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Strong solution for a high order boundary value problem with integral condition
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Abstract: The present paper is devoted to a proof of the existence and uniqueness of strong solution for a high order
boundary value problem with integral condition. The proof is based by a priori estimate and on the density of the range

of the operator generated by the studied problem.
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1. Introduction

In the rectangular domain @ = (0,1) x (0,7), with T' < oo, we consider the differential equation

0*u % 0%u
fu=—+(-1)"=— t)=— | = t 1.1
w= G+ 0" g (o 5t ) = 7 (o), (1)
where a (x,t) satisfy the assumptions
0<ap<al(zt)<a, (1.2)
o O%a(x,t) - . , —
cp < Wgck, k=1,4, with ¢, >0, V(z,t) €Q, (1.3)
subject to the initial conditions
9] 0
u(w,O)zO,Mzo, z e (0,1), (1.4)
ot
final conditions
0?u (x,T) OBu(x,T)
=0 =0 0,1 1.5
ot T e (), (15)
boundary conditions
O'u (0,t
Lﬁ)zo, for 0<i<a-—1, te(0,7), (1.6)
oxt
O'u (1,t
%:0, for 0<i<a-2 te(0,T), (1.7)
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and the integral (nonlocal) condition

/1u(§,t)d§=o, te(0,T). (1.8)
0

The importance of boundary value problems with integral boundary conditions has been pointed out by
Samarski [21]. We remark that integral boundary conditions for evolution problems have various applications
in chemical engineering, thermoelasticity, underground water flow and population dynamics; see for example
[7, 12, 22, 17]. Boundary value problems for parabolic equations with an integral boundary condition are
investigated by Batten [1], Bouziani and Benouar [2], Cannon [4, 5], Cannon, et al. [6], Ionkin [15], Kamynin
[16], Shi and Shillor [23], Shi [22], Marhoune and Bouzit [19], Denche and Marhoune [8, 9, 10, 11}, Yurchuk [24],
and many references therein. The problem with an integral one-space-variable condition is studied in Kartynnik
[17], and Denche and Marhoune [11]

2. Preliminaries
In this paper, we prove the existence and uniqueness of a strong solution of the problem stated in equation
(1.1) — (1.8). The demonstration is based on an a priori estimate and the density of the image of the operator

generated by the problem (1.1) — (1.8). This problem can be written in the operator form
Lu=F, (2.9)

where the operator L is considered from E to F. We consider the domain of definition D (L) such that E is
the Banach space consisting of all functions u € L? (Q), satisfying equations (1.1) — (1.8), with the finite norm

2 2 2
2 (1—2) ||0*u 0~ 0%u 0%u
= — — t) =— —| | dxdt 2.10
l[ullz /Q 2 l | Faee (0@ ga ozer | | T (2.10)
and F' is the Hilbert space with norm given by
1915 = [ (o) 51 dact (211)

where v is an arbitrary number such that 0 < v < 1. Using the energy inequalities method proposed in [18],

we establish an energy inequality

2 2
lul% < Cy [1Zull% (2.12)

and we show that the operator L has the closure L.

Definition 1 A solution of the operator equation Lu = F is called a strong solution of the problem (1.1) —
(1.8).

Inequality (2.12) can be extended by
[ull% < Cy ||Tul% , forallu e D (T). (2.13)

From this inequality, we obtain the uniqueness of a strong solution if it exists, and the equality of sets

R (f) and R (L). Thus, to prove the existence of a strong solution of the problem in equations (1.1)—(1.8) , it

remains to prove that the set R (L) is dense in F.

300



MERAD and MARHOUNE/Turk J Math

3. An energy inequality and its consequences

Theorem 1 For any function w € D (L) we have the a priori estimate

lull < k| Zull . (3.1)
where
2
exp (¢T') max (((12_(’,])) + %)
k= 3.2
min (1,9) (3.2)
and
§ = ¢y — dces + 62y — 4cdey + ctag > 0, (3.3)
with the constant ¢ satisfying the region
s [1@_ (‘2:‘2)2_1@] << inf [H;@_\/(%:‘ZY_;@JFL
p a Ot a a Ot a Ot a a Ot 21
/ (3.4)
apc® —c1c(3¢+2) + ¢y (Be+1) —c3 >0,
0= c; — 4ees + 6020,2 — 43¢y + ctfag >0
Proof Denote
0*u o*u
where
Ju:/ u (&, ) d¢.
0
We consider the quadratic formula
T 1 _
Re/ / exp (—ct) LuMudzdt, (3.5)
o Jo

with the constant ¢ satisfying condition (3.4); obtained by multiplying equation (1.1) by exp (—ct) £uMu;
and integrating over Q7, where Q™ = (0,1) x (0,7), with 0 < 7 < T, and by taking the real part. Integrating
by parts a times in formula (3.5) with the use of boundary conditions in equations (1.6), (1.7), and (1.8), we

obtain

T 1
Re/ / exp (—ct) LuMudzdt = (3.6)
0o Jo
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2
dzdt +

//exp —ct) )6

2
2 a\r, T —x o «
2Re/0 exp (—¢ )(6 2z, )—206 (=, )+c2a(w,7)> 1-z9 (6 L2, )> o%u 6( )d:c—

ot? ot 2 ot oz~ o

Tt d%a da 1-xz)|0 [0
4 —et) (L2 —2c 2 4 2 Z dwdt —
/0 /Oe’(p( C)<6t2 Cm”“) 2 8t<8wa>‘

! ?a(z,T) 0?a (x,7) 50a (x,T) (1—2)|0%u(x,T1)
/0 exp (—ct) ( T 3c 92 + 3¢ 5 ca(x, T)) 5 Do dx +
! da (x, 1—x)|0 (0% (x,
2/ exp (—c7) <7ag 7) —ca (:c,7)> ( 5 ?) g ( gs(ci T>>‘dw+
da 9%a da 0*u
/ /exp —ct) ((%4 4c—6t3+62—8t2—438t+ca>7( 5 2) e dzxdt +

T (=22 (0
2/0/0aexp( ct) 5 52 \ 5o dxdt.

By substituting the expression of Mu in formula (3.5), using elementary inequalities and the inequality

2
9*u
/1 ‘JW v < — 2 /1(1 )
7 AL = T — X
o (1-m) (1=2)" Jo

T 1 - 4 2 T 1
Re/ / exp (—ct) LuMudxdt < (LU + 1) / / exp (—ct) (1 — z)” | Lu|® dzdt
0o Jo (1-2) 0o Jo

1 T 1 4 2
+—/ / exp (—ct) (1 — x) gu
2Jo Jo

ot
o (0 2
Oxe oz

2
ot

ot4

dx, where 0 <v <1, (3.7)

yields

dxdt. (3.8)

From equation (1.1), we have

//expct 2)

1 T 1
dedt < Z/ / exp (—ct) (1 — z) | £u|? dedt +
o Jo

I (1—-2x) Ful?
- —ct ° :
2/0 /0 exp (—ct) 5 5 dxdt
Consequently, we obtain
(1-2) ul? 0* ou\ > |0°u|’
/Q 7 ||ar| Tae \ @D g )| T aga] |
2
exp (¢T') ma ((12_au)) +g>
1—2)"|f]? dzdt. 3.9
< R JREERRE (3.9
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Lemma 1 The operator Lfrom E to F admits a closure.

Proof Suppose that (u,) € D (L) is a sequence such that

up, — 0in E, (3.10)
and

Lu, — fin F, (3.11)

We must show that f=0.

Introducing the operator
o*v % 0%v

Lov = — + (-1)* =— t) — 3.12
=G+ (1 o (aen 52 (312)

defined on the domain D (£9) of function v € L? (Q) verifying

v (z,0) _ 0?v (x,T) _ v (z,T)

0) = —0

v(,0) ot ot ot :

M = 0, for 0<i<a-1,
ox’

d'wv(1,t

00 ) fr 0<i<a-2, (3.13)
oxt

we note that D (£y) is dense in the Hilbert space obtained from the completion of L? (Q) with respect to the
norm

915 = [ (111" dnar (314)
Additionally, since
/ (1 —2)" fodedt = lim | Luy,[(1—2)"v]dedt= lim [ u,£o[(1—2z)" ] dzdt =0, (3.15)

this holds for every function v € D (£), and yields f = 0.
Theorem 2 The priori estimate in Theorem 1 can be extended to include all functions u, i.e.
2 - 112 -
lullp < k||Lu||,,Yue D (L), (3.16)
Hence we obtain the following corollary.

Corollary 1 A strong solution of the problem in equations (1.1)—(1.8) is unique if it exists, and depends

continuously on f.

Corollary 2 The range R (L) of the operator L is closed in F,and R (f) =R(L).
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4. Solvability of the problem
To prove the solvability of problem in equations (1.1)—(1.8), it is sufficient to show that R (L) is dense in F.

The proof is based on the following lemma.
Lemma 2 For all w € L?*(Q),

/Q(l —z) £u - wdadt = 0, (4.1)

then w = 0.
Proof Equality (4.1) can be written as

_/Q % (1 — 2) dadt = (—1)(*/62 gc—aa (a (a,t) %) (1 — z) @dadt (4.2)

If we introduce the smoothing operators with respect to t [24, 20, 14, 3], ng = (I+ f%)_l and (ng) ,

then these operators provide the solutions of the respective problems

dge (t)

57 +ge(t) = g(t), (4.3)
g(t)lt:O = 0,
and
) (4.9
9Bler = 0.

The operators also have the following properties: for any g € Lo (0,T), the function g¢ = (Jg 1) g and

gi = (ng) g are in W3 (0,T) such that gel,_o = 0. and 9g¢ T 0. Moreover, ng commutes with %, S0
T 2 T « 2
Jo lge —g|"dt — 0 and ] gg—g‘ dt — 0 for € — 0.
Now, for given w (x,t), we introduce the function
@) = —a( -2 [ e b u o
v(z,t)=—a(l—=z — ,1).
o (1-¢)
Integrating by parts, we obtain
I-2z)v+aJv=(1-2)w, and / v (z,t)dx = 0. (4.5)
0
Then from equality (4.2), we have
oM —
— | gz Nvdrdt= | A(t)uvdzdt, (4.6)
Q ot Q
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where Nv = (1—z)v+aJv, and A(t)u= (-1)" 2= (a(z,t) L£L).

oz

Putting u = fo K fé fg exp (c7) vg (7) drd€dndh in (4.6), and using (4.4), we obtain

—/ exp (ct) vgmdxdt:/ Au )uvgdxdt—f/ 5algcclt (4.7)
Q Q

Integrating by parts each term in the right-hand side of (4.7) and taking the real parts, we have

Re (/ A (u) uvé‘dwdt) >0, (4.8)
Q
( R0 ) e, (49)
where
(1—x) |0 ’ (1—2) (*a\”|0%u|?
M = 16 dzdt — —| daxdt
/Q 2 ot | +/Q 2 ((%4)‘6#* vy
Pa 9oty
(ﬁ) ta+1 dl'dt +
(1—=) (0% 9°t2y
((%2 ) ey dwdt +
93y (1—1x) 50T ?
( ) ey dwdt—i—/Q 7@ ‘ Spata dzdt. (4.10)
Now, using inequalities (4.8) and (4.9) in equation (4.7),we have
Re (/ exp (ct) vEdedt) <0, (4.11)
Q
then for £ — 0, we obtain
Re (/ exp (ct) dewdt) <0. (4.12)
Q
We conclude that v = 0, hence, w = 0, which ends the proof of the lemma.
Theorem 3 The range R( ) of L coincides with F.
O
Proof Since F is a Hilbert space, we have R (f) = F if and only if the relation
/ (1—2z)" £u- fdrdt =0 (4.13)
Q
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for arbitrary function v € F and f € F,implies that f = 0.

Putting v € D (L) in relation (4.13),taking w = #, and using lemma 7, we obtain w =

7f =
(1—z)v— 1

0, then f =0. O

(1]

2l

(6]

(7l

(8]

(9l

(10]

(11]

(12]

(15]

(16]

(17]

(18]

306

References
Batten Jr, G. W.: Second-order correct boundary condition for the numerical solution of the mixed boundary
problem for parabolic equation, Math. Comput. 17, 405413 (1963).

Bouziani, A., Benouar, N.E.: Mixed problem with integral conditions for third order parabolic equation, Kobe J.
Math. 15 47-58 (1998).

Cannarasa, P., Vespri, V.: On maximal Lp-regularity for abstract Cauchy problem, Boll. Unione Mat. Italiana
165-175 (1986).

Cannon, J. R.: The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21,
155-160 (1963).

Cannon, J. R.: The one-dimensional heat equation, in Encyclopedia of Mathematics and its Applications, Vol. 23,
Addison-Wesley, Menlo Park, CA, 1984.

Cannon, J. R., Perez Esteva, S., Van Der Hoek, J.,: A Galerkin procedure for the diffusion equation subject to the
specification of mass, Siam J. Numer. Anal. 24, 499-515 (1987).

Choi, Y. S., Chan, K. Y.: A parabolic equation with nonlocal boundary conditions arising from electrochemistry,
Nonlinear Anal. 18, 317-331 (1992).

Denche, M., Marhoune, A. L.: Mixed problem with integral boundary conditions for a high order mixed type partial
differential equation, J. Appl. Math. Stochastic Anal.16 (1), 6979 (2003).

Denche, M., Marhoune, A. L.: Mixed problem with nonlocal boundary conditions for a third-order partial differential
equation of mixed type, Int. J. Math. Sci. 26 (7), 417-426 (2001).

Denche, M., Marhoune, A. L.: High-order mixed type partial differential equations with integral boundary condi-
tions, Electron. J. Differ. Equ. (60), 1-10 (2000).

Denche, M., Marhoune, A. L.: A three-point boundary value problem with an integral condition for parabolic
equation with the Bessel operator, Appl. Math. Lett. 13, 85-89 (2000).

Ewing, R. E., Lin, T.: A class of parameter estimation techniques for fluid flow in porous media, Adv. Water
Resources 14, 89-97 (1991).

Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities, Cambridge Press, Zbl 0010.10703 JFM 60.0169.01 1934.

Hieber, M., Pruss, J.: Heat kernels and Maximal Lp-Lp estimates for parabolic evolution equation, Comm. Partial
Differ. Equ. 22, 164761669 (1997).

Tonkin, N. I.: Solution of a boundary-value problem in heat condition with a nonclassical boundary condition,
Differ. Uravn. 13, 294-304 (1977).

Kamynin, N. I.: A boundary value problem in the theory of the heat condition with non classical boundary condition,
U. S. S. R. Comput. Math. Phys. 4, 33-59 (1964).

Kartynnik, A. V.: Three-point boundary-value problem with an integral space-variable condition for a second-order
parabolic equation, Differ. Equ. 26, 1160-1166 (1990).

Marhoune, A. L.: A three-point boundary value problem with an integral two-space-variables condition for parabolic
equations, Math. Comput. 53, 940-947 (2007).



(19]

(20]

(21]
(22]
(23]

MERAD and MARHOUNE/Turk J Math

Marhoune, A. L., Bouzit, M.: High order differential equations with integral boundary condition, Far East J. Math.
Sci. 18 (3), 341-450 (2005).

Pruss, J., Simonett, G.: Maximal regularity for evolution equations in weighted Lp-spaces, Fachbereich Mathematic
and Informatic, Martin-Luter-Universitat Halle-Wittenberg, July 2002.

Samarskii, A. A.: Some problems in differential equations theory, Differ. Uravn. 16 (11), 1221-1228 (1980).
Shi, P.: Weak solution to evolution problem with a nonlocal constraint, Siam J. Anal. 24, 46-58 (1993).

Shi, P., Shillor, M.: Design of Contact patterns in One Dimensional Thermoelasticity, in: Theoretical Aspects of
Industrial Design, Society for Industrial and Applied Mathematics, Philadelphia, PA,1992.

Yurchuk, N. I.: Mixed problem with an integral condition for certain parabolic equations, Differ. Equ. 22, 1457-1463
(1986).

307



