Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $80-94$
(C) TÜBİTAK
doi:10.3906/mat-1104-41

Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry

Djavvat KHADJIEV, İdris ÖREN*, Ömer PEKŞEN

Department of Mathematics, Karadeniz Technical University, Trabzon, 61080, Turkey

| Received: 27.04 .2011 | Accepted: 09.08 .2011 | Published Online: 17.12 .2012 | Printed: 14.01 .2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

Let $M(n, p)$ be the group of all motions of an n-dimensional pseudo-Euclidean space of index p. It is proved that the complete system of $\mathrm{M}(\mathrm{n}, \mathrm{p})$-invariant differential rational functions of a path (curve) is a generating system of the differential field of all $M(n, p)$-invariant differential rational functions of a path (curve), respectively. A fundamental system of relations between elements of the complete system of $\mathrm{M}(\mathrm{n}, \mathrm{p})$-invariant differential rational functions of a path (curve) is described.

Key words: Curve, differential invariant, pseudo-Euclidean geometry, Minkowski geometry

1. Introduction

The present paper is a continuation of our paper [18]. Let E_{p}^{n} be the n-dimensional pseudo-Euclidean space of index p (that is the space R^{n} with the scalar product $<x, y>=-x_{1} y_{1}-\cdots-x_{p} y_{p}+x_{p+1} y_{p+1}+\cdots+x_{n} y_{n}$), $O(n, p)$ is the group of all pseudo-orthogonal transformations of $E_{p}^{n}, M(n, p)=\left\{F: E_{p}^{n} \rightarrow E_{p}^{n} \mid F x=g x+b\right.$, $\left.g \in O(n, p), b \in E_{p}^{n}\right\}$ and $S M(n, p)=\{F \in M(n, p): \operatorname{det} g=1\}$.

Here, for groups $G=M(n, p)$ and $G=S M(n, p)$, we prove that the complete system of G-invariant differential rational functions of a path (curve) obtained in [18, Theorems 2-3 and Corollaries $1-2]$ is a generating system of the differential field of all G-invariant differential rational functions of a path (respectively, curve). We describe a fundamental system of relations between elements of the complete system of G-invariant functions of a path (curve) (i.e., global existence theorems for a path and a curve).

For groups $G=M(n, 0)$ and $G=S M(n, 0)$, the generating system of the differential field of all G invariant differential rational functions of a path in the Euclidean space E_{0}^{n} was obtained in [16]. The FrenetSerret equation for both time-like and space-like curves in spaces E_{1}^{3} and E_{1}^{4} is given in $[12,13,22]$. In papers $[1,4,5,8,14,19,20]$, the Frenet-Serret equation is extended from non-null curves in E_{1}^{3}, E_{1}^{4} and E_{2}^{4} to null (lightlike, isotropic) curves. For arbitrary n, the Frenet-Serret equation is obtained for the Lorentz space E_{1}^{n} in [2], $[9, \mathrm{pp} .52-76]$. The Frenet-Serret equation in E_{p}^{n} for arbitrary n and index p is considered in [3, 6, 7]. Existence and rigidity (that is uniqueness) theorems for curves in spaces E_{1}^{3} and E_{1}^{4} are studied in [5] and thesis [13] (in the case with constant coefficients). In papers [5, 14], existence and rigidity theorems are

[^0]extended from non-null curves in E_{1}^{3} and E_{1}^{4} to null curves. For arbitrary n, existence and rigidity theorems are extended to the Lorentz space E_{1}^{n} and to the space E_{2}^{n} in [9, pp. 52-76]; and [10, 11]. For arbitrary n and index p, existence and rigidity theorems for curves in E_{p}^{n} are considered in the paper [6]. In these papers, existence theorems are local. The rigid group in the rigidity theorem is given in $[6,12,14]$. The rigid groups in papers $[14,12,6]$ are $S M(3,1), S M(4,1)$ and $S M(n, p)$, respectively.

This paper is organized as follows. In Section 2, a definition of the differential field of all G-invariant differential rational functions of a path (curve) is given. For groups $G=M(n, p), S M(n, p)$, it is proved that the complete system of G-invariant differential rational functions of a path (curve) obtaining in [18, Theorems 2 and 3 and Corollaries 1 and 2] is a generating system of the differential field of all G-invariant differential rational functions of a path (curve), respectively. (Theorems 1, 2). In Section 3, the description of a fundamental system of relations between elements of the complete system of G-invariant functions of a path (curve) is given (Theorems 3-4 and Corollary 4).

In this paper we use definitions and notations of the paper [18].

2. Invariant differential rational functions of paths and curves

Below we cite some notation and facts from the differential algebra (see [15-17]) in a form which is convenient for our considerations. Let R be a field of real numbers. Consider the ring $R\left[y_{0}, y_{1} \ldots, y_{n}, \ldots\right]$ of polynomials with real coefficients in the countable set of variables $\left\{y_{0}, y_{1} \ldots, y_{n}, \ldots\right\}$. We let $y_{0}=y, y_{1}=y^{\prime}, \ldots, y_{m+1}=$ $\left(y_{m}\right)^{\prime}=y^{(m+1)}$. The operation ${ }^{\prime}: y_{m} \rightarrow y_{m}^{\prime}$ will be called the differentiation of an element y_{m}. Using the Leibniz rule, this operation can be uniquely extended to the ring $R\left[y_{0}, y_{1} \ldots, y_{n}, \ldots\right]$. As a result, we obtain a differential R-algebra (d-algebra), which will be denoted by $R\{y\}$. Elements of this d-algebra are called differential polynomials in y with coefficients from R. We denote elements of $R\{y\}$ by $f\{y\}$. The element y is called the differential variable (unknown).

Differential polynomials $f\left\{z_{1}, \ldots, z_{n}\right\}$ and the d-algebra $R\left\{z_{1}, \ldots, z_{n}\right\}$ in a finite number of differential variables z_{1}, \ldots, z_{n} are defined in a similar manner.

We denote by $C^{\infty}(J)$ the set of all infinitely differentiable functions on an interval $J=(a, b)$. Let $f\{y\}$ be a differential polynomial in a differential variable, and let $y(t) \in C^{\infty}(J)$. In the expression $f\{y\}$, let y to $y(t)$ and polynomial term $y^{(n)}$ to $\frac{d^{n} y(t)}{d t^{n}}(\mathrm{n}=1,2, \ldots)$. We denote the obtained expression by $f\{y(t)\}$. The expression $f\{y(t)\}$ is a polynomial in $y(t)$ and a finite number of derivatives of $y(t)$. For $f_{1}, f_{2} \in R\{y\}$, $f_{1}=f_{2}$ if and only if $f_{1}\{y(t)\}=f_{2}\{y(t)\}$ for all $y(t) \in C^{\infty}(J)$.

The set of all expressions $f\{y(t)\}$, where $f \in R\{y\}$, will be denoted by $R\{y(t)\} . R\{y(t)\}$ is an R algebra with respect to the standard operations of addition and multiplication of functions and multiplication of a function by a real number. $R\{y(t)\}$ becomes a differential R-algebra if $\frac{d}{d t}$ is taken as the operation of differentiation. One can easily see that the mapping $f\{y\} \rightarrow f\{y(t)\}$ is an isomorphism of differential R-algebras $R\{y\}$ and $R\{y(t)\}$. A similar fact takes place for differential polynomials $f\left\{z_{1}, \ldots, z_{n}\right\}$ in several variables z_{1}, \ldots, z_{n}. Let us replace in $f\left\{z_{1}, \ldots, z_{n}\right\}$ the element $z_{i}(i=1,2, \ldots, n)$ by $z_{i}(t) \in$ $C^{\infty}(J)$ and the element $z_{i}^{(m)}$ by the function $\frac{d^{m} z_{i}(t)}{d t^{m}}(m=1,2,3, \ldots)$. Denote the obtained expression by $f\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$. We denote by $R\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$ the set of all $f\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$, where $f \in$ $R\left\{z_{1}, \ldots, z_{n}\right\} . R\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$ is a differential R-algebra with respect to the standard operations over
functions and the operation $\frac{d}{d t}$. The differential algebras $R\left\{z_{1}, \ldots, z_{n}\right\}$ and $R\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$ are isomorphic, and to the operation of differentiation in $R\left\{z_{1}, \ldots, z_{n}\right\}$ the operation $\frac{d}{d t}$ in $R\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$ corresponds.

The transition from $f\left\{z_{1}, \ldots, z_{n}\right\}$ to $f\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$ will be called a parametric representation of a differential polynomial $f\left\{z_{1}, \ldots, z_{n}\right\}$. The inverse transition will be called the abstract representation of $f\left\{z_{1}(t), \ldots, z_{n}(t)\right\}$. The system $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ of differential variables $z_{1}, z_{2}, \ldots, z_{n}$ will be called an n-dimensional differential vector. For brevity, an ordered system $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of differential vectors $x_{1}, x_{2}, \ldots, x_{m}$ will be denoted by x. We let $R\left\{x_{1}, \ldots, x_{m}\right\}=R\{x\} . R\{x\}$ is an integral domain. We denote its field of quotients by $R\langle x\rangle$. The differentiation in $R\{x\}$ is uniquely extended to a differentiation in $R\langle x\rangle$, and $R\langle x\rangle$ is a differential field. An element of $R\langle x\rangle$ is called a differential rational function of x and denoted by $h\langle x\rangle$.

Let G be a subgroup of $M(n, p)$.

Definition $1 A$ differential rational function $h\langle x\rangle$ will be called G-invariant if $h<g x\rangle=h\langle x\rangle$ for all $g \in G$.

The set of all G-invariant differential rational functions of x forms a differential subfield of $R<x>$. We denote it by $R<x>^{G}$.

Definition 2 Let α be a curve in R^{n} and x is a G-invariant parametrization of α. An element $h \in R<x>^{G}$ is called a G-invariant differential rational function of a curve α.

Let $\langle x, y\rangle$ be the inner product of vectors $x, y \in E_{p}^{n}$.

Definition 3 A subset S of $R<x>^{G}$ will be called a system of generators of differential field $R<x>^{G}$ if the least differential subfield in $R<x>^{G}$ containing S coincides with $R<x>^{G}$.

Theorem 1 The system

$$
\begin{equation*}
\left\{<x^{(k)}(t), x^{(k)}(t)>, k=1,2, \ldots, n\right\} \tag{1}
\end{equation*}
$$

is a system of generators of $R<x>^{M(n, p)}$.
Proof Let $R<x^{\prime}>$ be the differential field of all differential rational functions of $x^{\prime}=\frac{\partial}{\partial t} x$ and $O(n, p)$ is the group of all pseudo-orthogonal $n \times n$-matrices.

First we prove several lemmas.
Lemma $1 R<x>^{M(n, p)}=R<x^{\prime}>^{O(n, p)}$.
Proof Let $h<x>=h\left(x, x^{\prime}, \ldots, x^{(m)}\right) \in R<x>^{M(n, p)}$. Then it is invariant with respect to parallel translations in E_{p}^{n}. This implies that $h\left(x, x^{\prime}, \ldots, x^{(m)}\right)=h<x^{\prime}>$. It is also $O(n, p)$-invariant. Hence it is an $O(n, p)$-invariant differential rational function of x^{\prime}. Conversely, assume that h is an $O(n, p)$-invariant differential rational function of x^{\prime}. Then it is invariant with respect to parallel translations in E_{p}^{n}. Hence it is $M(n, p)$-invariant.

Lemma 2 Let $f \in R<x^{\prime}>{ }^{O(n, p)}$. Then differential polynomials $f_{1}, f_{2} \in R<x^{\prime}>O^{O(n, p)}$ exist such that $f=f_{1} / f_{2}$.
Proof A proof is similar to the proof in ([16], p. 106).
Let N be the set of all natural numbers.

Lemma 3 The system of all elements $\left\langle x^{(m)}, x^{(q)}\right\rangle$, where $m \geq 1, q \geq 1, m \in N, q \in N$, is a generating system of $R<x>^{M(n, p)}$ as a field.

Proof Let $R\left[x^{(m)}, m \in N\right]^{O(n, p)}$ be the R-algebra of all $O(n, p)$-invariant polynomials of the system $\left\{x^{(m)}, m \in N\right\}$. It is obvious that $R\left[x^{(m)}, m \in N\right]^{O(n, p)}=R\left\{x^{\prime}\right\}^{O(n, p)}$. According to the First Main Theorem for $O(n, 0)\left([21\right.$, p. 53] $)$ and $O(n, p)\left(\left[21\right.\right.$, p. 65,66]), the system $\left\{\left\langle x^{(m)}, x^{(q)}\right\rangle ; m, q \in N\right\}$ is a generating system of the R-algebra $R\left[x^{(m)}, m \in N\right]^{O(n, p)}=R\left\{x^{\prime}\right\}^{O(n, p)}$. Using Lemmas 1 and 2, we obtain that the system $\left\{\left\langle x^{(m)}, x^{(q)}\right\rangle ; m, q \in N\right\}$ is a generating system of $R<x^{\prime}>^{O(n, p)}=R<x>^{M(n, p)}$ as a field.

Lemma 4 Let $1 \leq i, j, i+j \leq 2 n+1$. Then, for each differential polynomial $<x^{(i)}, x^{(j)}>$, a differential polynomial $P_{i j}\left\{y_{1}, \ldots, y_{k}\right\}$ exists such that

$$
<x^{(i)}, x^{(j)}>=P_{i j}\left\{<x^{\prime}, x^{\prime}>, \ldots,<x^{(k)}, x^{(k)}>\right\}
$$

where $k=\left[\frac{i+j}{2}\right]$.
Proof We will prove the existence of $P_{i j}$ by induction on $q=i+j$. Since $i \geq 1, j \geq 1$, we have $i+j \geq 2$. In the case $i+j=2$, the desired existence of P_{11} is obvious. Assume that a differential polynomial $P_{i j}$ exists for all i, j such that $i+j<q$. Let $i \leq j$ and $q=2 b$, where b is an integer. Then $<x^{i}, x^{j}>=<x^{(b-h)}, x^{(b+h)}>$ for some $h \geq 0$. Using the equality

$$
<x^{(b-h)}, x^{(b+h)}>=<x^{(b-h-1)}, x^{(b+h)}>^{\prime}-<x^{(b-h-1)}, x^{(b+h+1)}>
$$

and applying the inductions on $q=i+j$ and h, we conclude that $\left\langle x^{(i)}, x^{(j)}>\right.$ is a differential polynomial in $<x^{\prime}, x^{\prime}>, \ldots,<x^{(k)}, x^{(k)}>$, where $k \leq b$.

Let $q=2 b+1$. Then $<x^{(b)}, x^{(b)}>^{\prime}=2<x^{(b)}, x^{(b+1)}>$. Using the equality

$$
<x^{(b-h)}, x^{(b+h+1)}>=<x^{(b-h-1)}, x^{(b+h+1)}>^{\prime}-<x^{(b-h-1)}, x^{(b+h+2)}>
$$

and applying the inductions on $q=i+j$ and h, we conclude that $\left\langle x^{(i)}, x^{(j)}\right\rangle$ is a differential polynomial of $<x^{\prime}, x^{\prime}>, \ldots,<x^{(k)}, x^{(k)}>$, where $k \leq b$.

Denote by $\Delta=\Delta_{x}$ the determinant $\operatorname{det}\left\|<x^{(i)}, x^{(j)}>\right\|_{i, j=1,2, \ldots, n}$. Let V be the system equation (1). Denote by $R\{V\}$ the differential R-subalgebra of $R<x^{\prime}>^{O(n, p)}$ generated by elements of the system V.

Lemma $5 \Delta \in R\{V\}$.

Proof By the definition of $V,<x^{(i)}, x^{(i)}>\in V$ for all $1 \leq i \leq n$. According to Lemma $4,<x^{(i)}, x^{(j)}>\in V$ for all $1 \leq i, j \leq n$. Hence $\Delta \in R\{V\}$.

Denote by $R\left\{V, \Delta^{-1}\right\}$ the differential R-subalgebra of $R<x^{\prime}>{ }^{O(n, p)}$ generated by elements of the system V and the function Δ^{-1}. According to Lemmas 1 and 3, for a proof of our theorem, it is enough to prove that $<x^{(m)}, x^{(q)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $m, q \in N$.

Denote by $\operatorname{Gr}\left(y_{1}, y_{2}, \ldots, y_{m} ; z_{1}, z_{2}, \ldots, z_{m}\right)$ the Gram matrix $\left\|\left\langle y_{i}, z_{j}\right\rangle\right\|_{i, j=1,2, \ldots, m}$ of vectors $y_{1}, y_{2}, \ldots, y_{m}$; $z_{1}, z_{2}, \ldots, z_{m}$ in E_{p}^{n}. Let det $\operatorname{Gr}\left(y_{1}, y_{2}, \ldots, y_{m} ; z_{1}, z_{2}, \ldots, z_{m}\right)$ be the determinant of $\operatorname{Gr}\left(y_{1}, y_{2}, \ldots, y_{m} ; z_{1}, z_{2}\right.$, $\left.\ldots, z_{m}\right)$. The following is known.

Lemma 6 The equality,

$$
\operatorname{det} G r\left(y_{1}, y_{2}, \ldots, y_{n+1} ; z_{1}, z_{2}, \ldots, z_{n+1}\right)=\operatorname{det}| |<y_{i}, z_{j}>\|_{i, j=1,2, \ldots, n+1}=0
$$

holds for all vectors $y_{1}, y_{2}, \ldots, y_{n+1}, z_{1}, z_{2}, \ldots, z_{n+1}$ in R^{n}.
Proof A proof is given in [16, p. 106-107], [21, p. 75].

Lemma 7 Let $b, c \in N$ such that $<x^{(b)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ and $<x^{(c)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq i \leq n$. Then $<x^{(b)}, x^{(c)}>\in R\left\{V, \Delta^{-1}\right\}$.
Proof Using Lemma 6 to vectors

$$
y_{1}=z_{1}=x^{\prime}, y_{2}=z_{2}=x^{(2)}, \ldots, y_{n}=z_{n}=x^{(n)}, y_{n+1}=x^{(b)}, z_{n+1}=x^{(c)}
$$

we obtain the equality $\operatorname{det} A=0$, where

$$
A=\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots, n+1}
$$

Let $D_{n+1 j}$ be the cofactor of the element $<y_{n+1}, z_{j}>$ of the matrix A for $j=1,2, \ldots, n+1$. The equality $\operatorname{det} A=0$ implies the equality

$$
\begin{align*}
<y_{n+1}, z_{1}>D_{n+11}+<y_{n+1}, z_{2}>D_{n+12} & +\cdots+<y_{n+1}, z_{n}>D_{n+1 n}+ \tag{2}\\
& <y_{n+1}, z_{n+1}>D_{n+1 n+1}=0 .
\end{align*}
$$

Since $\Delta=D_{n+1 n+1}$, equation (2) implies the equality

$$
\begin{array}{r}
<y_{n+1}, z_{n+1}>=<x^{(b)}, x^{(c)}>= \tag{3}\\
-\frac{<y_{n+1}, z_{1}>D_{n+11}+<y_{n+1}, z_{2}>D_{n+12}+\cdots+<y_{n+1}, z_{n}>D_{n+1 n}}{\Delta} .
\end{array}
$$

In equation (3), by the assumption of the lemma, $<y_{n+1}, z_{j}>=<x^{(b)}, x^{j}>\in R\left\{V, \Delta^{-1}\right\}$ for each $j: 1 \leq$ $j \leq n$. We prove that $D_{n+1 s} \in R\left\{V, \Delta^{-1}\right\}$ for every $s: 1 \leq s \leq n$. We have $D_{n+1 s}=(-1)^{n+1+s} \operatorname{det}$ $\left.\operatorname{Gr}\left(y_{1}, y_{2}, \ldots, y_{n} ; z_{1}, z_{2}, \ldots, z_{s-1}, z_{s+1}, \ldots, z_{n}, z_{n+1}\right)\right)$. By the definition of $V,<y_{i}, z_{j}>\in V \subset R\{V\}$ for all $i, j: 1 \leq i, j \leq n$. By the assumption of our lemma, we have $<y_{i}, z_{n+1}>=<x^{(i)}, x^{c}>\in R\left\{V, \Delta^{-1}\right\}$
for every $i: 1 \leq i \leq n$. Hence $D_{n+1 s} \in R\left\{V, \Delta^{-1}\right\}$ for every $s: 1 \leq s \leq n$ and equation (3) implies $<y_{n+1}, z_{n+1}>\in R\left\{V, \Delta^{-1}\right\}$.

Lemma $8<x^{(b)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $b \in N$ and $1 \leq i \leq n$.
Proof We prove this assertion by induction on b. By the definition of V and Lemma 4, we obtain that $<x^{(c)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq c \leq n+1,1 \leq i \leq n$. This implies that the assertion holds for all $b=c=1,2, \ldots, n+1$.

Assume that the assertion of the theorem holds for $b-1$. Then $<x^{(b-1)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq i \leq n$. Using $<x^{(b-1)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ and $<x^{(c)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq c \leq n+1,1 \leq i \leq n$, by Lemma 7, we obtain $<x^{(b-1)}, x^{(c)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq c \leq n+1$. Since $<x^{(b-1)}, x^{(i)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq i \leq n$, the equality

$$
\frac{\partial}{\partial t}<x^{(b-1)}, x^{(i)}>=<x^{(b)}, x^{(i)}>+<x^{(b-1)}, x^{(i+1)}>
$$

and $<x^{(b-1)}, x^{(i+1)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $1 \leq i \leq n$ imply $<x^{(b)}, x^{(i)}>\in R\{V\}$ for all $1 \leq i \leq n$. This means that the assertion is proved for b.

We complete the proof of our theorem. Using Lemmas 8 and 7 , we obtain $<x^{(b)}, x^{(c)}>\in R\left\{V, \Delta^{-1}\right\}$ for all $b, c \in N$. By Lemma $5, \Delta \in R\{V\}$. Since $R<V>$ is a field, we obtain $\Delta^{-1} \in R<V>$. Hence $R\left\{V, \Delta^{-1}\right\} \subset R<V>$. By Lemma 3, the system of all elements $\left\langle x^{(b)}, x^{(c)}>\right.$, where $b, c \in N$, is a generating system of $R<x>^{M(n, p)}$ as a field. Hence $R<V>=R<x>^{M(n, p)}$. The theorem is completed.

Remark 1 In the paper [18] was proved that the system (1) in Theorem 1 is a complete system of $M(n, p)$ invariants of a paths ([18, Theorem 2]). Then, by Theorem 1 in [18], the system (1) in Theorem 1, where $x=x\left(t_{s}(x)\right)$ is an invariant parametrization of a curve α, is a complete system of $M(n, p)$-invariants of a curve α ([18, Corollary 1]). There are relations in the form of inequalities between elements of the system 1. These relations will be found later.

For vectors $a_{k} \in R^{n}$, where $a_{k}=\left(a_{k 1}, \ldots, a_{k n}\right)$ and $k=1, \ldots, n$, the determinant $\operatorname{det}\left(a_{k j}\right)$ will be denoted by $\left[a_{1} a_{2} \ldots a_{n}\right]$. So $\left[x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right]$ is the determinant of derivatives of a path $x(t)$.

Theorem 2 The system

$$
\begin{equation*}
\left\{\left[x^{\prime}(t) x^{(2)}(t) \ldots, x^{(n)}(t)\right],<x^{(k)}(t), x^{(k)}(t)>, k=1, \ldots, n-1\right\} \tag{4}
\end{equation*}
$$

is a generating system of $R<x>^{S M(n, p)}$.
Proof Let $S O(n, p)=\{F \in O(n, p): \operatorname{det} F=1\}$. First we prove several lemmas.

Lemma $9 R<x>^{S M(n, p)}=R<x^{\prime}>^{S O(n, p)}$.

Proof A proof is similar to the proof of Lemma 1.

Lemma 10 Let $f \in R<x^{\prime}>S O(n, p)$. Then $S O(n, p)$-invariant differential polynomials f_{1}, f_{2} exist such that $f=f_{1} / f_{2}$.

Proof A proof is similar to the proof in [16, p. 106].

Lemma 11 The system of all elements

$$
\begin{equation*}
\left[x^{\left(m_{1}\right)} x^{\left(m_{2}\right)} \cdots x^{\left(m_{n}\right)}\right],<x^{(q)}, x^{(r)}> \tag{5}
\end{equation*}
$$

where $m_{i}, q, r \in N$, is a generating system of $R<x^{\prime}>^{S O(n, p)}$ as a field.
Proof Let $R\left[x^{(m)} ; m \in N\right]^{S O(n, p)}$ be the R-algebra of all $S O(n, p)$-invariant polynomials of the system $\left\{x^{(m)} ; m \in N\right\}$. According to the First Main Theorem for $S O(n, p)$ ([21, p.p. $\left.\left.53 ; 65-66\right]\right)$, the system equation (5) is a generating system of $R\left[x^{(m)} ; m \in N\right]^{S O(n, p)}$. Lemma 10 implies that the system equation (5) is a generating system of $R<x^{\prime}>^{S O(n, p)}$ as a field.

Denote by Z the system equation (4) of differential polynomials. Let $R\{Z\}$ be the differential R subalgebra of $R<x^{\prime}>^{S O(n, p)}$ generated by elements of the system Z.

Let $\delta=\delta_{x}$ be the determinant of the matrix $\operatorname{Gr}\left(y_{1}, y_{2}, \ldots, y_{n-1} ; z_{1}, z_{2}, \ldots, z_{n-1}\right)$, where $y_{1}=z_{1}=$ $x^{\prime}, y_{2}=z_{2}=x^{(2)}, \cdots, y_{n-1}=z_{n-1}=x^{(n-1)}$.

Lemma $12<y_{i}, z_{j}>\in R\{Z\}$ for all $1 \leq i, j, i+j \leq 2 n-1, \delta \in R\{Z\}$ and $\delta^{-1} \in R<Z>$.
Proof Using Lemma 4, we get $<x^{(i)}, x^{(j)}>\in R\{Z\}$ for all $1 \leq i, j, i+j \leq 2 n-1$. The element $<y_{i}, z_{j}>$ of the determinant δ is the functions $<x^{(i)}, x^{(j)}>$, where $1 \leq i, j \leq n-1$. Hence $\delta \in R\{Z\}$ and $\delta^{-1} \in R<Z>$.

In sequel, we need the following lemma.
Lemma 13 The equality

$$
(-1)^{p}\left[y_{1} \ldots y_{n}\right]\left[z_{1} \ldots z_{n}\right]=\operatorname{det}\left\|\left\langle y_{i}, z_{j}\right\rangle\right\|_{i, j=1,2, \ldots, n}
$$

holds for all vectors $y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ in E_{p}^{n}.
Proof A proof of the this lemma is similar to the proof in ([16], p.72).
Let Δ be the function in the proof of Theorem 2.

Lemma $14 \Delta \in R\{Z\}$ and $\Delta^{-1} \in R<Z>$.
Proof Using Lemma 13 to vectors $y_{1}=z_{1}=x^{\prime}, y_{2}=z_{2}=x^{(2)}, \cdots, y_{n}=z_{n}=x^{(n)}$, we obtain

$$
\begin{equation*}
(-1)^{p}\left[x^{\prime} x^{(2)} \ldots x^{(n)}\right]^{2}=\operatorname{det}\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots n}=\Delta . \tag{6}
\end{equation*}
$$

Since $\left[x^{\prime} x^{(2)} \ldots x^{(n)}\right] \in Z$, we have $\Delta \in R\{Z\}$ and $\Delta^{-1} \in R<Z>$.

Denote by $R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ the differential R-subalgebra of $R<x^{\prime}>^{S M(n, p)}$ generated by Z and functions δ^{-1}, Δ^{-1}. By Lemmas 10 and 11, for a proof of our theorem, it is enough to prove that $\left[x^{\left(m_{1}\right)} x^{\left(m_{2}\right)} \ldots\right.$ $\left.x^{\left(m_{n}\right)}\right] \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ and $\left\langle x^{(b)}, x^{(c)}\right\rangle \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ for all $m_{i}, b, c \in N$.

Let V be the system in the proof of Theorem 2.
Lemma $15<x^{(n)}, x^{(n)}>\in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ and $R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$.
Proof For $i=1,2, \ldots, n$, denote by $D_{n i}$ the cofactor of the element $<y_{n}, z_{j}>$ of the matrix $A=$ $\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots . n}$ in equation (6). Then we obtain the equality

$$
\begin{equation*}
\Delta=<y_{n}, z_{1}>D_{n 1}+<y_{n}, z_{2}>D_{n 2}+\cdots+<y_{n}, z_{n-1}>D_{n n-1}+<y_{n}, z_{n}>D_{n n} \tag{7}
\end{equation*}
$$

Since $\delta=D_{n n} \neq 0$, equalities equation (6) and equation (7) imply

$$
\begin{array}{r}
<y_{n}, z_{n}>=<x^{(n)}, x^{(n)}>=\Delta \delta^{-1}-<y_{n}, z_{1}>D_{n 1} \delta^{-1}-<y_{n}, z_{2}>D_{n 2} \delta^{-1}- \tag{8}\\
\cdots-<y_{n}, z_{n-1}>D_{n n-1} \delta^{-1}
\end{array}
$$

By Lemma 12, $<y_{n}, z_{j}>=<x^{(n)}, x^{(j)}>\in R\{Z\}$ for each $1 \leq j \leq n-1$. We prove that $D_{n s} \in R\{Z\}$ for every $1 \leq s \leq n-1$. We have $D_{n s}=(-1)^{n+s} \operatorname{det} G r\left(y_{1}, y_{2}, \ldots, y_{n-1} ; z_{1}, z_{2}, \ldots, z_{s-1}, z_{s+1}, \ldots, z_{n}\right)$. Elements of $D_{n s}$ have the following forms $<y_{i}, z_{j}>$ and $<y_{i}, z_{n}>$, where $i<n, j<n$. Since $<y_{i}, z_{n}>=<y_{n}, z_{i}>\in R\{Z\}$, we have $D_{n s} \in R\{Z\}$. Hence equation (8) implies $<y_{n}, z_{n}>\in R\left\{Z, \delta^{-1}\right\}$. Using $V \subset Z \cup\left\{\left\langle y_{n}, z_{n}\right\rangle\right\}$, we obtain $R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$.

Lemma $16\left\langle x^{(b)}, x^{(c)}\right\rangle \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ for all $b, c \in N$.
Proof By Lemma 15, we have $R\left\{V, \Delta^{-1}\right\} \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$. Since $\left\langle x^{(b)}, x^{(c)}\right\rangle \in R\left\{V, \Delta^{-1}\right\}$ for all $b, c \in N$, we obtain $\left.<x^{(b)}, x^{(c)}\right) \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ for all $b, c \in N$.

Lemma $17\left[x^{\left(m_{1}\right)} x^{\left(m_{2}\right)} \cdots x^{\left(m_{n}\right)}\right] \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ for all $m_{i} \in N$.
Proof Using Lemma 13 to vectors $y_{1}=x^{\prime}, y_{2}=x^{(2)}, \cdots, y_{n}=x^{(n)}, z_{1}=x^{\left(m_{1}\right)}, z_{2}=x^{\left(m_{2}\right)} \ldots, z_{n}=x^{\left(m_{n}\right)}$, we obtain that

$$
\begin{equation*}
(-1)^{p}\left[y_{1} \ldots y_{n}\right]\left[z_{1} \ldots z_{n}\right]=\operatorname{det}\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots, n} \tag{9}
\end{equation*}
$$

Since $\Delta=(-1)^{p}\left[y_{1} \ldots y_{n}\right]^{2}$, equation (9) implies

$$
\left[z_{1} \ldots z_{n}\right]=\Delta^{-1}\left[y_{1} \ldots y_{n}\right] \operatorname{det}\left\|<y_{i}, z_{j}>\right\|_{i, j=1,2, \ldots, n}
$$

By Lemma 16, < $y_{i}, z_{j}>=<x^{(i)}, x^{\left(m_{j}\right)}>\in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$ for all $i, j=1,2, \ldots, n$. Since $\left[y_{1} \ldots y_{n}\right] \in$ $Z \subset R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$, we obtain $\left[z_{1} \ldots z_{n}\right] \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\}$.

We complete the proof of our theorem. By Lemmas 12 and $14, \delta^{-1}, \Delta^{-1} \in R<Z>$. Hence $R\left\{Z, \delta^{-1}, \Delta^{-1}\right\} \subset R<Z>$. By Lemma $16,<x^{(b)}, x^{(c)}>\in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\} \subset R<Z>$ for all $b, c \in N$. By Lemma 17, $\left[x^{\left(m_{1}\right)} x^{\left(m_{2}\right)} \cdots x^{\left(m_{n}\right)}\right] \in R\left\{Z, \delta^{-1}, \Delta^{-1}\right\} \subset R<Z>$ for all $m_{i} \in N$. Hence Lemmas 9-11 imply that $R<Z>=R<x>^{S M(n, p)}$. The theorem is completed.

Remark 2 In the paper [18] was proved that the system (4) in Theorem 2 is a complete system of $S M(n, p)$ invariants of paths ([18, Theorem 3]). Then, by Theorem 1 in [18], the system (4) in Theorem 1, where $x=x\left(t_{s}(x)\right)$ is an invariant parametrization of a curve α, is a complete system of SM(n,p)-invariants of a curve α ([18, Corollary 2]). There are relations in the form of inequalities between elements of the system 4. These relations will be found below.

3. Relations between elements of complete systems of invariants of a curve in E_{p}^{n}

Definition 4 A system of differential polynomials $p_{1}\{x\}, \ldots, p_{m}\{x\} \in R\{x\}$ is called differential algebraically independent if there is no nonzero differential polynomial $f\left\{y_{1}, \ldots, y_{m}\right\} \in R\left\{y_{1}, \ldots, y_{m}\right\}$ such that $f\left\{p_{1}\{x\}, \ldots, p_{m}\{x\}\right\}=0$ for all paths x.

Theorem 3 . The system

$$
\left\{<x^{(k)}(t), x^{(k)}(t)>, k=1,2, \ldots, n\right\}
$$

is differential algebraically independent.
Proof A proof is similar to the proof of Theorem 12.8 in ([16], p.112).
Let $A(x(t))=\left\|x^{\prime}(t) x^{(2)}(t) \ldots x^{(n)}(t)\right\|, A(x)^{\top}$ be the transpose matrix of $A(x)$ and $I_{p}=\left\|b_{i j}\right\|$ be the diagonal $n \times n$-matrix such that $b_{i i}=-1$ for all $i=1, \ldots, p$ and $b_{j j}=1$ for all $j=p+1, \ldots, n$. We have the equality $A(x)^{\top} I_{p} A(x)=\left\|<x^{(i)}, x^{(j)}>\right\|_{i, j=1,2, \ldots, n}$. The matrix $A(x)^{\top} I_{p} A(x)$ is congruent to the matrix I_{p} for every non-singular J-path $x(t)$ and all $t \in J$. This fact, in view of the equality $A(x)^{\top} I_{p} A(x)=\|<x^{(i)}, x^{(j)}>$ $\|$, gives some system of relations (inequalities) between $<x^{\prime}(t), x^{\prime}(t)>, \ldots,<x^{(n)}(t), x^{(n)}(t)>$ and their derivatives. Below we prove that an arbitrary relation between $<x^{\prime}(t), x^{\prime}(t)>, \ldots,<x^{(n)}(t), x^{(n)}(t)>$ and their derivatives is a consequence of the above mentioned relations.

Corollary 1 Let $y_{1}, y_{2}, \ldots, y_{n}$ be differential variables and $f \in R\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Then the differential polynomial $f\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is uniquely determined by its values on functions $y_{1}(t), y_{2}(t), \ldots, y_{n}(t)$ in the form

$$
\begin{equation*}
y_{i}(t)=<x^{(i)}(t), x^{(i)}(t)> \tag{10}
\end{equation*}
$$

where $x(t)$ run through the space $\left(C^{\infty}(J)\right)^{n}$.
Proof Assume that $f_{1}, f_{2} \in R\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ exist such that $f_{1} \neq f_{2}$ and

$$
\begin{equation*}
f_{1}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}=f_{2}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\} \tag{11}
\end{equation*}
$$

for all $y_{1}(t), y_{2}(t), \ldots, y_{n}(t)$ in the form equation (10). From equation (11), we obtain the equality

$$
\begin{equation*}
f\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}=0 \tag{12}
\end{equation*}
$$

KHADJIEV et al./Turk J Math

for all $y_{1}(t), y_{2}(t), \ldots, y_{n}(t)$ in the form equation (10), where $f=f_{1}-f_{2}$ is a nonzero differential polynomial since $f_{1} \neq f_{2}$. Equation (12) means that differential polynomials $<x^{(1)}, x^{(1)}>,<x^{(2)}, x^{(2)}>, \ldots<x^{(n)}, x^{(n)}>$ are differential-algebraically dependent, which contradicts Theorem 3.

Corollary 2 The differential polynomial $P_{i j}\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ in Lemma 4 is unique.
Proof A proof follows from Theorem 3.
For convenience, we will write $P_{i j}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ instead of $P_{i j}\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$.
Let the symbol ' denotes the differentiation in the differential algebra $R\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.
Corollary 3 The equality

$$
\begin{equation*}
P_{i j}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}^{\prime}=P_{i+1 j}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}+P_{i j+1}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \tag{13}
\end{equation*}
$$

holds for all i, j satisfying the conditions $1 \leq i, j, i+j \leq 2 n$.
Proof From the definition of differential polynomials $P_{i j}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, we have the equality

$$
<x^{(i)}(t), x^{(j)}(t)>=P_{i j}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}
$$

where $y_{k}(t)=<x^{(k)}(t), x^{(k)}(t)>, k=1, \ldots, n, 1 \leq i, j, i+j \leq 2 n+1$. Differentiating this equality, we obtain

$$
\frac{d}{d t}<x^{(i)}(t), x^{(j)}(t)>=\frac{d}{d t} P_{i j}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}
$$

Assume that $1 \leq i, j, i+j \leq 2 n$. Since

$$
\frac{d}{d t}<x^{(i)}(t), x^{(j)}(t)>=<x^{(i+1)}(t), x^{(j)}(t)>+<x^{(i)}(t), x^{(j+1)}(t)>
$$

we have

$$
\frac{d}{d t} P_{i j}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}=P_{i+1 j}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}+P_{i j+1}\left\{y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right\}
$$

This equality takes place for all functions $y_{1}(t), y_{2}(t), \ldots, y_{n}(t)$ in the form equation (10). Applying the Corollary 3 , we conclude that the latest equality takes place for all $y_{1}(t), y_{2}(t), \ldots, y_{n}(t) \in C^{\infty}(J)$. Passing from a parametric representation of differential polynomials in the latest equality to their abstract differential polynomials, we obtain equation (13).

Let $f_{1}(t), \ldots, f_{n}(t)$ be arbitrary C^{∞}-functions on $\mathrm{J}=(\mathrm{a}, \mathrm{b})$. For convenience, the indexes of these functions will be written in the form $f_{i}(t)=f_{i i}(t)$. Using functions $f_{i i}(t)$, we define functions

$$
\begin{equation*}
f_{i j}(t)=P_{i j}\left\{f_{11}(t), \ldots, f_{n n}(t)\right\}, 1 \leq i, j \leq n . \tag{14}
\end{equation*}
$$

Proposition 1 The equality

$$
f_{i j}^{\prime}(t)=f_{i+1 j}(t)+f_{i j+1}(t)
$$

holds for all i, j satisfying the conditions $1 \leq i, j, i+j \leq 2 n$.

Proof Letting $y_{1}=f_{11}(t), y_{2}=f_{22}(t) \ldots, y_{n}=f_{n n}(t)$ in Corollary 3, we obtain the desired equality.

Theorem 4 Let $f_{11}(t), \ldots, f_{n n}(t)$ be infinitely differentiable functions on J such that:
(i) $\operatorname{det}\left|\mid f_{i j}(t) \| \neq 0\right.$ for all $t \in J$, where $f_{i j}(t)$ is defined by (14);
(ii) the matrix $\left\|f_{i j}(t)\right\|$ is congruent to the matrix I_{p} for some $t_{0} \in J$.

Then there exists a non-singular J-path $x(t)$ in E_{p}^{n} such that

$$
<x^{(i)}(t), x^{(i)}(t)>=f_{i i}(t)
$$

for all $t \in J$ and $i=1, \ldots, n$.
Proof Define the $n \times n$-matrix function $Q(t)=\left\|f_{i j}\right\|$, where $f_{i j}$ is defined by equation (14). Since the differential polynomials $P_{i j}$ satisfy the relations $P_{i j}=P_{j i}$, we obtain $Q^{\top}(t)=Q(t)$, where $Q(t)^{\top}$ is the transpose matrix of $Q(t)$. Let $Q^{\prime}(t)$ be the derivative of $Q(t)$.

Lemma 18 A unique solution $B(t)=\left\|b_{i j}\right\|$ of the $n \times n$-matrix equation

$$
\begin{equation*}
Q^{\prime}(t)=B^{\top}(t) Q(t)+Q(t) B(t) \tag{15}
\end{equation*}
$$

exists which satisfies the conditions
$\left(\gamma_{1}\right) \quad b_{j+1 j}(t)=1$ for all $t \in J$ and $1 \leq j \leq n-1 ;$
$\left(\gamma_{2}\right) \quad b_{i j}(t)=0$ for all $t \in J$ and $j \neq n, i \neq j+1,1 \leq i \leq n$.
Proof By $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$, only the elements $b_{1 n}(t), \ldots, b_{n n}(t)$ of the matrix $B(t)$ are unknown. Using (γ_{1}) and $\left(\gamma_{2}\right)$, from equation (15) and $Q^{\top}(t)=Q(t)$, we obtain

$$
f_{i j}^{\prime}(t)=f_{i+1 j}(t)+f_{i j+1}(t)
$$

for $1 \leq i, j \leq n-1$ and

$$
f_{n i}^{\prime}(t)=f_{i n}^{\prime}(t)=f_{i+1 n}(t)+\sum_{k=1}^{n} f_{i k}(t) b_{k n}(t)
$$

for $1 \leq i \leq n-1$,

$$
f_{n n}^{\prime}(t)=\sum_{k=1}^{n} b_{k n}(t) f_{k n}(t)+\sum_{k=1}^{n} f_{n k}(t) b_{k n}(t)=2 \sum_{k=1}^{n} f_{n k}(t) b_{k n}(t) .
$$

Hence, for the elements $b_{1 n}(t), \ldots, b_{n n}(t)$, we obtain the following system of n linear equations in n unknowns:

$$
\begin{array}{r}
\sum_{k=1}^{n} f_{i k}(t) b_{k n}(t)=f_{n i}^{\prime}(t)-f_{i+1 n}(t), 1 \leq i \leq n-1 \\
\sum_{k=1}^{n} f_{n k}(t) b_{k n}(t)=0,5 f_{n n}^{\prime}(t)
\end{array}
$$

By assumption (i) of the theorem, the determinant of this system is $\operatorname{det} Q(t)=\operatorname{det}\left\|f_{i j}(t)\right\| \neq 0$ for all $t \in J$. Consequently, this system has a unique solution $b_{1 n}(t), \ldots, b_{n n}(t)$.

It is obvious that $B(t)$ is infinitely differentiable.

Lemma 19 Let $B(t)$ be the solution of equation (15). Then an infinitely differentiable $n \times n$-matrix function $A(t)$ on J exists such that
$\left(\delta_{1}\right) \quad A(t)=\left\|a(t) a^{\prime}(t) \ldots a^{(n-1)}(t)\right\|$ for some J-path $a(t)$ in E_{p}^{n};
$\left(\delta_{2}\right) \quad \operatorname{det} A(t) \neq 0$ for all $t \in J$;
$\left(\delta_{3}\right) \quad A^{\prime}(t)=A(t) B(t) ;$
(δ_{4}) $A^{\top}(t) I_{p} A(t)=Q(t)$, where $I_{p}=\left\|b_{i j}\right\|$ be the diagonal $n \times n$-matrix such that $b_{i i}=-1$ for all $i=1, \ldots, p$ and $b_{j j}=1$ for all $j=p+1, \ldots, n$..

Proof From assumptions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$ of Lemma 19, and from the theory of linear differential equations it follows that a solution $A(t)$ of equation $\left(\delta_{3}\right)$ exists such that $\operatorname{det} A(t) \neq 0$ for all $t \in J$. Since the matrix $B(t)$ satisfies relations $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$, it follows that the matrix $A(t)$ is the form $\left(\delta_{1}\right)$ for some path $a(t)$ in E_{p}^{n}. We have $\operatorname{det}\left(A^{\top}(t) A(t)\right) \neq 0$ for all $t \in J$. Let t_{0} be such that the matrix $Q\left(t_{0}\right)=\left\|f_{i j}\left(t_{0}\right)\right\|$ is congruent to the matrix I_{p}. Since $Q\left(t_{0}\right)$ is congruent to the matrix $I_{p}, \operatorname{det} Q\left(t_{0}\right) \neq 0, \operatorname{det}\left(A^{\top}(t) A(t)\right) \neq 0$, and $Q^{\top}(t)=Q(t)$ for all $t \in J$, it follows that a nondegenerate $n \times n$-matrix $g \in G L(n, R)$ exists such that

$$
\left(g^{\top}\right)^{-1}\left(A^{\top}\left(t_{0}\right)\right)^{-1} Q\left(t_{0}\right) A^{-1}\left(t_{0}\right) g^{-1}=I_{p}
$$

Hence we have $A^{\top}\left(t_{0}\right) g^{\top} I_{p} g A\left(t_{0}\right)=Q\left(t_{0}\right)$. The matrix function $g A(t)$ is also solution of $\left(\delta_{3}\right)$. The matrix function $H(t)=A^{\top}(t) g^{\top} I_{p} g A(t)$ satisfies the following conditions: $H^{\top}(t)=H(t), H^{\prime}(t)=B^{\top}(t) H(t)+H(t) B(t)$ for all $t \in J$. But these conditions are also fulfilled for the function $Q(t)$. Then from the equality $H\left(t_{0}\right)=Q\left(t_{0}\right)$, by the existence and uniqueness theorem of a solution of a system of linear differential equations, it follows that $H(t)=Q(t)$ for all $t \in J$.

Now we return to the proof of the theorem. By Lemma 19, a matrix

$$
A(t)=\left\|a(t) a^{\prime}(t) \ldots a^{(n-1)}(t)\right\|
$$

exists such that $A^{\prime}(t)=A(t) B(t), A^{\top}(t) \cdot I_{p} \cdot A(t)=Q(t)$. Using the relation $A^{\top}(t) \cdot I_{p} \cdot A(t)=\left\|<a^{(i)}(t), a^{(j)}(t)>\right\|$, we obtain $<a^{(i)}(t), a^{(j)}(t)>=f_{i+1 j+1}$ for all $i, j=0,1, \ldots, n-1$. Let $x(t)=\int_{t}^{t_{0}} a(t) d t$. Then $<$ $x^{(i)}(t), x^{(i)}(t)>=f_{i i}$ for all $i=1, \ldots, n$. Since $\left[x^{\prime}(t) x^{(2)} \ldots x^{(n)}(t)\right]^{2}=\operatorname{det} A^{\top}(t) \cdot I_{p} \cdot A(t)=\operatorname{det} Q(t) \neq 0$ for all $t \in J$, the path $x(t)$ is nondegenerate.

Let J be one of intervals $(0, l), 0<l \leq+\infty,(-\infty, 0),(-\infty,+\infty)$.
Corollary 4 Let J be one of intervals $(0, l), 0<l \leq+\infty,(-\infty, 0),(-\infty,+\infty)$. Assume that $f_{11}(s), \ldots, f_{n n}(s)$ be infinitely differentiable functions on J such that:
(i) $\left|f_{11}(s)\right|=1$ for all $s \in J$;
(ii) $\operatorname{det}\left|\mid f_{i j}(s) \| \neq 0\right.$ for all $s \in J$, where the function $f_{i j}(s)$ is defined by equation (14);
(iii) the matrix $\left\|f_{i j}(s)\right\|$ is congruent to the matrix I_{p} for some $t_{0} \in J$.

Then a regular non-singular curve α and its invariant parametrization x exist such that $\left\langle x^{(i)}(s), x^{(i)}(s)\right\rangle=f_{i i}(s)$ for all $s \in I, i=1, \ldots, n$.

Proof This corollary is a special case of Theorem 4.
Let $f_{11}(t), \ldots, f_{n-1 n-1}(t)$ and $d(t)$ be C^{∞}-functions on an interval J. We consider the matrix $Q(t)=$ $\left\|f_{i j}(t)\right\|_{i, j=1, \ldots, n}$, where the function $f_{i j}(t), i+j<2 n$, is defined by $f_{11}, \ldots, f_{n-1 n-1}$ as in (14) and the function $f_{n n}(t)$ will be defined below. Let $A_{n i}(t)$ be the cofactor of the element $f_{n i}(t)$ in the matrix $Q(t)$. Since every element of the cofactor $A_{n i}(t)$ consists of all $f_{p q}$ such that $p+q<2 n, A_{n i}(t)$ is a differential polynomial of $f_{11}, \ldots, f_{n-1 n-1}$. Assume that $A_{n n}(t)=\operatorname{det}\left\|f_{i j}(t)\right\|_{i, j=1, \ldots, n-1} \neq 0$ for all $t \in J$. We define the element $f_{n n}$ as follows:

$$
f_{n n}=\frac{(-1)^{p} d^{2}(t)-f_{n 1}(t) A_{n 1}-\cdots-f_{n n-1}(t) A_{n n-1}}{A_{n n}} .
$$

This equality implies

$$
\begin{equation*}
\operatorname{det} Q(t)=f_{n 1}(t) A_{n 1}+\cdots+f_{n n-1}(t) A_{n n-1}+f_{n n}(t) A_{n n}=(-1)^{p} d^{2}(t) \tag{16}
\end{equation*}
$$

for all $t \in J$.
Theorem 5 Let $f_{11}(t), \ldots, f_{n-1 n-1}(t)$ and $d(t)$ be infinitely differentiable functions on an interval J such that:
$\left(\lambda_{1}\right) A_{n n}(t) \neq 0$ for all $t \in J$;
$\left(\lambda_{2}\right)$ the matrix $Q(t)$ is congruent to the matrix I_{p} for some $t_{0} \in J$;
($\left.\lambda_{3}\right) d(t) \neq 0$.
Then there exists a non-singular path $x(t)$ in E_{p}^{n} such that

$$
<x^{(i)}(t), x^{(i)}(t)>=f_{i i}(t), \quad\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]=d(t)
$$

for all $t \in J$ and $i=1, \ldots, n-1$.
Proof Equation (16) and the condition $\left(\lambda_{3}\right)$ implies $\operatorname{det} Q(t) \neq 0$ for all $t \in J$. Hence, according to Theorem 4 there exists a non-singular path $x(t)$ in E_{p}^{n} such that $\left\langle x^{(i)}(t), x^{(i)}(t)\right\rangle=f_{i i}(t)$ for all $t \in J$ and $i=1, \ldots, n$. Using these equalities, Lemma 4 and equation (14), we obtain $\operatorname{det} Q(t)=\operatorname{det}\left\|\left\langle x^{(i)}(t), x^{(i)}(t)\right\rangle\right\|$. Then using this equality, equation (16) and Lemma 13, we obtain $\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]^{2}=d^{2}(t)$. Then $\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]=d(t)$ or $\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]=-d(t)$. Since $\left[x^{\prime}(t) \ldots x^{(n)}(t)\right] \neq 0$ and $d(t) \neq 0$ for all $t \in J$, we have $\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]=$ $d(t)$ or $\left[x^{\prime}(t) \ldots x^{(n)}(t)\right]=-d(t)$ for all $t \in I$. In the first case, a proof is completed. In the second case,
we consider $g \in O(n)$ such that $\operatorname{det} g=-1$. In this case, we put $y(t)=g x(t)$. Then $<y^{(i)}(t), y^{(i)}(t)>=$ $<g x^{(i)}(t), g x^{(i)}(t)>=<x^{(i)}(t), x^{(i)}(t)>=f_{i i}(t$,$) and \left[y^{\prime}(t) \ldots y^{(n)}(t)\right]=\left[g x^{\prime}(t) \ldots g x^{(n)}(t)\right]=d(t)$. Thus the path $y(t)$ satisfies all conditions of our theorem.

An analog of Corollary 4 takes place for the complete system of $\operatorname{SM}(\mathrm{n}, \mathrm{p})$-invariants of a curve.

References

[1] Aslaner, R. and Boran, A. I.: On the geometry of null curves in the Minkowski 4-space. Turkish J. of Math. 32, 1-8 (2008).
[2] Bejancu, A.: Lightlike curves in Lorentz manifolds. Publ. Math. Debrecen. 44, 145-155 (1994).
[3] Bérard B. L. and Charuel X.: A generalization of Frenet's frame for nondegenerate quadratic forms with any index. In: Séminaire de théorie spectrale et géométrie. Année 2001-2002, St. Martin d'Héres: Université de Grenoble I, Institut Fourier, Sémin. Théor. Spectr. Géom. 20, 101-130 (2002).
[4] Bini, D., Geralico, A. and Jantzen, R. T.: Frenet-Serret formalism for null world lines. Class. Quantum Grav. 23, 3963-3981 (2006).
[5] Bonnor, W.: Null curves in a Minkowski spacetime. Tensor, N. S. 20, 229-242 (1969).
[6] Borisov Yu. F.: Relaxing the a priori constraints of the fundamental theorem of space curves in E_{l}^{n}. Siberian Math. J. 38, No. 3, 411-427 (1997).
[7] Borisov Yu. F.: On the theorem of natural equations of a curve. Siberian Math. J. 40, No. 4, 617-621 (1999).
[8] Çöken, C. and Çiftçi, Ü.: On the Cartan curvatures of a null curve in Minkowski spacetime. Geometriae Dedicata. 114, 71-78 (2005).
[9] Duggal, K. L. and Becancu A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht, Boston, London. Kluwer Acad. Publ. 1996.
[10] Ferrández, A., Giménez, A. and Lucas, P.: Degenerate curves in pseudo-Euclidean spaces of index two. In: Mladenov, Ivailo M. (ed.) et al., Proceedings of the 3rd international conference on geometry, integrability and quantization, Varna, Bulgaria, June 14-23, 2001. Sofia: Coral Press Scientific Publishing. 209-223 (2002).
[11] Ferrández, A., Giménez, A. and Lucas, P.: s-degenerate curves in Lorentzian space forms. J. Geom. Phys. 45, No. 1-2, 116-129 (2003).
[12] Formiga, L. B. and Romero, C.: On the differential geometry of time-like curves in Minkowski spacetime. Am. J. Phys. 74(10), 1012-1016 (2006).
[13] Ichimura, H.: Time-like and space-like curves in Frenet-Serret formalisms. Thesis. Hadronic J. Suppl. 3, No. 1, 1-94 (1987).
[14] Inoguchi, J. and Lee, S.: Null curves in Minkowski 3-space, International Electronic Journal of Geometry 1 No. 2, 40-83 (2008).
[15] Kaplansky, I.: An Introduction to Differential Algebra. Paris. Hermann 1957.
[16] Khadjiev, D.: An Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent, 1988. [Russian]
[17] Khadjiev, D. and Pekşen Ö.: The complete system of global integral and differential invariants for equi-affine curves. Differential Geometry and its Applications. 20, 167-175 (2004).
[18] Pekşen, Ö., Khadjiev, D. and Ören, I: Invariant parametrizations and complete systems of global invariants of curves in the pseudo-euclidean geometry, Turk. J. Math., 35 1-14 (2011).(in Press).

KHADJIEV et al./Turk J Math

[19] Petrović-Torgašev, Ilarslan K. and Nes̆ović E.: On partially null and pseudo-null curves in the semi-euclidean space R_{2}^{4}. J. Geom. 84, 106-116 (2005).
[20] Urbantke H.: Local differential geometry of null curves in conformally flat space-time. J. Math. Phys. 30(10), 2238-2245 (1989).
[21] Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton-New Jersey. Princeton Univ. Press 1946.
[22] Yilmaz, S. and Turgut, M.: On the differential geometry of curves in Minkowski space-time I. Int. J. Contemp. Math. Sciences. 3, No. 27, 1343-1349 (2008).

[^0]: *Correspondence: oren@ktu.edu.tr
 2000 AMS Mathematics Subject Classification: 53A04, 53A35, 53A40, 53A55.

