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Abstract: The present paper is devoted to a proof of the existence and uniqueness of strong solution for a high order

boundary value problem with integral condition. The proof is based by a priori estimate and on the density of the range

of the operator generated by the studied problem.
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1. Introduction

In the rectangular domain Q = (0, 1)× (0, T ) , with T < ∞, we consider the differential equation

£u =
∂4u

∂t4
+ (−1)α ∂α

∂xα

(
a (x, t)

∂αu

∂xα

)
= f (x, t) , (1.1)

where a (x, t) satisfy the assumptions

0 < a0 ≤ a (x, t) ≤ a1, (1.2)

c
′
k ≤ ∂ka (x, t)

∂xk
≤ ck, k = 1, 4, with c

′
1 ≥ 0, ∀ (x, t) ∈ Q, (1.3)

subject to the initial conditions

u (x, 0) = 0,
∂u (x, 0)

∂t
= 0, x ∈ (0, 1) , (1.4)

final conditions
∂2u (x, T )

∂t2
= 0,

∂3u (x, T )
∂t3

= 0, x ∈ (0, 1) , (1.5)

boundary conditions

∂iu (0, t)
∂xi

= 0, for 0 ≤ i ≤ α − 1, t ∈ (0, T ) , (1.6)

∂iu (1, t)
∂xi

= 0, for 0 ≤ i ≤ α− 2, t ∈ (0, T ) , (1.7)

∗Correspondence: merad ahcene@yahoo.fr

2010 AMS Mathematics Subject Classification: .

299



MERAD and MARHOUNE/Turk J Math

and the integral (nonlocal) condition

∫ 1

0

u (ξ, t) dξ = 0, t ∈ (0, T ) . (1.8)

The importance of boundary value problems with integral boundary conditions has been pointed out by
Samarski [21]. We remark that integral boundary conditions for evolution problems have various applications
in chemical engineering, thermoelasticity, underground water flow and population dynamics; see for example
[7, 12, 22, 17]. Boundary value problems for parabolic equations with an integral boundary condition are

investigated by Batten [1], Bouziani and Benouar [2], Cannon [4, 5], Cannon, et al. [6], Ionkin [15], Kamynin

[16], Shi and Shillor [23], Shi [22], Marhoune and Bouzit [19], Denche and Marhoune [8, 9, 10, 11], Yurchuk [24],
and many references therein. The problem with an integral one-space-variable condition is studied in Kartynnik
[17], and Denche and Marhoune [11]

2. Preliminaries
In this paper, we prove the existence and uniqueness of a strong solution of the problem stated in equation
(1.1)− (1.8) . The demonstration is based on an a priori estimate and the density of the image of the operator

generated by the problem (1.1)− (1.8). This problem can be written in the operator form

Lu = F, (2.9)

where the operator L is considered from E to F. We consider the domain of definition D (L) such that E is

the Banach space consisting of all functions u ∈ L2 (Q) , satisfying equations (1.1)− (1.8) , with the finite norm

‖u‖2
E =

∫
Q

(1 − x)
2

[∣∣∣∣∂4u

∂t4

∣∣∣∣
2

+
∣∣∣∣ ∂α

∂xα

(
a (x, t)

∂αu

∂xα

)∣∣∣∣
2

+
∣∣∣∣∂αu

∂xα

∣∣∣∣
2
]

dxdt, (2.10)

and F is the Hilbert space with norm given by

‖f‖2
F =

∫
Q

(1 − x)ν |f |2 dxdt, (2.11)

where ν is an arbitrary number such that 0 < ν < 1. Using the energy inequalities method proposed in [18] ,
we establish an energy inequality

‖u‖2
E ≤ C1 ‖Lu‖2

F (2.12)

and we show that the operator L has the closure L.

Definition 1 A solution of the operator equation Lu = F is called a strong solution of the problem (1.1) −
(1.8) .

Inequality (2.12) can be extended by

‖u‖2
E ≤ C1

∥∥Lu
∥∥2

F
, for all u ∈ D

(
L

)
. (2.13)

From this inequality, we obtain the uniqueness of a strong solution if it exists, and the equality of sets

R
(
L

)
and R (L). Thus, to prove the existence of a strong solution of the problem in equations (1.1)–(1.8) , it

remains to prove that the set R (L) is dense in F.
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3. An energy inequality and its consequences

Theorem 1 For any function u ∈ D (L) we have the a priori estimate

‖u‖2
E ≤ k ‖Lu‖2

F , (3.1)

where

k =
exp (cT )max

((
2α

(1−ν)

)2

+ 5
4

)
min

(
1
4 , δ

) (3.2)

and

δ = c
′
4 − 4cc3 + 6c2c

′
2 − 4c3c1 + c4a1 > 0, (3.3)

with the constant c satisfying the region

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup

[
1
a

∂a
∂t

−
√(

∂a
∂t

a

)2

− 1
a

∂a
∂t

]
< c < inf

[
1 + 1

a
∂a
∂t

−
√(

∂a
∂t

a

)2

− 1
a

∂a
∂t

+ 1
2

]
,

a0c
3 − c1c (3c + 2) + c

′
2 (3c + 1) − c3 ≥ 0,

δ = c
′
4 − 4cc3 + 6c2c

′
2 − 4c3c1 + c4a1 > 0

(3.4)

Proof Denote

Mu = (1− x)
∂4u

∂t4
+ αJ

∂4u

∂t4
,

where

Ju =
∫ x

0

u (ξ, t)dξ.

We consider the quadratic formula

Re
∫ τ

0

∫ 1

0

exp (−ct)£uMudxdt, (3.5)

with the constant c satisfying condition (3.4) ; obtained by multiplying equation (1.1) by exp (−ct)£uMu;

and integrating over Qτ , where Qτ = (0, 1)× (0, τ ) , with 0 ≤ τ ≤ T, and by taking the real part. Integrating

by parts α times in formula (3.5) with the use of boundary conditions in equations (1.6) , (1.7) , and (1.8) , we
obtain

Re
∫ τ

0

∫ 1

0

exp (−ct) £uMudxdt = (3.6)
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∫ τ

0

∫ 1

0

exp (−ct) (1 − x)
∣∣∣∣∂4u

∂t4

∣∣∣∣
2

dxdt +

2Re
∫ 1

0

exp (−cτ )
(

∂2a (x, τ)
∂t2

− 2c
∂a (x, τ)

∂t
+ c2a (x, τ)

)
(1 − x)

2
∂

∂t

(
∂αu (x, τ)

∂xα

)
∂αu (x, τ)

∂xα
dx −

4
∫ τ

0

∫ 1

0

exp (−ct)
(

∂2a

∂t2
− 2c

∂a

∂t
+ c2a

)
(1 − x)

2

∣∣∣∣ ∂

∂t

(
∂αu

∂xα

)∣∣∣∣ dxdt−

∫ 1

0

exp (−cτ )
(

∂3a (x, τ)
∂t3

− 3c
∂2a (x, τ)

∂t2
+ 3c2 ∂a (x, τ)

∂t
− c3a (x, τ)

)
(1 − x)

2

∣∣∣∣∂αu (x, τ)
∂xα

∣∣∣∣ dx +

2
∫ 1

0

exp (−cτ )
(

∂a (x, τ)
∂t

− ca (x, τ)
)

(1 − x)
2

∣∣∣∣ ∂

∂t

(
∂αu (x, τ)

∂xα

)∣∣∣∣ dx +

∫ τ

0

∫ 1

0

exp (−ct)
(

∂4a

∂t4
− 4c

∂3a

∂t3
+ 6c2 ∂2a

∂t2
− 4c3 ∂a

∂t
+ c4a

)
(1 − x)

2

∣∣∣∣∂αu

∂xα

∣∣∣∣ dxdt +

2
∫ τ

0

∫ 1

0

a exp (−ct)
(1 − x)

2

∣∣∣∣ ∂2

∂t2

(
∂αu

∂xα

)∣∣∣∣dxdt.

By substituting the expression of Mu in formula (3.5), using elementary inequalities and the inequality

∫ 1

0

∣∣∣J ∂4u
∂t4

∣∣∣2
(1 − x)ν dx ≤ 4

(1 − x)ν

∫ 1

0

(1 − x)
∣∣∣∣∂4u

∂t4

∣∣∣∣
2

dx, where 0 < ν < 1, (3.7)

yields

Re
∫ τ

0

∫ 1

0

exp (−ct)£uMudxdt ≤
(

4α2

(1 − x)ν + 1
)∫ τ

0

∫ 1

0

exp (−ct) (1 − x)ν |£u|2 dxdt

+
1
2

∫ τ

0

∫ 1

0

exp (−ct) (1 − x)
∣∣∣∣∂4u

∂t4

∣∣∣∣
2

dxdt. (3.8)

From equation (1.1), we have

1
4

∫ τ

0

∫ 1

0

exp (−ct)
(1 − x)

2

∣∣∣∣ ∂α

∂xα

(
a
∂αu

∂xα

)∣∣∣∣
2

dxdt ≤ 1
4

∫ τ

0

∫ 1

0

exp (−ct) (1− x) |£u|2 dxdt +

1
2

∫ τ

0

∫ 1

0

exp (−ct)
(1 − x)

2

∣∣∣∣∂4u

∂t4

∣∣∣∣
2

dxdt.

Consequently, we obtain

∫
Q

(1 − x)
2

[∣∣∣∣∂4u

∂t4

∣∣∣∣
2

+
∣∣∣∣ ∂α

∂xα

(
a (x, t)

∂αu

∂xα

)∣∣∣∣
2

+
∣∣∣∣∂αu

∂xα

∣∣∣∣
2
]

dxdt

≤
exp (cT )max

((
2α

(1−ν)

)2

+ 5
4

)
min

(
1
4 , δ

) ∫
Q

(1 − x)ν |f |2 dxdt. (3.9)

�
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Lemma 1 The operator Lfrom E to F admits a closure.

Proof Suppose that (un) ∈ D (L) is a sequence such that

un −→ 0 in E, (3.10)

and
Lun −→ f in F, (3.11)

We must show that f = 0.

Introducing the operator

£0v =
∂4v

∂t4
+ (−1)α ∂α

∂xα

(
a (x, t)

∂αv

∂xα

)
, (3.12)

defined on the domain D (£0) of function v ∈ L2 (Q) verifying

v (x, 0) =
∂v (x, 0)

∂t
=

∂2v (x, T )
∂t

=
∂3v (x, T )

∂t
= 0,

∂iv (0, t)
∂xi

= 0, for 0 ≤ i ≤ α − 1,

∂iv (1, t)
∂xi

= 0, for 0 ≤ i ≤ α − 2, (3.13)

we note that D (£0) is dense in the Hilbert space obtained from the completion of L2 (Q) with respect to the
norm

‖f‖2
F =

∫
Q

(1 − x)ν |f |2 dxdt. (3.14)

Additionally, since

∫
Q

(1 − x)ν
fvdxdt = lim

n→∞

∫
Q

£un [(1 − x)ν v]dxdt = lim
n→∞

∫
Q

un£0 [(1 − x)ν
v] dxdt = 0, (3.15)

this holds for every function v ∈ D (£0) , and yields f = 0.

Theorem 2 The priori estimate in Theorem 1 can be extended to include all functions u , i.e.

‖u‖2
E ≤ k

∥∥Lu
∥∥2

F
, ∀u ∈ D

(
L

)
, (3.16)

Hence we obtain the following corollary.

Corollary 1 A strong solution of the problem in equations (1.1)– (1.8) is unique if it exists, and depends
continuously on f.

Corollary 2 The range R (L) of the operator L is closed in F,and R
(
L

)
= R (L).

�
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4. Solvability of the problem

To prove the solvability of problem in equations (1.1)– (1.8) , it is sufficient to show that R (L) is dense in F.

The proof is based on the following lemma.

Lemma 2 For all ω ∈ L2(Q), ∫
Q

(1 − x)£u · ωdxdt = 0, (4.1)

then ω = 0.

Proof Equality (4.1) can be written as

−
∫

Q

∂4u

∂t4
(1 − x)ωdxdt = (−1)α

∫
Q

∂α

∂xα

(
a (x, t)

∂αu

∂xα

)
(1 − x)ωdxdt (4.2)

If we introduce the smoothing operators with respect to t [24, 20, 14, 3], J−1
ξ =

(
I + ξ ∂

∂t

)−1
and

(
J−1

ξ

)∗
,

then these operators provide the solutions of the respective problems

ξ
dgξ (t)

dt
+ gξ (t) = g(t), (4.3)

g(t)|t=0 = 0,

and

−ξ
dg∗ξ (t)

dt
+ g∗ξ (t) = g(t), (4.4)

g(t)|t=T = 0.

The operators also have the following properties: for any g ∈ L2 (0, T ) , the function gξ =
(
J−1

ξ

)
g and

g∗ξ =
(
J−1

ξ

)∗
g are in W 1

2 (0, T ) such that gξ|t=0 = 0. and g∗ξ

∣∣∣
t=T

= 0. Moreover, J−1
ξ commutes with ∂

∂t
, so

∫ T

0
|gξ − g|2 dt −→ 0 and

∫ T

0

∣∣∣g∗ξ − g
∣∣∣2 dt −→ 0 for ξ −→ 0.

Now, for given ω (x, t), we introduce the function

v (x, t) = −α (1 − x)α−1
∫ x

0

ω

(1 − ξ)α dξ + ω (x, t) .

Integrating by parts, we obtain

(1 − x) v + αJv = (1 − x)ω, and
∫ x

0

v (x, t)dx = 0. (4.5)

Then from equality (4.2) , we have

−
∫

Q

∂4u

∂t4
Nvdxdt =

∫
Q

A (t) uvdxdt, (4.6)
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where Nv = (1 − x) v + αJv, and A (t)u = (−1)α ∂α

∂xα

(
a (x, t) ∂αu

∂xα

)
.

Putting u =
∫ t

0

∫ η

0

∫ h

δ

∫ T

ξ
exp (cτ ) v∗ξ (τ ) dτdξdηdh in (4.6) , and using (4.4) , we obtain

−
∫

Q

exp (ct) v∗ξ Nvdxdt =
∫

Q

A (u)uv∗ξdxdt− ξ

∫
Q

A (t)u
∂4v∗ξ
∂t4

dxdt. (4.7)

Integrating by parts each term in the right-hand side of (4.7) and taking the real parts, we have

Re
(∫

Q

A (u)uv∗ξdxdt

)
≥ 0, (4.8)

Re

(
−ξ

∫
Q

A (t)u
∂4v∗ξ
∂t4

dxdt

)
≥ −ξM, (4.9)

where

M = 16
∫

Q

(1 − x)
2

∣∣∣∣∣∂
4v∗ξ
∂t4

∣∣∣∣∣
2

dxdt +
∫

Q

(1 − x)
2

(
∂4a

∂t4

)2 ∣∣∣∣∂αu

∂tα

∣∣∣∣
2

dxdt +

4
∫

Q

(1 − x)
2

(
∂3a

∂t3

)2 ∣∣∣∣∂α+1u

∂tα+1

∣∣∣∣
2

dxdt +

6
∫

Q

(1 − x)
2

(
∂2a

∂t2

)2 ∣∣∣∣∂α+2u

∂tα+2

∣∣∣∣
2

dxdt +

4
∫

Q

(1 − x)
2

(
∂a

∂t

)2 ∣∣∣∣∂α+3u

∂tα+3

∣∣∣∣
2

dxdt +
∫

Q

(1 − x)
2

a2

∣∣∣∣∂α+4u

∂tα+4

∣∣∣∣
2

dxdt. (4.10)

Now, using inequalities (4.8) and (4.9) in equation (4.7) ,we have

Re
(∫

Q

exp (ct) v∗ξNvdxdt

)
≤ 0, (4.11)

then for ξ −→ 0, we obtain

Re
(∫

Q

exp (ct) vNvdxdt

)
≤ 0. (4.12)

We conclude that v = 0, hence, ω = 0, which ends the proof of the lemma.

Theorem 3 The range R
(
L

)
of L coincides with F.

�

Proof Since F is a Hilbert space, we have R
(
L

)
= F if and only if the relation

∫
Q

(1 − x)ν £u · fdxdt = 0 (4.13)
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for arbitrary function u ∈ E and f ∈ F, implies that f = 0.

Putting u ∈ D (L) in relation (4.13) ,taking ω = f
(1−x)ν−1 , and using lemma 7, we obtain ω = f

(1−x)ν−1 =

0, then f = 0. �
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