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Abstract: Let M (n,p) be the group of all motions of an n-dimensional pseudo-Euclidean space of index p. It is proved
that the complete system of M(n,p)-invariant differential rational functions of a path (curve) is a generating system of
the differential field of all M (n, p)-invariant differential rational functions of a path (curve), respectively. A fundamental
system of relations between elements of the complete system of M(n,p)-invariant differential rational functions of a path

(curve) is described.
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1. Introduction

The present paper is a continuation of our paper [18]. Let E} be the n-dimensional pseudo-Euclidean space of
index p (that is the space R™ with the scalar product < z,y >= —z1y1 — - — TpYp + Tp+1Yp+1 + -+ Tn¥n ),
O(n, p) is the group of all pseudo-orthogonal transformations of EJ, M(n,p)={F : E} — E} | Fx = gz +b,
g € O(n,p), b€ E}} and SM(n,p) = {F € M(n,p) : detg = 1}.

Here, for groups G = M(n,p) and G = SM(n,p), we prove that the complete system of G-invariant
differential rational functions of a path (curve) obtained in [18, Theorems 2-3 and Corollaries 1-2] is a generating
system of the differential field of all G-invariant differential rational functions of a path (respectively, curve).
We describe a fundamental system of relations between elements of the complete system of G-invariant functions
of a path (curve) (i.e., global existence theorems for a path and a curve).

For groups G = M (n,0) and G = SM(n,0), the generating system of the differential field of all G-
invariant differential rational functions of a path in the Euclidean space Ej was obtained in [16]. The Frenet-
Serret equation for both time-like and space-like curves in spaces E} and Ef is given in [12, 13, 22]. In papers
[1, 4, 5, 8, 14, 19, 20], the Frenet-Serret equation is extended from non-null curves in E3, Ef and Ej to null
(lightlike, isotropic) curves. For arbitrary n, the Frenet-Serret equation is obtained for the Lorentz space E}

in [2], [9, pp. 52-76]. The Frenet-Serret equation in £} for arbitrary n and index p is considered in 3, 6,

7]. Existence and rigidity (that is uniqueness) theorems for curves in spaces E} and Ej are studied in [5]

and thesis [13] (in the case with constant coefficients). In papers [5, 14], existence and rigidity theorems are
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extended from non-null curves in Ef and Ef to null curves. For arbitrary n, existence and rigidity theorems
are extended to the Lorentz space E7 and to the space E¥ in [9, pp. 52-76]; and [10, 11]. For arbitrary n
and index p, existence and rigidity theorems for curves in E}} are considered in the paper [6]. In these papers,
existence theorems are local. The rigid group in the rigidity theorem is given in [6, 12, 14]. The rigid groups in
papers [14, 12, 6] are SM(3,1), SM(4,1) and SM(n,p), respectively.

This paper is organized as follows. In Section 2, a definition of the differential field of all G-invariant
differential rational functions of a path (curve) is given. For groups G = M(n,p), SM(n,p), it is proved that
the complete system of G-invariant differential rational functions of a path (curve) obtaining in [18, Theorems
2 and 3 and Corollaries 1 and 2] is a generating system of the differential field of all G-invariant differential
rational functions of a path (curve), respectively. (Theorems 1, 2). In Section 3, the description of a fundamental
system of relations between elements of the complete system of G-invariant functions of a path (curve) is given

(Theorems 3-4 and Corollary 4).

In this paper we use definitions and notations of the paper [18].

2. Invariant differential rational functions of paths and curves

Below we cite some notation and facts from the differential algebra (see [15-17]) in a form which is convenient
for our considerations. Let R be a field of real numbers. Consider the ring R[yo,¥1- .-, Yn, - -] of polynomials

with real coefficients in the countable set of variables {yo,vy1...,Yn,...}. Welet yo = y,y1 = y,, e Ymagl =

" Y — y;n will be called the differentiation of an element y,,. Using the

(ym) = y™+1) . The operation
Leibniz rule, this operation can be uniquely extended to the ring R[yo,y1.-.,Yn,-... As a result, we obtain
a differential R-algebra (d-algebra), which will be denoted by R{y}. Elements of this d-algebra are called
differential polynomials in y with coefficients from R. We denote elements of R{y} by f{y}. The element y
is called the differential variable (unknown).

Differential polynomials f {z1,...,z,} and the d-algebra R{zi,...,2,} in a finite number of differential
variables z1,..., z, are defined in a similar manner.

We denote by C°°(J) the set of all infinitely differentiable functions on an interval J = (a,b). Let f{y}

be a differential polynomial in a differential variable, and let y(t) € C°°(J). In the expression f{y}, let y

to y(t) and polynomial term y™) to % (n = 1,2,...). We denote the obtained expression by f{y(t)}.
The expression f {y(t)} is a polynomial in y(¢) and a finite number of derivatives of y(¢t). For fi, fo € R{y},
fi = fo if and only if f; {y(t)} = fo {y(®)} for all y(t) € C=(J).

The set of all expressions f{y(t)}, where f € R{y}, will be denoted by R{y(t)}. R{y(t)} is an R-
algebra with respect to the standard operations of addition and multiplication of functions and multiplication
of a function by a real number. R{y(t)} becomes a differential R-algebra if d% is taken as the operation
of differentiation. One can easily see that the mapping f{y} — f{y(t)} is an isomorphism of differential

R-algebras R{y} and R{y(t)}. A similar fact takes place for differential polynomials f{z1,...,2,} in

several variables z1,...,2z,. Let us replace in f{z1,...,2,} the element z; (i = 1,2,...,n) by z;(t) €
C>(J) and the element zi(m) by the function dy;ffrft) (m = 1,2,3,...). Denote the obtained expression

by f{z1(t),...,za(t)}. We denote by R{z1(t),...,zn(t)} the set of all f{z1(¢),...,2,(t)}, where f €
R{z1,...,zn}. R{z1(t),...,2zn(t)} is a differential R-algebra with respect to the standard operations over
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functions and the operation % . The differential algebras R {z1, ..., 2,} and R{z1(t), ..., 2,(t)} areisomorphic,

and to the operation of differentiation in R{z1,...,2,} the operation 4% in R{21(¢),...,2,(t)} corresponds.

The transition from f{z1,...,2,} to f{z1(t),...,2,(t)} will be called a parametric representation
of a differential polynomial f{z1,...,2,}. The inverse transition will be called the abstract representa-
tion of f{z1(t),...,2n(¢t)}. The system (z1,z22,...,2,) of differential variables z1, zs,...,2, will be called
an n-dimensional differential vector. For brevity, an ordered system (z1,2a,...,2m,) of differential vectors
X1,%2, ..., Ly, will be denoted by 2. We let R{z1,...,2m} = R{z}. R{z} is an integral domain. We denote
its field of quotients by R (x). The differentiation in R{z} is uniquely extended to a differentiation in R (x),

and R (z) is a differential field. An element of R (z) is called a differential rational function of z and denoted
by h(x).
Let G be a subgroup of M(n,p).

Definition 1 A differential rational function h < x > will be called G -invariant if
h<gr>=h<az> forall g€ G.

The set of all G-invariant differential rational functions of x forms a differential subfield of R < x >.
We denote it by R < z >©.

Definition 2 Let o be a curve in R™ and x is a G -invariant parametrization of a. An element h € R < x >¢

is called a G -invariant differential rational function of a curve a.

Let (z,y) be the inner product of vectors z,y € E}.

Definition 3 A subset S of R < x > will be called a system of generators of differential field R < x > if
the least differential subfield in R < x >C containing S coincides with R < x >© .

Theorem 1 The system
{< 2® 1), 2®(t) >,k:1,2,...,n} (1)

is a system of generators of R < x >M(p),

Proof Let R <z > be the differential field of all differential rational functions of z' = %x and O(n,p) is
the group of all pseudo-orthogonal n x n-matrices. O

First we prove several lemmas.

Lemma 1 R <z >Mnp)= R < 3/ >0np)

Proof Let h < xz >= h(x,w,, . ..,x(m)) € R < x >M™P) " Then it is invariant with respect to parallel
translations in E). This implies that h(z,z',...,20™) = h < 2’ >. It is also O(n, p)-invariant. Hence it
is an O(n, p)-invariant differential rational function of z'. Conversely, assume that h is an O(n, p)-invariant
differential rational function of z'. Then it is invariant with respect to parallel translations in £ Hence it is

M (n, p)-invariant. O
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Lemma 2 Let f € R < z >O0MP)  Then differential polynomials f1, fo € R < z >O0mP) exist such that
f=1/f.
Proof A proof is similar to the proof in ([16], p. 106). O

Let N be the set of all natural numbers.

Lemma 3 The system of all elements <x(m), x(‘Z)> , where m>1,g>1,me& N,q € N, is a generating system
of R < x >MP) g5 q field.

Proof Let R[z(™ m € N]°™P) be the R-algebra of all O(n,p)-invariant polynomials of the system

) On:p)
{x(m), m e N} . Tt is obvious that R[z(™) m € N]°("P) = R {x } . According to the First Main Theorem

for O(n,0) ([21, p. 53]) and O(n, p) ([21, p. 65,66]), the system {(z(™,2(?):m,q € N} is a generating system

/) O(n.p)
of the R-algebra R[x(m),m € N]O("vp) =R {x } : . Using Lemmas 1 and 2, we obtain that the system

{<x(m), x(‘Z)> ;m, q € N} is a generating system of R < 2 S0P = R <z >M™p) a9 a field. O

Lemma 4 Let 1 < i,j,i+j < 2n+ 1. Then, for each differential polynomial < z@® zU) > a differential
polynomial Pij{y1,...,yx} exists such that

< 2@ ) >= Pij{< x,,x, >, <z g k) >} ,

_ [itd
where k = [%] .
Proof We will prove the existence of P;; by induction on ¢ =4+ j. Since ¢ > 1,5 > 1, we have ¢ +3j > 2. In
the case i 4 j = 2, the desired existence of P;; is obvious. Assume that a differential polynomial P;; exists for

all 4,7 such that i+ j < ¢. Let i < j and ¢ = 2b, where b is an integer. Then < 2%, 27 >=< g(®=") g0+h) >
for some h > 0. Using the equality

< O g0th) 5 g (=h=1) p(b+h) S o (b=h=1) (bRt

and applying the inductions on ¢ =i+ j and h, we conclude that < (9, z) > is a differential polynomial in
< x,,x, > .., <z® z®) > where k <b.

Let ¢ =2b+1. Then < z®, z(® >'=2< x®) (1) > Using the equality
< w(b—h),w(b—i-h—i-l) S—c w(b—h—l),w(b—i-h—i-l) >’ — < w(b—h—l),x(b+h+2) S
and applying the inductions on ¢ =i+ j and h, we conclude that < z(9), 20) > is a differential polynomial of

<x,,x, > .., <z® z®) > where k < b. O

Denote by A = A, the determinant det ||< @ 20) >||Z. . Let V' be the system equation (1).

J=1,2,0m

Denote by R{V'} the differential R-subalgebra of R < z >Omp) generated by elements of the system V.
Lemma 5 A € R{V}.
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Proof By the definition of V, < 2 2 >e V forall 1 <i < n. According to Lemma 4, < () 2z >e V
forall 1 <4,j <n. Hence A € R{V}. O
Denote by R {V, A‘l} the differential R-subalgebra of R < z >0mp) generated by elements of the

system V and the function A~!. According to Lemmas 1 and 3, for a proof of our theorem, it is enough to

prove that < (™) 2(9 >e R {V, A‘l} for all m,q e N.

Denote by Gr(y1, %2, - - -, Ym; 21, 22, - - -, Zm) the Gram matrix [|{y;, z;) ||, i=12...m of vectors y1, Yo, . . ., Ym;
21,22, -+, 2m in B Let det Gr(y1,Y2,- -+ Ym; 21, 22, - - s 2m) be the determinant of Gr(y1,yo, ..., Ym; 21, 22,
.+ 2m). The following is known.
Lemma 6 The equality,
detGr (Y1, Y2, - - -, Ynt1; 21, 22, - - -, Zny1) = det]| < yi, 25 > ||ij=1,2,...n+1 =0
holds for all vectors y1,Y2, ..., Yn+t1s 21,22y« - -5 Znt1 0 R™.
Proof A proof is given in [16, p. 106-107], [21, p. 75]. O

Lemma 7 Let b,c € N such that < z® 2z >¢ R{V, A_l} and < 29, 20) >e R{V, A_l} for all
1<i<n. Then < z® 2 >¢ R{V, A‘l}.
Proof Using Lemma 6 to vectors

’

Y1 =21 =2 ,Y2 =22 = w(2), ey Yn = 2n = x(n)ayn-‘rl = x(b)) Zn4+1 = x(C)a
we obtain the equality det A = 0, where
A=l<yizi >l j=12, npr -

Let Dj,41; be the cofactor of the element < y,1,2; > of the matrix A for j =1,2,...,n + 1. The equality
det A = 0 implies the equality

< Yn+1,21 > Dpp11+ < Yng1,22 > Dpyio + - -+ < Ynt1, 20 > Dpgan + (2)

< Yn+1,Zn4+1 > Dn+1n+1 =0.

Since A = Dy 11541, equation (2) implies the equality

< Yn+1, 2nt1 >=< ®, 2 >= (3)

~ <Ynt1,21 > Dpyiit <yng1,22 > Digaz + -+ <Wnt1, 20 > Diyan

A .
In equation (3), by the assumption of the lemma, < y,41,2; >=< z®) 27 >e R{V, A‘l} for each j : 1 <
j < n. We prove that D, 15 € R{V, A‘l} for every s : 1 < s < n. We have D, 1, = (—1)"t1*5det
Gr(Y1,Y2, -3 Yn; 21522y -+ Zs—1s Zs+1y- -5 2n, 2n+1)). By the definition of V', < y;,z; >€ V. C R{V} for
all 4,5 : 1 < i,j < n. By the assumption of our lemma, we have < y;, 241 >=< z(), 2¢ >¢ R{V, A_l}
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for every ¢ : 1 < i < n. Hence D,y15 € R{V, A‘l} for every s : 1 < s < n and equation (3) implies

< Yn+1,2n+1 >€ R{‘/,A_l} O

Lemma 8 < x(b),x(i) >€ R{V, A_l} forallbe N and 1 <i<n.
Proof We prove this assertion by induction on b. By the definition of V and Lemma 4, we obtain that
< x(c),x(i) >€ R{V, A‘l} forall 1 <c<n+1,1 <i < n. This implies that the assertion holds for all
b=c=1,2,...,n+1.

Assume that the assertion of the theorem holds for b — 1. Then < z(®*=V z() > R {V, A‘l} for all
1 <i<mn. Using < x(b_l),x(i) >€ R{V, A‘l} and < x(c),x(i) >€ R{V, A‘l} foralll <c<n+1,1<i<n,
by Lemma 7, we obtain < z(®=1), z(9) > R {V,A71} forall 1 < ¢ <n+1. Since < z®=D 2 >e R {v,a-1}
for all 1 <1 <mn, the equality

% <z 20 >=c 2O 20 5 4 < 20D 20+ 5

and < z0D 20+ S ¢ R{V, A‘l} for all 1 <4 <n imply < 2® 2®) > R{V} for all 1 <4 <n. This

means that the assertion is proved for b. O

We complete the proof of our theorem. Using Lemmas 8 and 7, we obtain < z(®, z(9) >e R {V, A‘l}
for all b,c € N. By Lemma 5, A € R{V}. Since R < V > is a field, we obtain A= € R < V >. Hence
R {V, A‘l} C R <V >. By Lemma 3, the system of all elements < z(®, z(¢) > where b, c € N, is a generating

system of R < x >M("P) a5 a field. Hence R <V >= R < 2 >M("P)  The theorem is completed. O

Remark 1 In the paper [18] was proved that the system (1) in Theorem 1 is a complete system of M(n,p)-
invariants of a paths ([18, Theorem 2]). Then, by Theorem 1 in [18], the system (1) in Theorem 1, where
x = x(ts()) is an invariant parametrization of a curve «, is a complete system of M(n,p)-invariants of a curve
a ([18, Corollary 1]). There are relations in the form of inequalities between elements of the system 1. These

relations will be found later.

For vectors ay € R", where ar = (ak1,...,ak,) and k = 1,...,n, the determinant det(ag;) will be

denoted by [aias...a,]. So {x,(t)x(z)(t) . .w(")(t)} is the determinant of derivatives of a path x(t).
Theorem 2 The system

{ [x’(t)x@)(t) . ,w(")(t)} < a® @), z®() > k=1,...,n— 1} (4)
is a generating system of R < x >SM(wp)
Proof Let SO(n,p) ={F € O(n,p) : detF = 1}. First we prove several lemmas. O
Lemma 9 R <z >5M(p)= R < g’ >50(p)
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Proof A proof is similar to the proof of Lemma 1. O

Lemma 10 Let f € R <2’ >50(2)  Then SO(n, p)-invariant differential polynomials f1, fo exist such that
f=1/f.
Proof A proof is similar to the proof in [16, p. 106]. O

Lemma 11 The system of all elements
[wwl)w(mz)...w(mn) < 2@ g > (5)

where m;,q,r € N, is a generating system of R < z >50(p) g5 q field.

Proof Let R[z("™);m € N]59(™P) be the R-algebra of all SO(n,p)-invariant polynomials of the system
{z(™;m € N}. According to the First Main Theorem for SO(n,p) ([21, p.p. 53; 65-66]), the system equation

(5) is a generating system of R[z(™);m € N]SO(p),

Lemma 10 implies that the system equation (5) is a
generating system of R < z >50(np) a5 4 field. O
Denote by Z the system equation (4) of differential polynomials. Let R{Z} be the differential R-
subalgebra of R < z >50(n.p) generated by elements of the system Z.
Let § = 6, be the determinant of the matrix Gr(yi,y2, ..., Yn—1;21,22,.--,2n-1), Where y3 = z1 =

’

zyp =z =0 oy =2, =2,

Lemma 12 <y;,2; >€ R{Z} forall 1 <i,ji+j<2n—1,6€ R{Z} and 6" ' e R< Z >.

Proof Using Lemma 4, we get < 2, 20) >¢ R{Z} forall 1 <4,j,i4+j < 2n—1. The element < y;, z; > of
the determinant § is the functions < z(9, () > where 1 <i,j <n—1. Hence § € R{Z}and "' e R< Z >.

O
In sequel, we need the following lemma.
Lemma 13 The equality
(=D)Ply1 - ynlle1 - .. 2] = det|[(yi, Zj>|‘i7_j:1727,,,7n
holds for all vectors y1,...,Yn, 21, .-, 2n N Ep.
Proof A proof of the this lemma is similar to the proof in ([16], p.72). O
Let A be the function in the proof of Theorem 2.
Lemma 14 A€ R{Z} and A™* e R< Z >.
Proof Using Lemma 13 to vectors y; = z1 = x,, yo =20 =2, ..y, =z, = 2™ we obtain
, 2
(—1)? [gc 2@ ™ = det ||< i, 24 > 2100 = A (6)
Since [x,x(z) . .w(")} € Z,wehave A € R{Z} and A™' e R< Z >. 0
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Denote by R{Z, 5‘1,A_1} the differential R-subalgebra of R < z >SM(n.p) generated by Z and
functions 6!, A~!. By Lemmas 10 and 11, for a proof of our theorem, it is enough to prove that [x(ml)x(m“') e
x(mn)} €R{Z,6 ' A7} and <x(b),x(c)> € R{Z,67, A"} for all m;,b,ce N.

Let V be the system in the proof of Theorem 2.

Lemma 15 <z 2™ >e R{Z,67',A7'} and R{V,A"'} C R{Z,671,A71}.
Proof For ¢ = 1,2,...,n, denote by D,; the cofactor of the element < y,,z; > of the matrix A =
< i,z >l; j—1 5., in equation (6). Then we obtain the equality
A =< Yn, 21 > Dn1+ < Yn, 22 > Dn2 +-+ < Yn,y Zn—1 > Dnn—1+ < Yn, Zn > Dnn (7)
Since § = Dy, # 0, equalities equation (6) and equation (7) imply
—e (M) () S A5 -1_ -1_
< Yn, 2p >=< ", 2\ >= A < Yn, 21 > Dp1d < Yn, 22 > Dpod (8)
o= < Yn, Zn—1> Dnn—l(s_l-
By Lemma 12, < y,,, 2; >=< 2™ 20) > R{Z} for each 1 <j <n—1. We prove that D, € R{Z} for every
1<s<n-—1. Wehave Dys = (—1)"T5detGr(y1,y2, - - -, Yn—1; 21, 22, - - -5 Zs—1, Zs+1s - - - Zn) - Blements of Dy
have the following forms < y;,z; > and < y;, z, >, where i <n,j <n. Since < y;, 2, >=< ypn, 2 >€ R{Z},

we have D,, € R{Z}. Hence equation (8) implies < y,z, >€ R{Z,67'}. Using V .C Z U {(yn,2n)}, we
obtain R{V,A"'} c R{Z,67*,A7'}. O

Lemma 16 <x(b),x(c)> € R{Z, 5‘1,A_1} for all b,c e N .

Proof By Lemma 15, we have R{V, A‘l} - R{Z, 5_1,A_1}. Since <x(b),x(c)> € R{V, A‘l} for all
b,c € N, we obtain < 2® z(¢)) ¢ R {Z, 51, A‘l} for all b,ce N. O

Lemma 17 [x(ml)x(m“') .- -x(m")] €R {Z, o A‘l} for all m; € N .

Proof Using Lemma 13 to vectors y; = x,, yo =@ oy, = (M) 2 = (M) oy = g(m2) o = g(mn)

we obtain that

(=DPlyr -+ ynllzr - 2n] = det]] <wis 25 > lij=1,2,..m (9)
Since A = (—1)P[y1 .. .ya]*, equation (9) implies
[21 .. Zn] = A_l[yl .. yn]det|| < Yi, 25 > ||i,j:1,2,...,n-

By Lemma 16, < y;,z; >=< z® (M) >¢ R{Z, 5‘1,A_1} forall 4,5 =1,2,...,n. Since [y; ...yn] €
Z CR{Z, 67, A1}, we obtain [z1...2,) € R{Z,671,A7}. O
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We complete the proof of our theorem. By Lemmas 12 and 14, 6 ',A7! € R < Z >. Hence
R{Z,6-',A"'} C R< Z>. By Lemma 16, < 2,29 > R{Z,67',A"'} CR< Z > for all b,c € N. By
Lemma 17, [x("“)x(m?) - -x(m")] € R{Z, 5‘1,A_1} C R < Z > for all m; € N. Hence Lemmas 9-11 imply
that R < Z >= R < x >3M(™P)  The theorem is completed. O

Remark 2 In the paper [18] was proved that the system (4) in Theorem 2 is a complete system of SM(n,p)-
invariants of paths ([18, Theorem 3]). Then, by Theorem 1 in [18], the system (4) in Theorem 1, where
x = xz(ts(x)) is an invariant parametrization of a curve o, is a complete system of SM(n,p)-invariants of a
curve o ([18, Corollary 2]). There are relations in the form of inequalities between elements of the system 4.

These relations will be found below.

3. Relations between elements of complete systems of invariants of a curve in E}

Definition 4 A system of differential polynomials p1{z},...,pm{x} € R{x} is called differential algebraically
independent if there is no nonzero differential polynomial f{y1,...,ym} € R{y1,...,Ym} such that
fApi{a}, .. ..,om{z}} =0 for all paths x.

Theorem 3 . The system
{< 2® @), z®) >, k=1,2, n}
is differential algebraically independent.
Proof A proof is similar to the proof of Theorem 12.8 in ([16], p.112). O

Let A(z(t)) = ‘ A(x)T be the transpose matrix of A(x) and I, = ||b;;|| be the

7 (22 (0). ™),

diagonal n X n-matrix such that b;; = —1 forall i =1,...,p and b;; =1 for all j =p+1,...,n. We have the

equality A(z) " LA(z) = ||< ) 20 >||Z. ; . The matrix A(z)"I,A(x) is congruent to the matrix I,, for

=1,2,...,n
every non-singular J-path x(t) and all ¢ € J. This fact, in view of the equality A(z)" I,A(z) = || <z®,20) >
||, gives some system of relations (inequalities) between < z'(t),z (t) >,..., < z(™(t),z(™(t) > and their

derivatives. Below we prove that an arbitrary relation between < z (t),z (t) >,...,< ™ (t), 2™ (t) > and

their derivatives is a consequence of the above mentioned relations.

Corollary 1 Let y1,Yya,...,yn be differential variables and f € R{yi,y2,...,yn}t. Then the differential
polynomial f{yi,y2,...,yn} is uniquely determined by its values on functions y1(t), y2(t),...,yn(t) in the

form
yi(t) =< 29(t), 2D (t) >, (10)

where x(t) run through the space (C*°(J))™.
Proof Assume that fi, fo € R{y1,¥2,...,yn} exist such that f; # fo and

Sl (®),92(0), - yn (D)} = f2 {yr (), 92(), - - - yn(t)} (11)
for all y1(¢), y2(t),...,yn(t) in the form equation (10). From equation (11), we obtain the equality
HHy(®),52(1), .., yn ()} =0 (12)
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for all y1(t), y2(t),...,yn(t) in the form equation (10), where f = fi — fo is a nonzero differential polynomial
since fi # fo. Equation (12) means that differential polynomials < (1), 21 > < () 2?2 > <z z() >

are differential-algebraically dependent, which contradicts Theorem 3. O

Corollary 2 The differential polynomial Pi; {y1,y2,...,yx} in Lemma 4 is unique.
Proof A proof follows from Theorem 3. O
For convenience, we will write P;; {y1,y2,...,yn} instead of Pi; {y1,vy2,.-., Uk}

Let the symbol ’ denotes the differentiation in the differential algebra R{y1,y2,...,Yn}-
Corollary 3 The equality

Pii{y1,y2, - yn} = Pirj{yr vz, un} + P {yn, w2, un} (13)
holds for all i,j satisfying the conditions 1 <1i,j,i+j < 2n.

Proof From the definition of differential polynomials P;; {y1,¥2, ..., yn}, we have the equality

<a@(1),29(t) >= Py {y1(1),52(2), ..., (D)},

where yy(t) =< 2 (t),2®)(t) > k=1,...,n,1 <4i,j,i+j < 2n + 1. Differentiating this equality, we obtain

G < 700,200 >= TPy (10, 32(0). .. 1a (0]}

Assume that 1 <14,j,7+ j < 2n. Since

d . ) . ) . )
= < zD(t), 29 (t) >=< 20TV (1), 29 (t) > + < 2D (1), 29V (1) >,

we have

%Pij {yl(t)aQQ(t)a .. '7yn(t)} = Pi+1j {yl(t)aQQ(t)a .. '7yn(t)} + Pij+1 {yl(t)aQQ(t)’ .. '7yn(t)} .

This equality takes place for all functions yi(t), y2(t),...,yn(t) in the form equation (10). Applying the
Corollary 3, we conclude that the latest equality takes place for all yq(t), y2(t),...,yn(t) € C(J). Passing
from a parametric representation of differential polynomials in the latest equality to their abstract differential
polynomials, we obtain equation (13). O

Let fi(t),..., fa(t) be arbitrary C*°-functions on J=(a,b). For convenience, the indexes of these

functions will be written in the form f;(t) = fi;(¢). Using functions f;;(t), we define functions
fii(t) = Pij {fui(t), ..., fan ()}, 1 <4, j <. (14)

Proposition 1 The equality

’

fij () = fir1; () + fija(t)

holds for all i,j satisfying the conditions 1 <1i,j,i+j < 2n.
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Proof Letting y1 = f11(t),y2 = foa(t) ..., yn = fan(t) in Corollary 3, we obtain the desired equality. O

Theorem 4 Let f11(t), ..., fan(t) be infinitely differentiable functions on J such that:
(1) det||fi;(®)]] #£ 0 for all t € J, where f;;(t) is defined by (14);
(i7) the matriz ||fi;(t)|| is congruent to the matriz I, for some tg € J.

Then there exists a non-singular J-path x(t) in E) such that
<zW(t), 2D (t) >= fu(t)

foraltedJ andi=1,...,n.

Proof Define the n x n-matrix function Q(t) = ||fi;||, where f;; is defined by equation (14). Since the
differential polynomials P;; satisfy the relations P;; = Pj;, we obtain Q' (t) = Q(t), where Q(¢)" is the
transpose matrix of Q(t). Let Q' (t) be the derivative of Q(t).

Lemma 18 A unique solution B(t) = ||bi;|| of the n x n-matriz equation

’

Q (t) = BT ()Q(t) + Q(1)B(t) (15)
exists which satisfies the conditions
(’)/1) bj+1j(lf) =1forallteJ and 1 S] <n-—1;

(72) bij(t) =0forallteJ and j#n,i#j+1,1<i<n.
Proof By (71) and (42), only the elements by,(t),...,byn(t) of the matrix B(t) are unknown. Using (v1)
and (72), from equation (15) and QT(t) = Q(t), we obtain

’

fij () = fir1; () + fija(t)

for 1 <i,7<n-—1 and

’ ’

Fri®) = Fin () = firan(®) + D fin(O)brn(t)
k=1
for 1<i<n-—1,

Fon®) =3 " bkn® fin(t) + D Far(Obrn(t) = 2> fur(t)ben(t).
k=1 k=1 k=1

Hence, for the elements b1, (t), ..., bnn(t), we obtain the following system of n linear equations in n unknowns:

Y Fie(Oben(t) = fri(t) = frran(®), 1 <i<n—1,

k=1

D Fan®brn(t) = 0,5£,,,(¢).
k=1
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By assumption (i) of the theorem , the determinant of this system is detQ(¢) = det || f;;(¢)|| # 0 for all ¢ € J.
Consequently, this system has a unique solution b1, (t), ..., bun(t). O

It is obvious that B(t) is infinitely differentiable.

Lemma 19 Let B(t) be the solution of equation (15). Then an infinitely differentiable n x n-matriz function
A(t) on J exists such that

’

(61) At) =lla(t)a' (t)...a"=V()|| for some J-path a(t) in EN;

(02) detA(t) #0 forallte J;

’

(0s) A (1) = A(t)B(t);

(62) AT()L,A(t) = Q(t), where I, = ||b;| be the diagonal n xn-matriz such that b;; = —1 foralli=1,...,p
and bj; =1 forall j=p+1,...,n..

Proof From assumptions (1) and (y2) of Lemma 19, and from the theory of linear differential equations it
follows that a solution A(t) of equation (d3) exists such that detA(t) # 0 for all ¢ € J. Since the matrix B(t)
satisfies relations (1) and (72), it follows that the matrix A(t) is the form (01) for some path a(t) in E}. We
have det(AT (t)A(t)) # 0 for all t € J. Let to be such that the matrix Q(to) = || fi;(t0)|| is congruent to the
matrix I,. Since Q(to) is congruent to the matrix I,,, detQ(to) # 0, det(AT (t)A(t)) # 0, and QT (t) = Q(2)
for all t € J, it follows that a nondegenerate n x n-matrix g € GL(n, R) exists such that

(97) 7 (AT (1)) ' Qt0)A™ (to)g ™" = I,

Hence we have AT (t9)g " I,gA(to) = Q(to). The matrix function gA(t) is also solution of (3). The matrix func-
tion H(t) = AT (t)g" I,gA(t) satisfies the following conditions: H ' (t) = H(t), H (t) = BT (t)H(t) + H(t)B(t)
for all t € J. But these conditions are also fulfilled for the function Q(¢). Then from the equality H(to) = Q(to),
by the existence and uniqueness theorem of a solution of a system of linear differential equations, it follows that
H(t)=Q(t) forall t € J. O

Now we return to the proof of the theorem. By Lemma 19, a matrix

’

A(t) = [la(t)a’(¢) ...a" V(@)

exists such that A’ (t) = A(t)B(t), AT (t)-I,-A(t) = Q(t). Using the relation AT (t)-I,-A(t) = |< a®(t),a)(t) >||,

we obtain < a(t),aV)(t) >= fiy1j41 for all 4,5 = 0,1,...,n — 1. Let x(t) = :0 a(t)dt. Then <

) ) ‘ 2
2@ (t), 2 (t) >= f;; forall i =1,...,n. Since [x t)z@ .2 (t)| = detAT (t)-I,- A(t) = detQ(t) # 0 for

all t € J, the path z(t) is nondegenerate. O
Let J be one of intervals (0,1),0 < I < 400, (—00,0), (—00, +00).

Corollary 4 Let J be one of intervals (0,1),0 < I < 400, (—00,0), (—o0, +00). Assume that f11(s), ..., fan(s)
be infinitely differentiable functions on J such that:
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(&) 1fi1(8)| =1 forall s€ J;
(i7) det||fij(s)|| # 0 for all s € J, where the function f;;(s) is defined by equation (14);
(#43) the matriz || f;;(s)|| is congruent to the matriz I, for some to € J.

Then a reqular non-singular curve o and its invariant parametrization x exist such that

< 2 (s), 20 (s) >= fi(s) forall s€I,i=1,...,n.

Proof This corollary is a special case of Theorem 4. O
Let f11(t),..., fa—1n—1(t) and d(t) be C°°-functions on an interval J. We consider the matrix Q(t) =

[|fi;(©)li.j=1,...n, where the function f;;(t),i4+j < 2n, is defined by fi1,..., fa—1n—1 asin (14) and the function

frn(t) will be defined below. Let A,;(t) be the cofactor of the element f,;(¢t) in the matrix Q(¢). Since every

element of the cofactor A,;(t) consists of all fp, such that p+ g < 2n, A,,(t) is a differential polynomial of

fi1, -y famin—1. Assume that A, (¢t) = det||fij(t)|]ij=1,..n—1 # 0 for all ¢t € J. We define the element f,,

as follows:

_ (_1)pd2(t) - fnl(t)Anl - fnn—l(t)Ann—l
This equality implies

forall t e J.

Theorem 5 Let f11(t), ..., fn—in—1(t) and d(t) be infinitely differentiable functions on an interval J such
that:

(M) Apn(t) #0 forall te J;
(A2) the matriz Q(t) is congruent to the matriz I, for some to € J;
(Ns) d(t) #0.

Then there exists a non-singular path x(t) in E} such that
<a®(0),200) >= fult), [« (0)...«(0)] = d(r)

foraltedJ andi=1,...,.n—1.
Proof Equation (16) and the condition (A3) implies detQ(t) # 0 for all ¢ € J. Hence, according to Theorem

4 there exists a non-singular path z(¢) in E}} such that < zO (), 2 (t) >= fi(t) forallt € Jandi=1,...,n.
Using these equalities, Lemma 4 and equation (14), we obtain detQ(t) = det || (@ (1), 2(t)) |- Then using this

equality, equation (16) and Lemma 13, we obtain {x,(t) . .w(")(t)} g d*(t). Then [x, (t).. .w(")(t)} =d(t) or
{x,(t) . .w(")(t)} = —d(t). Since {x,(t) . .w(")(t)} # 0 and d(t) #0 for all t € J, we have {x,(t) . .x(")(t)} =

d(t) or [x,(t) . .w(")(t)} = —d(t) for all t € I. In the first case, a proof is completed. In the second case,
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we consider g € O(n) such that detg = —1. In this case, we put y(t) = gz(t). Then < y®(t),y(t) >=
< g2 D(t), gz (t) >=< 2D (), 2D(t) >= fii(t,) and [y (t)...y™ (t)} - [gx’ (t)...ga™(t)| = d(t). Thus the

path y(t) satisfies all conditions of our theorem. O

(1]

3l

(4]

(9]

(10]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

An analog of Corollary 4 takes place for the complete system of SM(n,p)-invariants of a curve.
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