Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $308-318$
(c) TÜBİTAK
doi:10.3906/mat-1010-438

On the maximal operators of Vilenkin-Fejér means

George TEPHNADZE*

Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

| Received: 25.10 .2010 | Accepted: 08.03.2011 | \bullet | Published Online: 19.03.2013 | \bullet | Printed: 22.04 .2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Abstract: The main aim of this paper is to prove that the maximal operator $\tilde{\sigma}^{*} f:=\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\log ^{2}(n+1)}$ is bounded from the Hardy space $H_{1 / 2}$ to the space $L_{1 / 2}$, where $\sigma_{n} f$ are Fejér means of bounded Vilenkin-Fourier series.

Key words and phrases: Vilenkin system, Fejér means, martingale Hardy space

1. Introduction

In one-dimensional case the weak type inequality

$$
\mu\left(\sigma^{*} f>\lambda\right) \leq \frac{c}{\lambda}\|f\|_{1} \quad(\lambda>0)
$$

can be found in Zygmund [19] for trigonometric series, in Schipp [11] for Walsh series and in Pál and Simon [10] for bounded Vilenkin series. Again in one-dimensional, Fujii [4] and Simon [13] verified that σ^{*} is bounded from H_{1} to L_{1}. Weisz [16] generalized this result and proved the boundedness of σ^{*} from the martingale space H_{p} to the space L_{p} for $p>1 / 2$. Simon [12] gave a counterexample, which shows that boundedness does not hold for $0<p<1 / 2$. The counterexample for $p=1 / 2$ is due to Goginava [7], (see also [3]). In the endpoint case, $p=1 / 2$, two positive results were showed. Weisz [18] proved that σ^{*} is bounded from the Hardy space $H_{1 / 2}$ to the space weak- $L_{1 / 2}$. For Walsh-Paley system in 2008 Goginava [6] proved that the maximal operator $\widetilde{\sigma}^{*}$ defined by

$$
\widetilde{\sigma}^{*} f:=\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\log ^{2}(n+1)}
$$

is bounded from the Hardy space $H_{1 / 2}$ to the space $L_{1 / 2}$. He also proved that for any nondecreasing function $\varphi: P_{+} \rightarrow[1, \infty)$ satisfying the condition

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty} \frac{\log ^{2}(n+1)}{\varphi(n)}=+\infty \tag{1}
\end{equation*}
$$

the maximal operator

$$
\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\varphi(n)}
$$

[^0]is not bounded from the Hardy space $H_{1 / 2}$ to the space $L_{1 / 2}$.
For a Walsh-Kaczmarz system an analogical theorem is proved in [9].
The main aim of this paper is to prove that the maximal operator $\tilde{\sigma}^{*} f$ with respect to Vilenkin system is bounded from the Hardy space $H_{1 / 2}$ to the space $L_{1 / 2}$ (see Theorem 1).

We also prove that under the condition (1) the maximal operator

$$
\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\varphi(n)}
$$

is not bounded from the Hardy space $H_{1 / 2}$ to the space $L_{1 / 2}$. Actually, we prove stronger result (see Theorem 2) than the unboundedness of the maximal operator $\tilde{\sigma}^{*} f$ from the Hardy space $H_{1 / 2}$ to the spaces $L_{1 / 2}$. In particular, we prove that

$$
\sup _{n \in P}\left\|\frac{\sigma_{n} f}{\varphi(n)}\right\|_{L_{1 / 2}}=\infty .
$$

2. Definitions and notation

Let P_{+}denote the set of the positive integers, $P:=P_{+} \cup\{0\}$.
Let $m:=\left(m_{0}, m_{1} \ldots.\right)$ denote a sequence of the positive integers not less than 2 .
Denote by

$$
Z_{m_{k}}:=\left\{0,1, \ldots m_{k}-1\right\}
$$

the additive group of integers modulo m_{k}.
Define the group G_{m} as the complete direct product of the group $Z_{m_{j}}$ with the product of the discrete topologies of $Z_{m_{j}} \mathrm{~s}$.

The direct product μ of the measures

$$
\mu_{k}(\{j\}):=1 / m_{k} \quad\left(j \in Z_{m_{k}}\right)
$$

is the Haar measure on G_{m} with $\mu\left(G_{m}\right)=1$.
If $\sup m_{n}<\infty$, then we call G_{m} a bounded Vilenkin group. If the generating sequence m is not bounded then G_{m} is said to be an unbounded Vilenkin group. In this paper we discuss bounded Vilenkin groups only.

The elements of G_{m} are represented by sequences

$$
x:=\left(x_{0}, x_{1, \ldots,}, x_{j, \ldots}\right) \quad\left(x_{k} \in Z_{m_{k}}\right) .
$$

It is easy to give a base for the neighborhood of G_{m}

$$
\begin{gathered}
I_{0}(x):=G_{m}, \\
I_{n}(x):=\left\{y \in G_{m} \mid y_{0}=x_{0}, \ldots y_{n-1}=x_{n-1}\right\}\left(x \in G_{m}, n \in P\right)
\end{gathered}
$$

Denote $I_{n}:=I_{n}(0)$ for $n \in P$ and $\bar{I}_{n}:=G_{m} \backslash I_{n}$.

Let

$$
e_{n}:=\left(0, \ldots, 0, x_{n}=1,0, \ldots\right) \in G_{m} \quad(n \in P)
$$

Denote

$$
I_{N}^{k, l}:=\left\{\begin{array}{l}
I_{N}\left(0, \ldots, 0, x_{k} \neq 0,0, \ldots, 0, x_{l} \neq 0, x_{l+1, \ldots,}, x_{N-1}\right), k<l<N \\
I_{N}\left(0, \ldots, 0, x_{k} \neq 0,0, \ldots,, 0\right), l=N
\end{array}\right.
$$

and

$$
I_{N}^{k, \alpha, l, \beta}:=I_{N}\left(0, \ldots, 0, x_{k}=\alpha, 0, \ldots, 0, x_{l}=\beta, x_{l+1, \ldots,}, x_{N-1}\right), k<l<N
$$

It is evident
and

$$
\begin{equation*}
\overline{I_{N}}=\left(\bigcup_{k=0}^{N-2} \bigcup_{l=k+1}^{N-1} I_{N}^{k, l}\right) \cup\left(\bigcup_{k=0}^{N-1} I_{N}^{k, N}\right) \tag{3}
\end{equation*}
$$

If we define the so-called generalized number system based on m as

$$
M_{0}:=1, \quad M_{k+1}:=m_{k} M_{k} \quad(k \in P)
$$

then every $n \in P$ can be uniquely expressed as $n=\sum_{k=0}^{\infty} n_{j} M_{j}$ where $n_{j} \in Z_{m_{j}} \quad(j \in P)$ and only a finite number of $n_{j} \mathrm{~s}$ differ from zero. Let $|n|:=\max \left\{j \in P ; n_{j} \neq 0\right\}$.

Denote by $L_{1}\left(G_{m}\right)$ the usual (one dimensional) Lebesgue space.
Next, we introduce on G_{m} an orthonormal system which is called the Vilenkin system.
At first define the complex valued function $r_{k}(x): G_{m} \rightarrow C$, the generalized Rademacher functions as

$$
r_{k}(x):=\exp \left(2 \pi i x_{k} / m_{k}\right) \quad\left(i^{2}=-1, x \in G_{m}, k \in P\right)
$$

Now define the Vilenkin system $\psi:=\left(\psi_{n}: n \in P\right)$ on G_{m} as

$$
\psi_{n}(x):=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x) \quad(n \in P)
$$

Specifically, we call this system the Walsh-Paley one if $m \equiv 2$.
The Vilenkin system is orthonormal and complete in $L_{2}\left(G_{m}\right)[1,14]$.
Now we introduce analogues of the usual definitions in Fourier-analysis.
If $f \in L_{1}\left(G_{m}\right)$ we can establish the Fourier coefficients, the partial sums of the Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin system ψ in the usual manner:

$$
\begin{gathered}
\widehat{f}(k):=\int_{G_{m}} f \bar{\psi}_{k} d \mu,(k \in P), \\
S_{n} f:=\sum_{k=0}^{n-1} \widehat{f}(k) \psi_{k},\left(n \in P_{+}, S_{0} f:=0\right),
\end{gathered}
$$

$$
\begin{aligned}
\sigma_{n} f & :=\frac{1}{n} \sum_{k=0}^{n-1} S_{k} f\left(n \in P_{+}\right), \\
D_{n} & :=\sum_{k=0}^{n-1} \psi_{k},\left(n \in P_{+}\right), \\
K_{n} & :=\frac{1}{n} \sum_{k=0}^{n-1} D_{k},\left(n \in P_{+}\right) .
\end{aligned}
$$

Recall that

$$
D_{M_{n}}(x)=\left\{\begin{array}{l}
M_{n} \text { if } x \in I_{n} \tag{4}\\
0 \quad \text { if } x \notin I_{n}
\end{array}\right.
$$

It is well known that

$$
\begin{align*}
& \sup _{n} \int_{G_{m}}\left|K_{n}(x)\right| d \mu(x) \leq c<\infty \tag{5}\\
& n\left|K_{n}(x)\right| \leq c \sum_{A=0}^{|n|} M_{A}\left|K_{M_{A}}(x)\right| \tag{6}
\end{align*}
$$

The norm (or quasinorm) of the space $L_{p}\left(G_{m}\right)$ is defined by

$$
\|f\|_{L_{p}}:=\left(\int_{G_{m}}|f(x)|^{p} d \mu(x)\right)^{1 / p} \quad(0<p<\infty)
$$

The σ-algebra generated by the intervals $\left\{I_{n}(x): x \in G_{m}\right\}$ will be denoted by $\digamma_{n}(n \in P)$. Denote by $f=\left(f^{(n)}, n \in P\right)$ a martingale with respect to $\digamma_{n}(n \in P)$ (for details, see e.g. [15]). The maximal function of a martingale f is defended by

$$
f^{*}=\sup _{n \in P}\left|f^{(n)}\right|
$$

In case $f \in L_{1}$, the maximal functions are also given by

$$
f^{*}(x)=\sup _{n \in P} \frac{1}{\left|I_{n}(x)\right|}\left|\int_{I_{n}(x)} f(u) \mu(u)\right|
$$

For $0<p<\infty$ the Hardy martingale spaces $H_{p}\left(G_{m}\right)$ consist of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{L_{p}}<\infty
$$

If $f \in L_{1}$, then it is easy to show that the sequence $\left(S_{M_{n}}(f): n \in P\right)$ is a martingale. If $f=\left(f^{(n)}, n \in P\right)$ is martingale then the Vilenkin-Fourier coefficients must be defined in a slightly different manner:

$$
\widehat{f}(i):=\lim _{k \rightarrow \infty} \int_{G_{m}} f^{(k)}(x) \bar{\Psi}_{i}(x) d \mu(x)
$$

The Vilenkin-Fourier coefficients of $f \in L_{1}\left(G_{m}\right)$ are the same as those of the martingale $\left(S_{M_{n}}(f): n \in P\right)$ obtained from f.

For the martingale f we consider maximal operators

$$
\begin{aligned}
\sigma^{*} f & =\sup _{n \in P}\left|\sigma_{n} f\right| \\
\widetilde{\sigma}^{*} f: & =\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\log ^{2}(n+1)}
\end{aligned}
$$

A bounded measurable function a is p-atom, if there exist a dyadic interval I, such that

$$
\begin{cases}a) & \int_{I} a d \mu=0 \\ b) & \|a\|_{\infty} \leq \mu(I)^{-1 / p} \\ c) & \operatorname{supp}(a) \subset I\end{cases}
$$

3. Formulation of main results

Theorem 1 The maximal operator

$$
\tilde{\sigma}^{*} f:=\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\log ^{2}(n+1)}
$$

is bounded from the Hardy space $H_{1 / 2}\left(G_{m}\right)$ to the space $L_{1 / 2}\left(G_{m}\right)$.

Theorem 2 Let $\varphi: P_{+} \rightarrow[1, \infty)$ be a nondecreasing function satisfying the condition

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{\log ^{2}(n+1)}{\varphi(n)}=+\infty \tag{7}
\end{equation*}
$$

Then there exists a martingale $f \in H_{1 / 2}$, such that

$$
\sup _{n \in P}\left\|\frac{\sigma_{n} f}{\varphi(n)}\right\|_{L_{1 / 2}}=\infty
$$

Corollary 1 The maximal operator

$$
\sup _{n \in P} \frac{\left|\sigma_{n} f\right|}{\varphi(n)}
$$

is not bounded from the Hardy space $H_{1 / 2}$ to the space $L_{1 / 2}$.

4. Auxiliary propositions

Lemma 1 [17] Suppose that an operator T is sublinear and for some $0<p \leq 1$

$$
\int_{\bar{I}}|T a|^{p} d \mu \leq c_{p}<\infty
$$

for every p-atom a, where I denotes the support of the atom. If T is bounded from L_{∞} to L_{∞}, then

$$
\|T f\|_{L_{p}\left(G_{m}\right)} \leq c_{p}\|f\|_{H_{p}\left(G_{m}\right)}
$$

Lemma 2 [2, 8] Let $2<A \in P_{+}, k \leq s<A$ and $q_{A}=M_{2 A}+M_{2 A-2}+\ldots+M_{2}+M_{0}$. Then

$$
q_{A-1}\left|K_{q_{A-1}}(x)\right| \geq \frac{M_{2 k} M_{2 s}}{4}
$$

for

$$
\begin{gathered}
x \in I_{2 A}\left(0, \ldots, x_{2 k} \neq 0,0, \ldots, 0, x_{2 s} \neq 0, x_{2 s+1}, \ldots x_{2 A-1}\right) \\
k=0,1, \ldots, A-3 . \quad s=k+2, k+3, \ldots, A-1
\end{gathered}
$$

Lemma 3 [5] Let $A>t, t, A \in P, z \in I_{t} \backslash I_{t+1}$. Then

$$
K_{M_{A}}(z)=\left\{\begin{array}{cc}
0 & \text { if } z-z_{t} e_{t} \notin I_{A} \\
\frac{M_{t}}{1-r_{t}(z)} & \text { if } z-z_{t} e_{t} \in I_{A}
\end{array}\right.
$$

Lemma 4 Let $x \in I_{N}^{k, l}, \quad k=0, \ldots, N-1, l=k+1, \ldots, N$. Then

$$
\int_{I_{N}}\left|K_{n}(x-t)\right| d \mu(t) \leq \frac{c M_{l} M_{k}}{M_{N}^{2}} \text { when } n \geq M_{N}
$$

Proof. Let $x \in I_{N}^{k, \alpha, l, \beta}$. Then applying lemma 3 we have

$$
K_{M_{A}}(x)=0 \text { when } A>l .
$$

Hence we can suppose that $A \leq l$. Let $k<A \leq l$. Then we have

$$
\begin{equation*}
\left|K_{M_{A}}(x)\right|=\frac{M_{k}}{\left|1-r_{k}(x)\right|} \leq \frac{m_{k} M_{k}}{2 \pi \alpha} . \tag{8}
\end{equation*}
$$

Let $A \leq k<l$. Then it is easy to show that

$$
\begin{equation*}
\left|K_{M_{A}}(x)\right| \leq c M_{k} \tag{9}
\end{equation*}
$$

Combining (8) and (9), from (2) we have

$$
\left|K_{M_{A}}(x)\right| \leq c M_{k}, \text { when } x \in I_{N}^{k, l}
$$

and if we apply (6) we conclude that

$$
\begin{equation*}
n\left|K_{n}(x)\right| \leq c \sum_{A=0}^{l-1} M_{A} M_{k} \leq c M_{k} M_{l} \tag{10}
\end{equation*}
$$

Let $x \in I_{N}^{k, l}$, for some $0 \leq k<l \leq N-1$. Since $x-t \in I_{N}^{k, l}$ and $n \geq M_{N}$ from (10) we obtain

$$
\begin{equation*}
\int_{I_{N}}\left|K_{n}(x-t)\right| d \mu(t) \leq \frac{c M_{k} M_{l}}{M_{N}^{2}} . \tag{11}
\end{equation*}
$$

Let $x \in I_{N}^{k, N}$, then applying (6) we have

$$
\begin{equation*}
\int_{I_{N}} n\left|K_{n}(x-t)\right| d \mu(t) \leq \sum_{A=0}^{|n|} M_{A} \int_{I_{N}}\left|K_{M_{A}}(x-t)\right| d \mu(t) \tag{12}
\end{equation*}
$$

Let

$$
\left\{\begin{array}{l}
x=\left(0, \ldots, 0, x_{k} \neq 0,0, \ldots 0, x_{N}, x_{N+1}, x_{q}, \ldots, x_{|n|-1},, \ldots\right) \\
t=\left(0, \ldots, 0, x_{N}, \ldots x_{q-1}, t_{q} \neq x_{q}, t_{q+1}, \ldots, t_{|n|-1}, \ldots\right), q=N, \ldots,|n|-1
\end{array}\right.
$$

Then using Lemma 3 in (12) it is easy to show that

$$
\begin{align*}
\int_{I_{N}}\left|K_{n}(x-t)\right| d \mu(t) & \leq \frac{c}{n} \sum_{A=0}^{q-1} M_{A} \int_{I_{N}} M_{k} d \mu(t) \tag{13}\\
& \leq \frac{c M_{k} M_{q}}{n M_{N}} \leq \frac{c M_{k}}{M_{N}}
\end{align*}
$$

Let

$$
\left\{\begin{array}{l}
x=\left(0, \ldots, 0, x_{m} \neq 0,0, \ldots, 0, x_{N}, x_{N+1}, x_{q}, \ldots, x_{|n|-1}, \ldots\right), \\
t=\left(0,0, \ldots, x_{N}, \ldots, x_{|n|-1}, t_{|n|}, \ldots\right) .
\end{array}\right.
$$

If we apply Lemma 3 in (12), we obtain

$$
\begin{align*}
& \int_{I_{N}}\left|K_{n}(x-t)\right| d \mu(t) \tag{14}\\
\leq & \frac{c}{n} \sum_{A=0}^{|n|-1} M_{A} \int_{I_{N}} M_{k} d \mu(t) \leq \frac{c M_{k}}{M_{N}} .
\end{align*}
$$

Combining (11), (13) and (14) we complete the proof of lemma 4.

5. Proof of the theorems

Proof of Theorem 1. By Lemma 1, the proof of Theorem 1 will be complete, if we show that

$$
\int_{\bar{I}_{N}}\left(\sup _{n \in P} \frac{\left|\sigma_{n} a\right|}{\log ^{2}(n+1)}\right)^{1 / 2} d \mu \leq c<\infty
$$

for every $1 / 2$-atom a, where I denotes the support of the atom. The boundedness of maximal operator $\sup _{n \in P} \frac{\sigma_{n} f}{\log ^{2}(n+1)}$ from L_{∞} to L_{∞} follows from (5).

Let a be an arbitrary $1 / 2$-atom with support I and $\mu(I)=M_{N}^{-1}$. We may assume that $I=I_{N}$. It is easy to see that $\sigma_{n}(a)=0$ when $n \leq M_{N}$. Therefore we can suppose that $n>M_{N}$.

Since $\|a\|_{\infty} \leq c M_{N}^{2}$, we can write

$$
\begin{aligned}
& \frac{\left|\sigma_{n}(a)\right|}{\log ^{2}(n+1)} \\
\leq & \frac{1}{\log ^{2}(n+1)} \int_{I_{N}}|a(t)|\left|K_{n}(x-t)\right| d \mu(t) \\
\leq & \frac{\|a\|_{\infty}}{\log ^{2}(n+1)} \int_{I_{N}}\left|K_{n}(x-t)\right| d \mu(t) \\
\leq & \frac{c M_{N}^{2}}{\log ^{2}(n+1)} \int_{I_{N}}\left|K_{n}(x-t)\right| d \mu(t)
\end{aligned}
$$

Let $x \in I_{N}^{k, l}, 0 \leq k<l \leq N$. Then from Lemma 4 we get

$$
\begin{equation*}
\frac{\left|\sigma_{n}(a)\right|}{\log ^{2}(n+1)} \leq \frac{c M_{N}^{2}}{N^{2}} \frac{M_{l} M_{k}}{M_{N}^{2}}=\frac{c M_{l} M_{k}}{N^{2}} \tag{15}
\end{equation*}
$$

Combining (3) and (15) we obtain

$$
\begin{aligned}
& \int_{\bar{I}_{N}}\left|\widetilde{\sigma}^{*} a(x)\right|^{1 / 2} d \mu(x) \\
= & \sum_{k=0}^{N-2} \sum_{l=k+1}^{N-1} \sum_{x_{j}=0, j \in\{l+1, \ldots, N-1\}}^{m_{j}-1} \int_{I_{N}^{k, l}}\left|\tilde{\sigma}^{*} a(x)\right|^{1 / 2} d \mu(x) \\
& +\sum_{k=0}^{N-1} \int_{I_{N}^{k, N}}\left|\widetilde{\sigma}^{*} a(x)\right|^{1 / 2} d \mu(x) \\
\leq & c \sum_{k=0}^{N-2} \sum_{l=k+1}^{N-1} \frac{m_{l+1} \ldots m_{N-1}}{M_{N}} \frac{\sqrt{M_{l} M_{k}}}{N} \\
& +c \sum_{k=0}^{N-1} \frac{1}{M_{N}} \frac{\sqrt{M_{N} M_{k}}}{N} \\
\leq & c \sum_{k=0}^{N-2} \sum_{l=k+1}^{N-1} \frac{\sqrt{M_{k}}}{N \sqrt{M_{l}}}+c \sum_{k=0}^{N-1} \frac{1}{\sqrt{M_{N}}} \frac{\sqrt{M_{k}}}{N} \leq c<\infty .
\end{aligned}
$$

Which completes the proof of Theorem 1.
Proof of Theorem 2. Let $\left\{\lambda_{k} ; k \in P_{+}\right\}$be an increasing sequence of the positive integers such that

$$
\lim _{k \rightarrow \infty} \frac{\log ^{2}\left(\lambda_{k}\right)}{\varphi\left(\lambda_{k}\right)}=\infty
$$

It is evident that for every λ_{k} there exists positive integers m_{k}^{\prime} such that $q_{m_{k}^{\prime}} \leq \lambda_{k}<q_{m_{k}^{\prime}+1}<M^{5} q_{m_{k}^{\prime}}$, $M:=\sup _{k} m_{k}$. Since $\varphi(n)$ is a nondecreasing function we have

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} \frac{\left(m_{k}^{\prime}\right)^{2}}{\varphi\left(q_{m_{k}^{\prime}}^{\prime}\right)} \geq c \lim _{k \rightarrow \infty} \frac{\log ^{2}\left(\lambda_{k}\right)}{\varphi\left(\lambda_{k}\right)}=\infty \tag{16}
\end{equation*}
$$

let $\left\{n_{k} ; k \in P_{+}\right\} \subset\left\{m_{k}^{\prime} ; k \in P_{+}\right\}$such that

$$
\lim _{k \rightarrow \infty} \frac{n_{k}^{2}}{\varphi\left(q_{n_{k}}\right)}=\infty
$$

and

$$
f_{n_{k}}(x)=D_{M_{2 n_{k}+1}}(x)-D_{M_{2 n_{k}}}(x)
$$

It is evident

$$
\widehat{f}_{n_{k}}(i)=\left\{\begin{array}{l}
1, \text { if } i=M_{2 n_{k}}, \ldots, M_{2 n_{k}+1}-1 \\
0, \text { otherwise }
\end{array}\right.
$$

Then we can write

$$
S_{i} f_{n_{k}}(x)=\left\{\begin{array}{l}
D_{i}(x)-D_{M_{2 n_{k}}}(x), \text { if } i=M_{2 n_{k}}, \ldots, M_{2 n_{k}+1}-1 \tag{17}\\
f_{n_{k}}(x), \text { if } i \geq M_{2 n_{k}+1} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

From (4) we get

$$
\begin{align*}
\left\|f_{n_{k}}\right\|_{H_{1 / 2}} & =\left\|\sup _{n \in P} S_{M_{n}} f_{n_{k}}\right\|_{L_{1 / 2}} \tag{18}\\
& =\left\|D_{M_{2 n_{k}+1}}-D_{M_{2 n_{k}}}\right\|_{L_{1 / 2}} \\
& =\left(\int_{I_{2 n_{k}} \backslash I_{2 n_{k}+1}} M_{2 n_{k}}^{1 / 2} d \mu(x)+\int_{I_{2 n_{k}+1}}\left(M_{2 n_{k}+1}-M_{2 n_{k}}\right)^{1 / 2} d \mu(x)\right)^{2} \\
& =\left(\frac{m_{2 n_{k}}-1}{M_{2 n_{k}+1}} M_{2 n_{k}}^{1 / 2}+\frac{\left(m_{2 n_{k}}+1\right)^{1 / 2}}{M_{2 n_{k}+1}} M_{2 n_{k}}^{1 / 2}\right)^{2} \\
& \leq \frac{c}{M_{2 n_{k}}} .
\end{align*}
$$

By (17) we can write:

$$
\begin{aligned}
& \frac{\left|\sigma_{q_{n_{k}}} f_{n_{k}}(x)\right|}{\varphi\left(q_{n_{k}}\right)}=\frac{1}{\varphi\left(q_{n_{k}}\right) q_{n_{k}}}\left|\sum_{j=0}^{q_{n_{k}}-1} S_{j} f_{n_{k}}(x)\right| \\
& =\frac{1}{\varphi\left(q_{n_{k}}\right) q_{n_{k}}}\left|\sum_{j=M_{2 n_{k}}}^{q_{n_{k}}-1} S_{j} f_{n_{k}}(x)\right| \\
& =\frac{1}{\varphi\left(q_{n_{k}}\right) q_{n_{k}}}\left|\sum_{j=M_{2 n_{k}}}^{q_{n_{k}}-1}\left(D_{j}(x)-D_{M_{2 n_{k}}}(x)\right)\right| \\
& =\frac{1}{\varphi\left(q_{n_{k}}\right) q_{n_{k}}}\left|\sum_{j=0}^{q_{n_{k}-1}-1}\left(D_{j+M_{2 n_{k}}}(x)-D_{M_{2 n_{k}}}(x)\right)\right|
\end{aligned}
$$

Since

$$
D_{j+M_{2 n_{k}}}(x)-D_{M_{2 n_{k}}}(x)=\psi_{M_{2 n_{k}}} D_{j}, j=1,2, . ., M_{2 n_{k}}-1,
$$

we obtain

$$
\left.\begin{aligned}
\frac{\left|\sigma_{q_{n_{k}}} f_{n_{k}}(x)\right|}{\varphi\left(q_{n_{k}}\right)} & =\frac{1}{\varphi\left(q_{n_{k}}\right)} q_{n_{k}}
\end{aligned} \sum_{j=0}^{q_{n_{k}-1}-1} D_{j}(x) \right\rvert\, .
$$

Let $x \in I_{2 n_{k}}^{2 s, 2 l}$. Then from Lemma 2 we have

$$
\frac{\left|\sigma_{{q_{n}}_{k}} f_{n_{k}}(x)\right|}{\varphi\left(q_{n_{k}}\right)} \geq \frac{c M_{2 s} M_{2 l}}{M_{2 n_{k}} \varphi\left(q_{n_{k}}\right)} .
$$

Hence we can write:

$$
\begin{gathered}
\int_{G_{m}}\left(\frac{\left|\sigma_{q_{n_{k}}} f_{n_{k}}(x)\right|}{\varphi\left(q_{n_{k}}\right)}\right)^{1 / 2} d \mu(x) \\
\geq \sum_{s=0}^{n_{k}-3} \sum_{l=s+1}^{n_{k}-1} \sum_{x_{2 l+1=0}}^{m_{2 l+1}} \ldots \sum_{x_{2 n_{k}-1}=0}^{m_{2 n_{k}-1}} \int_{I_{2 n_{k}}^{2 s, 2 l}}\left(\frac{\left|\sigma_{q_{n_{k}}} f_{n_{k}}(x)\right|}{\varphi\left(q_{n_{k}}\right)}\right)^{1 / 2} d \mu(x) \\
\geq c \sum_{s=0}^{n_{k}-3} \sum_{l=s+1}^{n_{k}-1} \frac{m_{2 l+1} \ldots m_{2 n_{k}-1}}{M_{2 n_{k}}} \frac{\sqrt{M_{2 s} M_{2 l}}}{\sqrt{\varphi\left(q_{n_{k}}\right) M_{2 n_{k}}}} \geq \\
c \sum_{s=0}^{n_{k}-3} \sum_{l=s+1}^{n_{k}-1} \frac{\sqrt{M_{2 s}}}{\sqrt{M_{2 l} M_{2 n_{k}} \varphi\left(q_{n_{k}}\right)}} \geq \frac{c n_{k}}{\sqrt{M_{2 n_{k}} \varphi\left(q_{n_{k}}\right)}}
\end{gathered}
$$

TEPHNADZE/Turk J Math

Then from (18) we have

$$
\begin{aligned}
\frac{\left(\int_{G_{m}}\left(\frac{\left|\sigma_{q_{n_{k}}} f_{n_{k}}(x)\right|}{\varphi\left(n_{k}\right)}\right)^{1 / 2} d \mu(x)\right)^{2}}{\left\|f_{n_{k}(x)}\right\|_{H_{1 / 2}}} & \geq \frac{c n_{k}^{2}}{M_{2 n_{k}} \varphi\left(q_{n_{k}}\right)} M_{2 n_{k}} \\
& \geq \frac{c n_{k}^{2}}{\varphi\left(q_{n_{k}}\right)} \rightarrow \infty \quad \text { when } \quad k \rightarrow \infty
\end{aligned}
$$

Theorem 2 is proved.

References

[1] Agaev, G. N., Vilenkin, N. Ya., Dzhafarly, G. M., Rubinshtein, A. I.: Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehim, 1981 (in Russian).
[2] Blahota, I., Gát, G., Goginava, U.: Maximal operators of Fejer means of double Vilenkin-Fourier series, Colloq. Math. 107, no. 2, 287-296, (2007).
[3] Blahota, I., Gát, G., Goginava, U.: Maximal operators of Fejér means of Vilenkin-Fourier series, JIPAM. J. Inequal. Pure Appl. Math. 7, 1-7, (2006).
[4] Fujii, N. J.: A maximal inequality for H_{1} functions on generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77, (1979), 111-116.
[5] Gát, G.: Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory 124, no. 1, 25-43, (2003).
[6] Goginava, U.: Maximal operators of Fejér-Walsh means, Acta Sci. Math. (Szeged) 74, no. 3-4, 615-624, (2008).
[7] Goginava, U.: The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement, Publ. Math. Debrecen 71, no. 1-2, 43-55, (2007).
[8] Goginava, U.: Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar. 115, no. 4, 333-340, (2007).
[9] Goginava, U., Nagy, K.: On the maximal operator of Walsh-Kaczmarz-Fejer means, Czechoslovak Math. J. (to appear).
[10] Pál, J., Simon, J.: On a generalization of the concept of derivate, Acta Math. Hung., 29, 155-164, (1977).
[11] Schipp, F.: Certain rearrangements of series in the Walsh series, Mat. Zametki, 18, 193-201, (1975).
[12] Simon, P.: Cesàro summability wish respect to two-parameter Walsh systems, Monatsh. Math.,131, 321-334, (2000).
[13] Simon, P.: Investigations with respect to the Vilenkin system, Annales Univ. Sci. Budapest Eotv., Sect. Math., 28, 87-101, (1985).
[14] Vilenkin, N.Ya.: A class of complete orthonormal systems, Izv. Akad. Nauk. U.S.S.R., Ser. Mat., 11, 363-400, (1947).
[15] Weisz, F.: Martingale Hardy spaces and their applications in Fourier Analysis, Springer, Berlin-Heidelberg-New York, 1994.
[16] Weisz, F.: Cesro summability of one and two-dimensional Fourier series, Anal. Math. 5 (1996), 353-367.re Appl. Math. 7, 1-7, (2006).
[17] Weisz, F.: Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.
[18] Weisz, F.: Weak type inequalities for the Walsh and bounded Ciesielski systems. Anal. Math. 30, no. 2, 147-160, (2004).
[19] Zygmund, A.: Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

[^0]: *Correspondence: giorgitephnadze@gmail.com 2000 AMS Mathematics Subject Classification: 42C10.

