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Abstract: Let M(n, p) be the group of all motions of an n-dimensional pseudo-Euclidean space of index p . It is proved

that the complete system of M(n,p)-invariant differential rational functions of a path (curve) is a generating system of

the differential field of all M(n, p)-invariant differential rational functions of a path (curve), respectively. A fundamental

system of relations between elements of the complete system of M(n,p)-invariant differential rational functions of a path

(curve) is described.
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1. Introduction

The present paper is a continuation of our paper [18]. Let En
p be the n-dimensional pseudo-Euclidean space of

index p (that is the space Rn with the scalar product < x, y >= −x1y1 − · · ·− xpyp + xp+1yp+1 + · · ·+ xnyn ),

O(n, p) is the group of all pseudo-orthogonal transformations of En
p , M(n, p)={F : En

p → En
p | Fx = gx + b ,

g ∈ O(n, p), b ∈ En
p } and SM(n, p) = {F ∈ M(n, p) : detg = 1} .

Here, for groups G = M(n, p) and G = SM(n, p), we prove that the complete system of G-invariant

differential rational functions of a path (curve) obtained in [18, Theorems 2–3 and Corollaries 1–2] is a generating

system of the differential field of all G -invariant differential rational functions of a path (respectively, curve).
We describe a fundamental system of relations between elements of the complete system of G-invariant functions
of a path (curve) (i.e., global existence theorems for a path and a curve).

For groups G = M(n, 0) and G = SM(n, 0), the generating system of the differential field of all G -

invariant differential rational functions of a path in the Euclidean space En
0 was obtained in [16] . The Frenet-

Serret equation for both time-like and space-like curves in spaces E3
1 and E4

1 is given in [12, 13, 22]. In papers

[1, 4, 5, 8, 14, 19, 20], the Frenet-Serret equation is extended from non-null curves in E3
1 , E4

1 and E4
2 to null

(lightlike, isotropic) curves. For arbitrary n , the Frenet-Serret equation is obtained for the Lorentz space En
1

in [2], [9, pp. 52–76]. The Frenet-Serret equation in En
p for arbitrary n and index p is considered in [3, 6,

7]. Existence and rigidity (that is uniqueness) theorems for curves in spaces E3
1 and E4

1 are studied in [5]

and thesis [13] (in the case with constant coefficients). In papers [5, 14], existence and rigidity theorems are
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extended from non-null curves in E3
1 and E4

1 to null curves. For arbitrary n , existence and rigidity theorems

are extended to the Lorentz space En
1 and to the space En

2 in [9, pp. 52–76]; and [10, 11]. For arbitrary n

and index p , existence and rigidity theorems for curves in En
p are considered in the paper [6]. In these papers,

existence theorems are local. The rigid group in the rigidity theorem is given in [6, 12, 14]. The rigid groups in

papers [14, 12, 6] are SM(3, 1), SM(4, 1) and SM(n, p), respectively.

This paper is organized as follows. In Section 2, a definition of the differential field of all G -invariant
differential rational functions of a path (curve) is given. For groups G = M(n, p), SM(n, p), it is proved that

the complete system of G-invariant differential rational functions of a path (curve) obtaining in [18, Theorems

2 and 3 and Corollaries 1 and 2] is a generating system of the differential field of all G -invariant differential

rational functions of a path (curve), respectively. (Theorems 1, 2). In Section 3, the description of a fundamental

system of relations between elements of the complete system of G-invariant functions of a path (curve) is given

(Theorems 3–4 and Corollary 4).

In this paper we use definitions and notations of the paper [18].

2. Invariant differential rational functions of paths and curves

Below we cite some notation and facts from the differential algebra (see [15–17]) in a form which is convenient

for our considerations. Let R be a field of real numbers. Consider the ring R[y0, y1 . . . , yn, . . .] of polynomials

with real coefficients in the countable set of variables {y0, y1 . . . , yn, . . .} . We let y0 = y, y1 = y
′
, . . . , ym+1 =

(ym)
′

= y(m+1) . The operation ′ : ym → y
′
m will be called the differentiation of an element ym . Using the

Leibniz rule, this operation can be uniquely extended to the ring R[y0, y1 . . . , yn, . . .] . As a result, we obtain

a differential R -algebra (d-algebra), which will be denoted by R {y} . Elements of this d -algebra are called

differential polynomials in y with coefficients from R . We denote elements of R {y} by f {y} . The element y

is called the differential variable (unknown).

Differential polynomials f {z1, . . . , zn} and the d -algebra R {z1, . . . , zn} in a finite number of differential
variables z1, . . . , zn are defined in a similar manner.

We denote by C∞(J) the set of all infinitely differentiable functions on an interval J = (a, b). Let f {y}
be a differential polynomial in a differential variable, and let y(t) ∈ C∞(J). In the expression f {y} , let y

to y(t) and polynomial term y(n) to dny(t)
dtn (n = 1,2,. . . ). We denote the obtained expression by f {y(t)} .

The expression f {y(t)} is a polynomial in y(t) and a finite number of derivatives of y(t). For f1, f2 ∈ R {y} ,

f1 = f2 if and only if f1 {y(t)} = f2 {y(t)} for all y(t) ∈ C∞(J).

The set of all expressions f {y(t)} , where f ∈ R {y} , will be denoted by R {y(t)} . R {y(t)} is an R -
algebra with respect to the standard operations of addition and multiplication of functions and multiplication

of a function by a real number. R {y(t)} becomes a differential R -algebra if d
dt is taken as the operation

of differentiation. One can easily see that the mapping f {y} → f {y(t)} is an isomorphism of differential

R -algebras R {y} and R {y(t)} . A similar fact takes place for differential polynomials f {z1, . . . , zn} in

several variables z1, . . . , zn . Let us replace in f {z1, . . . , zn} the element zi (i = 1, 2, . . . , n) by zi(t) ∈
C∞(J) and the element z

(m)
i by the function dmzi(t)

dtm (m = 1, 2, 3, . . .). Denote the obtained expression

by f {z1(t), . . . , zn(t)} . We denote by R {z1(t), . . . , zn(t)} the set of all f {z1(t), . . . , zn(t)} , where f ∈
R {z1, . . . , zn} . R {z1(t), . . . , zn(t)} is a differential R -algebra with respect to the standard operations over
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functions and the operation d
dt . The differential algebras R {z1, . . . , zn} and R {z1(t), . . . , zn(t)} are isomorphic,

and to the operation of differentiation in R {z1, . . . , zn} the operation d
dt in R {z1(t), . . . , zn(t)} corresponds.

The transition from f {z1, . . . , zn} to f {z1(t), . . . , zn(t)} will be called a parametric representation

of a differential polynomial f {z1, . . . , zn} . The inverse transition will be called the abstract representa-

tion of f {z1(t), . . . , zn(t)} . The system (z1, z2, . . . , zn) of differential variables z1, z2, . . . , zn will be called

an n-dimensional differential vector. For brevity, an ordered system (x1, x2, . . . , xm) of differential vectors

x1, x2, . . . , xm will be denoted by x . We let R {x1, . . . , xm} = R {x} . R {x} is an integral domain. We denote

its field of quotients by R 〈x〉 . The differentiation in R {x} is uniquely extended to a differentiation in R 〈x〉 ,
and R 〈x〉 is a differential field. An element of R 〈x〉 is called a differential rational function of x and denoted

by h 〈x〉 .
Let G be a subgroup of M(n, p).

Definition 1 A differential rational function h < x > will be called G-invariant if
h < gx >= h < x > for all g ∈ G .

The set of all G -invariant differential rational functions of x forms a differential subfield of R < x > .
We denote it by R < x >G .

Definition 2 Let α be a curve in Rn and x is a G-invariant parametrization of α . An element h ∈ R < x >G

is called a G-invariant differential rational function of a curve α .

Let 〈x, y〉 be the inner product of vectors x, y ∈ En
p .

Definition 3 A subset S of R < x >G will be called a system of generators of differential field R < x >G if

the least differential subfield in R < x >G containing S coincides with R < x >G .

Theorem 1 The system

{
< x(k)(t), x(k)(t) >, k = 1, 2, . . . , n

}
(1)

is a system of generators of R < x >M(n,p) .

Proof Let R < x
′
> be the differential field of all differential rational functions of x

′
= ∂

∂t
x and O(n, p) is

the group of all pseudo-orthogonal n × n-matrices. �

First we prove several lemmas.

Lemma 1 R < x >M(n,p)= R < x
′
>O(n,p) .

Proof Let h < x >= h(x, x
′
, . . . , x(m)) ∈ R < x >M(n,p) . Then it is invariant with respect to parallel

translations in En
p . This implies that h(x, x

′
, . . . , x(m)) = h < x

′
> . It is also O(n, p)-invariant. Hence it

is an O(n, p)-invariant differential rational function of x
′
. Conversely, assume that h is an O(n, p)-invariant

differential rational function of x
′
. Then it is invariant with respect to parallel translations in En

p . Hence it is

M(n, p)-invariant. �
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Lemma 2 Let f ∈ R < x
′

>O(n,p) . Then differential polynomials f1, f2 ∈ R < x
′

>O(n,p) exist such that
f = f1/f2 .

Proof A proof is similar to the proof in ([16], p. 106). �

Let N be the set of all natural numbers.

Lemma 3 The system of all elements
〈
x(m), x(q)

〉
, where m ≥ 1, q ≥ 1, m ∈ N, q ∈ N , is a generating system

of R < x >M(n,p) as a field.

Proof Let R[x(m), m ∈ N ]O(n,p) be the R -algebra of all O(n, p)-invariant polynomials of the system
{
x(m), m ∈ N

}
. It is obvious that R[x(m), m ∈ N ]O(n,p) = R

{
x

′
}O(n,p)

. According to the First Main Theorem

for O(n, 0) ([21, p. 53]) and O(n, p) ([21, p. 65,66]), the system
{〈

x(m), x(q)
〉
; m, q ∈ N

}
is a generating system

of the R -algebra R[x(m), m ∈ N ]O(n,p) = R
{

x
′
}O(n,p)

. Using Lemmas 1 and 2, we obtain that the system
{〈

x(m), x(q)
〉
; m, q ∈ N

}
is a generating system of R < x

′
>O(n,p)= R < x >M(n,p) as a field. �

Lemma 4 Let 1 ≤ i, j, i + j ≤ 2n + 1 . Then, for each differential polynomial < x(i), x(j) >, a differential
polynomial Pij{y1, ..., yk} exists such that

< x(i), x(j) >= Pij

{
< x

′
, x

′
>, ..., < x(k), x(k) >

}
,

where k =
[

i+j
2

]
.

Proof We will prove the existence of Pij by induction on q = i+ j . Since i ≥ 1, j ≥ 1, we have i+ j ≥ 2. In
the case i + j = 2, the desired existence of P11 is obvious. Assume that a differential polynomial Pij exists for

all i, j such that i + j < q . Let i ≤ j and q = 2b , where b is an integer. Then < xi, xj >=< x(b−h), x(b+h) >

for some h ≥ 0. Using the equality

< x(b−h), x(b+h) >=< x(b−h−1), x(b+h) >
′ − < x(b−h−1), x(b+h+1) >

and applying the inductions on q = i + j and h , we conclude that < x(i), x(j) > is a differential polynomial in

< x
′
, x

′
>, ..., < x(k), x(k) > , where k ≤ b .

Let q = 2b + 1. Then < x(b), x(b) >
′
= 2 < x(b), x(b+1) > . Using the equality

< x(b−h), x(b+h+1) >=< x(b−h−1), x(b+h+1) >
′ − < x(b−h−1), x(b+h+2) >

and applying the inductions on q = i + j and h , we conclude that < x(i), x(j) > is a differential polynomial of

< x
′
, x

′
>, ..., < x(k), x(k) > , where k ≤ b . �

Denote by Δ = Δx the determinant det
∥∥< x(i), x(j) >

∥∥
i,j=1,2,...,n

. Let V be the system equation (1).

Denote by R {V } the differential R -subalgebra of R < x
′
>O(n,p) generated by elements of the system V .

Lemma 5 Δ ∈ R {V } .
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Proof By the definition of V , < x(i), x(i) >∈ V for all 1 ≤ i ≤ n . According to Lemma 4, < x(i), x(j) >∈ V

for all 1 ≤ i, j ≤ n . Hence Δ ∈ R {V } . �

Denote by R
{
V, Δ−1

}
the differential R -subalgebra of R < x

′
>O(n,p) generated by elements of the

system V and the function Δ−1 . According to Lemmas 1 and 3, for a proof of our theorem, it is enough to

prove that < x(m), x(q) >∈ R
{
V, Δ−1

}
for all m, q ∈ N .

Denote by Gr(y1, y2, . . . , ym; z1, z2, . . . , zm) the Gram matrix ‖〈yi, zj〉‖i,j=1,2,...,m of vectors y1, y2, . . . , ym;

z1, z2, . . . , zm in En
p . Let det Gr(y1, y2, . . . , ym; z1, z2, . . . , zm) be the determinant of Gr(y1, y2, . . . , ym; z1, z2,

. . . , zm). The following is known.

Lemma 6 The equality,

detGr(y1, y2, . . . , yn+1; z1, z2, . . . , zn+1) = det|| < yi, zj > ||i,j=1,2,...,n+1 = 0

holds for all vectors y1, y2, . . . , yn+1, z1, z2, . . . , zn+1 in Rn .

Proof A proof is given in [16, p. 106–107], [21, p. 75]. �

Lemma 7 Let b, c ∈ N such that < x(b), x(i) >∈ R
{
V, Δ−1

}
and < x(c), x(i) >∈ R

{
V, Δ−1

}
for all

1 ≤ i ≤ n . Then < x(b), x(c) >∈ R
{
V, Δ−1

}
.

Proof Using Lemma 6 to vectors

y1 = z1 = x
′
, y2 = z2 = x(2), . . . , yn = zn = x(n), yn+1 = x(b), zn+1 = x(c),

we obtain the equality detA = 0, where

A = ‖< yi, zj >‖i,j=1,2,...,n+1 .

Let Dn+1j be the cofactor of the element < yn+1, zj > of the matrix A for j = 1, 2, . . . , n + 1. The equality

detA = 0 implies the equality

< yn+1, z1 > Dn+11+ < yn+1, z2 > Dn+12 + · · ·+ < yn+1, zn > Dn+1n + (2)

< yn+1, zn+1 > Dn+1n+1 = 0.

Since Δ = Dn+1n+1 , equation (2) implies the equality

< yn+1, zn+1 >=< x(b), x(c) >= (3)

−< yn+1, z1 > Dn+11+ < yn+1, z2 > Dn+12 + · · ·+ < yn+1, zn > Dn+1n

Δ
.

In equation (3), by the assumption of the lemma, < yn+1, zj >=< x(b), xj >∈ R
{
V, Δ−1

}
for each j : 1 ≤

j ≤ n . We prove that Dn+1s ∈ R
{
V, Δ−1

}
for every s : 1 ≤ s ≤ n . We have Dn+1s = (−1)n+1+s det

Gr(y1, y2, . . . , yn; z1, z2, . . . , zs−1, zs+1, . . . , zn, zn+1)). By the definition of V , < yi, zj >∈ V ⊂ R {V } for

all i, j : 1 ≤ i, j ≤ n . By the assumption of our lemma, we have < yi, zn+1 >=< x(i), xc >∈ R
{
V, Δ−1

}
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for every i : 1 ≤ i ≤ n . Hence Dn+1s ∈ R
{
V, Δ−1

}
for every s : 1 ≤ s ≤ n and equation (3) implies

< yn+1, zn+1 >∈ R
{
V, Δ−1

}
. �

Lemma 8 < x(b), x(i) >∈ R
{
V, Δ−1

}
for all b ∈ N and 1 ≤ i ≤ n .

Proof We prove this assertion by induction on b . By the definition of V and Lemma 4, we obtain that

< x(c), x(i) >∈ R
{
V, Δ−1

}
for all 1 ≤ c ≤ n + 1, 1 ≤ i ≤ n . This implies that the assertion holds for all

b = c = 1, 2, . . . , n + 1.

Assume that the assertion of the theorem holds for b − 1. Then < x(b−1), x(i) >∈ R
{
V, Δ−1

}
for all

1 ≤ i ≤ n . Using < x(b−1), x(i) >∈ R
{
V, Δ−1

}
and < x(c), x(i) >∈ R

{
V, Δ−1

}
for all 1 ≤ c ≤ n+1, 1 ≤ i ≤ n ,

by Lemma 7, we obtain < x(b−1), x(c) >∈ R
{
V, Δ−1

}
for all 1 ≤ c ≤ n+1. Since < x(b−1), x(i) >∈ R

{
V, Δ−1

}

for all 1 ≤ i ≤ n , the equality

∂

∂t
< x(b−1), x(i) >=< x(b), x(i) > + < x(b−1), x(i+1) >

and < x(b−1), x(i+1) >∈ R
{
V, Δ−1

}
for all 1 ≤ i ≤ n imply < x(b), x(i) >∈ R {V } for all 1 ≤ i ≤ n . This

means that the assertion is proved for b . �

We complete the proof of our theorem. Using Lemmas 8 and 7, we obtain < x(b), x(c) >∈ R
{
V, Δ−1

}

for all b, c ∈ N . By Lemma 5, Δ ∈ R {V } . Since R < V > is a field, we obtain Δ−1 ∈ R < V > . Hence

R
{
V, Δ−1

}
⊂ R < V > . By Lemma 3, the system of all elements < x(b), x(c) > , where b, c ∈ N , is a generating

system of R < x >M(n,p) as a field. Hence R < V >= R < x >M(n,p) . The theorem is completed. �

Remark 1 In the paper [18] was proved that the system (1) in Theorem 1 is a complete system of M(n,p)-

invariants of a paths ([18, Theorem 2]). Then, by Theorem 1 in [18], the system (1) in Theorem 1, where

x = x(ts(x)) is an invariant parametrization of a curve α , is a complete system of M(n,p)-invariants of a curve

α ([18, Corollary 1]). There are relations in the form of inequalities between elements of the system 1 . These
relations will be found later.

For vectors ak ∈ Rn , where ak = (ak1, . . . , akn) and k = 1, . . . , n , the determinant det(akj) will be

denoted by [a1a2 . . . an] . So
[
x

′
(t)x(2)(t) . . . x(n)(t)

]
is the determinant of derivatives of a path x(t).

Theorem 2 The system

{[
x

′
(t)x(2)(t) . . . , x(n)(t)

]
, < x(k)(t), x(k)(t) >, k = 1, . . . , n− 1

}
(4)

is a generating system of R < x >SM(n,p) .

Proof Let SO(n, p) = {F ∈ O(n, p) : detF = 1} . First we prove several lemmas. �

Lemma 9 R < x >SM(n,p)= R < x
′
>SO(n,p) .
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Proof A proof is similar to the proof of Lemma 1. �

Lemma 10 Let f ∈ R < x
′
>SO(n,p) . Then SO(n, p)-invariant differential polynomials f1, f2 exist such that

f = f1/f2 .

Proof A proof is similar to the proof in [16, p. 106]. �

Lemma 11 The system of all elements

[
x(m1)x(m2) · · ·x(mn)

]
, < x(q), x(r) >, (5)

where mi, q, r ∈ N , is a generating system of R < x
′
>SO(n,p) as a field.

Proof Let R[x(m); m ∈ N ]SO(n,p) be the R -algebra of all SO(n, p)-invariant polynomials of the system{
x(m); m ∈ N

}
. According to the First Main Theorem for SO(n, p) ([21, p.p. 53; 65–66]), the system equation

(5) is a generating system of R[x(m); m ∈ N ]SO(n,p) . Lemma 10 implies that the system equation (5) is a

generating system of R < x
′
>SO(n,p) as a field. �

Denote by Z the system equation (4) of differential polynomials. Let R {Z} be the differential R -

subalgebra of R < x
′
>SO(n,p) generated by elements of the system Z .

Let δ = δx be the determinant of the matrix Gr(y1, y2, . . . , yn−1; z1, z2, . . . , zn−1), where y1 = z1 =

x
′
, y2 = z2 = x(2), · · · , yn−1 = zn−1 = x(n−1) .

Lemma 12 < yi, zj >∈ R {Z} for all 1 ≤ i, j, i + j ≤ 2n − 1 , δ ∈ R {Z} and δ−1 ∈ R < Z >.

Proof Using Lemma 4, we get < x(i), x(j) >∈ R {Z} for all 1 ≤ i, j, i+ j ≤ 2n−1. The element < yi, zj > of

the determinant δ is the functions < x(i), x(j) > , where 1 ≤ i, j ≤ n−1. Hence δ ∈ R {Z} and δ−1 ∈ R < Z > .
�

In sequel, we need the following lemma.

Lemma 13 The equality
(−1)p[y1 . . . yn][z1 . . . zn] = det ‖〈yi, zj〉‖i,j=1,2,...,n

holds for all vectors y1, . . . , yn, z1, . . . , zn in En
p .

Proof A proof of the this lemma is similar to the proof in ([16], p.72). �

Let Δ be the function in the proof of Theorem 2.

Lemma 14 Δ ∈ R {Z} and Δ−1 ∈ R < Z >.

Proof Using Lemma 13 to vectors y1 = z1 = x
′
, y2 = z2 = x(2), · · · , yn = zn = x(n) , we obtain

(−1)p
[
x

′
x(2) . . . x(n)

]2

= det ‖< yi, zj >‖i,j=1,2,...n = Δ. (6)

Since
[
x

′
x(2) . . . x(n)

]
∈ Z , we have Δ ∈ R {Z} and Δ−1 ∈ R < Z > . �
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Denote by R
{
Z, δ−1, Δ−1

}
the differential R -subalgebra of R < x

′
>SM(n,p) generated by Z and

functions δ−1, Δ−1 . By Lemmas 10 and 11, for a proof of our theorem, it is enough to prove that
[
x(m1)x(m2) · · ·

x(mn)
]
∈ R

{
Z, δ−1, Δ−1

}
and

〈
x(b), x(c)

〉
∈ R

{
Z, δ−1, Δ−1

}
for all mi, b, c ∈ N .

Let V be the system in the proof of Theorem 2.

Lemma 15 < x(n), x(n) >∈ R
{
Z, δ−1, Δ−1

}
and R

{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
.

Proof For i = 1, 2, . . . , n , denote by Dni the cofactor of the element < yn, zj > of the matrix A =

‖< yi, zj >‖i,j=1,2,...n in equation (6). Then we obtain the equality

Δ =< yn, z1 > Dn1+ < yn, z2 > Dn2 + · · ·+ < yn, zn−1 > Dnn−1+ < yn, zn > Dnn. (7)

Since δ = Dnn 
= 0, equalities equation (6) and equation (7) imply

< yn, zn >=< x(n), x(n) >= Δδ−1− < yn, z1 > Dn1δ
−1− < yn, z2 > Dn2δ

−1 − (8)

· · ·− < yn, zn−1 > Dnn−1δ
−1.

By Lemma 12, < yn, zj >=< x(n), x(j) >∈ R {Z} for each 1 ≤ j ≤ n−1. We prove that Dns ∈ R {Z} for every

1 ≤ s ≤ n− 1. We have Dns = (−1)n+sdetGr(y1, y2, . . . , yn−1; z1, z2, . . . , zs−1, zs+1, . . . , zn). Elements of Dns

have the following forms < yi, zj > and < yi, zn > , where i < n, j < n . Since < yi, zn >=< yn, zi >∈ R {Z} ,

we have Dns ∈ R {Z} . Hence equation (8) implies < yn, zn >∈ R
{
Z, δ−1

}
. Using V ⊂ Z ∪ {〈yn, zn〉}, we

obtain R
{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
. �

Lemma 16
〈
x(b), x(c)

〉
∈ R

{
Z, δ−1, Δ−1

}
for all b, c ∈ N .

Proof By Lemma 15, we have R
{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
. Since

〈
x(b), x(c)

〉
∈ R

{
V, Δ−1

}
for all

b, c ∈ N , we obtain < x(b), x(c)) ∈ R
{
Z, δ−1, Δ−1

}
for all b, c ∈ N . �

Lemma 17
[
x(m1)x(m2) · · ·x(mn)

]
∈ R

{
Z, δ−1, Δ−1

}
for all mi ∈ N .

Proof Using Lemma 13 to vectors y1 = x
′
, y2 = x(2), · · · , yn = x(n), z1 = x(m1), z2 = x(m2) . . . , zn = x(mn) ,

we obtain that

(−1)p[y1 . . . yn][z1 . . . zn] = det|| < yi, zj > ||i,j=1,2,...,n. (9)

Since Δ = (−1)p[y1 . . . yn]2 , equation (9) implies

[z1 . . . zn] = Δ−1[y1 . . . yn]det|| < yi, zj > ||i,j=1,2,...,n.

By Lemma 16, < yi, zj >=< x(i), x(mj) >∈ R
{
Z, δ−1, Δ−1

}
for all i, j = 1, 2, . . . , n . Since [y1 . . . yn] ∈

Z ⊂ R
{
Z, δ−1, Δ−1

}
, we obtain [z1 . . . zn] ∈ R

{
Z, δ−1, Δ−1

}
. �
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We complete the proof of our theorem. By Lemmas 12 and 14, δ−1, Δ−1 ∈ R < Z > . Hence

R
{
Z, δ−1, Δ−1

}
⊂ R < Z > . By Lemma 16, < x(b), x(c) >∈ R

{
Z, δ−1, Δ−1

}
⊂ R < Z > for all b, c ∈ N . By

Lemma 17,
[
x(m1)x(m2) · · ·x(mn)

]
∈ R

{
Z, δ−1, Δ−1

}
⊂ R < Z > for all mi ∈ N . Hence Lemmas 9-11 imply

that R < Z >= R < x >SM(n,p) . The theorem is completed. �

Remark 2 In the paper [18] was proved that the system (4) in Theorem 2 is a complete system of SM(n,p)-

invariants of paths ([18, Theorem 3]). Then, by Theorem 1 in [18], the system (4) in Theorem 1, where

x = x(ts(x)) is an invariant parametrization of a curve α , is a complete system of SM(n,p)-invariants of a

curve α ([18, Corollary 2]). There are relations in the form of inequalities between elements of the system 4 .
These relations will be found below.

3. Relations between elements of complete systems of invariants of a curve in En
p

Definition 4 A system of differential polynomials p1{x}, . . . , pm{x} ∈ R {x} is called differential algebraically

independent if there is no nonzero differential polynomial f {y1, . . . , ym} ∈ R {y1, . . . , ym} such that

f {p1{x}, . . . , pm{x}} = 0 for all paths x .

Theorem 3 . The system {
< x(k)(t), x(k)(t) >, k = 1, 2, ..., n

}

is differential algebraically independent.

Proof A proof is similar to the proof of Theorem 12.8 in ([16], p.112). �

Let A(x(t)) =
∥∥∥x

′
(t)x(2)(t) . . . x(n)(t)

∥∥∥ , A(x)� be the transpose matrix of A(x) and Ip = ‖bij‖ be the

diagonal n× n-matrix such that bii = −1 for all i = 1, . . . , p and bjj = 1 for all j = p + 1, . . . , n . We have the

equality A(x)�IpA(x) =
∥∥< x(i), x(j) >

∥∥
i,j=1,2,...,n

. The matrix A(x)�IpA(x) is congruent to the matrix Ip for

every non-singular J -path x(t) and all t ∈ J . This fact, in view of the equality A(x)�IpA(x) = || < x(i), x(j) >

|| , gives some system of relations (inequalities) between < x
′
(t), x

′
(t) >, . . . , < x(n)(t), x(n)(t) > and their

derivatives. Below we prove that an arbitrary relation between < x
′
(t), x

′
(t) >, . . . , < x(n)(t), x(n)(t) > and

their derivatives is a consequence of the above mentioned relations.

Corollary 1 Let y1, y2, . . . , yn be differential variables and f ∈ R {y1, y2, . . . , yn} . Then the differential

polynomial f {y1, y2, . . . , yn} is uniquely determined by its values on functions y1(t) , y2(t), . . . , yn(t) in the
form

yi(t) =< x(i)(t), x(i)(t) >, (10)

where x(t) run through the space (C∞(J))n .

Proof Assume that f1, f2 ∈ R {y1, y2, . . . , yn} exist such that f1 
= f2 and

f1 {y1(t), y2(t), . . . , yn(t)} = f2 {y1(t), y2(t), . . . , yn(t)} (11)

for all y1(t), y2(t), . . . , yn(t) in the form equation (10). From equation (11), we obtain the equality

f {y1(t), y2(t), . . . , yn(t)} = 0 (12)
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for all y1(t), y2(t), . . . , yn(t) in the form equation (10), where f = f1 − f2 is a nonzero differential polynomial

since f1 
= f2 . Equation (12) means that differential polynomials < x(1), x(1) >, < x(2), x(2) >, . . . < x(n), x(n) >

are differential-algebraically dependent, which contradicts Theorem 3. �

Corollary 2 The differential polynomial Pij {y1, y2, . . . , yk} in Lemma 4 is unique.

Proof A proof follows from Theorem 3. �

For convenience, we will write Pij {y1, y2, . . . , yn} instead of Pij {y1, y2, . . . , yk} .

Let the symbol ′ denotes the differentiation in the differential algebra R {y1, y2, . . . , yn} .

Corollary 3 The equality

Pij {y1, y2, . . . , yn}′ = Pi+1j {y1, y2, . . . , yn} + Pij+1 {y1, y2, . . . , yn} (13)

holds for all i, j satisfying the conditions 1 ≤ i, j, i + j ≤ 2n .

Proof From the definition of differential polynomials Pij {y1, y2, . . . , yn} , we have the equality

< x(i)(t), x(j)(t) >= Pij {y1(t), y2(t), . . . , yn(t)} ,

where yk(t) =< x(k)(t), x(k)(t) >, k = 1, . . . , n, 1 ≤ i, j, i + j ≤ 2n + 1. Differentiating this equality, we obtain

d

dt
< x(i)(t), x(j)(t) >=

d

dt
Pij {y1(t), y2(t), . . . , yn(t)} .

Assume that 1 ≤ i, j, i + j ≤ 2n . Since

d

dt
< x(i)(t), x(j)(t) >=< x(i+1)(t), x(j)(t) > + < x(i)(t), x(j+1)(t) >,

we have

d

dt
Pij {y1(t), y2(t), . . . , yn(t)} = Pi+1j {y1(t), y2(t), . . . , yn(t)} + Pij+1 {y1(t), y2(t), . . . , yn(t)} .

This equality takes place for all functions y1(t), y2(t), . . . , yn(t) in the form equation (10). Applying the

Corollary 3, we conclude that the latest equality takes place for all y1(t), y2(t), . . . , yn(t) ∈ C∞(J). Passing
from a parametric representation of differential polynomials in the latest equality to their abstract differential
polynomials, we obtain equation (13). �

Let f1(t), . . . , fn(t) be arbitrary C∞ -functions on J=(a,b). For convenience, the indexes of these
functions will be written in the form fi(t) = fii(t). Using functions fii(t), we define functions

fij(t) = Pij {f11(t), . . . , fnn(t)} , 1 ≤ i, j ≤ n. (14)

Proposition 1 The equality

f
′
ij(t) = fi+1j(t) + fij+1(t)

holds for all i, j satisfying the conditions 1 ≤ i, j, i + j ≤ 2n .
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Proof Letting y1 = f11(t), y2 = f22(t) . . . , yn = fnn(t) in Corollary 3, we obtain the desired equality. �

Theorem 4 Let f11(t), . . . , fnn(t) be infinitely differentiable functions on J such that:

(i) det||fij(t)|| 
= 0 for all t ∈ J , where fij(t) is defined by (14) ;

(ii) the matrix ||fij(t)|| is congruent to the matrix Ip for some t0 ∈ J .

Then there exists a non-singular J -path x(t) in En
p such that

< x(i)(t), x(i)(t) >= fii(t)

for all t ∈ J and i = 1, . . . , n .

Proof Define the n × n-matrix function Q(t) = ‖fij‖ , where fij is defined by equation (14). Since the

differential polynomials Pij satisfy the relations Pij = Pji , we obtain Q�(t) = Q(t), where Q(t)� is the

transpose matrix of Q(t). Let Q
′
(t) be the derivative of Q(t).

Lemma 18 A unique solution B(t) = ‖bij‖ of the n × n-matrix equation

Q
′
(t) = B�(t)Q(t) + Q(t)B(t) (15)

exists which satisfies the conditions

(γ1) bj+1j(t) = 1 for all t ∈ J and 1 ≤ j ≤ n − 1;

(γ2) bij(t) = 0 for all t ∈ J and j 
= n, i 
= j + 1, 1 ≤ i ≤ n .

Proof By (γ1) and (γ2), only the elements b1n(t), . . . , bnn(t) of the matrix B(t) are unknown. Using (γ1)

and (γ2), from equation (15) and Q�(t) = Q(t), we obtain

f
′
ij(t) = fi+1j(t) + fij+1(t)

for 1 ≤ i, j ≤ n − 1 and

f
′
ni(t) = f

′
in(t) = fi+1n(t) +

n∑
k=1

fik(t)bkn(t)

for 1 ≤ i ≤ n − 1,

f
′
nn(t) =

n∑
k=1

bkn(t)fkn(t) +
n∑

k=1

fnk(t)bkn(t) = 2
n∑

k=1

fnk(t)bkn(t).

Hence, for the elements b1n(t), . . . , bnn(t), we obtain the following system of n linear equations in n unknowns:

n∑
k=1

fik(t)bkn(t) = f
′
ni(t) − fi+1n(t), 1 ≤ i ≤ n − 1,

n∑
k=1

fnk(t)bkn(t) = 0, 5f
′
nn(t).
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By assumption (i) of the theorem , the determinant of this system is detQ(t) = det ‖fij(t)‖ 
= 0 for all t ∈ J .

Consequently, this system has a unique solution b1n(t), . . . , bnn(t). �

It is obvious that B(t) is infinitely differentiable.

Lemma 19 Let B(t) be the solution of equation (15) . Then an infinitely differentiable n× n-matrix function

A(t) on J exists such that

(δ1) A(t) = ||a(t)a
′
(t) . . . a(n−1)(t)|| for some J -path a(t) in En

p ;

(δ2) detA(t) 
= 0 for all t ∈ J ;

(δ3) A
′
(t) = A(t)B(t) ;

(δ4) A�(t)IpA(t) = Q(t) , where Ip = ‖bij‖ be the diagonal n×n-matrix such that bii = −1 for all i = 1, . . . , p

and bjj = 1 for all j = p + 1, . . . , n ..

Proof From assumptions (γ1) and (γ2) of Lemma 19, and from the theory of linear differential equations it

follows that a solution A(t) of equation (δ3) exists such that detA(t) 
= 0 for all t ∈ J . Since the matrix B(t)

satisfies relations (γ1) and (γ2), it follows that the matrix A(t) is the form (δ1) for some path a(t) in En
p . We

have det(A�(t)A(t)) 
= 0 for all t ∈ J . Let t0 be such that the matrix Q(t0) = ||fij(t0)|| is congruent to the

matrix Ip . Since Q(t0) is congruent to the matrix Ip , detQ(t0) 
= 0, det(A�(t)A(t)) 
= 0, and Q�(t) = Q(t)

for all t ∈ J , it follows that a nondegenerate n × n-matrix g ∈ GL(n, R) exists such that

(g�)−1(A�(t0))−1Q(t0)A−1(t0)g−1 = Ip.

Hence we have A�(t0)g�IpgA(t0) = Q(t0). The matrix function gA(t) is also solution of (δ3). The matrix func-

tion H(t) = A�(t)g�IpgA(t) satisfies the following conditions: H�(t) = H(t), H
′
(t) = B�(t)H(t) + H(t)B(t)

for all t ∈ J . But these conditions are also fulfilled for the function Q(t). Then from the equality H(t0) = Q(t0),
by the existence and uniqueness theorem of a solution of a system of linear differential equations, it follows that
H(t) = Q(t) for all t ∈ J . �

Now we return to the proof of the theorem. By Lemma 19, a matrix

A(t) = ||a(t)a
′
(t) . . . a(n−1)(t)||

exists such that A
′
(t) = A(t)B(t), A�(t)·Ip·A(t) = Q(t). Using the relation A�(t)·Ip·A(t) =

∥∥< a(i)(t), a(j)(t) >
∥∥ ,

we obtain < a(i)(t), a(j)(t) >= fi+1j+1 for all i, j = 0, 1, . . . , n − 1. Let x(t) =
∫ t0

t
a(t)dt . Then <

x(i)(t), x(i)(t) >= fii for all i = 1, . . . , n . Since
[
x

′
(t)x(2) . . . x(n)(t)

]2

= detA�(t) · Ip · A(t) = detQ(t) 
= 0 for

all t ∈ J , the path x(t) is nondegenerate. �

Let J be one of intervals (0, l), 0 < l ≤ +∞, (−∞, 0), (−∞, +∞).

Corollary 4 Let J be one of intervals (0, l), 0 < l ≤ +∞, (−∞, 0), (−∞, +∞) . Assume that f11(s), . . . , fnn(s)
be infinitely differentiable functions on J such that:

91



KHADJIEV et al./Turk J Math

(i) |f11(s)| = 1 for all s ∈ J ;

(ii) det||fij(s)|| 
= 0 for all s ∈ J , where the function fij(s) is defined by equation (14) ;

(iii) the matrix ||fij(s)|| is congruent to the matrix Ip for some t0 ∈ J .

Then a regular non-singular curve α and its invariant parametrization x exist such that

< x(i)(s), x(i)(s) >= fii(s) for all s ∈ I , i = 1, . . . , n .

Proof This corollary is a special case of Theorem 4. �

Let f11(t), . . . , fn−1n−1(t) and d(t) be C∞ -functions on an interval J . We consider the matrix Q(t) =

||fij(t)||i,j=1,...,n , where the function fij(t), i+j < 2n , is defined by f11, . . . , fn−1n−1 as in (14) and the function

fnn(t) will be defined below. Let Ani(t) be the cofactor of the element fni(t) in the matrix Q(t). Since every

element of the cofactor Ani(t) consists of all fpq such that p + q < 2n , Ani(t) is a differential polynomial of

f11, . . . , fn−1n−1 . Assume that Ann(t) = det||fij(t)||i,j=1,...,n−1 
= 0 for all t ∈ J . We define the element fnn

as follows:

fnn =
(−1)pd2(t) − fn1(t)An1 − · · · − fnn−1(t)Ann−1

Ann
.

This equality implies

detQ(t) = fn1(t)An1 + · · ·+ fnn−1(t)Ann−1 + fnn(t)Ann = (−1)pd2(t) (16)

for all t ∈ J .

Theorem 5 Let f11(t), . . . , fn−1n−1(t) and d(t) be infinitely differentiable functions on an interval J such
that:

(λ1) Ann(t) 
= 0 for all t ∈ J ;

(λ2) the matrix Q(t) is congruent to the matrix Ip for some t0 ∈ J ;

(λ3) d(t) 
= 0 .

Then there exists a non-singular path x(t) in En
p such that

< x(i)(t), x(i)(t) >= fii(t),
[
x

′
(t) . . . x(n)(t)

]
= d(t)

for all t ∈ J and i = 1, . . . , n− 1 .
Proof Equation (16) and the condition (λ3) implies detQ(t) 
= 0 for all t ∈ J . Hence, according to Theorem

4 there exists a non-singular path x(t) in En
p such that < x(i)(t), x(i)(t) >= fii(t) for all t ∈ J and i = 1, . . . , n .

Using these equalities, Lemma 4 and equation (14), we obtain detQ(t) = det
∥∥〈

x(i)(t), x(i)(t)
〉∥∥ . Then using this

equality, equation (16) and Lemma 13, we obtain
[
x

′
(t) . . . x(n)(t)

]2

= d2(t). Then
[
x

′
(t) . . . x(n)(t)

]
= d(t) or

[
x

′
(t) . . . x(n)(t)

]
= −d(t). Since

[
x

′
(t) . . . x(n)(t)

]

= 0 and d(t) 
= 0 for all t ∈ J , we have

[
x

′
(t) . . . x(n)(t)

]
=

d(t) or
[
x

′
(t) . . . x(n)(t)

]
= −d(t) for all t ∈ I . In the first case, a proof is completed. In the second case,
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we consider g ∈ O(n) such that detg = −1. In this case, we put y(t) = gx(t). Then < y(i)(t), y(i)(t) >=

< gx(i)(t), gx(i)(t) >=< x(i)(t), x(i)(t) >= fii(t, ) and
[
y

′
(t) . . . y(n)(t)

]
=

[
gx

′
(t) . . . gx(n)(t)

]
= d(t). Thus the

path y(t) satisfies all conditions of our theorem. �

An analog of Corollary 4 takes place for the complete system of SM(n,p)-invariants of a curve.
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