, z_1, \ldots, z_n$ in E_p^n .

Proof A proof of the this lemma is similar to the proof in ([16], p.72).

Let Δ be the function in the proof of Theorem 2.

Lemma 14 $\Delta \in R\{Z\}$ and $\Delta^{-1} \in R < Z >$.

Proof Using Lemma 13 to vectors $y_1 = z_1 = x', y_2 = z_2 = x^{(2)}, \cdots, y_n = z_n = x^{(n)}$, we obtain

$$(-1)^{p} \left[x' x^{(2)} \dots x^{(n)} \right]^{2} = \det \left\| < y_{i}, z_{j} > \right\|_{i,j=1,2,\dots,n} = \Delta.$$
(6)

Since $\left[x^{'}x^{(2)}\dots x^{(n)}\right] \in \mathbb{Z}$, we have $\Delta \in \mathbb{R}\left\{Z\right\}$ and $\Delta^{-1} \in \mathbb{R} < \mathbb{Z} >$.

86

Denote by $R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ the differential R-subalgebra of $R < x' >^{SM(n,p)}$ generated by Z and functions δ^{-1}, Δ^{-1} . By Lemmas 10 and 11, for a proof of our theorem, it is enough to prove that $\left[x^{(m_1)}x^{(m_2)}\cdots x^{(m_n)}\right] \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ and $\langle x^{(b)}, x^{(c)} \rangle \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ for all $m_i, b, c \in N$.

Let V be the system in the proof of Theorem 2.

 ${\bf Lemma \ 15} \ < x^{(n)}, x^{(n)} > \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\} \ and \ R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}.$

Proof For i = 1, 2, ..., n, denote by D_{ni} the cofactor of the element $\langle y_n, z_j \rangle$ of the matrix $A = \|\langle y_i, z_j \rangle\|_{i,j=1,2,...,n}$ in equation (6). Then we obtain the equality

$$\Delta = \langle y_n, z_1 \rangle D_{n1} + \langle y_n, z_2 \rangle D_{n2} + \dots + \langle y_n, z_{n-1} \rangle D_{nn-1} + \langle y_n, z_n \rangle D_{nn}.$$
(7)

Since $\delta = D_{nn} \neq 0$, equalities equation (6) and equation (7) imply

$$\langle y_n, z_n \rangle = \langle x^{(n)}, x^{(n)} \rangle = \Delta \delta^{-1} - \langle y_n, z_1 \rangle D_{n1} \delta^{-1} - \langle y_n, z_2 \rangle D_{n2} \delta^{-1} -$$
(8)
 $\dots - \langle y_n, z_{n-1} \rangle D_{nn-1} \delta^{-1}.$

By Lemma 12, $\langle y_n, z_j \rangle = \langle x^{(n)}, x^{(j)} \rangle \in R \{Z\}$ for each $1 \leq j \leq n-1$. We prove that $D_{ns} \in R \{Z\}$ for every $1 \leq s \leq n-1$. We have $D_{ns} = (-1)^{n+s} \det Gr(y_1, y_2, \dots, y_{n-1}; z_1, z_2, \dots, z_{s-1}, z_{s+1}, \dots, z_n)$. Elements of D_{ns} have the following forms $\langle y_i, z_j \rangle$ and $\langle y_i, z_n \rangle$, where i < n, j < n. Since $\langle y_i, z_n \rangle = \langle y_n, z_i \rangle \in R \{Z\}$, we have $D_{ns} \in R \{Z\}$. Hence equation (8) implies $\langle y_n, z_n \rangle \in R \{Z, \delta^{-1}\}$. Using $V \subset Z \cup \{\langle y_n, z_n \rangle\}$, we obtain $R \{V, \Delta^{-1}\} \subset R \{Z, \delta^{-1}, \Delta^{-1}\}$.

Lemma 16 $\langle x^{(b)}, x^{(c)} \rangle \in R \{ Z, \delta^{-1}, \Delta^{-1} \}$ for all $b, c \in N$.

Proof By Lemma 15, we have $R\{V, \Delta^{-1}\} \subset R\{Z, \delta^{-1}, \Delta^{-1}\}$. Since $\langle x^{(b)}, x^{(c)} \rangle \in R\{V, \Delta^{-1}\}$ for all $b, c \in N$, we obtain $\langle x^{(b)}, x^{(c)} \rangle \in R\{Z, \delta^{-1}, \Delta^{-1}\}$ for all $b, c \in N$.

Lemma 17 $[x^{(m_1)}x^{(m_2)}\cdots x^{(m_n)}] \in R\{Z, \delta^{-1}, \Delta^{-1}\}$ for all $m_i \in N$.

Proof Using Lemma 13 to vectors $y_1 = x', y_2 = x^{(2)}, \dots, y_n = x^{(n)}, z_1 = x^{(m_1)}, z_2 = x^{(m_2)}, \dots, z_n = x^{(m_n)},$ we obtain that

$$(-1)^{p}[y_{1}\dots y_{n}][z_{1}\dots z_{n}] = \det || < y_{i}, z_{j} > ||_{i,j=1,2,\dots,n}.$$
(9)

Since $\Delta = (-1)^p [y_1 \dots y_n]^2$, equation (9) implies

$$[z_1 \dots z_n] = \Delta^{-1}[y_1 \dots y_n] \det || < y_i, z_j > ||_{i,j=1,2,\dots,n}.$$

By Lemma 16, $\langle y_i, z_j \rangle = \langle x^{(i)}, x^{(m_j)} \rangle \in R\{Z, \delta^{-1}, \Delta^{-1}\}$ for all i, j = 1, 2, ..., n. Since $[y_1 ... y_n] \in Z \subset R\{Z, \delta^{-1}, \Delta^{-1}\}$, we obtain $[z_1 ... z_n] \in R\{Z, \delta^{-1}, \Delta^{-1}\}$.

We complete the proof of our theorem. By Lemmas 12 and 14, $\delta^{-1}, \Delta^{-1} \in R < Z >$. Hence $R\{Z, \delta^{-1}, \Delta^{-1}\} \subset R < Z >$. By Lemma 16, $\langle x^{(b)}, x^{(c)} \rangle \in R\{Z, \delta^{-1}, \Delta^{-1}\} \subset R < Z >$ for all $b, c \in N$. By Lemma 17, $[x^{(m_1)}x^{(m_2)}\cdots x^{(m_n)}] \in R\{Z, \delta^{-1}, \Delta^{-1}\} \subset R < Z >$ for all $m_i \in N$. Hence Lemmas 9-11 imply that R < Z > = R < x > SM(n,p). The theorem is completed.

Remark 2 In the paper [18] was proved that the system (4) in Theorem 2 is a complete system of SM(n,p)invariants of paths ([18, Theorem 3]). Then, by Theorem 1 in [18], the system (4) in Theorem 1, where $x = x(t_s(x))$ is an invariant parametrization of a curve α , is a complete system of SM(n,p)-invariants of a curve α ([18, Corollary 2]). There are relations in the form of inequalities between elements of the system 4. These relations will be found below.

3. Relations between elements of complete systems of invariants of a curve in E_n^n

Definition 4 A system of differential polynomials $p_1\{x\}, \ldots, p_m\{x\} \in R\{x\}$ is called differential algebraically independent if there is no nonzero differential polynomial $f\{y_1, \ldots, y_m\} \in R\{y_1, \ldots, y_m\}$ such that $f\{p_1\{x\}, \ldots, p_m\{x\}\} = 0$ for all paths x.

Theorem 3 . The system

$$\left\{ < x^{(k)}(t), x^{(k)}(t) >, k = 1, 2, ..., n \right\}$$

is differential algebraically independent.

Proof A proof is similar to the proof of Theorem 12.8 in ([16], p.112).

Let $A(x(t)) = \|x'(t)x^{(2)}(t)\dots x^{(n)}(t)\|$, $A(x)^{\top}$ be the transpose matrix of A(x) and $I_p = \|b_{ij}\|$ be the diagonal $n \times n$ -matrix such that $b_{ii} = -1$ for all $i = 1, \dots, p$ and $b_{jj} = 1$ for all $j = p + 1, \dots, n$. We have the equality $A(x)^{\top}I_pA(x) = \|\langle x^{(i)}, x^{(j)} \rangle\|_{i,j=1,2,\dots,n}$. The matrix $A(x)^{\top}I_pA(x)$ is congruent to the matrix I_p for every non-singular J-path x(t) and all $t \in J$. This fact, in view of the equality $A(x)^{\top}I_pA(x) = \|\langle x^{(i)}, x^{(j)} \rangle$ $\|$, gives some system of relations (inequalities) between $\langle x'(t), x'(t) \rangle, \dots, \langle x^{(n)}(t), x^{(n)}(t) \rangle$ and their derivatives. Below we prove that an arbitrary relation between $\langle x'(t), x'(t) \rangle, \dots, \langle x^{(n)}(t), x^{(n)}(t) \rangle$ and their derivatives is a consequence of the above mentioned relations.

Corollary 1 Let y_1, y_2, \ldots, y_n be differential variables and $f \in R\{y_1, y_2, \ldots, y_n\}$. Then the differential polynomial $f\{y_1, y_2, \ldots, y_n\}$ is uniquely determined by its values on functions $y_1(t), y_2(t), \ldots, y_n(t)$ in the form

$$y_i(t) = \langle x^{(i)}(t), x^{(i)}(t) \rangle,$$
(10)

where x(t) run through the space $(C^{\infty}(J))^n$.

Proof Assume that $f_1, f_2 \in R\{y_1, y_2, \dots, y_n\}$ exist such that $f_1 \neq f_2$ and

$$f_1\{y_1(t), y_2(t), \dots, y_n(t)\} = f_2\{y_1(t), y_2(t), \dots, y_n(t)\}$$
(11)

for all $y_1(t), y_2(t), \ldots, y_n(t)$ in the form equation (10). From equation (11), we obtain the equality

$$f\{y_1(t), y_2(t), \dots, y_n(t)\} = 0$$
(12)

for all $y_1(t)$, $y_2(t)$,..., $y_n(t)$ in the form equation (10), where $f = f_1 - f_2$ is a nonzero differential polynomial since $f_1 \neq f_2$. Equation (12) means that differential polynomials $\langle x^{(1)}, x^{(1)} \rangle, \langle x^{(2)}, x^{(2)} \rangle, \ldots \langle x^{(n)}, x^{(n)} \rangle$ are differential-algebraically dependent, which contradicts Theorem 3.

Corollary 2 The differential polynomial $P_{ij} \{y_1, y_2, \ldots, y_k\}$ in Lemma 4 is unique.

Proof A proof follows from Theorem 3.

For convenience, we will write $P_{ij}\{y_1, y_2, \ldots, y_n\}$ instead of $P_{ij}\{y_1, y_2, \ldots, y_k\}$.

Let the symbol ' denotes the differentiation in the differential algebra $R\{y_1, y_2, \ldots, y_n\}$.

Corollary 3 The equality

$$P_{ij}\{y_1, y_2, \dots, y_n\}' = P_{i+1j}\{y_1, y_2, \dots, y_n\} + P_{ij+1}\{y_1, y_2, \dots, y_n\}$$
(13)

holds for all i, j satisfying the conditions $1 \le i, j, i+j \le 2n$.

Proof From the definition of differential polynomials $P_{ij} \{y_1, y_2, \ldots, y_n\}$, we have the equality

 $< x^{(i)}(t), x^{(j)}(t) >= P_{ij} \{y_1(t), y_2(t), \dots, y_n(t)\},\$

where $y_k(t) = \langle x^{(k)}(t), x^{(k)}(t) \rangle, k = 1, ..., n, 1 \le i, j, i+j \le 2n+1$. Differentiating this equality, we obtain

$$\frac{d}{dt} < x^{(i)}(t), x^{(j)}(t) > = \frac{d}{dt} P_{ij} \{ y_1(t), y_2(t), \dots, y_n(t) \}.$$

Assume that $1 \leq i, j, i+j \leq 2n$. Since

$$\frac{d}{dt} < x^{(i)}(t), x^{(j)}(t) > = < x^{(i+1)}(t), x^{(j)}(t) > + < x^{(i)}(t), x^{(j+1)}(t) >,$$

we have

$$\frac{d}{dt}P_{ij}\left\{y_1(t), y_2(t), \dots, y_n(t)\right\} = P_{i+1j}\left\{y_1(t), y_2(t), \dots, y_n(t)\right\} + P_{ij+1}\left\{y_1(t), y_2(t), \dots, y_n(t)\right\}.$$

This equality takes place for all functions $y_1(t)$, $y_2(t)$, ..., $y_n(t)$ in the form equation (10). Applying the Corollary 3, we conclude that the latest equality takes place for all $y_1(t), y_2(t), \ldots, y_n(t) \in C^{\infty}(J)$. Passing from a parametric representation of differential polynomials in the latest equality to their abstract differential polynomials, we obtain equation (13).

Let $f_1(t), \ldots, f_n(t)$ be arbitrary C^{∞} -functions on J=(a,b). For convenience, the indexes of these functions will be written in the form $f_i(t) = f_{ii}(t)$. Using functions $f_{ii}(t)$, we define functions

$$f_{ij}(t) = P_{ij} \{ f_{11}(t), \dots, f_{nn}(t) \}, 1 \le i, j \le n.$$
(14)

Proposition 1 The equality

$$f'_{ij}(t) = f_{i+1j}(t) + f_{ij+1}(t)$$

holds for all i, j satisfying the conditions $1 \le i, j, i+j \le 2n$.

89

Proof Letting $y_1 = f_{11}(t), y_2 = f_{22}(t), \dots, y_n = f_{nn}(t)$ in Corollary 3, we obtain the desired equality.

Theorem 4 Let $f_{11}(t), \ldots, f_{nn}(t)$ be infinitely differentiable functions on J such that:

- (i) $det||f_{ij}(t)|| \neq 0$ for all $t \in J$, where $f_{ij}(t)$ is defined by (14);
- (ii) the matrix $||f_{ij}(t)||$ is congruent to the matrix I_p for some $t_0 \in J$.

Then there exists a non-singular J-path x(t) in E_p^n such that

$$< x^{(i)}(t), x^{(i)}(t) >= f_{ii}(t)$$

for all $t \in J$ and $i = 1, \ldots, n$.

Proof Define the $n \times n$ -matrix function $Q(t) = ||f_{ij}||$, where f_{ij} is defined by equation (14). Since the differential polynomials P_{ij} satisfy the relations $P_{ij} = P_{ji}$, we obtain $Q^{\top}(t) = Q(t)$, where $Q(t)^{\top}$ is the transpose matrix of Q(t). Let Q'(t) be the derivative of Q(t).

Lemma 18 A unique solution $B(t) = ||b_{ij}||$ of the $n \times n$ -matrix equation

$$Q'(t) = B^{\top}(t)Q(t) + Q(t)B(t)$$
(15)

exists which satisfies the conditions

- $(\gamma_1) \ b_{j+1j}(t) = 1 \text{ for all } t \in J \text{ and } 1 \le j \le n-1;$
- (γ_2) $b_{ij}(t) = 0$ for all $t \in J$ and $j \neq n, i \neq j+1, 1 \leq i \leq n$.

Proof By (γ_1) and (γ_2) , only the elements $b_{1n}(t), \ldots, b_{nn}(t)$ of the matrix B(t) are unknown. Using (γ_1) and (γ_2) , from equation (15) and $Q^{\top}(t) = Q(t)$, we obtain

$$f_{ij}'(t) = f_{i+1j}(t) + f_{ij+1}(t)$$

for $1 \leq i, j \leq n-1$ and

$$f_{ni}'(t) = f_{in}'(t) = f_{i+1n}(t) + \sum_{k=1}^{n} f_{ik}(t)b_{kn}(t)$$

for $1 \leq i \leq n-1$,

$$f_{nn}'(t) = \sum_{k=1}^{n} b_{kn}(t) f_{kn}(t) + \sum_{k=1}^{n} f_{nk}(t) b_{kn}(t) = 2 \sum_{k=1}^{n} f_{nk}(t) b_{kn}(t).$$

Hence, for the elements $b_{1n}(t), \ldots, b_{nn}(t)$, we obtain the following system of n linear equations in n unknowns:

$$\sum_{k=1}^{n} f_{ik}(t)b_{kn}(t) = f'_{ni}(t) - f_{i+1n}(t), 1 \le i \le n-1,$$
$$\sum_{k=1}^{n} f_{nk}(t)b_{kn}(t) = 0, 5f'_{nn}(t).$$

By assumption (i) of the theorem, the determinant of this system is $\det Q(t) = \det ||f_{ij}(t)|| \neq 0$ for all $t \in J$. Consequently, this system has a unique solution $b_{1n}(t), \ldots, b_{nn}(t)$.

It is obvious that B(t) is infinitely differentiable.

Lemma 19 Let B(t) be the solution of equation (15). Then an infinitely differentiable $n \times n$ -matrix function A(t) on J exists such that

- (δ_1) $A(t) = ||a(t)a'(t)\dots a^{(n-1)}(t)||$ for some J-path a(t) in E_n^n ;
- (δ_2) det $A(t) \neq 0$ for all $t \in J$;
- $(\delta_3) A'(t) = A(t)B(t);$
- (δ_4) $A^{\top}(t)I_pA(t) = Q(t)$, where $I_p = ||b_{ij}||$ be the diagonal $n \times n$ -matrix such that $b_{ii} = -1$ for all $i = 1, \ldots, p$ and $b_{ij} = 1$ for all $j = p + 1, \ldots, n$.

Proof From assumptions (γ_1) and (γ_2) of Lemma 19, and from the theory of linear differential equations it follows that a solution A(t) of equation (δ_3) exists such that $\det A(t) \neq 0$ for all $t \in J$. Since the matrix B(t)satisfies relations (γ_1) and (γ_2) , it follows that the matrix A(t) is the form (δ_1) for some path a(t) in E_p^n . We have $\det(A^{\top}(t)A(t)) \neq 0$ for all $t \in J$. Let t_0 be such that the matrix $Q(t_0) = ||f_{ij}(t_0)||$ is congruent to the matrix I_p . Since $Q(t_0)$ is congruent to the matrix I_p , $\det Q(t_0) \neq 0$, $\det(A^{\top}(t)A(t)) \neq 0$, and $Q^{\top}(t) = Q(t)$ for all $t \in J$, it follows that a nondegenerate $n \times n$ -matrix $g \in GL(n, R)$ exists such that

$$(g^{\top})^{-1}(A^{\top}(t_0))^{-1}Q(t_0)A^{-1}(t_0)g^{-1} = I_p.$$

Hence we have $A^{\top}(t_0)g^{\top}I_pgA(t_0) = Q(t_0)$. The matrix function gA(t) is also solution of (δ_3) . The matrix function $H(t) = A^{\top}(t)g^{\top}I_pgA(t)$ satisfies the following conditions: $H^{\top}(t) = H(t), H'(t) = B^{\top}(t)H(t) + H(t)B(t)$ for all $t \in J$. But these conditions are also fulfilled for the function Q(t). Then from the equality $H(t_0) = Q(t_0)$, by the existence and uniqueness theorem of a solution of a system of linear differential equations, it follows that H(t) = Q(t) for all $t \in J$.

Now we return to the proof of the theorem. By Lemma 19, a matrix

$$A(t) = ||a(t)a'(t)\dots a^{(n-1)}(t)||$$

exists such that $A'(t) = A(t)B(t), A^{\top}(t) \cdot I_p \cdot A(t) = Q(t)$. Using the relation $A^{\top}(t) \cdot I_p \cdot A(t) = || \langle a^{(i)}(t), a^{(j)}(t) \rangle ||$, we obtain $\langle a^{(i)}(t), a^{(j)}(t) \rangle = f_{i+1j+1}$ for all $i, j = 0, 1, \dots, n-1$. Let $x(t) = \int_t^{t_0} a(t)dt$. Then $\langle x^{(i)}(t), x^{(i)}(t) \rangle = f_{ii}$ for all $i = 1, \dots, n$. Since $\left[x'(t)x^{(2)} \dots x^{(n)}(t) \right]^2 = \det A^{\top}(t) \cdot I_p \cdot A(t) = \det Q(t) \neq 0$ for all $t \in J$, the path x(t) is nondegenerate.

Let J be one of intervals $(0, l), 0 < l \le +\infty, (-\infty, 0), (-\infty, +\infty)$.

Corollary 4 Let J be one of intervals $(0, l), 0 < l \le +\infty, (-\infty, 0), (-\infty, +\infty)$. Assume that $f_{11}(s), \ldots, f_{nn}(s)$ be infinitely differentiable functions on J such that:

- (i) $|f_{11}(s)| = 1$ for all $s \in J$;
- (ii) $det||f_{ij}(s)|| \neq 0$ for all $s \in J$, where the function $f_{ij}(s)$ is defined by equation (14);
- (iii) the matrix $||f_{ij}(s)||$ is congruent to the matrix I_p for some $t_0 \in J$.

Then a regular non-singular curve α and its invariant parametrization x exist such that $\langle x^{(i)}(s), x^{(i)}(s) \rangle = f_{ii}(s)$ for all $s \in I$, i = 1, ..., n.

Proof This corollary is a special case of Theorem 4.

Let $f_{11}(t), \ldots, f_{n-1n-1}(t)$ and d(t) be C^{∞} -functions on an interval J. We consider the matrix $Q(t) = ||f_{ij}(t)||_{i,j=1,\ldots,n}$, where the function $f_{ij}(t), i+j < 2n$, is defined by $f_{11}, \ldots, f_{n-1n-1}$ as in (14) and the function $f_{nn}(t)$ will be defined below. Let $A_{ni}(t)$ be the cofactor of the element $f_{ni}(t)$ in the matrix Q(t). Since every element of the cofactor $A_{ni}(t)$ consists of all f_{pq} such that p + q < 2n, $A_{ni}(t)$ is a differential polynomial of $f_{11}, \ldots, f_{n-1n-1}$. Assume that $A_{nn}(t) = \det ||f_{ij}(t)||_{i,j=1,\ldots,n-1} \neq 0$ for all $t \in J$. We define the element f_{nn} as follows:

$$f_{nn} = \frac{(-1)^p d^2(t) - f_{n1}(t) A_{n1} - \dots - f_{nn-1}(t) A_{nn-1}}{A_{nn}}$$

This equality implies

$$\det Q(t) = f_{n1}(t)A_{n1} + \dots + f_{nn-1}(t)A_{nn-1} + f_{nn}(t)A_{nn} = (-1)^p d^2(t)$$
(16)

for all $t \in J$.

Theorem 5 Let $f_{11}(t), \ldots, f_{n-1n-1}(t)$ and d(t) be infinitely differentiable functions on an interval J such that:

- (λ_1) $A_{nn}(t) \neq 0$ for all $t \in J$;
- (λ_2) the matrix Q(t) is congruent to the matrix I_p for some $t_0 \in J$;
- $(\lambda_3) \quad d(t) \neq 0.$

Then there exists a non-singular path x(t) in E_p^n such that

$$\langle x^{(i)}(t), x^{(i)}(t) \rangle = f_{ii}(t), \quad \left[x'(t)\dots x^{(n)}(t)\right] = d(t)$$

for all $t \in J$ and $i = 1, \ldots, n-1$.

Proof Equation (16) and the condition (λ_3) implies $\det Q(t) \neq 0$ for all $t \in J$. Hence, according to Theorem 4 there exists a non-singular path x(t) in E_p^n such that $\langle x^{(i)}(t), x^{(i)}(t) \rangle = f_{ii}(t)$ for all $t \in J$ and i = 1, ..., n. Using these equalities, Lemma 4 and equation (14), we obtain $\det Q(t) = \det ||\langle x^{(i)}(t), x^{(i)}(t)\rangle||$. Then using this equality, equation (16) and Lemma 13, we obtain $\left[x'(t) \dots x^{(n)}(t)\right]^2 = d^2(t)$. Then $\left[x'(t) \dots x^{(n)}(t)\right] = d(t)$ or $\left[x'(t) \dots x^{(n)}(t)\right] = -d(t)$. Since $\left[x'(t) \dots x^{(n)}(t)\right] \neq 0$ and $d(t) \neq 0$ for all $t \in J$, we have $\left[x'(t) \dots x^{(n)}(t)\right] = d(t)$ or $\left[x'(t) \dots x^{(n)}(t)\right] = -d(t)$ for all $t \in I$. In the first case, a proof is completed. In the second case,

we consider $g \in O(n)$ such that $\det g = -1$. In this case, we put y(t) = gx(t). Then $\langle y^{(i)}(t), y^{(i)}(t) \rangle =$ $\langle gx^{(i)}(t), gx^{(i)}(t) \rangle = \langle x^{(i)}(t), x^{(i)}(t) \rangle = f_{ii}(t,) \text{ and } \left[y'(t) \dots y^{(n)}(t)\right] = \left[gx'(t) \dots gx^{(n)}(t)\right] = d(t).$ Thus the path y(t) satisfies all conditions of our theorem.

An analog of Corollary 4 takes place for the complete system of SM(n,p)-invariants of a curve.

References

- [1] Aslaner, R. and Boran, A. I.: On the geometry of null curves in the Minkowski 4-space. Turkish J. of Math. 32, 1-8 (2008).
- [2] Bejancu, A.: Lightlike curves in Lorentz manifolds. Publ. Math. Debrecen. 44, 145–155 (1994).
- [3] Bérard B. L. and Charuel X.: A generalization of Frenet's frame for nondegenerate quadratic forms with any index. In: Séminaire de théorie spectrale et géométrie. Année 2001–2002, St. Martin d'Héres: Université de Grenoble I, Institut Fourier, Sémin. Théor. Spectr. Géom. 20, 101-130 (2002).
- [4] Bini, D., Geralico, A. and Jantzen, R. T.: Frenet-Serret formalism for null world lines. Class. Quantum Grav. 23, 3963-3981 (2006).
- [5] Bonnor, W.: Null curves in a Minkowski spacetime. Tensor, N. S. 20, 229–242 (1969).
- [6] Borisov Yu. F.: Relaxing the a priori constraints of the fundamental theorem of space curves in E_l^n . Siberian Math. J. 38, No. 3, 411-427 (1997).
- [7] Borisov Yu. F.: On the theorem of natural equations of a curve. Siberian Math. J. 40, No. 4, 617–621 (1999).
- [8] Çöken, C. and Çiftçi, Ü.: On the Cartan curvatures of a null curve in Minkowski spacetime. Geometriae Dedicata. 114, 71-78 (2005).
- [9] Duggal, K. L. and Becancu A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht, Boston, London. Kluwer Acad. Publ. 1996.
- [10] Ferrández, A., Giménez, A. and Lucas, P.: Degenerate curves in pseudo-Euclidean spaces of index two. In: Mladenov, Ivailo M. (ed.) et al., Proceedings of the 3rd international conference on geometry, integrability and quantization, Varna, Bulgaria, June 14–23, 2001. Sofia: Coral Press Scientific Publishing. 209–223 (2002).
- [11] Ferrández, A., Giménez, A. and Lucas, P.: s-degenerate curves in Lorentzian space forms. J. Geom. Phys. 45, No. 1-2, 116-129 (2003).
- [12] Formiga, L. B. and Romero, C.: On the differential geometry of time-like curves in Minkowski spacetime. Am. J. Phys. **74**(10), 1012–1016 (2006).
- [13] Ichimura, H.: Time-like and space-like curves in Frenet-Serret formalisms. Thesis. Hadronic J. Suppl. 3, No. 1, 1–94 (1987).
- [14] Inoguchi, J. and Lee, S.: Null curves in Minkowski 3-space, International Electronic Journal of Geometry 1 No. 2, 40-83 (2008).
- [15] Kaplansky, I.: An Introduction to Differential Algebra. Paris. Hermann 1957.
- [16] Khadjiev, D.: An Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent, 1988. [Russian]
- [17] Khadjiev, D. and Pekşen Ö.: The complete system of global integral and differential invariants for equi-affine curves. Differential Geometry and its Applications. 20, 167–175 (2004).
- [18] Pekşen, Ö., Khadjiev, D. and Ören, I: Invariant parametrizations and complete systems of global invariants of curves in the pseudo-euclidean geometry, Turk. J. Math., 35 1–14 (2011).(in Press).

- [19] Petrović-Torgašev, Ilarslan K. and Nešović E.: On partially null and pseudo-null curves in the semi-euclidean space R_2^4 . J. Geom. 84, 106–116 (2005).
- [20] Urbantke H.: Local differential geometry of null curves in conformally flat space-time. J. Math. Phys. 30(10), 2238–2245 (1989).
- [21] Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton-New Jersey. Princeton Univ. Press 1946.
- [22] Yilmaz, S. and Turgut, M.: On the differential geometry of curves in Minkowski space-time I. Int. J. Contemp. Math. Sciences. 3, No. 27, 1343–1349 (2008).