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Abstract: We study the existence and multiplicity of nonnegative solutions for the nonlinear elliptic problem, −Δu +

v(x)u = a(x)up + λf(x, u) for x ∈ Ω and u = 0 on ∂Ω, where Ω is a bounded region in �N , N > 2, 1 < p < N+2
N−2 ,

λ > 0 and f(x,u) satisfies some suitable conditions. By extracting the Palais-Smale sequences in the Nehari manifold,

it is proved that there exists λ∗ such that for λ ∈ (0, λ∗), the above problem has at least two positive solutions.
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1. Introduction

In this paper the existence and multiplicity of positive solutions for the following nonlinear elliptic problem is
discussed { − Δu + v(x)u = a(x)up + λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where λ > 0, 1 < p < N+2
N−2

(N > 2), Ω ⊂ R
N is a bounded domain in R

N with smooth boundary ∂Ω,

a ∈ C(Ω̄) such that a+ = max{a, 0} �≡ 0, v ∈ C(Ω̄) is a bounded function with ‖v‖∞ > 0, and f(x, u) satisfies
the following conditions:

(f1) f(x, u) ∈ C1(Ω × R) such that f(x, 0) ≥ 0, f(x, 0) �≡ 0 and there exists C1 > 0 such that,

f(x, u) ≤ C1(1 + uq) where 0 < q < 1 and (x, u) ∈ Ω × R
+ .

(f2) fu(x, u) ∈ L∞(Ω × R) and for u ∈ W 1,2
0 (Ω),

∫
∂Ω

∂
∂u

f(x, t|u|)u2dx has the same sign for every

t ∈ (0,∞).

Remark 1.1 Note that if f satisfies (f1) and (f2), then

(f3) pf(x, u) − ufu(x, u) ≤ C2(1 + u), for all (x, u) ∈ Ω × R
+,

(f4) F (x, u)− 1
p+1

f(x, u)u ≤ C2(1 + u2), for all (x, u) ∈ Ω × R
+, where

F (x, u) =
∫ u

0

f(x, s)ds. (1.2)
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In recent years, there have been several studies concerning the existence and multiplicity of solutions for
elliptic problems. Some of results relating to these problems can be found in [4, 5, 8, 9, 11, 15] and references

cited therein. Also it is an often studied problem to find solutions to the Laplace equation −Δu = g(x, u), in

Ω ⊆ R
N , u ∈ W 1,2

0 (Ω) for N ≥ 3 and g satisfying limt→∞
g(x,t)

tq = 0 uniformly on Ω with q < N+2
N−2

, and there

are many results using the compactness of the embedding of the space W 1,2
0 (Ω) into Lr(Ω) with r ∈ [1, 2N

N−2 )

(see a review article by Lions [13] and the references given there).

In most papers concerning the problem (1.1), it is supposed that f(x, u) = a(x)uk , for instance,

Ambrosetti-Brezis-Cerami [2] considered problem (1.1) when f(x, u) = uq , 0 < q < 1 and proved that there

is a Λ > 0 such that problem has at least two positive solutions for every λ ∈ (0, Λ), one positive solution for
λ = Λ and no one for λ > Λ.

Also, if f(x, u) = a(x)uq and v(x) ≡ 0 the problem (1.1) becomes

{ − Δu = λa(x)uq + b(x)up for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where λ > 0 , q < 1 < p < N+2
N−2

(which is considered by Brown and Wu [5]), where a, b : Ω → R are smooth

functions, which are somewhere positive but which may change sign on Ω, and they proved the existence of at
least two positive solutions by using the Nehari manifold and fibering maps.

Tarantello [14] considered the Dirichlet problem

{
− Δu = |u|p−2u + f for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where p = 2N
N−2 , N ≥ 3 is the limiting Sobolev exponent and Ω ⊂ R

N is a bounded set. He showed that this

problem has two distinct solutions if f ∈ H−1(Ω) (where H = H1
0 (Ω)) satisfies a suitable condition and f �≡ 0.

It should be stated, problem (1.1) for the P-Laplacian case when f(x, u) = a(x)|u|p−2u has been studied

by Drabek and Pohozaev [9] and the existence of solutions via Nehari manifold method is discussed.

In unbounded domain, the semilinear elliptic problem

{
− Δu + λu = g(x, u) + f(x), x ∈ R

N ,

u(x) > 0, u ∈ H1(RN ),

where g satisfies some suitable conditions and f ∈ H−1(RN)\{0} is nonnegative, has been the focus of a great

deal of research by several authors [1, 6, 7, 12] and the existence of at least two positive solutions was proved.

The aim of this paper is to prove the existence of positive solutions for the nonlinear elliptic problem (1.1)
by using the Nehari manifold associated with the Euler functional for the problem. The main difficulty will be
the nonlinearity of problem (1.1) due to f(x, u). To overcome this difficultly, we need to restrict problem (1.1)

to assumption (f2). Here we present some examples satisfying the conditions f1 and f2 and so the proposed

287



AGHAJANI et al./Turk J Math

method in this paper can be applied to these examples:

f1(x, u) =
−a1(x)uq+r

1 + a2(x)u2
+ a3(x), ai(x) ∈ C(Ω), ai(x) ≥ 0, a3(x) �≡ 0, max{2 − q, 0} ≤ r ≤ 2.

f2(x, u) = b1(x) tan−1(b2(x)uq+k) ln[1 + u2] + b3(x), bi(x) ∈ C(Ω), bi(x) ≥ 0, b3(x) �≡ 0, k ≥ 0.

f3(x, u) = c1(x) r

√
(1 + c2(x)u2k)q, ci(x) ≥ 0, ci(x) ∈ C(Ω), c1(x) �≡ 0, k ∈ N, 0 < 2k ≤ r.

f4(x, u) =
−e1(x)uq+k

4 + cot−1(e2(x)u)
+ e3(x), ei(x) ∈ C(Ω), ei(x) ≥ 0, e3(x) �≡ 0, k ≥ 0.

This paper is organized into 3 sections. In section 2 we present some notations and preliminary results
and moreover, we will recall the properties which shall be required of the Nehari manifold. In section 3 we will
prove the existence of positive solutions of problem (1.1) by establishing the existence of local minima for the

Euler functional, associated with problem (1.1) on Nehari manifold.

2. Preliminaries and auxiliary results

We shall throughout use the function space W 1,2
0 (Ω) with the norm

‖u‖W1,2
0

=
( ∫

Ω

(|∇u|2 + v(x)|u|2)dx

) 1
2

,

which is equivalent to the standard norm, and we use the standard Lp(Ω) spaces whose norms are denoted by

‖u‖p . We denoted by Sr the best Sobolev constant for the embedding of W 1,2
0 (Ω) into Lr(Ω), so for 1 ≤ r < 2∗

(2∗ = 2N
N−2 if N > 2, 2∗ = ∞ if N ≤ 2) we have

(‖u‖2
W1,2

0 (Ω)
)p+1

(
∫
Ω | u |p+1 dx)2

≥ 1

S
2(p+1)
p+1

. (2.1)

The Euler functional associated with problem (1.1) is Iλ : W 1,2
0 (Ω) → R , such that

Iλ(u) =
1
2
M(u) − 1

p + 1
A(u) − λ

∫
Ω

F (x, |u|)dx, (2.2)

where

A(u) =
∫

Ω

a(x)|u|p+1dx and M(u) =
∫

Ω

(|∇u|2 + v(x)|u|2)dx = ‖u‖2
W1,2

0
(2.3)

and F (x, u) is introduced in (1.2). The critical points of the functional Iλ are in fact weak solutions of problem

(1.1).

Definition 2.1 We say that u ∈ W 1,2
0 (Ω) is a weak solution of problem (1.1) if for any ϕ ∈ W 1,2

0 (Ω)

∫
Ω

(
∇u.∇ϕ + v(x)uϕ

)
dx =

∫
Ω

a(x)|u|p−1uϕdx + λ

∫
Ω

(
f(x, u)ϕ

)
dx.
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If Iλ is bounded below and has a minimizer on W 1,2
0 (Ω), then this minimizer is a critical point of Iλ , so

it is a solution of the corresponding elliptic problem. However, the energy functional Iλ is not bounded below

on the whole space W 1,2
0 (Ω), but is bounded on an appropriate subset of W 1,2

0 (Ω) and a minimizer on this

set gives rise to a solution of problem (1.1). In order to obtain the existence results, we introduce the Nehari
manifold

Nλ(Ω) = {u ∈ W 1,2
0 (Ω) \ {0} : 〈I′

λ(u), u〉 = 0},

where 〈, 〉 denotes the usual duality between W 1,2
0 (Ω) and W 1,2

0 (Ω)−1 , here (W 1,2
0 (Ω))−1 is the dual space

of the Sobolev space W 1,2
0 (Ω). Note that Nλ(Ω) contains every nonzero solution of problem (1.1). Therefore,

u ∈ Nλ(Ω) if and only if

M(u) − A(u) − λ

∫
Ω

f(x, |u|)|u|dx = 0; (2.4)

so we have the following theorem.

Theorem 2.1 There exists 0 < λ1 such that for λ < λ1 , Iλ is coercive and bounded below on Nλ(Ω) .

Proof It follows from (2.1), (2.2), (2.3), (2.4) and (f4)

Iλ(u) = (
1
2
− 1

p + 1
)M(u) − λ

∫
Ω

(F (x, |u|)− 1
p + 1

f(x, |u|)|u|)dx

≥ p − 1
2(p + 1)

M(u) − λC3

∫
Ω

(
1 + |u|2

)
dx

≥ p − 1
2(p + 1)

M(u) − λC3

(
|Ω|+ S2

2M(u)
)
.

Thus Iλ is coercive and bounded below on Nλ(Ω) for 0 < λ < λ1 = p−1
2(p+1)C3S2

2
. �

Define

ψλ(u) = 〈I′λ(u), u〉. (2.5)

Then by (2.2) and (2.5) we have

Iλ(tu) =
t2

2
M(u) − tp+1

p + 1
A(u) − λ

∫
Ω

F (x, |u|)dx,

ψλ(tu) = 〈I′
λ(tu), tu〉 = t2M(u) − tp+1A(u) − λ

∫
Ω

f(x, t|u|)|tu|dx,

〈ψ′
λ(tu), tu〉 = 2t2M(u) − (p + 1)tp+1A(u) − λ

∫
Ω

fu(x, t|u|)(tu)2dx − λ

∫
Ω

f(x, t|u|)|tu|dx.

(2.6)

It is easy to see that ψλ(tu) = 0 if and only if tu ∈ Nλ(Ω) and in particular u ∈ Nλ(Ω) if and only if

ψλ(u) = 0. Thus, it is natural to split Nλ into three parts corresponding to local minima, local maxima and
points of inflection and so we define

N+
λ = {u ∈ Nλ(Ω) : 〈ψ′

λ(u), u〉 > 0},

N−
λ = {u ∈ Nλ(Ω) : 〈ψ′

λ(u), u〉 < 0},

N 0
λ = {u ∈ Nλ(Ω) : 〈ψ′

λ(u), u〉 = 0}.

(2.7)
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The following lemma shows that minimizers for Iλ(u) on Nλ(Ω) are usually critical points for Iλ , as

proved by Brown and Zhang in [4].

Lemma 2.1 Let u0 be a local minimizer for Iλ(u) on Nλ(Ω) such that u0 /∈ N 0
λ (Ω), then u0 is a critical

points of Iλ .

Proof We let u0 be a local minimizer for Iλ on Nλ . By definition of Nλ , u0 is a minimizer for Iλ(u) that

subjects to 〈I′
λ(u0), u0〉 = 0. Hence, by the theory of Lagrange multipliers and (2.5), there exists μ ∈ R such

that

I
′
λ(u0) = μψ

′
λ(u0) in (W 1,2

0 (Ω))−1,

thus,

〈I′
λ(u), u〉W1,2

0 (Ω) = μ〈ψ′
λ(u), u〉W1,2

0 (Ω),

but u0 /∈ N 0
λ and so 〈ψ′

λ(u0), u0〉W1,2
0 (Ω) �= 0. Hence μ = 0, which concludes the proof. �

Lemma 2.2 There exists λ2 > 0 such that for 0 < λ < λ2 , we have N 0
λ = ∅ .

Proof Suppose otherwise. For u ∈ N 0
λ we have

ψλ(u) = M(u) − A(u) − λ

∫
Ω

f(x, |u|)|u|dx = 0, (2.8)

and also

〈ψ′
λ(u), u〉 = 2M(u) − (p + 1)A(u) − λ

∫
Ω

fu(x, |u|)u2dx − λ

∫
Ω

f(x, |u|)|u|dx = 0. (2.9)

Using (2.1), (2.3), (2.8), (2.9) and (f2) we have

M(u) = pA(u) + λ

∫
Ω

fu(x, |u|)u2dx

≤ L‖u‖p+1

W1,2
0 (Ω)

+ λL′‖u‖2
W1,2

0
,

where L = p‖a‖∞Sp+1
p+1 and L′ = ‖fu(x, |u|)‖L∞(Ω×R)S

2
2 . Therefore

(1 − λL′)‖u‖2
W

1,2
0 (Ω)

≤ L‖u‖p+1

W1,2
0 (Ω)

,

which concludes

M(u) ≥
(1 − L′λ

L

) 2
p−1

. (2.10)

On the other hand from (2.1), (2.8), (2.9) and (f3), we obtain

(p − 1)M(u) = λ

( ∫
Ω

pf(x, |u|)− fu(x, |u|)|u|
)
|u|dx

≤ 2C2λ

∫
Ω

(1 + |u|2)dx ≤ 2C2λ(|Ω| + S2
2‖u‖W1,2

0
),
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which concludes

M(u) ≤ 2C2λ|Ω|
p − 1 − 2C2λS2

2

. (2.11)

Now by (2,10) and (2,11) we must have

(1 − L′λ
L

) 2
p−1 ≤

(
2C2λ|Ω|

p − 1 − 2C2λS2
2

)
,

which is a contradiction for λ sufficiently small. So there exists λ2 > 0 such that for 0 < λ < λ2, N 0
λ = ∅. �

Definition 2.2 A sequence un ⊂ W 1,2
0 (Ω) is called a Palais-Smale sequence if {Iλ(un)} is bounded and

I′λ(un) → 0 as n → ∞ . It is said that the functional Iλ satisfies the Palais-Smale condition (or (PS)c −
condition) if each Palais-Smale sequence ((PS)c − sequence) has a convergent subsequence.

Now we will prove the boundedness of a Palais-Smale sequence.

Lemma 2.3 If {un} is a (PS)c -sequence for Iλ, then {un} is bounded in W 1,2
0 (Ω) for 0 < λ < λ1 .

Proof By using (2.1), (2.2), (2.6) and (f4) we get

Iλ(un) − 1
p + 1

〈I′
λ(un), un〉 =

p − 1
2p + 2

‖u‖2
W1,2

0
− λ

∫
Ω

(
F (x, |un|) −

1
p + 1

f(x, |un|)|un|
)

dx

≥ p − 1
2p + 2

‖u‖2
W1,2

0
− λC3

∫
Ω

(1 + |un|2)dx

≥ p − 1 − 2(p + 1)λC3S
2
2

2p + 2
‖u‖2

W1,2
0

− λC3|Ω|,

so for λ < λ1 = p−1
2(p+1)C3S2

2
, {un} is bounded in W 1,2

0 (Ω).

Now we describe the nature of the derivative of the Iλ(tu) for all possible signs of A(u) and∫
∂Ω

∂
∂uf(x, t|u|)u2dx using assumption (f2), (2.5) and (2.6). We will find it useful to consider the functions

hu(t) =
1
2
t2M(u) − 1

p + 1
tp+1A(u) and ku(t) =

∫
F (x, t|u|)dx, (2.12)

in which Iλ(tu) = hu(t) − λku(t) and 〈I′λ(tu.tu)〉 = ψλ(tu) = 0 if and only if h
′
u(t) = λk

′
u(t). Then, for fixed u

and t > 0 by using (2.6) we illustrate the nature of the φ′
u(t) = h

′
u(t) − λk

′
u(t) graphically in Figure 1(a)–(d)

with possibility signs of A(u) and
∫

∂Ω
∂

∂uf(x, t|u|)u2dx .

If
∫
Ω

fu(x, t|u|)u2dx > 0 and A(u) ≤ 0 clearly h
′
u and λk

′
u have graphs as in Figure 1(a). The plot 1(b)

shows the graphs of h
′
u and λk

′
u by letting

∫
Ω

fu(x, t|u|)u2dx ≤ 0 and A(u) ≤ 0. Clearly in these cases there

is exactly one point t1 such that t1u ∈ Nλ(Ω) and since ψλ(tu) < 0 for 0 < t < tu and ψλ(tu) > 0 for t > t1

so t1u ∈ N+
λ (Ω).
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Figure 1. Possible forms for h′ (—) and λk′ (– – –)

Suppose now
∫
Ω

fu(x, t|u|)u2dx > 0 and A(u) > 0 then h
′
u and λk

′
u have graph as shown in Figure

1(c). The plot 1(d) represents the graphs of h
′
u and λk

′
u when

∫
Ω fu(x, t|u|)u2dx ≤ 0 and A(u) > 0. In these

cases, if λ > 0 is sufficiently large, then ψλ(tu) = 0 has no solutions and hence no multiple of u lies in Nλ(Ω).

On the other hand, if λ > 0 is sufficiently small, there are exactly two solutions t1 < t2 of ψλ(tu) = 0 where

Iλ(tu) is decreasing in (0, t1), increasing in (t1, t2) and decreasing in (t2,∞), so t1 is a local minimum and t2

is a local maximum of Iλ(tu), hence t1u ∈ N+
λ (Ω) and t2u ∈ N−

λ (Ω). �

The following result ensures that when λ is sufficiently small then the graph of Iλ(u) has positive value

for all non zero u ∈ W 1,2
0 (Ω).

Lemma 2.4 There exists λ3 > 0 such that when λ < λ3 , then Iλ(tu) takes on positive values for all non-zero

u ∈ W 1,2
0 .

Proof If A(u) ≤ 0, then by (2.5), Iλ(tu) > 0, for t sufficiently large. Suppose there exists u ∈ W 1,2
0 (Ω) such

that A(u) > 0. Elementary calculus shows that hu(t) takes on a maximum at

tmax =
(‖u‖2

W1,2
0 (Ω)

A(u)

) 1
p−1

, (2.13)

where hu(t) was introduced in (2.12). Hence by (2.1), (2.12) and (2.13)
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hu(tmax) =
p − 1

2(p + 1)

( (‖u‖2
W1,2

0 (Ω)
)p+1

( ∫
Ω a(x)|u|p+1

)2

) 1
p−1

≥ p − 1
2(p + 1)

(
1

‖a+‖2∞S
2(p+1)
p+1

) 1
p−1

:= δ1,

(2.14)

and δ1 is independent of u.

Also by (2.1), (2.13) and (2.14) for 1 ≤ r < 2∗

(tmax)r

∫
Ω

|u|rdx ≤ Sr
r

(‖u‖2
W1,2

0 (Ω)

A(u)

) r
p−1

(‖u‖2
W1,2

0 (Ω)
)

r
2

= Sr
r

{ (‖u‖2
W

1,2
0 (Ω)

)p+1

(A(u))2

} r
2(p−1)

= Sr
r

(2(p + 1)
p − 1

) r
2 (hu(tmax)

) r
2 = c(hu(tmax)

) r
2 .

(2.15)

Hence from (f1), (f4) and (2.15) we have∫
Ω

F (x, tmax|u|)dx ≤ 1
p + 1

∫
Ω

C4(2 + |tmaxu|2)dx +
∫

Ω

C1(|tmaxu|+ |tmaxu|q+1)dx

≤ B0 + B1hu(tmax) + B2(hu(tmax)
1
2 + B3(hu(tmax))

q+1
2 .

(2.16)

Then, using (2.5), (2.14) and (2.16) we obtain

Iλ(tmaxu) = hu(tmax) − λ

∫
Ω

F (x, tmax|u|)dx

≥ hu(tmax)
(

1 − λ

[
B0(hu(tmax))−1 + B1 + B2(hu(tmax))

−1
2 + B3(hu(tmax))

q−1
2

])

≥ δ1

(
1 − λ(B0δ

−1
1 + B1 + B2δ

−1
2

1 + B3δ
q−1
2

1 )
)

,

so Iλ(tmaxu) > 0 for all nonzero u , provided that λ < λ3 =
(
2(B0δ

−1
1 + B1 + B2δ

−1
2

1 + B3δ
q−1
2

1 )
)−1

,

and this completes the proof. �

Corollary 2.1 If λ < λ3 , then Iλ(u) > 0 for all u ∈ N−
λ .

Proof If u ∈ N−
λ , due to (f2), Iλ(tu) has a global maximum at t = 1, so

Iλ(u) ≥ Iλ(tmax, u) > 0.

�
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Lemma 2.5 There exists λ4 > 0 such that, when λ < λ4 , ψ(tu) = 〈I′λ(tu), tu〉 takes on positive values for all

non-zero u ∈ W 1,2
0 (Ω) .

Proof As the proof of the Lemma 2.4, if A(u) ≤ 0, then by using (2.6), ψλ(tu) > 0 for t sufficiently large.

Suppose there exists u ∈ W 1,2
0 (Ω) such that A(u) > 0. Let

h̄u(t) = th′
u(t) = t2M(u) − tp+1A(u).

By elementary calculus we can show that h̄u(t) achieves its maximum at

t̄max =
(2‖u‖2

W1,2
0 (Ω)

(p + 1)A(u)

) 1
p−1

. (2.17)

Therefore, by (2.12) and (2.17) we obtain

h̄u(t̄max) = (
p − 1
p + 1

)
( 2
p + 1

)( 2
p−1 )

{ (‖u‖2
W1,2

0 (Ω)
)p+1

(
∫
Ω

a(x)|u|p+1dx)2

} 1
p−1

≥ (
p − 1
p + 1

)
( 2
p + 1

) 2
p−1

(
1

‖a+‖2
∞S

2(p+1)
p+1

) 1
p−1

:= δ2 > 0,

(2.18)

where δ2 is independent of u. Similar to (2.15), for 1 ≤ r < 2∗ , we have

(t̄max)r

∫
Ω

|u|rdx = c̄(h̄u(t̄max)
) r

2 , (2.19)

then using (2.19) and (f1) we conclude that
∫

Ω

f(x, t̄max|u|)|t̄maxu|dx ≤ C1

∫
Ω

(
|t̄maxu|+ |t̄maxu|q+1

)
dx

≤ b0

(
h̄u(t̄max)

) 1
2 + b1

(
h̄u(t̄max)

) q+1
2 ,

(2.20)

where b0 and b1 are independent of u . So, from (2.18), (2.20) and (2.6) we get

ψλ(t̄maxu) = h̄u(t̄max) − λ

∫
Ω

f(x, t̄max|u|)t̄max|u|dx

≥
(
h̄u(t̄max)

) 1+q
2

((
h̄u(t̄max)

) 1−q
2 − λ(b0(h̄u(t̄max))

−q
2 + b1)

)

≥ δ
1+q
2

2

(
δ

1−q
2

2 − λ(b0δ
−q
2

2 + b1)
)

.

Clearly ψλ(t̄maxu) > 0, for all nonzero u , provided that λ < λ4 where λ4 = δ
1−q
2

2 /2(b0δ
−q
2

2 + b1), this
completes the proof. �

Corollary 2.2 If A(u) ≤ 0 for u ∈ W 1,2
0 (Ω) \ {0}, then there exists t1 such that t1u ∈ N+

λ and Iλ(t1u) < 0.
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Proof From the definition of Iλ(tu) and (2.6) for a fixed u , we know ψλ(0) < 0 and limt→∞ ψλ(tu) = +∞ ,

so by the intermediate value theorem, there exists t1 > 0 such that ψλ(t1u) = 0. Now since ψλ(tu) < 0 for

0 < t < t1 and ψλ(tu) > 0 for t1 < t , then (2.7) follows that t1u ∈ N+
λ and Iλ(t1u) < Iλ(0) = 0. �

Corollary 2.3 If A(u) > 0 for u ∈ W 1,2
0 (Ω) \ {0}, and λ < λ1 , then there exist t1 < t2 such that t1u ∈ N+

λ ,

t2u ∈ N−
λ and Iλ(t1u) < 0.

Proof As in the proof of the above corollary, we obtain ψλ(0) < 0, limt→∞ ψλ(tu) = −∞ and by using

Lemma 2.5 we get ψλ(Tu) > 0 for a suitable T , so the intermediate value Theorem concludes that there ex-

ist t1, t2 such that 0 < t1 < T < t2 , ψλ(t1u) = ψλ(t2u) = 0, t1u ∈ N+
λ , t2u ∈ N−

λ and Iλ(t1, u) < Iλ(0) = 0. �

3. Existence of solutions

In this section, using the properties of Iλ(tu), we study the existence of positive solutions of problem (1.1). For

simplicity let λ∗ = min{λ1, λ2, λ3, λ4} .

Remark 3.1 By using (f1) we get |f(x, u)| ≤ C1(1+|u|q) ≤ 2C1(1+|u|r) for 0 < q < 1 < r < N+2
N−2 . Hence from

the compactness of the embedding W 1,2
0 (Ω) ↪→ Lr(Ω) for 1 ≤ r < N+2

N−2
(the Rellich-Kondrachov theorem [3])

and the fact that the operator u �−→ f(x, u) is continuous, we conclude that the functional J(u) =
∫
Ω

F (x, u)dx

is weakly continuous , i.e. if un ⇀ u , then J(un) → J(u) and the operator J ′(u) =
∫
Ω

f(x, u)udx is weak to

strong continuous, i.e. if un ⇀ u , then J ′(un) → J ′(u) .

Theorem 3.1 For λ < λ∗ , there exists a minimizer of Iλ on N+
λ (Ω) .

Proof As in Theorem 2.1 Iλ is bounded below on Nλ(Ω) and so on N+
λ (Ω). Let {un} be a minimizing

sequence for Iλ on N+
λ (Ω), i.e.

lim
n→∞

Iλ(un) = inf
u∈N+

λ

Iλ(u) = c,

and by Ekeland’s variational principle [10] we may assume

〈I′
λ(un), un〉 → 0.

Then by Lemma 2.3 {un} is bounded in W 1,2
0 (Ω) and by Rellich theorem [3] without loss of generality,

we may assume that un ⇀ u1 in W 1,2
0 (Ω) and un → u1 in Lr(Ω) for 1 ≤ r < 2∗ and un(x) → u1(x), a.e.

By Corollaries 2.2 and 2.3 for u1 ∈ W 1,2
0 (Ω) \ {0}, there exists t1 such that t1u1 ∈ N+

λ and so

ψλ(t1u1) = 0. Now we show that un → u1 in W 1,2
0 (Ω). Suppose this is false, then

M(u1) < lim inf
n→∞

M(un). (3.1)

Also we have

ψλ(tun) = t2M(un) − tp+1A(un) − λ

∫
Ω

f(x, t|un|)|tun|dx (3.2)
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and

ψλ(tu1) = t2M(u1) − tp+1A(u1) − λ

∫
Ω

f(x, t|u1|)|tu1|dx. (3.3)

So, from (3.1), (3.2), (3.3) and Remark 3.1, ψλ(t1un) > ψλ(t1u1) = 0 for n sufficiently large. Since

{un} ⊆ N+
λ (Ω), by considering possible maps it is easy to see that ψλ(tun) < 0 for 0 < t < 1 and ψλ(t1un) = 0

for all n. Hence we must have t1 > 1, but t1u1 ∈ N+
λ and so

Iλ(t1u1) < Iλ(u1) < lim
n→∞

Iλ(un) = inf
u∈N+

λ

Iλ(un),

which is a contradiction. Therefore un → u1 in W 1,2
0 (Ω) and so

Iλ(u1) = lim
n→∞

Iλ(un) = inf
u∈N+

λ

Iλ(u).

Thus u1 is a minimizer for Iλ on N+
λ (Ω).

Next, we establish the existence of a local minimum for Iλ on N−
λ . �

Theorem 3.2 If λ < λ∗ , there exists a minimizer of Iλ on N−
λ (Ω) .

Proof By Corollary 2.1 we have Iλ(u) > 0 for all u ∈ N−
λ , i.e.

inf
u∈N−

λ

Iλ(u) ≥ 0.

Hence there exists a minimizing sequence {un} ⊆ N−
λ (Ω) such that

lim
n→∞

Iλ(un) = inf
u∈N−

λ

Iλ(u) ≥ 0. (3.4)

Similarly, as in the proof of the previous theorem, we find that {un} is bounded in W 1,2
0 (Ω), un ⇀ u2 in

W 1,2
0 (Ω) and un → u2 in Lr ,1 < r < 2∗. Also we have

Iλ(un) =
1
2
M(un) − 1

p + 1
A(un) − λ

∫
Ω

F (x, |un|)dx. (3.5)

We claim that A(un) > 0. Suppose this is false. Thus −pA(un) ≥ 0, since un ∈ N−
λ , so by (f2), (2.1),

(2.6) and (2.7) we have

M(un) < λ

∫
Ω

fu(x, t|un|)u2
ndx ≤ λ‖fu(x, |un|)‖L∞(Ω×R)S

2
2M(un),

which gives a contradiction for λ sufficiently small, hence A(un) > 0. Letting n → ∞ , we see that A(u2) > 0.

So by Corollary 2.3, there exists t2 > 0 such that t2u2 ∈ N−
λ (Ω). We claim that un → u2 in W 1,2

0 (Ω),

suppose that this is false, so
M(u2) < lim inf

n→∞
M(un). (3.6)
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But un ∈ N−
λ and so Iλ(un) ≥ Iλ(tun) for all t ≥ 0, therefore, by using (2.5), (3.4), (3.5), (3.7) and

Remark 3.1, we get

Iλ(t2u2) =
1
2
t22M(u2) −

1
p + 1

tp+1
2 A(u2) − λ

∫
Ω

F (x, t2|u2|)dx

< lim
n→∞

(
1
2
t22M(un) − 1

p + 1
tp+1
2 A(un) − λ

∫
Ω

F (x, t2|un|)dx

= lim
n→∞

Iλ(t2un) ≤ lim
n→∞

Iλ(un) = inf
u∈N−

λ

Iλ(u),

which is a contradiction. Therefore un → u2 in W 1,2
0 (Ω) and so the proof is complete. �

Corollary 3.1 Problem (1.1) has at least two positive solutions for 0 < λ < λ∗ .

Proof By Theorems 3.1 and 3.2 there exist u1 ∈ N+
λ (Ω) and u2 ∈ N−

λ (Ω) such that Iλ(u1) = infu∈N+
λ

Iλ(u)

and Iλ(u2) = infu∈N−
λ

Iλ(u). By Lemma 2.1, and (2,2), u1 and u2 are critical points of Iλ on W 1,2
0 and hence

are weak solutions of problem (1.1). On the other hand Iλ(u) = Iλ(|u|), so we may assume u1 and u2 are
positive solutions. It remains to show that the solutions found in Theorems 3.1 and 3.2 are distinct. Since

N+
λ ∩ N−

λ = ∅, this implies that u1 and u2 are distinct and the proof is complete. �
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