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Abstract: In this paper, the authors prove that every representable module over a commutative ring with identity

satisfies the radical formula. With this result, they extend the class of modules satisfying the radical formula from that

of Artinian modules to a larger one. They conclude their work by giving a description of the radical of a submodule of

a representable module.

Key words: Prime submodule, prime radical, radical formula, secondary module, secondary representation, repre-

sentable module

1. Introduction

Throughout this work R will denote a commutative ring with identity and every module will be unitary. Let M be
an R -module . For submodules K and L of M, we use the notation (K : L) to show the ideal {r ∈ R : rL ≤ K}
of R. A proper submodule N of M is said to be prime submodule of M, if, for every r ∈ R and m ∈ M,

rm ∈ N implies m ∈ N or r ∈ (N : M). It is not difficult to see that if N is a prime submodule of M and

P = (N : M) then P is a prime ideal of R and, in this case, we say that N is P -prime. It is easy to see that

if M = R prime ideals and prime submodules of R coincide. For any submodule N of M , the (prime) radical

of N in M, denoted by radM (N), is defined to be the intersection of all prime submodules of M containing

N. (If there is no such prime submodule in M we put radM (N) = M). It is not easy to calculate the radical
of a submodule, in general. Several authors tried to give simple descriptions for the radical in some particular
cases.

In this note, we shall need the notion of the envelope of a submodule introduced by R. L. McCasland and
M. E. Moore in [7]. For a submodule N of an R -module M, the envelope of N in M, denoted by EM (N), is
defined to be the subset

{rm : r ∈ R and m ∈ M such that rkm ∈ N for some k ∈ N with k ≥ 1}

of M. Note that, in general, EM(N) is not an R -module. It is clear that N ⊆ EM (N) ⊆ radM(N), where
the equalities does not need to hold. With the help of envelopes, the notion of the radical formula is defined as
follows: A submodule N of an R -module M is said to satisfy the radical formula in M, if REM (N) = radM (N).
Also, an R -module M is said to satisfy the radical formula, if every submodule of M satisfies the radical formula
in M. The radical formula has been studied extensively by various authors (see [3], [5], [7], [9] and [10]). In
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SARAÇ and TIRAŞ/Turk J Math

[10], Sharif, Sharifi and Namazi prove that if R is an Artinian ring then every module over R satisfies the
radical formula. More generally, they show that if R is a ring such that every prime ideal is maximal then
every R -module satisfy the radical formula. Yılmaz and Smith give a generalization of this fact in [9]. They
define the notion of a special module and prove that every special module satisfies the radical formula. It is
also proved in [9] that every Artinian module and every module over a ring whose prime ideals are maximal are
special.

To give one of our main results in this work it is appropriate for us to recall what the notion of a
representable module means: An R -module S is said to be secondary if S �= 0 and, for all r ∈ R, either rS = S

or there exists n ∈ N such that rnS = 0. Note that if S is a secondary R -module then P =
√

AnnR(S) is

a prime ideal of R, and, in this case, we say that S is P -secondary. Let M be an R -module. A secondary
representation for M is an expression of the form

M = S1 + · · ·+ Sn,

where Si is a secondary submodule of M for all i = 1, . . . , n. Such a secondary representation is said to be

minimal, if, whenever Pi =
√

AnnR(Si) for i = 1, . . . , n,

(i) P1, . . . , Pn are all distinct, and

(ii) no term in the sum is redundant, that is Si �
n∑

j=1,j �=i

Sj for all i = 1, . . . , n.

Note that any secondary representation for M can be modified to a minimal one. An R -module M is called
representable, if M has a (minimal) secondary representation. It is known that if M = S1 + · · · + Sn is a

minimal secondary representation for M, with
√

AnnR(Si) = Pi for i = 1, . . . , n, then the set {P1, . . . , Pn} of

n prime ideals of R is independent of the choice of a minimal secondary representation for M (for details, see

[4] or [6]). We denote this set by AttR(M). It is easy to see that if G is a proper submodule of a representable

module M then M/G is again a representable module with AttR(M/G) ⊆ AttR(M).

In this work, we generalize the fact that every Artinian module satisfies the radical formula (see [9]) by
showing that every representable module satisfies the radical formula. In addition, we characterize the radical
of a submodule of a representable module. Moreover, as a new technique in this subject, we use Lemma 6 which
is actually the lying over property for prime submodules.

We shall require a number of preliminary results on secondary modules.

Lemma 1 Let P be a prime ideal of R and let M be a P -secondary R -module. Then the following are
satisfied:

(i) (N : M) ⊆ P , for every proper submodule N of M,

(ii) PM ⊆ REM (0), and

(iii) for any proper submodule N of M, either REM(N) = M or (REM (N) : M) = P.

Proof (i) Let rM ⊆ N for some r ∈ R. Since N is proper then so too is rM. Thus rkM = 0 for some

k ∈ N . This gives that r ∈
√

AnnR(M) = P.

(ii) Let p ∈ P and m ∈ M. Since M is P -secondary there exists n ∈ N such that pnm = 0. Thus

pm ∈ REM (0). This gives that PM ⊆ REM (0).

(iii) Suppose REM (N) �= M. Applying part (i) above to REM (N) instead of N we obtain (REM(N) :

M) ⊆ P. On the other hand, by part (ii) above, we have P ⊆ (REM (0) : M) ⊆ (REM (N) : M). �
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A submodule N of an R -module M is called semi-prime if, whenever rkm ∈ N for some r ∈ R, m ∈ M

and k ∈ N then rm ∈ N. It is clear that N is a semi-prime submodule of M if and only if REM(N) = N.

Note that an intersection of prime submodules of M is a semi-prime submodule of M.

Lemma 2 [2, Theorem 2.3 (ii)] Let P be a prime ideal of R and let M be a P -secondary R -module. Then
every semi-prime submodule of M is P -prime.

Proposition 3 Let P be a prime ideal of R and let M be a P -secondary R -module. Then for any submodule
N of M,

radM(N) = {m ∈ M : cm ∈ N + PM for some c ∈ R\P }.
Proof Let L = {m ∈ M : cm ∈ N +PM for some c ∈ R\P }. By [8, Proposition 1.7], radM(N) ⊆ L. Suppose

that radM (N) �= M. Since radM (N) is a semi-prime submodule of M , by Lemma 2, radM (N) is a P -prime

submodule of M. Thus the result follows from [8, Lemma 1.6]. �

Lemma 4 Any secondary R -module satisfies the radical formula.

Proof Let P be a prime ideal of R and let N be a proper submodule of a P -secondary R -module M. If
REM (N) = M then clearly REM (N) = radM(N). Hence we assume that REM(N) �= M. Then by Lemma 1

(iii), (REM(N) : M) = P. Let r ∈ R\P and m ∈ M such that rm ∈ REM (N). So, there exist k ∈ N, ri ∈ R

and mi ∈ M (1 ≤ i ≤ k ) such that rm = r1m1 + · · · rkmk and rn
i mi ∈ N (1 ≤ i ≤ k ) for some n ∈ N. Since

r ∈ R\P, rM = M. Then there exist m′
1, . . . , m

′
k ∈ M such that rm′

i = mi. Set x = m − r1m
′
1 − · · · − rkm′

k.

Now, we have rx = 0. We may also write x = rx′ for some x′ ∈ M. This gives that r2x′ = 0, and so

x = rx′ ∈ REM(0) ⊆ REM(N). Moreover, m′
i = rm′′

i for some m′′
i ∈ M. Thus rn

i r2m′′
i = rn

i rm′
i = rn

i mi ∈ N,

and so rim
′
i = rirm

′′
i ∈ REM(N). Therefore m = r1m

′
1 + · · ·+rkm′

k +x ∈ REM(N). This shows that REM(N)

is a P -prime submodule of M. Thus we have radM (N) ⊆ REM (N). This completes the proof. �

In [9], Pusat-Yılmaz and Smith introduce the notion of special modules as follows: An R -module M is

called special if for each m ∈ M and each element a of any maximal ideal M, there exist n ∈ N and c ∈ R\M
such that canm = 0. In their work, they prove that every special module satisfies the radical formula. The
following example shows that the class of secondary modules differs from the class of special modules. Note
that, in [11], it is shown that, for any injective module E over a commutative ring R and a primary ideal Q of

R, annE(Q) is a secondary R -module.

Example 5 Let R be a ring with a non-maximal prime ideal P of R and let E be the injective envelope of
the R -module R/P. Then M = annE(P ) is a secondary module over R. But M is not special (and hence not

Artinian). To see this, take a maximal ideal M of R containing P and choose r ∈ M\P. Since R/P ⊆ M,

1 + P ∈ M. If there exist c ∈ R\M and n ∈ N such that crn(1 + P ) = 0 then crn ∈ P, which is impossible.

Lemma 6 Let M be an R -module and N a submodule of M. If K is a P -prime submodule of N and

(N : M) � P , then there exists a P -prime submodule K′ of M such that K′ ∩N = K.

Proof Define K′ = {m ∈ M : cm ∈ K for some c ∈ R\P }. Then clearly K′ is a submodule of M. We first

show that K′ ∩ N = K. Suppose x ∈ K′ ∩ N. Then there exists c ∈ R\P such that cx ∈ K. Because K is a

prime submodule of N we have x ∈ K. Thus K = K′ ∩N. If K′ = M , then K = K′ ∩N = N, a contradiction

197
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since K is prime in N. Now let c ∈ R\P such that cM ⊆ N. Then cPM ⊆ PN ⊆ K, which shows that

PM ⊆ K′. Now suppose that rm ∈ K′ for some r ∈ R and m ∈ M. Let r ∈ R\P. By definition of K′, there

exists d ∈ R\P such that drm ∈ K. Since dr ∈ R\P, we have m ∈ K′, and so K′ is a prime submodule of M. �

Now, we state the following lemma whose proof is straightforward.

Lemma 7 Let N and L be submodules of an R -module M with N ≤ L. Then
radM/N(L/N) = radM(L)/N.

Proposition 8 Let M = M1 + M2 be a sum of submodules M1 which satisfies the radical formula and M2

which is a P -secondary R -module for a prime ideal P of R. If AnnR(M1) � P then M satisfies the radical

formula.

Proof Since M/M2 is isomorphic to a quotient of M1, M/M2 satisfies the radical formula. Let N ≤ M and

let m ∈ radM(N). Then

m + M2 ∈ radM/M2

(
N + M2

M2

)
= REM/M2

(
N + M2

M2

)
.

Thus there exist k ∈ N, r1, . . . , rk ∈ R, m1, . . . , mk ∈ M such that m+M2 = r1(m1 +M2)+ · · ·+rk(mk +M2)

and rt
i(mi+M2) ∈ (N+M2)/M2 for some t ∈ N. Write rt

imi = ni+ui, where ni ∈ N and ui ∈ M2 (1 ≤ i ≤ k ).
Suppose rj ∈ P for some 1 ≤ j ≤ k. Since M2 is P -secondary, there exists s ∈ N such that rs

jM2 = 0. Then we

have rt+s
j mj = rs

jni ∈ N, and so rjmj ∈ REM(N). On the other hand, if rj ∈ R\P , then rjM2 = M2. Hence

there exists u′
j ∈ M2 such that rt

ju
′
j = uj. This gives rt

j(mj −u′
j) ∈ N, and hence rj(mj −u′

j) ∈ REM(N). Set

J = {j : 1 ≤ j ≤ k and rj ∈ P } and I = {1, . . . , k}\J. Then we can write m =
∑

j∈J rjmj +
∑

i∈I ri(mi−u′
i)+x

for some x ∈ M2. Since e =
∑

j∈J rjmj +
∑

i∈I ri(mi−u′
i) ∈ REM (N), it is enough to show that x ∈ REM (N).

Observe that x = m − e ∈ radM (N) ∩ M2. Suppose REM2(N ∩ M2) �= M2. Then, by the proof of Lemma

4, REM2(N ∩ M2) is a P -prime submodule of M2. Since AnnR(M1) � P, clearly, (M2 : M) � P, and

so, by Lemma 6, there exists a P -prime submodule K of M such that K ∩ M2 = REM2(N ∩ M2). Then

K ⊇ N ∩ M2 ⊇ (M2 : M)N, and so K ⊇ N. Since x ∈ radM(N) we have x ∈ K ∩ M2 = REM2(N ∩ M2). In

any case, x ∈ REM2(N ∩ M2) ⊆ REM(N ∩ M2) ⊆ REM(N). This completes the proof. �

In [1], Brodmann and Sharp say that the class of representable modules is, in general, larger than the
class of Artinian modules. And also they give the following examples:

Let E be an injective R -module.

1. Suppose that Q is an R -module whose zero submodule is primary. Then
HomR(Q, M) is a secondary R -module.

2. If M is a finitely generated R -module, then HomR(M, E) is representable.

Thus, if E is taken to be an infinite direct product of some injective R -modules, then representable
modules in (1) and (2) become non-Artinian. Now, as stated in the introductory section, we give the following
theorem which generalizes the fact that every Artinian module s.t.r.f. On the other hand, sum of two modules
which s.t.r.f. need not s.t.r.f. (see, for example, [5]). The following theorem also provides examples to the
contrary.
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Theorem 9 Let M = M1 +M2 be a sum of submodules M1 which satisfies the radical formula and M2 which
is a representable R -module. If AnnR(M1) is not contained in any element of AttR(M2) then M satisfies the
radical formula. In particular, every representable module satisfies the radical formula.

Proof Let
M2 = L1 + · · ·+ Lk (Li is Pi-secondary)

be a minimal secondary representation for M2. We use induction on k. If k = 1, by Proposition 8, we are
done. Now suppose the assertion is valid for every number smaller than k. Without losing generality we
may assume that Pk is a minimal element of AttR(M2). Let AnnR(M1 + L1 + · · · + Lk−1) ⊆ Pk. Then

AnnR(M1)∩AnnR(L1)∩. . .∩AnnR(Lk−1) ⊆ Pk, and so
√

AnnR(M1)∩P1∩. . .∩Pk−1 ⊆ Pk. Since Pj � Pk, for

every 1 ≤ j ≤ k−1, AnnR(M1) ⊆
√

AnnR(M1) ⊆ Pk, a contradiction. Then AnnR(M1+L1+· · ·+Lk−1) � Pk.

By the induction hypothesis, M1 + L1 · · · + Lk−1 satisfies the radical formula, and so, by Proposition 8, M

satisfies the radical formula. �

We know that, over a domain, every injective module s.t.r.f. Here is a generalization of this fact:
Combining the above theorem with [11, Theorem 2.3], one can easily show that if the zero ideal of a ring R has
a primary decomposition then every injective R -module satisfies the radical formula. Moreover, every injective
module whose zero submodule has a primary decomposition satisfies the radical formula. With this theorem, we
also generalize the fact that every finitely generated torsion module over a one-dimensional Noetherian domain
s.t.r.f. proved in [9, Theorem 4.12]. Indeed, if M is a finitely generated torsion module over a one-dimensional
Noetherian domain R, then there exist positive integers t1, . . . , tn and maximal ideals P1, . . . , Pn of R such

that P t1
1 . . .P tn

n M = 0. In this case M is isomorphic to
(
M/P t1

1 M
)
⊕ · · · ⊕ (M/P tn

n M) , which is clearly

representable.

In the remaining part of this note, we describe the radical of a submodule of a representable module.

Proposition 10 Let M be an R -module and let N be a submodule of M. If {P1, . . . , Pn} is a set of pairwise
non-comparable prime ideals of R then the subset

L = {m ∈ M : cm ∈ N + (P1 ∩ . . . ∩ Pn)M for some c ∈ R\(P1 ∪ . . . ∪ Pn)}
of M is either M or a radical submodule of M (i.e., an intersection of prime submodules of M ) .

Proof Let K = N + (P1 ∩ . . .∩Pn)M and S = R\(P1 ∪ . . .∪Pn). Then S is a multiplicatively closed subset
of R. Let RS and MS denote the localizations of R and M at S, respectively. Since

P1RS ∩ . . . ∩ PnRS ⊆ (K : M)RS ⊆ (KS :RS MS),

if KS �= MS , then MS/KS becomes a semisimple RS -module. In this case KS is a radical submodule of MS ,

being an intersection of maximal submodules of MS , and so L = KS ∩ M is a radical submodule of M since
primeness and intersections are invariant under taking contractions. �

With the following theorem which is a generalization of Proposition 3, we give a characterization of the
radical of a submodule of a representable module in a particular case. Note that this theorem will also help us
consider the general case.

Theorem 11 Let N be a submodule of an R -module M . Suppose that M/N is a representable R -module and
every element of AttR(M/N) is minimal (with respect to the inclusion). Then

radM (N) =
{

m ∈ M : cm ∈ N +
√

(N : M)M for some c ∈ R\
⋃

AttR(M/N)
}

.
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Proof In view of Lemma 7, we may assume that N = 0. Let M = S1 + · · · + Sk be a minimal secondary
representation for M, with Pi =

√
AnnR(Si). Suppose that every element of AttR(M) is minimal. Clearly,

we have
√

AnnR(M) =
⋂k

i=1 Pi. Define L = {m ∈ M : cm ∈ (
⋂k

i=1 Pi)M for some c ∈ R\⋃k
i=1 Pi}. Let

m ∈ L. Then there exists c ∈ R\⋃k
i=1 Pi such that cm ∈ (

⋂k
i=1 Pi)M =

√
AnnR(M)M. On the other hand,

M = cM. (Use the secondary representation given for M above). Now, write m = cm′ for a suitable m′ ∈ M.

Then cm = c2m′ ∈
√

AnnR(M)M ⊆ radM(0). Since radM (0) is a semi-prime submodule of M we have
m = cm′ ∈ radM(0). Therefore L ⊆ radM (0). If L = M , then we are thorough. Thus we assume L �= M.

Now, by Proposition 10, L is a radical submodule of M , and so radM(L) = L. This completes the proof. �

Lemma 12 Let M be a representable R -module and let M = S1 + · · ·+Sn be a minimal secondary representa-
tion for M, with

√
AnnR(Si) = Pi, for i = 1, . . . , n. Without losing generality, assume that {P1, . . . , Pk} is the

set of all minimal elements of AttR(M), where k ≤ n and set G = S1 + · · ·+Sk. Then radG(0) = radM (0)∩G.

Proof Clearly, AttR(G) = {P1, . . . , Pk}. If G = M , then there is nothing to prove. Thus we assume G �= M.

In this case, k < n. By [3, Lemma 4], radG(0) ⊆ radM(0)∩G. Let x ∈ radM(0)∩G, and let H be a P -prime
submodule of G. We shall first show that (G : M) � P. Assume contrarily that (G : M) ⊆ P. Since

n⋂
j=k+1

Pj = AnnR(Sk+1 + · · ·+ Sn) ⊆ (S1 + · · ·+ Sk : Sk+1 + · · ·+ Sn) = (G : M) ⊆ P

we have Pj ⊆ P for some j = k + 1, . . . , n. Now, let r ∈ P. Then rG ⊆ H. If r ∈ R\⋃k
i=1 Pi , then rSi = Si

for all i = 1, . . . , k, and hence G = rG ⊆ H, which contradicts with the choice of H. Thus r ∈ ⋃k
i=1 Pi . This

gives that P ⊆ ⋃k
i=1 Pi, and, by the Prime Avoidance Theorem (see [12]), P ⊆ Pi for some i = 1, . . . , k. But,

in this case, Pj ⊆ P ⊆ Pi, which contradicts the fact that Pi is a minimal element of AttR(M) but Pj is not.
It follows that (G : M) � P. By Lemma 6, there exists a prime submodule K of M such that H = K ∩ G.

Since x ∈ radM(0) ⊆ K , we obtain that x ∈ K ∩ G = H. Since H is an arbitrary prime submodule of G, we
have x ∈ radG(0). �

Now, we conclude our work with a generalization of Theorem 11, as follows:

Theorem 13 With the notation of Lemma 12,

radM(0) = radM (G) ∩ {m ∈ M : cm ∈ (
k⋂

i=1

Pi)M for some c ∈ R\
k⋃

i=1

Pi}.

Proof If G = M, then we are thorough, by Theorem 11. So, assume that G �= M. It follows easily from
Proposition 10 that

radM (0) ⊆ radM(G) ∩ {m ∈ M : cm ∈
(

k⋂
i=1

Pi

)
M for some c ∈ R\

k⋃
i=1

Pi}.

Now let m ∈ radM(G) and let there exist c ∈ R\⋃k
i=1 Pi such that cm ∈

(⋂k
i=1 Pi

)
M. Let K be a P -prime

submodule of M. If G ⊆ K, then m ∈ radM (G) ⊆ K . Now, assume that G � K. It is not difficult to see

that
√

AnnR(M) =
⋂k

i=1 Pi. Thus P = (K : M) ⊇
√

(0 : M) =
⋂k

i=1 Pi, and so cm ∈ K. Now, suppose that

c ∈ P. Then cG ⊆ K. But, since G � K we have cG �= G. This gives that c ∈ ⋃k
i=1 Pi, a contradiction.
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SARAÇ and TIRAŞ/Turk J Math

Therefore c /∈ P , and hence m ∈ K because K is P -prime. It follows from the fact that K is arbitrarily
chosen m ∈ radM(0). This completes the proof. �

In Theorem 13, we could calculate radM(0) inductively: Note that

M/G = (G + Sk+1)/G + · · ·+ (G + Sn)/G

is again a minimal secondary representation, and AttR(M/G) = {Pk+1, . . . , Pn}. In view of the equality
radM (G)/G = radM/G(0M/G), apply Theorem 13 to radM/G(0M/G) to obtain radM(G), and continue in
this way, if possible . More precisely, if M = S1 + · · ·+ Sn is a minimal secondary representation of M we can
form submodules G1, . . . , Gt of M each of which is a sum of some Si ’s such that M = G1 + · · · + Gt and

AttR(Gi+1) consists of all the minimal elements of AttR(M)\AttR(
∑i

j=0 Gj) for each i = 0, . . . , t − 1 where

G0 = 0 and AttR(G0) = ∅. Since
⋂

AttR(Gi+1) �
⋃

AttR(G1 + · · ·+ Gi), we must have

(⋂
AttR(Gi+1)

) M

G1 + · · ·+ Gi
=

(
⋂

AttR(Gi+1))M

G1 + · · ·+ Gi
.

It is now easy to see that

radM (0) =
t⋂

i=1

{
m ∈ M : cm ∈

(⋂
AttR(Gi)

)
M for some c ∈ R\

(⋃
AttR(Gi)

)}
.

If, in particular, AttR(M) = {P1, . . . , Pn} where P1 ⊂ . . . ⊂ Pn, then radM(0) =
⋂n

i=1{m ∈ M : cm ∈ PiM

for some c ∈ R\Pi}.
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