Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $299-307$
(C) TÜBİTAK
doi:10.3906/mat-1105-34

Strong solution for a high order boundary value problem with integral condition

Ahcene MERAD ${ }^{1, *}$, Ahmed Lakhdar MARHOUNE ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Larbi Ben M'hidi University, Oum El Bouaghi,04000, Algeria ${ }^{2}$ Department of Mathematics, Faculty of Sciences, Mentouri University, Constantine, 25000, Algeria

| Received: 29.05 .2011 | Accepted: 29.01 .2012 | \bullet | Published Online: 19.03.2013 | \bullet | Printed: 22.04 .2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Abstract: The present paper is devoted to a proof of the existence and uniqueness of strong solution for a high order boundary value problem with integral condition. The proof is based by a priori estimate and on the density of the range of the operator generated by the studied problem.

Key words: Integral condition, energy inequality, boundary value problem

1. Introduction

In the rectangular domain $Q=(0,1) \times(0, T)$, with $T<\infty$, we consider the differential equation

$$
\begin{equation*}
£ u=\frac{\partial^{4} u}{\partial t^{4}}+(-1)^{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a(x, t) \frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)=f(x, t), \tag{1.1}
\end{equation*}
$$

where $a(x, t)$ satisfy the assumptions

$$
\begin{gather*}
0<a_{0} \leq a(x, t) \leq a_{1} \tag{1.2}\\
c_{k}^{\prime} \leq \frac{\partial^{k} a(x, t)}{\partial x^{k}} \leq c_{k}, \quad k=\overline{1,4}, \quad \text { with } \quad c_{1}^{\prime} \geq 0, \quad \forall(x, t) \in \bar{Q} \tag{1.3}
\end{gather*}
$$

subject to the initial conditions

$$
\begin{equation*}
u(x, 0)=0, \frac{\partial u(x, 0)}{\partial t}=0, \quad x \in(0,1) \tag{1.4}
\end{equation*}
$$

final conditions

$$
\begin{equation*}
\frac{\partial^{2} u(x, T)}{\partial t^{2}}=0, \frac{\partial^{3} u(x, T)}{\partial t^{3}}=0, \quad x \in(0,1) \tag{1.5}
\end{equation*}
$$

boundary conditions

$$
\begin{align*}
& \frac{\partial^{i} u(0, t)}{\partial x^{i}}=0, \quad \text { for } \quad 0 \leq i \leq \alpha-1, \quad t \in(0, T) \tag{1.6}\\
& \frac{\partial^{i} u(1, t)}{\partial x^{i}}=0, \quad \text { for } \quad 0 \leq i \leq \alpha-2, \quad t \in(0, T) \tag{1.7}
\end{align*}
$$

[^0]and the integral (nonlocal) condition
\[

$$
\begin{equation*}
\int_{0}^{1} u(\xi, t) d \xi=0, \quad t \in(0, T) \tag{1.8}
\end{equation*}
$$

\]

The importance of boundary value problems with integral boundary conditions has been pointed out by Samarski [21]. We remark that integral boundary conditions for evolution problems have various applications in chemical engineering, thermoelasticity, underground water flow and population dynamics; see for example $[7,12,22,17]$. Boundary value problems for parabolic equations with an integral boundary condition are investigated by Batten [1], Bouziani and Benouar [2], Cannon [4, 5], Cannon, et al. [6], Ionkin [15], Kamynin [16], Shi and Shillor [23], Shi [22], Marhoune and Bouzit [19], Denche and Marhoune [8, 9, 10, 11], Yurchuk [24], and many references therein. The problem with an integral one-space-variable condition is studied in Kartynnik [17], and Denche and Marhoune [11]

2. Preliminaries

In this paper, we prove the existence and uniqueness of a strong solution of the problem stated in equation (1.1) - (1.8). The demonstration is based on an a priori estimate and the density of the image of the operator generated by the problem (1.1) - (1.8). This problem can be written in the operator form

$$
\begin{equation*}
L u=F, \tag{2.9}
\end{equation*}
$$

where the operator L is considered from E to F. We consider the domain of definition $D(L)$ such that E is the Banach space consisting of all functions $u \in L^{2}(Q)$, satisfying equations (1.1) - (1.8), with the finite norm

$$
\begin{equation*}
\|u\|_{E}^{2}=\int_{Q} \frac{(1-x)}{2}\left[\left|\frac{\partial^{4} u}{\partial t^{4}}\right|^{2}+\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a(x, t) \frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)\right|^{2}+\left|\frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right|^{2}\right] d x d t, \tag{2.10}
\end{equation*}
$$

and F is the Hilbert space with norm given by

$$
\begin{equation*}
\|f\|_{F}^{2}=\int_{Q}(1-x)^{\nu}|f|^{2} d x d t \tag{2.11}
\end{equation*}
$$

where ν is an arbitrary number such that $0<\nu<1$. Using the energy inequalities method proposed in [18], we establish an energy inequality

$$
\begin{equation*}
\|u\|_{E}^{2} \leq C_{1}\|L u\|_{F}^{2} \tag{2.12}
\end{equation*}
$$

and we show that the operator L has the closure \bar{L}.
Definition $1 A$ solution of the operator equation $\bar{L} u=F$ is called a strong solution of the problem (1.1) (1.8).

Inequality (2.12) can be extended by

$$
\begin{equation*}
\|u\|_{E}^{2} \leq C_{1}\|\bar{L} u\|_{F}^{2}, \text { for all } u \in D(\bar{L}) . \tag{2.13}
\end{equation*}
$$

From this inequality, we obtain the uniqueness of a strong solution if it exists, and the equality of sets $R(\bar{L})$ and $\overline{R(L)}$. Thus, to prove the existence of a strong solution of the problem in equations (1.1)-(1.8), it remains to prove that the set $R(L)$ is dense in F.

3. An energy inequality and its consequences

Theorem 1 For any function $u \in D(L)$ we have the a priori estimate

$$
\begin{equation*}
\|u\|_{E}^{2} \leq k\|L u\|_{F}^{2}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{\exp (c T) \max \left(\left(\frac{2 \alpha}{(1-\nu)}\right)^{2}+\frac{5}{4}\right)}{\min \left(\frac{1}{4}, \delta\right)} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=c_{4}^{\prime}-4 c c_{3}+6 c^{2} c_{2}^{\prime}-4 c^{3} c_{1}+c^{4} a_{1}>0 \tag{3.3}
\end{equation*}
$$

with the constant c satisfying the region

$$
\begin{equation*}
\left\{\sup \left[\frac{1}{a} \frac{\partial a}{\partial t}-\sqrt{\left(\frac{\partial a}{\partial t}\right)^{2}-\frac{1}{a} \frac{\partial a}{\partial t}}\right]<c<\inf \left[1+\frac{1}{a} \frac{\partial a}{\partial t}-\sqrt{\left(\frac{\partial a}{\partial t}\right)^{2}-\frac{1}{a} \frac{\partial a}{\partial t}+\frac{1}{2}}\right],\right. \tag{3.4}
\end{equation*}
$$

Proof Denote

$$
M u=(1-x) \frac{\partial^{4} u}{\partial t^{4}}+\alpha J \frac{\partial^{4} u}{\partial t^{4}},
$$

where

$$
J u=\int_{0}^{x} u(\xi, t) d \xi
$$

We consider the quadratic formula

$$
\begin{equation*}
\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) £ u \overline{M u} d x d t \tag{3.5}
\end{equation*}
$$

with the constant c satisfying condition (3.4) ; obtained by multiplying equation (1.1) by $\exp (-c t) £ u \overline{M u}$; and integrating over Q^{τ}, where $Q^{\tau}=(0,1) \times(0, \tau)$, with $0 \leq \tau \leq T$, and by taking the real part. Integrating by parts α times in formula (3.5) with the use of boundary conditions in equations (1.6), (1.7), and (1.8), we obtain

$$
\begin{equation*}
\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) £ u \overline{M u} d x d t= \tag{3.6}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)(1-x)\left|\frac{\partial^{4} u}{\partial t^{4}}\right|^{2} d x d t+ \\
& 2 \operatorname{Re} \int_{0}^{1} \exp (-c \tau)\left(\frac{\partial^{2} a(x, \tau)}{\partial t^{2}}-2 c \frac{\partial a(x, \tau)}{\partial t}+c^{2} a(x, \tau)\right) \frac{(1-x)}{2} \frac{\partial}{\partial t}\left(\frac{\partial^{\alpha} \overline{u(x, \tau)}}{\partial x^{\alpha}}\right) \frac{\partial^{\alpha} u(x, \tau)}{\partial x^{\alpha}} d x- \\
& 4 \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left(\frac{\partial^{2} a}{\partial t^{2}}-2 c \frac{\partial a}{\partial t}+c^{2} a\right) \frac{(1-x)}{2}\left|\frac{\partial}{\partial t}\left(\frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)\right| d x d t- \\
& \int_{0}^{1} \exp (-c \tau)\left(\frac{\partial^{3} a(x, \tau)}{\partial t^{3}}-3 c \frac{\partial^{2} a(x, \tau)}{\partial t^{2}}+3 c^{2} \frac{\partial a(x, \tau)}{\partial t}-c^{3} a(x, \tau)\right) \frac{(1-x)}{2}\left|\frac{\partial^{\alpha} u(x, \tau)}{\partial x^{\alpha}}\right| d x+ \\
& 2 \int_{0}^{1} \exp (-c \tau)\left(\frac{\partial a(x, \tau)}{\partial t}-c a(x, \tau)\right) \frac{(1-x)}{2}\left|\frac{\partial}{\partial t}\left(\frac{\partial^{\alpha} u(x, \tau)}{\partial x^{\alpha}}\right)\right| d x+ \\
& \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left(\frac{\partial^{4} a}{\partial t^{4}}-4 c \frac{\partial^{3} a}{\partial t^{3}}+6 c^{2} \frac{\partial^{2} a}{\partial t^{2}}-4 c^{3} \frac{\partial a}{\partial t}+c^{4} a\right) \frac{(1-x)}{2}\left|\frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right| d x d t+ \\
& 2 \int_{0}^{\tau} \int_{0}^{1} a \exp (-c t) \frac{(1-x)}{2}\left|\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)\right| d x d t .
\end{aligned}
$$

By substituting the expression of $M u$ in formula (3.5), using elementary inequalities and the inequality

$$
\begin{equation*}
\int_{0}^{1} \frac{\left|J \frac{\partial^{4} u}{\partial t^{4}}\right|^{2}}{(1-x)^{\nu}} d x \leq \frac{4}{(1-x)^{\nu}} \int_{0}^{1}(1-x)\left|\frac{\partial^{4} u}{\partial t^{4}}\right|^{2} d x, \quad \text { where } 0<\nu<1, \tag{3.7}
\end{equation*}
$$

yields

$$
\begin{align*}
\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) £ u \overline{M u} d x d t \leq & \left(\frac{4 \alpha^{2}}{(1-x)^{\nu}}+1\right) \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)(1-x)^{\nu}|£ u|^{2} d x d t \\
& +\frac{1}{2} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)(1-x)\left|\frac{\partial^{4} u}{\partial t^{4}}\right|^{2} d x d t . \tag{3.8}
\end{align*}
$$

From equation (1.1), we have

$$
\begin{aligned}
\frac{1}{4} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) \frac{(1-x)}{2}\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a \frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)\right|^{2} d x d t \leq & \frac{1}{4} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)(1-x)|£ u|^{2} d x d t+ \\
& \frac{1}{2} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) \frac{(1-x)}{2}\left|\frac{\partial^{4} u}{\partial t^{4}}\right|^{2} d x d t
\end{aligned}
$$

Consequently, we obtain

$$
\begin{align*}
& \int_{Q} \frac{(1-x)}{2}\left[\left|\frac{\partial^{4} u}{\partial t^{4}}\right|^{2}+\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a(x, t) \frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)\right|^{2}+\left|\frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right|^{2}\right] d x d t \\
\leq & \frac{\exp (c T) \max \left(\left(\frac{2 \alpha}{(1-\nu)}\right)^{2}+\frac{5}{4}\right)}{\min \left(\frac{1}{4}, \delta\right)} \int_{Q}(1-x)^{\nu}|f|^{2} d x d t . \tag{3.9}
\end{align*}
$$

Lemma 1 The operator Lfrom E to F admits a closure.
Proof Suppose that $\left(u_{n}\right) \in D(L)$ is a sequence such that

$$
\begin{equation*}
u_{n} \longrightarrow 0 \text { in } E \text {, } \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
L u_{n} \longrightarrow f \text { in } F, \tag{3.11}
\end{equation*}
$$

We must show that $f=0$.
Introducing the operator

$$
\begin{equation*}
£_{0} v=\frac{\partial^{4} v}{\partial t^{4}}+(-1)^{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a(x, t) \frac{\partial^{\alpha} v}{\partial x^{\alpha}}\right), \tag{3.12}
\end{equation*}
$$

defined on the domain $D\left(£_{0}\right)$ of function $v \in L^{2}(Q)$ verifying

$$
\begin{align*}
v(x, 0) & =\frac{\partial v(x, 0)}{\partial t}=\frac{\partial^{2} v(x, T)}{\partial t}=\frac{\partial^{3} v(x, T)}{\partial t}=0 \\
\frac{\partial^{i} v(0, t)}{\partial x^{i}} & =0, \text { for } 0 \leq i \leq \alpha-1 \\
\frac{\partial^{i} v(1, t)}{\partial x^{i}} & =0, \text { for } 0 \leq i \leq \alpha-2 \tag{3.13}
\end{align*}
$$

we note that $D\left(£_{0}\right)$ is dense in the Hilbert space obtained from the completion of $L^{2}(Q)$ with respect to the norm

$$
\begin{equation*}
\|f\|_{F}^{2}=\int_{Q}(1-x)^{\nu}|f|^{2} d x d t \tag{3.14}
\end{equation*}
$$

Additionally, since

$$
\begin{equation*}
\int_{Q}(1-x)^{\nu} f \bar{v} d x d t=\lim _{n \rightarrow \infty} \int_{Q} £ u_{n}\left[(1-x)^{\nu} \bar{v}\right] d x d t=\lim _{n \rightarrow \infty} \int_{Q} u_{n} £_{0}\left[(1-x)^{\nu} \bar{v}\right] d x d t=0 \tag{3.15}
\end{equation*}
$$

this holds for every function $v \in D\left(£_{0}\right)$, and yields $f=0$.

Theorem 2 The priori estimate in Theorem 1 can be extended to include all functions u, i.e.

$$
\begin{equation*}
\|u\|_{E}^{2} \leq k\|\bar{L} u\|_{F}^{2}, \forall u \in D(\bar{L}), \tag{3.16}
\end{equation*}
$$

Hence we obtain the following corollary.

Corollary 1 A strong solution of the problem in equations (1.1)-(1.8) is unique if it exists, and depends continuously on f.

Corollary 2 The range $R(L)$ of the operator \bar{L} is closed in F, and $R(\bar{L})=\overline{R(L)}$.

4. Solvability of the problem

To prove the solvability of problem in equations (1.1)-(1.8), it is sufficient to show that $R(L)$ is dense in F. The proof is based on the following lemma.

Lemma 2 For all $\omega \in L^{2}(Q)$,

$$
\begin{equation*}
\int_{Q}(1-x) £ u \cdot \bar{\omega} d x d t=0 \tag{4.1}
\end{equation*}
$$

then $\omega=0$.
Proof Equality (4.1) can be written as

$$
\begin{equation*}
-\int_{Q} \frac{\partial^{4} u}{\partial t^{4}}(1-x) \bar{\omega} d x d t=(-1)^{\alpha} \int_{Q} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a(x, t) \frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)(1-x) \bar{\omega} d x d t \tag{4.2}
\end{equation*}
$$

If we introduce the smoothing operators with respect to $t[24,20,14,3], J_{\xi}^{-1}=\left(I+\xi \frac{\partial}{\partial t}\right)^{-1}$ and $\left(J_{\xi}^{-1}\right)^{*}$, then these operators provide the solutions of the respective problems

$$
\begin{align*}
\xi \frac{d g_{\xi}(t)}{d t}+g_{\xi}(t) & =g(t) \tag{4.3}\\
\left.g(t)\right|_{t=0} & =0
\end{align*}
$$

and

$$
\begin{align*}
-\xi \frac{d g_{\xi}^{*}(t)}{d t}+g_{\xi}^{*}(t) & =g(t) \tag{4.4}\\
\left.g(t)\right|_{t=T} & =0
\end{align*}
$$

The operators also have the following properties: for any $g \in L_{2}(0, T)$, the function $g_{\xi}=\left(J_{\xi}^{-1}\right) g$ and $g_{\xi}^{*}=\left(J_{\xi}^{-1}\right)^{*} g$ are in $W_{2}^{1}(0, T)$ such that $\left.g_{\xi}\right|_{t=0}=0$. and $\left.g_{\xi}^{*}\right|_{t=T}=0$. Moreover, J_{ξ}^{-1} commutes with $\frac{\partial}{\partial t}$, so $\int_{0}^{T}\left|g_{\xi}-g\right|^{2} d t \longrightarrow 0$ and $\int_{0}^{T}\left|g_{\xi}^{*}-g\right|^{2} d t \longrightarrow 0$ for $\xi \longrightarrow 0$.

Now, for given $\omega(x, t)$, we introduce the function

$$
v(x, t)=-\alpha(1-x)^{\alpha-1} \int_{0}^{x} \frac{\omega}{(1-\xi)^{\alpha}} d \xi+\omega(x, t)
$$

Integrating by parts, we obtain

$$
\begin{equation*}
(1-x) v+\alpha J v=(1-x) \omega, \text { and } \int_{0}^{x} v(x, t) d x=0 \tag{4.5}
\end{equation*}
$$

Then from equality (4.2), we have

$$
\begin{equation*}
-\int_{Q} \frac{\partial^{4} u}{\partial t^{4}} N \bar{v} d x d t=\int_{Q} A(t) u \bar{v} d x d t \tag{4.6}
\end{equation*}
$$

where $N v=(1-x) v+\alpha J v$, and $A(t) u=(-1)^{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a(x, t) \frac{\partial^{\alpha} u}{\partial x^{\alpha}}\right)$.
Putting $u=\int_{0}^{t} \int_{0}^{\eta} \int_{\delta}^{h} \int_{\xi}^{T} \exp (c \tau) v_{\xi}^{*}(\tau) d \tau d \xi d \eta d h$ in (4.6), and using (4.4), we obtain

$$
\begin{equation*}
-\int_{Q} \exp (c t) v_{\xi}^{*} \overline{N v} d x d t=\int_{Q} A(u) u v_{\xi}^{*} d x d t-\xi \int_{Q} A(t) u \frac{\partial^{4} v_{\xi}^{*}}{\partial t^{4}} d x d t \tag{4.7}
\end{equation*}
$$

Integrating by parts each term in the right-hand side of (4.7) and taking the real parts, we have

$$
\begin{align*}
\operatorname{Re}\left(\int_{Q} A(u) u v_{\xi}^{*} d x d t\right) & \geq 0 \tag{4.8}\\
\operatorname{Re}\left(-\xi \int_{Q} A(t) u \frac{\partial^{4} v_{\xi}^{*}}{\partial t^{4}} d x d t\right) & \geq-\xi M, \tag{4.9}
\end{align*}
$$

where

$$
\begin{align*}
M= & 16 \int_{Q} \frac{(1-x)}{2}\left|\frac{\partial^{4} v_{\xi}^{*}}{\partial t^{4}}\right|^{2} d x d t+\int_{Q} \frac{(1-x)}{2}\left(\frac{\partial^{4} a}{\partial t^{4}}\right)^{2}\left|\frac{\partial^{\alpha} u}{\partial t^{\alpha}}\right|^{2} d x d t+ \\
& 4 \int_{Q} \frac{(1-x)}{2}\left(\frac{\partial^{3} a}{\partial t^{3}}\right)^{2}\left|\frac{\partial^{\alpha+1} u}{\partial t^{\alpha+1}}\right|^{2} d x d t+ \\
& 6 \int_{Q} \frac{(1-x)}{2}\left(\frac{\partial^{2} a}{\partial t^{2}}\right)^{2}\left|\frac{\partial^{\alpha+2} u}{\partial t^{\alpha+2}}\right|^{2} d x d t+ \\
& 4 \int_{Q} \frac{(1-x)}{2}\left(\frac{\partial a}{\partial t}\right)^{2}\left|\frac{\partial^{\alpha+3} u}{\partial t^{\alpha+3}}\right|^{2} d x d t+\int_{Q} \frac{(1-x)}{2} a^{2}\left|\frac{\partial^{\alpha+4} u}{\partial t^{\alpha+4}}\right|^{2} d x d t . \tag{4.10}
\end{align*}
$$

Now, using inequalities (4.8) and (4.9) in equation (4.7), we have

$$
\begin{equation*}
\operatorname{Re}\left(\int_{Q} \exp (c t) v_{\xi}^{*} \overline{N v} d x d t\right) \leq 0 \tag{4.11}
\end{equation*}
$$

then for $\xi \longrightarrow 0$, we obtain

$$
\begin{equation*}
\operatorname{Re}\left(\int_{Q} \exp (c t) v \overline{N v} d x d t\right) \leq 0 \tag{4.12}
\end{equation*}
$$

We conclude that $v=0$, hence, $\omega=0$, which ends the proof of the lemma.

Theorem 3 The range $R(\bar{L})$ of \bar{L} coincides with F.

Proof Since F is a Hilbert space, we have $R(\bar{L})=F$ if and only if the relation

$$
\begin{equation*}
\int_{Q}(1-x)^{\nu} £ u \cdot \bar{f} d x d t=0 \tag{4.13}
\end{equation*}
$$

for arbitrary function $u \in E$ and $f \in F$, implies that $f=0$.
Putting $u \in D(L)$ in relation (4.13), taking $\omega=\frac{f}{(1-x)^{\nu-1}}$, and using lemma 7, we obtain $\omega=\frac{f}{(1-x)^{\nu-1}}=$ 0 , then $f=0$.

References

[1] Batten Jr, G. W.: Second-order correct boundary condition for the numerical solution of the mixed boundary problem for parabolic equation, Math. Comput. 17, 405-413 (1963).
[2] Bouziani, A., Benouar, N.E.: Mixed problem with integral conditions for third order parabolic equation, Kobe J. Math. 15 47-58 (1998).
[3] Cannarasa, P., Vespri, V.: On maximal Lp-regularity for abstract Cauchy problem, Boll. Unione Mat. Italiana 165-175 (1986).
[4] Cannon, J. R.: The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21, 155-160 (1963).
[5] Cannon, J. R.: The one-dimensional heat equation, in Encyclopedia of Mathematics and its Applications, Vol. 23, Addison-Wesley, Menlo Park, CA, 1984.
[6] Cannon, J. R., Perez Esteva, S., Van Der Hoek, J.,: A Galerkin procedure for the diffusion equation subject to the specification of mass, Siam J. Numer. Anal. 24, 499-515 (1987).
[7] Choi, Y. S., Chan, K. Y.: A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal. 18, 317-331 (1992).
[8] Denche, M., Marhoune, A. L.: Mixed problem with integral boundary conditions for a high order mixed type partial differential equation, J. Appl. Math. Stochastic Anal. 16 (1), 69-79 (2003).
[9] Denche, M., Marhoune, A. L.: Mixed problem with nonlocal boundary conditions for a third-order partial differential equation of mixed type, Int. J. Math. Sci. 26 (7), 417-426 (2001).
[10] Denche, M., Marhoune, A. L.: High-order mixed type partial differential equations with integral boundary conditions, Electron. J. Differ. Equ. (60), 1-10 (2000).
[11] Denche, M., Marhoune, A. L.: A three-point boundary value problem with an integral condition for parabolic equation with the Bessel operator, Appl. Math. Lett. 13, 85-89 (2000).
[12] Ewing, R. E., Lin, T.: A class of parameter estimation techniques for fluid flow in porous media, Adv. Water Resources 14, 89-97 (1991).
[13] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities, Cambridge Press, Zbl 0010.10703 JFM 60.0169.01 1934.
[14] Hieber, M., Pruss, J.: Heat kernels and Maximal Lp-Lp estimates for parabolic evolution equation, Comm. Partial Differ. Equ. 22, 164761669 (1997).
[15] Ionkin, N. I.: Solution of a boundary-value problem in heat condition with a nonclassical boundary condition, Differ. Uravn. 13, 294-304 (1977).
[16] Kamynin, N. I.: A boundary value problem in the theory of the heat condition with non classical boundary condition, U. S. S. R. Comput. Math. Phys. 4, 33-59 (1964).
[17] Kartynnik, A. V.: Three-point boundary-value problem with an integral space-variable condition for a second-order parabolic equation, Differ. Equ. 26, 1160-1166 (1990).
[18] Marhoune, A. L.: A three-point boundary value problem with an integral two-space-variables condition for parabolic equations, Math. Comput. 53, 940-947 (2007).
[19] Marhoune, A. L., Bouzit, M.: High order differential equations with integral boundary condition, Far East J. Math. Sci. 18 (3), 341-450 (2005).
[20] Pruss, J., Simonett, G.: Maximal regularity for evolution equations in weighted Lp-spaces, Fachbereich Mathematic and Informatic, Martin-Luter-Universitat Halle-Wittenberg, July 2002.
[21] Samarskii, A. A.: Some problems in differential equations theory, Differ. Uravn. 16 (11), 1221-1228 (1980).
[22] Shi, P.: Weak solution to evolution problem with a nonlocal constraint, Siam J. Anal. 24, 46-58 (1993).
[23] Shi, P., Shillor, M.: Design of Contact patterns in One Dimensional Thermoelasticity, in: Theoretical Aspects of Industrial Design, Society for Industrial and Applied Mathematics, Philadelphia, PA,1992.
[24] Yurchuk, N. I.: Mixed problem with an integral condition for certain parabolic equations, Differ. Equ. 22, 1457-1463 (1986).

[^0]: *Correspondence: merad_ahcene@yahoo.fr
 2010 AMS Mathematics Subject Classification: .

