## Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2013) 37: $319-339$
(c) TÜBİTAK
doi:10.3906/mat-1006-371

# Sasakian Finsler manifolds 

Ayşe Funda YALINIZ ${ }^{1}$, Nesrin ÇALIŞKAN ${ }^{2, *}$

${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Dumlupınar University, TR-43100, Kütahya, Turkey
${ }^{2}$ Department of Mathematics, Graduate School of Natural and Applied Science, Dumlupinar University, TR-43100, Kütahya, Turkey

| Received: 20.06 .2010 | Accepted: 04.10 .2011 | Published Online: 19.03.2013 | • | Printed: 22.04 .2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


#### Abstract

In this study, almost contact Finsler structures on vector bundle are defined and the condition of normality in terms of the Nijenhuis torsion $N_{\phi}$ of almost contact Finsler structure is obtained. It is shown that for a $K$-contact structure on Finsler manifold $\nabla_{X} \xi=-\frac{1}{2} \phi X$ and the flag curvature for plane sections containing $\xi$ are equal to $\frac{1}{4}$. By using the Sasakian Finsler structure, the curvatures of a Finsler connection $\nabla$ on $V$ are obtained. We prove that a locally symmetric Finsler manifold with $K$-contact Finsler structure has a constant curvature $\frac{1}{4}$. Also, the Ricci curvature on Finsler manifold with $K$-contact Finsler structure is given. As a result, Sasakian structures in Riemann geometry and Finsler condition are generalized.


As a conclusion we can state that Riemannian Sasakian structures are compared to Sasakian Finsler structures and it is proven that they are adaptable.

Key words: Finsler connection, vector bundle, almost contact manifold, Sasakian manifold, nonlinear connection, Ricci tensor

## 1. Introduction

Let $V(M)=\{V, \pi, M\}$ be a vector bundle of total space $V$ with a $(n+m)$-dimensional $C^{\infty}$ manifold and with a base space $M$ that is an $n$-dimensional $C^{\infty}$-manifold. The projection map $\pi: V \rightarrow M, u \in V \mapsto$ $\pi(u)=x \in M$, where $u=(x, y)$, and $y \in R^{m}=\pi^{-1}(x)$ the fibre of $V(M)$ over $x$.

A non-linear connection $N$ on the total space $V$ of $V(M)$ is a differentiable distribution
$N: V \rightarrow T_{u}(V), u \in V \mapsto N_{u} \in T_{u}(V)$ such that

$$
\begin{equation*}
T_{u}(V)=N_{u} \oplus V_{u}^{v} \text { where } V_{u}^{v}=\left\{X \in T_{u}(V): \pi_{*}(X)=0\right\} . \tag{1.1}
\end{equation*}
$$

$N_{u}$ the horizontal distribution and $V^{v}$ is the vertical distribution. Thus for all $X \in T_{u}(V)$ can be separated by its components

$$
\begin{equation*}
X=X^{H}+X^{V} \text { where } X^{H} \in N_{u}, \quad X^{V} \in V_{u}^{v} \tag{1.2}
\end{equation*}
$$

Let $x^{i}, i=1,2, \ldots, n$ and $y^{a}, a=1,2, \ldots, m$ be the coordinates of $x$ and $y$ such that $\left(x^{i}, y^{a}\right)$ are the coordinates of $u \in V$. The local base of $N_{u}$ is

$$
\begin{equation*}
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{a}(x, y) \frac{\partial}{\partial y^{a}} \tag{1.3}
\end{equation*}
$$

[^0]and that of $V_{u}^{v}$ is where $N_{i}^{a}(x, y)$ are the coefficients of $N$. Their dual bases are $\left(d x^{i}, \delta y^{a}\right)$ where
\[

$$
\begin{equation*}
\delta y^{a}=d y^{a}+N_{i}^{a}(x, y) d x^{i} \tag{1.4}
\end{equation*}
$$

\]

Let $X=X^{i}(x, y) \frac{\delta}{\delta x^{i}}+\tilde{X}^{a}(x, y) \frac{\partial}{\partial y^{a}}, \forall X \in T_{u}(V)$. Then

$$
\begin{equation*}
X^{H}=X^{i}(x, y) \frac{\delta}{\delta x^{i}}, X^{V}=\tilde{X}^{a}(x, y) \frac{\partial}{\partial y^{a}}, \quad \tilde{X}^{a}=X^{a}+N_{i}^{a} X^{i} \tag{1.5}
\end{equation*}
$$

Let $\omega$ be a 1 -form $\omega=\tilde{\omega}_{i}(x, y) d x^{i}+\omega_{a}(x, y) \delta y^{a}$. Then

$$
\begin{equation*}
\omega^{H}=\tilde{\omega}_{i} d x^{i}, \tilde{\omega}_{i}=\omega_{i}-N_{i}^{a}(x, y) \omega_{a} ; \omega^{V}=\omega_{a} \delta y^{a} \tag{1.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\omega^{H}\left(X^{V}\right)=0, \omega^{V}\left(X^{H}\right)=0 \text { where } \omega=\omega^{H}+\omega^{V} . \tag{1.7}
\end{equation*}
$$

The Finsler tensor field of type $\left(\begin{array}{cc}p & r \\ q & s\end{array}\right)$ on $V$ has the following local form [4]:

$$
\begin{equation*}
T=T_{j_{1}, \ldots, j_{q}, b_{1}, \ldots, b_{s}}^{i_{1}, \ldots, i_{p}, a_{1}, \ldots, a_{r}}(x, y) \frac{\delta}{\delta x^{i_{1}}} \otimes \ldots \otimes \frac{\delta}{\delta x^{i_{p}}} \otimes d x^{a_{1}} \otimes \ldots \otimes d x^{a_{r}} \otimes \frac{\partial}{\partial y^{j_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial y^{j_{q}}} \otimes \delta y^{b_{1}} \otimes \ldots \otimes \delta y^{b_{s}} . \tag{1.8}
\end{equation*}
$$

Definition 1.1 A Finsler connection on $V$ is a linear connection $\nabla=F \Gamma$ on $V$ with the property that the horizontal linear space $N_{u}, u \in V$ of the distribution $N$ is parallel with respect to $\nabla$ and the vertical spaces $V_{u}^{v}, u \in V$ are also parallel relative to $\nabla$ [3].

A linear connection $\nabla$ on $V$ is a Finsler connection on $V$ if and only if

$$
\begin{equation*}
\left(\nabla_{X} Y^{H}\right)^{V}=0,\left(\nabla_{X} Y^{V}\right)^{H}=0, \forall X, Y \in T_{u}(V) \tag{1.9}
\end{equation*}
$$

A linear connection $\nabla$ on $V$ is a Finsler connection on $V$ if and only if [4]

$$
\begin{gather*}
\nabla_{X} Y=\left(\nabla_{X} Y^{H}\right)^{H}+\left(\nabla_{X} Y^{V}\right)^{V}, \forall X, Y \in T_{u}(V),  \tag{1.10a}\\
\nabla_{X} \omega=\left(\nabla_{X} \omega^{H}\right)^{H}+\left(\nabla_{X} \omega^{V}\right)^{V}, \forall \omega \in T_{u}^{*}(V) \text { and } X \in T_{u}(V) . \tag{1.10b}
\end{gather*}
$$

Remark 1.1 Let $\nabla$ on $V$ is a Finsler connection on $V$. We get immediately that [6]

$$
\begin{equation*}
Y \in V_{u}^{v} \Rightarrow \forall X \in T_{u}(V) ; \nabla_{X} Y \in V_{u}^{v}, Y \in N_{u} \Rightarrow \forall X \in T_{u}(V) ; \nabla_{X} Y \in N_{u} . \tag{1.11}
\end{equation*}
$$

For a Finsler connection $\nabla$ on $V$, there is an associated pair of operators; $h$ - and $v$-covariant derivation in the algebra of Finsler tensor fields. For each $X \in T_{u}(V)$, set

$$
\begin{equation*}
\nabla_{X}^{H} Y=\nabla_{X^{H}} Y, \nabla_{X}^{H} f=X^{H}(f), \forall Y \in T_{u}(V), \forall f \in F(V) \tag{1.12}
\end{equation*}
$$

If $\omega \in T_{u}^{*}(V)$, we define

$$
\begin{equation*}
\left(\nabla_{X}^{H} \omega\right)(Y)=X^{H}(\omega(Y))-\omega\left(\nabla_{X}^{H} Y\right), \forall Y \in T_{u}(V) \tag{1.13}
\end{equation*}
$$

So, we may extend the action of the operator $\nabla_{X}^{H}$ to any Finsler tensor field by asking these questions: does $\nabla_{X}^{H}$ preserve the type of Finsler tensor fields, is it $\mathbb{R}$-linear, does it satisfy the Leibniz rule with respect to tensor product and does it commute with all contractions? We keep the notation $\nabla_{X}^{H}$ for this operator on the algebra of Finsler tensor fields. We call it the operator of $h$-covariant derivation.

In a similar way, for every vector field $X \in T_{u}(V)$ set

$$
\begin{equation*}
\nabla_{X}^{V} Y=\nabla_{X^{V}} Y, \nabla_{X}^{V} f=X^{V}(f), \forall Y \in T_{u}(V), \forall f \in F(V) \tag{1.14}
\end{equation*}
$$

If $\omega \in T_{u}^{*}(V)$, we define

$$
\begin{equation*}
\left(\nabla_{X}^{V} \omega\right)(Y)=X^{V}(\omega(Y))-\omega\left(\nabla_{X}^{V} Y\right), \forall Y \in T_{u}(V) \tag{1.15}
\end{equation*}
$$

We extend the action of $\nabla_{X}^{V}$ to any Finsler tensor field in a similar way, as for $\nabla_{X}^{H}$. We obtain an operator on the algebra of Finsler tensor fields on $V$; this will be denoted also by $\nabla_{X}^{V}$ and will be called the operator of $v$-covariant derivation [1].

Definition 1.2 Let $\omega \in T_{u}^{*}(V)$ be a differential $q$-form on $V, \nabla$ is a linear connection on $V$ and $T$ is the torsion tensor of $\nabla$. Then its exterior differential $d \omega$ is also defined as [4]:

$$
\begin{align*}
& (d \omega)\left(X_{1}, \ldots, X_{q+1}\right)=\sum_{i=1}^{q+1}(-1)^{i+1}\left(\nabla_{X} \omega\right)\left(X_{1}, \ldots, \tilde{X}_{i}, \ldots, X_{q+1}\right), \forall X_{i} \in T_{u}(V)  \tag{1.16}\\
& -\sum_{1 \leq i \leq j \leq q+1}(-1)^{i+j} \omega\left(T\left(X_{i}, X_{j}\right), X_{1}, \ldots, \tilde{X}_{i}, \ldots, \tilde{X}_{j}, \ldots, X_{q+1}\right)
\end{align*}
$$

Proposition 1.1 If $\omega \in T_{u}^{*}(V)$ is a 1-form and $\nabla$ is a Finsler connection on $V$, then its exterior differential is given by [3]

$$
\begin{align*}
& (d \omega)\left(X^{H}, Y^{H}\right)=\left(\nabla_{X}^{H} \omega\right)\left(Y^{H}\right)-\left(\nabla_{Y}^{H} \omega\right)\left(X^{H}\right)+\omega\left(T\left(X^{H}, Y^{H}\right)\right) \\
& (d \omega)\left(X^{V}, Y^{H}\right)=\left(\nabla_{X}^{V} \omega\right)\left(Y^{H}\right)-\left(\nabla_{Y}^{H} \omega\right)\left(X^{V}\right)+\omega\left(T\left(X^{V}, Y^{H}\right)\right)  \tag{1.17}\\
& (d \omega)\left(X^{V}, Y^{V}\right)=\left(\nabla_{X}^{V} \omega\right)\left(Y^{V}\right)-\left(\nabla_{Y}^{V} \omega\right)\left(X^{V}\right)+\omega\left(T\left(X^{V}, Y^{V}\right)\right), \forall X, Y \in T_{u}(V)
\end{align*}
$$

In the canonical coordinates $\left(x^{i}, y^{a}\right)$, there exists a well determined set of differentiable functions on $V$. $F_{j k}^{i}(x, y), F_{b k}^{a}(x, y) ; C_{j a}^{i}(x, y) ; C_{b c}^{a}(x, y)$ such that

$$
\begin{aligned}
& \nabla_{\frac{\delta}{\delta i k}}^{H} \frac{\delta}{\delta x^{j}}=F_{j k}^{i}(x, y) \frac{\delta}{\delta x^{i}}, \nabla_{\frac{\delta}{\delta x^{\prime}}}^{H} \frac{\partial}{\partial y^{b}}=F_{b k}^{a}(x, y) \frac{\partial}{\partial y^{a}}, \\
& \nabla_{\frac{\partial}{V^{k}}}^{\frac{\partial}{\partial y^{a}} \frac{\delta}{\delta x^{j}}}=C_{j a}^{i}(x, y) \frac{\delta}{\delta x^{i}}, \nabla_{\frac{\partial}{\partial y^{c}}}^{\frac{\partial}{\partial y^{b}}}=C_{b c}^{a}(x, y) \frac{\partial}{\partial y^{a}}
\end{aligned}
$$

where $F_{j k}^{i}(x, y), F_{b k}^{a}(x, y)$ are called coefficients of $h$-connections $\nabla^{H}$ and $C_{b c}^{a}(x, y), C_{j a}^{i}(x, y)$ are called coefficients of $v$-connections $\nabla^{V}$.

The torsion tensor field $T$ of a Finsler-connection is characterised by five Finsler tensor fields:

$$
\left[T\left(X^{H}, Y^{H}\right)\right]^{H},\left[T\left(X^{H}, Y^{H}\right)\right]^{V},\left[T\left(X^{H}, Y^{V}\right)\right]^{H},\left[T\left(X^{H}, Y^{V}\right)\right]^{V}, \quad\left[T\left(X^{V}, Y^{V}\right)\right]^{V}
$$

Proposition 1.2 If the Finsler connection on $V$ is without torsion then we have [3]

$$
T\left(X^{H}, Y^{H}\right)=0, T\left(X^{H}, Y^{V}\right)=0, T\left(X^{V}, Y^{V}\right)=0, \forall X, Y \in T_{u}(V)
$$

## YALINIZ and ÇALIŞKAN/Turk J Math

## 2. Almost contact Finsler structure on vector bundle

Let $\phi$ be an almost contact structure on $V$ given by the tensor field of type $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ with the properties

1. $\phi \cdot \phi=-\mathrm{I}_{n}+\eta^{H} \otimes \xi^{H}+\eta^{V} \otimes \xi^{V}$
2. $\phi \xi^{H}=0, \phi \xi^{V}=0$
3. $\eta^{H}\left(\xi^{H}\right)+\eta^{V}\left(\xi^{V}\right)=1$
4. $\eta^{H}\left(\phi X^{H}\right)=0, \eta^{V}\left(\phi X^{H}\right)=0, \eta^{H}\left(\phi X^{V}\right)=0, \eta^{V}\left(\phi X^{V}\right)=0$,
where $\eta$ is 1 -form and $\xi$ is vector field [2].
Proposition 2.1 If $\phi$ is an almost contact Finsler structure on $V$, there exists a unique decomposition of $\phi$ in the Finsler tensor fields,

$$
\phi=\phi^{1}+\phi^{2}+\phi^{3}+\phi^{4}=\left(\begin{array}{ll}
\phi^{1} & \phi^{2}  \tag{2.2}\\
\phi^{3} & \phi^{4}
\end{array}\right)
$$

where

$$
\begin{align*}
& \phi^{1}(\omega, X)=\phi\left(\omega^{H}, X^{H}\right), \phi^{2}(\omega, X)=\phi\left(\omega^{H}, X^{V}\right)  \tag{2.3}\\
& \phi^{3}(\omega, X)=\phi\left(\omega^{V}, X^{H}\right), \phi^{4}(\omega, X)=\phi\left(\omega^{V}, X^{V}\right) \forall X \in T_{u}(V), \forall \omega \in T_{u}^{*}(V) .
\end{align*}
$$

We can write

$$
\begin{equation*}
\phi\left(X^{H}\right)=\phi^{1}\left(X^{H}\right)=\phi^{3}\left(X^{H}\right), \phi\left(X^{V}\right)=\phi^{2}\left(X^{V}\right)=\phi^{4}\left(X^{V}\right) . \tag{2.4}
\end{equation*}
$$

Let $G$ be the Finsler metric structure on $V$ which is symmetric, positive definite and non-degenerate on $V$. The metric-structure $G$ on $V$ is decomposed as:

$$
\begin{equation*}
G=G^{H}+G^{V} \tag{2.5}
\end{equation*}
$$

where $G^{H}$ is of type $\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right)$, symmetric, positive definite and non-degenerate on $N_{u}$ and $G^{V}$ is of type $\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right)$, symmetric, positive definite and non-degenerate on $V_{u}^{v}$ i.e. for $X, Y \in T_{u}(V)$

$$
\begin{equation*}
G(X, Y)=G^{H}(X, Y)+G^{V}(X, Y) \tag{2.6}
\end{equation*}
$$

where $G^{H}(X, Y)=G\left(X^{H}, Y^{H}\right), G^{V}(X, Y)=G\left(X^{V}, Y^{V}\right) .$.
Now, if the Finsler metric structure $G$ on $V$ satisfies

$$
\begin{align*}
& G(\phi X, \phi Y)=G(X, Y)-\eta(X) \eta(Y), \\
& G^{H}(\phi X, \phi Y)=G^{H}(X, Y)-\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right),  \tag{2.7}\\
& G^{V}(\phi X, \phi Y)=G^{V}(X, Y)-\eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right),
\end{align*}
$$

which is equivalent to

$$
\begin{align*}
& G^{H}(X, \xi)=\eta^{H}(X), G^{V}(X, \xi)=\eta^{V}(X) \\
& G^{H}(\phi X, \phi Y)=-G^{H}\left(\phi^{2} X, Y\right), G^{V}(\phi X, \phi Y)=-G^{V}\left(\phi^{2} X, Y\right), \tag{2.8}
\end{align*}
$$

## YALINIZ and ÇALIŞKAN/Turk J Math

then $(\phi, \eta, \xi, G)$ is called almost contact metrical Finsler structure on $V$ [5]. Now, we define

$$
\begin{equation*}
\Omega(X, Y)=G(X, \phi Y), \Omega\left(X^{H}, Y^{H}\right)=G^{H}(X, \phi Y), \Omega\left(X^{V}, Y^{V}\right)=G^{V}(X, \phi Y) \tag{2.9}
\end{equation*}
$$

and call it the fundamental 2-form.

Proposition 2.2 The fundamental 2-form, defined above, satisfies [5]

$$
\begin{align*}
& \Omega\left(\phi X^{H}, \phi Y^{H}\right)=\Omega\left(X^{H}, Y^{H}\right), \Omega\left(\phi X^{V}, \phi Y^{V}\right)=\Omega\left(X^{V}, Y^{V}\right) \\
& \Omega\left(X^{H}, Y^{H}\right)=-\Omega\left(Y^{H}, X^{H}\right), \Omega\left(X^{V}, Y^{V}\right)=-\Omega\left(Y^{V}, X^{V}\right) \forall X, Y \in T_{u}(V) . \tag{2.10}
\end{align*}
$$

Proposition 2.3 Let $\nabla$ be a Finsler connection on $V$ and $\Omega$ be the fundamental 2-form which satisfies $\Omega(X, Y)=d \eta(X, Y)$ i.e.

$$
\begin{align*}
& \Omega\left(X^{H}, Y^{H}\right)=\left(\nabla_{X}^{H} \eta\right)\left(Y^{H}\right)-\left(\nabla_{Y}^{H} \eta\right)\left(X^{H}\right)+\eta\left(T\left(X^{H}, Y^{H}\right)\right) \\
& \Omega\left(X^{V}, Y^{H}\right)=\left(\nabla_{X}^{V} \eta\right)\left(Y^{H}\right)-\left(\nabla_{Y}^{H} \eta\right)\left(X^{V}\right)+\eta\left(T\left(X^{V}, Y^{H}\right)\right)  \tag{2.11}\\
& \Omega\left(X^{V}, Y^{V}\right)=\left(\nabla_{X}^{V} \eta\right)\left(Y^{V}\right)-\left(\nabla_{Y}^{V} \eta\right)\left(X^{V}\right)+\eta\left(T\left(X^{V}, Y^{V}\right)\right)
\end{align*}
$$

Then, the almost contact metrical Finsler structure is called almost Sasakian Finsler structure and the Finsler connection $\nabla$ satisfying (2.11) is called almost Sasakian Finsler connection on V [5].

Theorem 2.1 Let $\Omega$ be the fundamental 2-form and almost Sasakian Finsler connection $\nabla$ on $V$ is torsion free. Then [5]

$$
\begin{align*}
& \Omega\left(X^{H}, Y^{H}\right)=\left(\nabla_{X}^{H} \eta\right)\left(Y^{H}\right)-\left(\nabla_{Y}^{H} \eta\right)\left(X^{H}\right), \\
& \Omega\left(X^{V}, Y^{H}\right)=\left(\nabla_{X}^{V} \eta\right)\left(Y^{H}\right)-\left(\nabla_{Y}^{H} \eta\right)\left(X^{V}\right),  \tag{2.12}\\
& \Omega\left(X^{V}, Y^{V}\right)=\left(\nabla_{X}^{V} \eta\right)\left(Y^{V}\right)-\left(\nabla_{Y}^{V} \eta\right)\left(X^{V}\right), \forall X, Y \in T_{u}(V) .
\end{align*}
$$

Proof From Proposition 1.2 and equations in (2.11), we have (2.12).

Definition 2.1 An almost Sasakian Finsler structure on $V$ is said to be a Sasakian Finsler structure if the 1 -form $\eta$ is a killing vector field, i.e.

$$
\begin{align*}
& \left(\nabla_{X}^{H} \eta\right)\left(Y^{H}\right)+\left(\nabla_{Y}^{H} \eta\right)\left(X^{H}\right)=0,\left(\nabla_{X}^{V} \eta\right)\left(Y^{H}\right)+\left(\nabla_{Y}^{H} \eta\right)\left(X^{V}\right)=0,  \tag{2.13}\\
& \left(\nabla_{X}^{V} \eta\right)\left(Y^{V}\right)+\left(\nabla_{Y}^{V} \eta\right)\left(X^{V}\right)=0 \forall X, Y \in T_{u}(V) .
\end{align*}
$$

The Finsler connection $\nabla$ on $V$ is torsion free, which is called Sasakian Finsler connection [5].

Theorem 2.2 Let $\nabla$ be the torsion free Finsler connection together with a Sasakian Finsler structure on $V$ and $\Omega$ is to be the fundamental 2-form; then

$$
\begin{align*}
& \Omega\left(X^{H}, Y^{H}\right)=2\left(\nabla_{X}^{H} \eta\right)\left(Y^{H}\right)=-2\left(\nabla_{Y}^{H} \eta\right)\left(X^{H}\right) \\
& \Omega\left(X^{H}, Y^{V}\right)=2\left(\nabla_{X}^{H} \eta\right)\left(Y^{V}\right)=-2\left(\nabla_{Y}^{V} \eta\right)\left(X^{H}\right),  \tag{2.14}\\
& \Omega\left(X^{V}, Y^{V}\right)=2\left(\nabla_{X}^{V} \eta\right)\left(Y^{V}\right)=-2\left(\nabla_{Y}^{V} \eta\right)\left(X^{V}\right), \forall X, Y \in T_{u}(V)
\end{align*}
$$

Proof From (2.12) and (2.13) we have (2.14) [5].

Example 2.1 Let $V(M)=\{V, \pi, M\}$ be a vector bundle with the total space $V=R^{10}$ is a 10-dimensional $C^{\infty}$-manifold and the base space $M=R^{5}$ is a 5-dimensional $C^{\infty}$-manifold. Let $x^{i}, 1 \leq i \leq 5$ and $y^{a}, 1 \leq a \leq 5$ be the coordinates of $u=(x, y) \in V$, that is $u=\left(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}, y^{1}, y^{2}, y^{3}, y^{4}, y^{5}\right) \in V$. The local base of $N_{u}$ is $\left(\frac{\delta}{\delta x^{1}}, \frac{\delta}{\delta x^{2}}, \frac{\delta}{\delta x^{3}}, \frac{\delta}{\delta x^{4}}, \frac{\delta}{\delta x^{5}}\right)$ and the local base of $V_{u}^{v}$ is $\left(\frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial y^{2}}, \frac{\partial}{\partial y^{3}}, \frac{\partial}{\partial y^{4}}, \frac{\partial}{\partial y^{5}}\right)$ such that $T_{u}(V)=N_{u} \oplus V_{u}^{v}$. Then

$$
\begin{aligned}
& X^{H}=X^{1} \frac{\delta}{\delta x^{1}}+X^{2} \frac{\delta}{\delta x^{2}}+X^{3} \frac{\delta}{\delta x^{3}}+X^{4} \frac{\delta}{\delta x^{4}}+X^{5} \frac{\delta}{\delta x^{5}} \\
& X^{V}=\tilde{X}^{1} \frac{\partial}{\partial y^{1}}+\tilde{X}^{2} \frac{\partial}{\partial y^{2}}+\tilde{X}^{3} \frac{\partial}{\partial y^{3}}+\tilde{X}^{4} \frac{\partial}{\partial y^{4}}+\tilde{X}^{5} \frac{\partial}{\partial y^{5}} \ni X^{H} \in N_{u}, X^{V} \in V_{u}^{v}
\end{aligned}
$$

Let $\eta$ be a 1-form, $\eta=\eta_{i} d x^{i}+\tilde{\eta}_{a} \delta y^{a}$ then $\eta^{H}=\eta_{1} d x^{1}+\eta_{2} d x^{2}+\eta_{3} d x^{3}+\eta_{4} d x^{4}+\eta_{5} d x^{5}$ and $\eta^{V}=\tilde{\eta}_{1} \delta y^{1}+\tilde{\eta}_{2} \delta y^{2}+\tilde{\eta}_{3} \delta y^{3}+\tilde{\eta}_{4} \delta y^{4}+\tilde{\eta}_{5} \delta y^{5}$ where $\eta=\eta^{H}+\eta^{V}$ and $\eta^{H}\left(X^{V}\right)=0, \eta^{V}\left(X^{H}\right)=0$.

We put $\eta^{H}=\frac{1}{3}\left(d x^{5}-x^{3} d x^{1}-x^{4} d x^{2}\right)$ and $\eta^{V}=\frac{1}{3}\left(\delta y^{5}-y^{3} \delta y^{1}-y^{4} \delta y^{2}\right)$.
The structure vector field $\xi$ is given by $\xi=3\left(\frac{\delta}{\delta x^{5}}+\frac{\partial}{\partial y^{5}}\right)$ and $\xi$ is decomposed as $\xi^{H}=3 \frac{\delta}{\delta x^{5}}$ and $\xi^{V}=3 \frac{\partial}{\partial y^{5}}$.

The tensor field $\phi^{H}$ of type $(1,1)$ and $\phi^{V}$ of type $(1,1)$ by a matrix form is given by

$$
\phi^{H}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
-x^{4} & x^{3} & 0 & 0 & 0
\end{array}\right], \phi^{V}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
-y^{4} & y^{3} & 0 & 0 & 0
\end{array}\right]
$$

We can see that $\eta^{H}\left(\xi^{H}\right)=1, \phi^{H}\left(\xi^{H}\right)=0, \eta^{V}\left(\xi^{V}\right)=1, \phi^{V}\left(\xi^{V}\right)=0, \eta^{H}\left(\xi^{V}\right)=0, \eta^{V}\left(\xi^{H}\right)=0$, $\left(\phi^{H}\right)^{2} X^{H}=-X^{H}+\eta^{H}\left(X^{H}\right) \xi^{H},\left(\phi^{V}\right)^{2} X^{V}=-X^{V}+\eta^{V}\left(X^{V}\right) \xi^{V}$ and hence $(\phi, \xi, \eta)$ is almost contact Finsler structure on $R^{10}$.

## 3. Integrability tensor field of the almost contact Finsler structure

The integrability tensor field of the almost contact Finsler structure on $V$ is given by [4] $\tilde{N}(X, Y)=[\phi X, \phi Y]-$ $\phi[\phi X, Y]-\phi[X, \phi Y]+\phi^{2}[X, Y]+d \eta^{H}(X, Y) \xi^{H}+d \eta^{V}(X, Y) \xi^{V}, \forall X, Y \in T_{u}(V)$.

We define four tensors $N^{(1)}, N^{(2)}, N^{(3)}$ and $N^{(4)}$, respectively by $\forall X^{H}, Y^{H}, \xi^{H} \in N_{u}$ and $\forall X^{V}, Y^{V}, \xi^{V} \in$ $V_{u}^{v}$

$$
\begin{gather*}
N^{(1)}\left(X^{H}, Y^{H}\right)=N_{\phi}\left(X^{H}, Y^{H}\right)+d \eta^{H}\left(X^{H}, Y^{H}\right) \xi^{H},  \tag{3.1a}\\
N^{(2)}\left(X^{H}, Y^{H}\right)=\left(L_{\phi X}^{H} \eta^{H}\right)\left(Y^{H}\right)-\left(L_{\phi Y}^{H} \eta^{H}\right)\left(X^{H}\right),  \tag{3.1b}\\
N^{(3)}\left(X^{H}\right)=\left(L_{\xi}^{H} \phi\right)\left(X^{H}\right), N^{(4)}\left(X^{H}\right)=\left(L_{\xi}^{H} \eta^{H}\right)\left(X^{H}\right), \tag{3.2a}
\end{gather*}
$$

$$
\begin{gather*}
N^{(1)}\left(X^{V}, Y^{V}\right)=N_{\phi}\left(X^{V}, Y^{V}\right)+d \eta^{V}\left(X^{V}, Y^{V}\right) \xi^{V},  \tag{3.2b}\\
N^{(2)}\left(X^{V}, Y^{V}\right)=\left(L_{\phi X}^{V} \eta^{V}\right)\left(Y^{V}\right)-\left(L_{\phi Y}^{V} \eta^{V}\right)\left(X^{V}\right),  \tag{3.2c}\\
N^{(3)}\left(X^{V}\right)=\left(L_{\xi}^{V} \phi\right)\left(X^{V}\right), N^{(4)}\left(X^{V}\right)=\left(L_{\xi}^{V} \eta^{V}\right)\left(X^{V}\right),  \tag{3.3a}\\
N^{(1)}\left(X^{V}, Y^{H}\right)=N_{\phi}\left(X^{V}, Y^{H}\right)+d \eta^{V}\left(X^{V}, Y^{H}\right) \xi^{V}+d \eta^{H}\left(X^{V}, Y^{H}\right) \xi^{H},  \tag{3.3b}\\
N^{(2)}\left(X^{V}, Y^{H}\right)=\left(L_{\phi X}^{V} \eta^{H}\right)\left(Y^{H}\right)+\left(L_{\phi X}^{V} \eta^{V}\right)\left(Y^{H}\right)-\left(L_{\phi Y}^{H} \eta^{H}\right)\left(X^{V}\right)-\left(L_{\phi Y}^{H} \eta^{V}\right)\left(X^{V}\right),  \tag{3.3c}\\
N^{(3)}\left(X^{V}\right)=\left(L_{\xi}^{H} \phi\right)\left(X^{V}\right), N^{(4)}\left(X^{V}\right)=\left(L_{\xi}^{H} \eta^{V}\right)\left(X^{V}\right),  \tag{3.3d}\\
N^{(3)}\left(Y^{H}\right)=\left(L_{\xi}^{V} \phi\right)\left(Y^{H}\right), N^{(4)}\left(Y^{H}\right)=\left(L_{\xi}^{V} \eta^{H}\right)\left(Y^{H}\right) . \tag{3.3e}
\end{gather*}
$$

It is clear that the almost contact Finsler structure $(\phi, \xi, \eta)$ is normal if and only if these four tensors vanish.

Lemma 3.1 If $N^{(1)}=0$, then $N^{(2)}=N^{(3)}=N^{(4)}=0$.
Proof If $N^{(1)}=0$, then for $X^{H}, Y^{H}, \xi^{H} \in N_{u}$, from (3.1.a) we have

$$
\begin{equation*}
\left[\xi^{H}, X^{H}\right]+\phi\left[\xi^{H}, \phi X^{H}\right]-\xi^{H}\left(\eta^{H}\left(X^{H}\right)\right) \xi^{H}=0 . \tag{3.4}
\end{equation*}
$$

Applying $\eta^{H}$ to (3.4), we see that

$$
N^{(4)}\left(X^{H}\right)=\left(L_{\xi}^{H} \eta^{H}\right)\left(X^{H}\right)=\xi^{H}\left(\eta^{H}\left(X^{H}\right)\right)-\eta^{H}\left[\xi^{H}, X^{H}\right]=0 .
$$

From this equation, we also have

$$
\begin{equation*}
\eta^{H}\left[\xi^{H}, \phi X^{H}\right]=0 . \tag{3.5}
\end{equation*}
$$

On the other hand, applying $\phi$ to (3.4), we get

$$
\begin{equation*}
N^{(3)}\left(X^{H}\right)=\left(L_{\xi}^{H} \phi\right) X^{H}=\phi\left[X^{H}, \xi^{H}\right]-\left[\phi X^{H}, \xi^{H}\right]=0 . \tag{3.6}
\end{equation*}
$$

Finally, from $N^{(1)}=0$, by using (3.6), we derive

$$
\begin{align*}
0 & =-\left[\phi X^{H}, Y^{H}\right]-\left[X^{H}, \phi Y^{H}\right]+\phi\left[X^{H}, Y^{H}\right]-\phi\left[\phi X^{H}, \phi Y^{H}\right] \\
& -\phi Y^{H}\left(\eta^{H}\left(X^{H}\right) \xi^{H}\right)+\phi\left(Y^{H}\left(\eta^{H}\left(X^{H}\right)\right) \xi^{H}\right)+\phi X^{H}\left(\eta^{H}\left(Y^{H}\right)\right) \xi^{H} . \tag{3.7}
\end{align*}
$$

Applying $\eta^{H}$ to (3.7), we get $N^{(2)}\left(X^{H}, Y^{H}\right)=0$. Similarly, $\forall X^{V}, Y^{V}, \xi^{V} \in V_{u}^{v}$, if $N^{(1)}\left(X^{V}, Y^{V}\right)=0$, then $N^{(2)}\left(X^{V}, Y^{V}\right)=0, N^{(3)}\left(X^{V}\right)=0, N^{(4)}\left(X^{V}\right)=0$.

If $N^{(1)}\left(X^{V}, Y^{H}\right)=0$, from (3.3.a) we obtain

$$
\begin{equation*}
N^{(1)}\left(X^{V}, \xi^{H}\right)=\left[\xi^{H}, X^{V}\right]-\phi\left[\phi X^{V}, \xi^{H}\right]-\xi^{H}\left(\eta^{V}\left(X^{V}\right)\right) \xi^{V}=0 . \tag{3.8}
\end{equation*}
$$

Applying $\eta^{V}$ and $\eta^{H}$ to (3.8), we get (3.9):

$$
\begin{equation*}
\eta^{V}\left[\xi^{H}, X^{V}\right]=\xi^{H}\left(\eta^{V}\left(X^{V}\right)\right), \eta^{H}\left[\xi^{H}, X^{V}\right]=0 . \tag{3.9}
\end{equation*}
$$

Using (3.9) in (3.3.c), we obtain

$$
N^{(4)}\left(X^{V}\right)=\left(L_{\xi}^{H} \eta^{V}\right)\left(X^{V}\right)=\xi^{H}\left(\eta^{V}\left(X^{V}\right)\right)-\eta^{V}\left[\xi^{H}, X^{V}\right]=0
$$

Applying $\phi$ to (3.8), we get

$$
N^{(3)}\left(X^{V}\right)=\left(L_{\xi}^{H} \phi\right) X^{V}=\left[\xi^{H}, \phi X^{V}\right]+\phi\left[X^{V}, \xi^{H}\right]=0
$$

On the other hand, replacing $X$ by $\xi$ in (3.3.a), we obtain

$$
\begin{equation*}
\left[Y^{H}, \xi^{V}\right]-\phi\left[\xi^{V}, \phi Y^{H}\right]+\xi^{V}\left(\eta^{H}\left(Y^{H}\right)\right) \xi^{H}=0 \tag{3.10}
\end{equation*}
$$

Applying $\eta^{H}$ and $\eta^{V}$ to (3.10), we get

$$
\begin{equation*}
\eta^{H}\left[\xi^{V}, Y^{H}\right]=\xi^{V}\left(\eta^{H}\left(Y^{H}\right)\right), \eta^{V}\left[\xi^{V}, Y^{H}\right]=0 \tag{3.11}
\end{equation*}
$$

Using (3.11) in (3.3.d), we obtain

$$
N^{(4)}\left(Y^{H}\right)=\left(L_{\xi}^{V} \eta^{H}\right)\left(Y^{H}\right)=\xi^{V}\left(\eta^{H}\left(Y^{H}\right)\right)-\eta^{H}\left[\xi^{V}, Y^{H}\right]=0
$$

Applying $\phi$ to (3.10) and by using (3.11), we obtain

$$
N^{(3)}\left(Y^{H}\right)=\left(L_{\xi}^{V} \phi\right)\left(Y^{H}\right)=\left[\xi^{V}, \phi Y^{H}\right]+\phi\left[Y^{H}, \xi^{V}\right]=0
$$

By using (3.11), from (3.3.a), we calculate

$$
\begin{align*}
0 & =N_{\phi}\left(\phi X^{V}, Y^{H}\right)+d \eta^{V}\left(\phi X^{V}, Y^{H}\right) \xi^{V}+d \eta^{H}\left(\phi X^{V}, Y^{H}\right) \xi^{H} \\
& =\left[Y^{H}, \phi X^{V}\right]+\left[\phi Y^{H}, X^{V}\right]+\phi\left[X^{V}, Y^{H}\right]-\phi\left[\phi X^{V}, \phi Y^{H}\right]-\phi Y^{H}\left(\eta^{V}\left(X^{V}\right)\right) \xi^{V}+\phi X^{V}\left(\eta^{H}\left(Y^{H}\right)\right) \xi^{H} \tag{3.12}
\end{align*}
$$

Applying $\eta^{V}$ to (3.12), from (3.3.b), we obtain

$$
\begin{aligned}
0 & =N^{(2)}\left(X^{V}, Y^{H}\right)=\phi X^{V}\left(\eta^{H}\left(Y^{H}\right)\right)-\phi Y^{H}\left(\eta^{V}\left(X^{V}\right)\right)-\eta^{V}\left[\phi X^{V}, Y^{H}\right]+\eta^{H}\left[\phi Y^{H}, X^{V}\right] \\
& +\eta^{V}\left[\phi Y^{H}, X^{V}\right]-\eta^{H}\left[\phi X^{V}, Y^{H}\right] .
\end{aligned}
$$

Proposition 3.1 The almost contact Finsler structure on $V$ is normal if and only if

$$
\begin{equation*}
N_{\phi}+d \eta^{H} \otimes \xi^{H}+d \eta^{V} \otimes \xi^{V}=0 \tag{3.13}
\end{equation*}
$$

Let $(\phi, \eta, \xi, G)$ be almost metrical Finsler structure on $V$ with contact metric. If the structure vector field $\xi$ is a Killing vector field with respect to $G$, the contact structure on $V$ is called a $K$-contact Finsler structure and $V$ is called a $K$-contact Finsler manifold.

Lemma 3.2 Let $(\phi, \eta, \xi, G)$ be a contact metrical Finsler structure on $V$. Then $N^{(2)}$ and $N^{(4)}$ vanish. Moreover, $N^{(3)}$ vanishes if and only if $\xi$ is a Killing vector field with respect to $G$.

Proof We have
$d \eta^{H}\left(\phi X^{H}, \phi Y^{H}\right)=\Omega\left(\phi X^{H}, \phi Y^{H}\right)=G\left(\phi X^{H}, \phi^{2} Y^{H}\right)=-G\left(X^{H}, \phi^{3} Y^{H}\right)=G\left(X^{H}, \phi Y^{H}\right)=d \eta^{H}\left(X^{H}, Y^{H}\right)$ from which $d \eta^{H}\left(\phi X^{H}, Y^{H}\right)+d \eta^{H}\left(X^{H}, \phi Y^{H}\right)=0$.This is equivalent to $N^{(2)}\left(X^{H}, Y^{H}\right)=0$.

On the other hand, we have $0=G\left(X^{H}, \phi \xi^{H}\right)=d \eta^{H}\left(X^{H}, \xi^{H}\right)=X^{H} \eta^{H}\left(\xi^{H}\right)-\xi^{H} \eta^{H}\left(X^{H}\right)-$ $\eta^{H}\left[X^{H}, \xi^{H}\right]$.Thus we obtain $\xi^{H} \eta^{H}\left(X^{H}\right)-\eta^{H}\left(\left[\xi^{H}, X^{H}\right]\right)=0$. Therefore, we have $L_{\xi}^{H} \eta^{H}=0$ hence $N^{(4)}\left(X^{H}\right)=0$.

We mention that $\left(L_{\xi}^{H} G\right)\left(X^{H}, \xi^{H}\right)=\xi^{H}\left(\eta^{H}\left(X^{H}\right)\right)-\eta^{H}\left[\xi^{H}, X^{H}\right]=\left(L_{\xi}^{H} \eta^{H}\right) X^{H}=0$. Simply, it is clear that $L_{\xi}^{H} d \eta^{H}=0$ and consequently, $\left(L_{\xi}^{H} d \eta^{H}\right)\left(X^{H}, Y^{H}\right)=\left(L_{\xi}^{H} \Omega\right)\left(X^{H}, Y^{H}\right)=0$ from which

$$
\begin{aligned}
0 & =\xi^{H} G\left(X^{H}, \phi Y^{H}\right)-G\left(\left[\xi^{H}, X^{H}\right], \phi Y^{H}\right)-G\left(X^{H}, \phi\left[\xi^{H}, Y^{H}\right]\right) \\
& =\left(L_{\xi}^{H} G\right)\left(X^{H}, \phi Y^{H}\right)+G\left(X^{H},\left(L_{\xi}^{H} \phi\right) Y^{H}\right)=\left(L_{\xi}^{H} G\right)\left(X^{H}, \phi Y^{H}\right)+G\left(X^{H}, N^{(3)}\left(Y^{H}\right)\right) .
\end{aligned}
$$

Thus $\xi^{H}$ is a Killing vector field if and only if $N^{(3)}\left(Y^{H}\right)=0$. Similarly, we consider that $N^{(2)}\left(X^{V}, Y^{V}\right)=$ 0 and $N^{(4)}\left(X^{V}\right)=0$. Moreover, $N^{(3)}\left(X^{V}\right)=0$ if and only if $\xi^{V}$ is a Killing vector field with respect to $G^{V}$.

Lemma 3.3 For an almost contact metric Finsler structure $(\phi, \eta, \xi, G)$ on $V$, we have

$$
\begin{align*}
& 2 G\left(\left(\nabla_{X} \phi\right) Y, Z\right)=d \Omega(X, \phi Y, \phi Z)-d \Omega(X, Y, Z)+G\left(N^{(1)}(Y, Z), \phi X\right) \\
& +N^{(2)}(Y, Z) \eta(X)+d \eta(\phi Y, X) \eta(Z)-d \eta(\phi Z, X) \eta(Y) . \tag{3.14}
\end{align*}
$$

Proof The Finsler connection $\nabla$ with respect to $G$ is given by

$$
\begin{align*}
& 2 G^{H}\left(\nabla_{X}^{H} Y^{H}, Z^{H}\right)=X^{H} G^{H}\left(Y^{H}, Z^{H}\right)+Y^{H} G^{H}\left(X^{H}, Z^{H}\right)-Z^{H} G\left(X^{H}, Y^{H}\right)+G^{H}\left(\left[X^{H}, Y^{H}\right], Z^{H}\right) \\
& +G^{H}\left(\left[Z^{H}, X^{H}\right], Y^{H}\right)-G^{H}\left(\left[Y^{H}, Z^{H}\right], X^{H}\right) . \\
& 2 G^{V}\left(\nabla_{X}^{V} Y^{V}, Z^{V}\right)=X^{V} G^{V}\left(Y^{V}, Z^{V}\right)+Y^{V} G^{V}\left(X^{V}, Z^{V}\right)-Z^{V} G\left(X^{V}, Y^{V}\right)+G^{V}\left(\left[X^{V}, Y^{V}\right], Z^{V}\right)  \tag{3.15}\\
& +G^{V}\left(\left[Z^{V}, X^{V}\right], Y^{V}\right)-G^{V}\left(\left[Y^{V}, Z^{V}\right], X^{V}\right) \\
& 2 G^{H}\left(\nabla_{X}^{V} Y^{H}, Z^{H}\right)=X^{V} G^{H}\left(Y^{H}, Z^{H}\right)+G^{H}\left(\left[X^{V}, Y^{H}\right]^{H}, Z^{H}\right)+G^{H}\left(\left[Z^{H}, X^{V}\right]^{H}, Y^{H}\right)  \tag{3.16}\\
& 2 G^{V}\left(\nabla_{X}^{H} Y^{V}, Z^{V}\right)=X^{H} G^{V}\left(Y^{V}, Z^{V}\right)+G^{V}\left(\left[X^{H}, Y^{V}\right]^{V}, Z^{V}\right)+G^{V}\left(\left[Z^{V}, X^{H}\right]^{V}, Y^{V}\right) . \tag{3.18}
\end{align*}
$$

Furthermore, we have

$$
\begin{align*}
& d \Omega\left(X^{H}, Y^{H}, Z^{H}\right)=X^{H} \Omega\left(Y^{H}, Z^{H}\right)+Y^{H} \Omega\left(Z^{H}, X^{H}\right)+Z^{H} \Omega\left(X^{H}, Y^{H}\right) \\
& -\Omega\left(\left[X^{H}, Y^{H}\right], Z^{H}\right)-\Omega\left(\left[Z^{H}, X^{H}\right], Y^{H}\right)-\Omega\left(\left[Y^{H}, Z^{H}\right], X^{H}\right)  \tag{3.19}\\
& d \Omega\left(X^{V}, Y^{V}, Z^{V}\right)=X^{V} \Omega\left(Y^{V}, Z^{V}\right)+Y^{V} \Omega\left(Z^{V}, X^{V}\right)+Z^{V} \Omega\left(X^{V}, Y^{V}\right) \\
& -\Omega\left(\left[X^{V}, Y^{V}\right], Z^{V}\right)-\Omega\left(\left[Z^{V}, X^{V}\right], Y^{V}\right)-\Omega\left(\left[Y^{V}, Z^{V}\right], X^{V}\right), \tag{3.20}
\end{align*}
$$

$$
\begin{align*}
& d \Omega\left(X^{V}, Y^{H}, Z^{H}\right)=X^{V} \Omega\left(Y^{H}, Z^{H}\right)-\Omega\left(\left[X^{V}, Y^{H}\right]^{H}, Z^{H}\right)-\Omega\left(\left[Z^{H}, X^{V}\right]^{H}, Y^{H}\right)  \tag{3.21}\\
& d \Omega\left(X^{V}, Y^{V}, Z^{H}\right)=Z^{H} \Omega\left(X^{V}, Y^{V}\right)-\Omega\left(\left[Z^{H}, X^{V}\right]^{V}, Y^{V}\right)-\Omega\left(\left[Y^{V}, Z^{H}\right]^{V}, X^{V}\right)  \tag{3.22}\\
& d \Omega\left(X^{H}, Y^{V}, Z^{H}\right)=Y^{V} \Omega\left(Z^{H}, X^{H}\right)-\Omega\left(\left[X^{H}, Y^{V}\right]^{H}, Z^{H}\right)-\Omega\left(\left[Y^{V}, Z^{H}\right]^{H}, X^{H}\right)  \tag{3.23}\\
& d \Omega\left(X^{H}, Y^{V}, Z^{V}\right)=X^{H} \Omega\left(Y^{V}, Z^{V}\right)-\Omega\left(\left[X^{H}, Y^{V}\right]^{V}, Z^{V}\right)-\Omega\left(\left[Z^{V}, X^{H}\right]^{V}, Y^{V}\right)  \tag{3.24}\\
& d \Omega\left(X^{V}, Y^{H}, Z^{V}\right)=Y^{H} \Omega\left(Z^{V}, X^{V}\right)-\Omega\left(\left[X^{V}, Y^{H}\right]^{V}, Z^{V}\right)-\Omega\left(\left[Y^{H}, Z^{V}\right]^{V}, X^{V}\right)  \tag{3.25}\\
& d \Omega\left(X^{H}, Y^{H}, Z^{V}\right)=Z^{V} \Omega\left(X^{H}, Y^{H}\right)-\Omega\left(\left[Z^{V}, X^{H}\right]^{H}, Y^{H}\right)-\Omega\left(\left[Y^{H}, Z^{V}\right]^{H}, X^{H}\right) \tag{3.26}
\end{align*}
$$

By using (2.9), from (3.15) we get

$$
\begin{aligned}
& 2 G^{H}\left(\left(\nabla_{X}^{H} \phi\right) Y^{H}, Z^{H}\right)=\phi Y^{H} G\left(X^{H}, Z^{H}\right)-Z^{H} \Omega\left(X^{H}, Y^{H}\right)+G^{H}\left(\left[X^{H}, \phi Y^{H}\right], Z^{H}\right) \\
& +\Omega\left(\left[Z^{H}, X^{H}\right], Y^{H}\right)-G^{H}\left(\left[\phi Y^{H}, Z^{H}\right], X^{H}\right)+Y^{H} \Omega\left(X^{H}, Z^{H}\right)-\phi Z^{H} G\left(X^{H}, Y^{H}\right) \\
& +\Omega\left(\left[X^{H}, Y^{H}\right], Z^{H}\right) G\left(\left[\phi Z^{H}, X^{H}\right], Y^{H}\right)-G^{H}\left(\left[Y^{H}, \phi Z^{H}\right], X^{H}\right) .
\end{aligned}
$$

Also from (3.19), we calculate

$$
\begin{align*}
& d \Omega\left(X^{H}, \phi Y^{H}, \phi Z^{H}\right)=X^{H} \Omega\left(Y^{H}, Z^{H}\right)+\phi Y^{H} G\left(Z^{H}, X^{H}\right)-\phi Y^{H}\left(\eta^{H}\left(Z^{H}\right) \eta^{H}\left(X^{H}\right)\right) \\
& -\phi Z^{H} G\left(X^{H}, Y^{H}\right)+\phi Z^{H}\left(\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right)\right)+G\left(\left[X^{H}, \phi Y^{H}\right], Z^{H}\right)  \tag{3.27}\\
& -\eta^{H}\left[X^{H}, \phi Y^{H}\right] \eta^{H}\left(Z^{H}\right)+G\left(\left[\phi Z^{H}, X^{H}\right], Y^{H}\right)-\eta^{H}\left[\phi Z^{H}, X^{H}\right] \eta^{H}\left(Y^{H}\right) \\
& -\Omega\left(\left[\phi Y^{H}, \phi Z^{H}\right], X^{H}\right) .
\end{align*}
$$

Also from (3.1.a) by using (2.9), we obtain

$$
\begin{align*}
& G\left(N^{(1)}\left(Y^{H}, Z^{H}\right), \phi X^{H}\right)=-\Omega\left(\left[Y^{H}, Z^{H}\right], X^{H}\right)+\Omega\left(\left[\phi Y^{H}, \phi Z^{H}\right], X^{H}\right)-G\left(\left[\phi Y^{H}, Z^{H}\right], X^{H}\right) \\
& \quad+\eta^{H}\left[\phi Y^{H}, Z^{H}\right] \eta^{H}\left(X^{H}\right)-G\left(\left[Y^{H}, \phi Z^{H}\right], X^{H}\right)+\eta^{H}\left[Y^{H}, \phi Z^{H}\right] \eta^{H}\left(X^{H}\right) . \tag{3.28}
\end{align*}
$$

From (3.1.b), we have

$$
\begin{align*}
& N^{(2)}\left(Y^{H}, Z^{H}\right) \eta^{H}\left(X^{H}\right)=\phi Y^{H}\left(\eta^{H}\left(Y^{H}\right)\right) \eta^{H}\left(X^{H}\right)-\phi Z^{H}\left(\eta^{H}\left(Y^{H}\right)\right) \eta^{H}\left(X^{H}\right) \\
& -\eta^{H}\left[\phi Y^{H}, Z^{H}\right] \eta^{H}\left(X^{H}\right)-\eta^{H}\left[Y^{H}, \phi Z^{H}\right] \eta^{H}\left(X^{H}\right) \tag{3.29}
\end{align*}
$$

By using (3.27), (3.28) and (3.29), we have the equation.
Similarly by using (3.2.a), (3.2.b), (2.9), (3.16) and (3.20), we get

$$
\begin{aligned}
& 2 G\left(\left(\nabla_{X}^{V} \phi\right) Y^{V}, Z^{V}\right)=d \Omega\left(X^{V}, \phi Y^{V}, \phi Z^{V}\right)-d \Omega\left(X^{V}, Y^{V}, Z^{V}\right)+G\left(N^{(1)}\left(Y^{V}, Z^{V}\right), \phi X^{V}\right) \\
& +N^{(2)}\left(Y^{V}, Z^{V}\right) \eta^{V}\left(X^{V}\right)+d \eta^{V}\left(\phi Y^{V}, X^{V}\right) \eta^{V}\left(Z^{V}\right)-d \eta^{V}\left(\phi Z^{V}, X^{V}\right) \eta^{V}\left(Y^{V}\right) .
\end{aligned}
$$

By using (2.9), (3.1.a), (3.1.b), (3.17) and (3.21), we calculate

$$
\begin{aligned}
& d \Omega\left(X^{V}, \phi Y^{H}, \phi Z^{H}\right)-\Omega\left(X^{V}, Y^{H}, Z^{H}\right)+d \eta^{H}\left(\phi Y^{H}, X^{V}\right) \eta^{H}\left(Z^{H}\right)-d \eta^{H}\left(\phi Z^{H}, X^{V}\right) \eta^{H}\left(Y^{H}\right) \\
& =G^{H}\left(\left[X^{V}, \phi Y^{H}\right]^{H}, Z^{H}\right)+G^{H}\left(\left[\phi Z^{H}, X^{V}\right]^{H}, Y^{H}\right)+\Omega\left(\left[X^{V}, Y^{H}\right]^{H}, Z^{H}\right)+\Omega\left(\left[Z^{H}, X^{V}\right]^{H}, Y^{H}\right) \\
& =2 G\left(\left(\nabla_{X}^{V} \phi\right) Y^{H}, Z^{H}\right)
\end{aligned}
$$

By using (2.9) and (3.18), (3.24), (3.2.a) and (3.2.b), we obtain

$$
\begin{aligned}
& d \Omega\left(X^{H}, \phi Y^{V}, \phi Z^{V}\right)-d \Omega\left(X^{H}, Y^{V}, Z^{V}\right)+G^{V}\left(N^{(1)}\left(Y^{V}, Z^{V}\right), \phi X^{H}\right) \\
& +N^{(2)}\left(Y^{V}, Z^{V}\right) \eta^{V}\left(X^{H}\right)+d \eta^{V}\left(\phi Y^{V}, X^{H}\right) \eta^{V}\left(Z^{V}\right)-d \eta^{V}\left(\phi Z^{V}, X^{H}\right) \eta^{V}\left(Y^{V}\right) \\
& +d \eta^{H}\left(\phi Y^{V}, X^{H}\right) \eta^{H}\left(Z^{V}\right)-d \eta^{H}\left(\phi Z^{V}, X^{H}\right) \eta^{H}\left(Y^{V}\right) \\
& =G\left(\left[X^{H}, \phi Y^{V}\right]^{V}, Z^{V}\right)-\eta^{V}\left(Z^{V}\right) \eta^{V}\left[X^{H}, \phi Y^{V}\right]^{V}+G\left(\left[\phi Z^{V}, X^{H}\right]^{V}, Y^{V}\right) \\
& \quad-\eta^{V}\left(Y^{V}\right) \eta^{V}\left[\phi Z^{V}, X^{H}\right]^{V}+\Omega\left(\left[X^{H}, Y^{V}\right]^{V}, Z^{V}\right)+\Omega\left(\left[Z^{V}, X^{H}\right]^{V}, Y^{V}\right) \\
& -\eta^{V}\left[\phi Y^{V}, X^{H}\right]^{V} \eta^{V}\left(Z^{V}\right)+\eta^{V}\left[\phi Z^{V}, X^{H}\right]^{V} \eta^{V}\left(Y^{V}\right) \\
& =2 G^{V}\left(\left(\nabla_{X}^{H} \phi\right) Y^{V}, Z^{V}\right) .
\end{aligned}
$$

Lemma 3.4 For a contact metric Finsler structure $(\phi, \eta, \xi, G)$ of $V$ with $\Omega=d \eta$ and $N^{(2)}=0$, we get $2 G\left(\left(\nabla_{X} \phi\right) Y, Z\right)=G\left(N^{(1)}(Y, Z), \phi X\right)+d \eta(\phi Y, X) \eta(Z)-d \eta(\phi Z, X) \eta(Y)$. Especially we have $\nabla_{\xi} \phi=0$. Proof The first equation is trivial by the assumption. We prove that $\nabla_{\xi} \phi=0$.

From $N^{(2)}=0$ we have $d \eta^{H}\left(X^{H}, \xi^{H}\right)=0$ and $d \eta^{V}\left(X^{V}, \xi^{V}\right)=0$. Thus the first equation implies that $\nabla_{\xi}^{H} \phi=0$ and $\nabla_{\xi}^{V} \phi=0$.

Proposition 3.2 Let $(\phi, \eta, \xi, G)$ be a contact metrical Finsler structure on $V$. Then $(\phi, \eta, \xi, G)$ is a $K$ contact Finsler structure if and only if $N^{(3)}$ vanishes.

Proposition 3.3 Let $(\phi, \eta, \xi, G)$ be contact metrical Finsler structure on $V$. Then $(\phi, \eta, \xi, G)$ is a $K$-contact structure if and only if

$$
\begin{equation*}
\nabla_{X} \xi^{H}=-\frac{1}{2} \phi X^{H}, \nabla_{X} \xi^{V}=-\frac{1}{2} \phi X^{V} . \tag{3.30}
\end{equation*}
$$

Proof If the structure vector field $\xi$ is a Killing vector field with respect to $G$, then we have

$$
\begin{equation*}
L_{\xi}^{H} G^{H}=0, L_{\xi}^{V} G^{V}=0 \tag{3.31}
\end{equation*}
$$

$\forall X^{H}, Y^{H}, \xi^{H} \in N_{u}$ and $\forall X^{V}, Y^{V}, \xi^{V} \in V_{u}^{v}$ from (3.31), we can get

$$
\begin{equation*}
G\left(\nabla_{X}^{H} \xi^{H}, Y^{H}\right)=-G\left(X^{H}, \nabla_{Y}^{H} \xi^{H}\right), G\left(\nabla_{X}^{V} \xi^{V}, Y^{V}\right)=-G\left(X^{V}, \nabla_{Y}^{V} \xi^{V}\right) \tag{3.32}
\end{equation*}
$$

Replacing $Y^{H}$ by $\xi^{H}$ and $Z^{H}$ by $Y^{H}$ in (3.15), we have

$$
\begin{align*}
& 2 G\left(\nabla_{X}^{H} \xi^{H}, Y^{H}\right)=X^{H} \eta^{H}\left(Y^{H}\right)+\xi^{H} G\left(X^{H}, Y^{H}\right)-Y^{H} \eta^{H}\left(X^{H}\right) \\
& +G\left(\left[X^{H}, \xi^{H}\right], Y^{H}\right)-\eta^{H}\left([X, Y]^{H}\right)-G\left(\left[\xi^{H}, Y^{H}\right], X^{H}\right) \tag{3.33}
\end{align*}
$$

Replacing $Y^{H}$ by $\xi^{H}, X^{H}$ by $Y^{H}$ and $Z^{H}$ by $X^{H}$ in (3.15), we can get

$$
\begin{align*}
& 2 G\left(\nabla_{Y}^{H} \xi^{H}, X^{H}\right)=Y^{H} \eta^{H}\left(X^{H}\right)+\xi^{H} G\left(X^{H}, Y^{H}\right)-X^{H} \eta^{H}\left(Y^{H}\right) \\
& \quad+G\left(\left[Y^{H}, \xi^{H}\right], X^{H}\right)+\eta^{H}\left([X, Y]^{H}\right)-G\left(\left[\xi^{H}, X^{H}\right], Y^{H}\right) \tag{3.34}
\end{align*}
$$

Using (3.33) and (3.34), we get $G\left(\nabla_{X}^{H} \xi^{H}, Y^{H}\right)-G\left(X^{H}, \nabla_{Y}^{H} \xi^{H}\right)=d \eta^{H}\left(X^{H}, Y^{H}\right)$.
Since $\xi^{H}$ is a Killing vector field with respect to $G^{H}$, using (3.32), we obtain $d \eta^{H}\left(X^{H}, Y^{H}\right)=2 G\left(\nabla_{X}^{H} \xi^{H}, Y^{H}\right)=G\left(X^{H}, \phi Y^{H}\right)=-G\left(\phi X^{H}, Y^{H}\right)$ and $\nabla_{X}^{H} \xi^{H}=-\frac{1}{2} \phi X^{H}$.

Similarly for $X^{V}, Y^{V}, \xi^{V} \in V_{u}^{v}$, from (3.16) and (3.32), we get $\nabla_{X}^{V} \xi^{V}=-\frac{1}{2} \phi X^{V}$.

Example 3.1 Let $V(M)=\{V, \pi, M\}$ be a vector bundle with the total space $V=R^{6}$ is a 6 -dimensional $C^{\infty}$-manifold and the base space $M=R^{3}$ is a 3-dimensional $C^{\infty}$-manifold. Let $x^{i}, 1 \leq i \leq 3$ and $y^{a}, 1 \leq a \leq 3$ be the coordinates of $u=(x, y) \in V$ that is $u=\left(x^{1}, x^{2}, x^{3}, y^{1}, y^{2}, y^{3}\right) \in V$.

The local base of $N_{u}$ is $\left(\frac{\delta}{\delta x^{1}}, \frac{\delta}{\delta x^{2}}, \frac{\delta}{\delta x^{3}}\right)$ and that of $V_{u}^{v}$ is $\left(\frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial y^{2}}, \frac{\partial}{\partial y^{3}}\right)$.
Let $X=X^{i} \frac{\delta}{\delta x^{i}}+\tilde{X}^{a} \frac{\partial}{\partial y^{a}} \forall X \in T_{u}(V)$. Then $X^{H}=X^{1} \frac{\delta}{\delta x^{1}}+X^{2} \frac{\delta}{\delta x^{2}}+X^{3} \frac{\delta}{\delta x^{3}}, X^{V}=\tilde{X}^{1} \frac{\partial}{\partial y^{1}}+\tilde{X}^{2} \frac{\partial}{\partial y^{2}}+$ $\tilde{X}^{3} \frac{\partial}{\partial y^{3}}$ where $X^{H} \in N_{u}$ and $X^{V} \in V_{u}^{v}$. Similarly $Y$ can be written as

$$
Y^{H}=Y^{1} \frac{\delta}{\delta x^{1}}+Y^{2} \frac{\delta}{\delta x^{2}}+Y^{3} \frac{\delta}{\delta x^{3}}, Y^{V}=\tilde{Y}^{1} \frac{\partial}{\partial y^{1}}+\tilde{Y}^{2} \frac{\partial}{\partial y^{2}}+\tilde{Y}^{3} \frac{\partial}{\partial y^{3}}
$$

Let $\eta$ be a 1-form, $\eta=\eta_{i} d x^{i}+\tilde{\eta}_{a} \delta y^{a}$ then $\eta^{H}=\eta_{1} d x^{1}+\eta_{2} d x^{2}+\eta_{3} d x^{3}$ and $\eta^{V}=\tilde{\eta}_{1} \delta y^{1}+\tilde{\eta}_{2} \delta y^{2}+\tilde{\eta}_{3} \delta y^{3}$ where $\eta=\eta^{H}+\eta^{V}$ and $\eta^{H}\left(X^{V}\right)=0$ and $\eta^{V}\left(X^{H}\right)=0$. We put $\eta^{H}=\frac{1}{2}\left(d x^{3}-x^{2} d x^{1}\right)$ and $\eta^{V}=$ $\frac{1}{2}\left(\delta y^{3}-y^{2} \delta y^{1}\right)$. Then the structure vector field $\xi$ is given by $\xi=2\left(\frac{\delta}{\delta x^{3}}+\frac{\partial}{\partial y^{3}}\right)$ and $\xi$ is decomposed as $\xi^{H}=2 \frac{\delta}{\delta x^{3}}$ and $\xi^{V}=2 \frac{\partial}{\partial y^{3}}$. The tensor field $\phi^{H}$ of type $(1,1)$ and $\phi^{V}$ of type $(1,1)$ by a matrix form is given by

$$
\phi^{H}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & x^{2} & 0
\end{array}\right], \phi^{V}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & y^{2} & 0
\end{array}\right]
$$

The Riemann metric tensor field $G=G^{H}+G^{V}$ is given by

$$
\begin{gathered}
G^{H}=\frac{1}{4}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+\eta^{H} \otimes \eta^{H}\right)=\frac{1}{4}\left(\left(1+\left(x^{2}\right)^{2}\right)\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}-2 x^{2}\left(d x^{1}\right)\left(d x^{3}\right)\right) \\
G^{V}=\frac{1}{4}\left(\delta y^{1} \otimes \delta y^{1}+\delta y^{2} \otimes \delta y^{2}+\eta^{V} \otimes \eta^{V}\right)=\frac{1}{4}\left(\left(1+\left(y^{2}\right)^{2}\right)\left(\delta y^{1}\right)^{2}+\left(\delta y^{2}\right)^{2}+\left(\delta y^{3}\right)^{2}-2 y^{2}\left(\delta y^{1}\right)\left(\delta y^{3}\right)\right) .
\end{gathered}
$$

Thus we give a metric tensor field $G$ by a matrix form

$$
G^{H}=\frac{1}{4}\left[\begin{array}{ccc}
1+\left(x^{2}\right)^{2} & 0 & -x^{2} \\
0 & 1 & 0 \\
-x^{2} & 0 & 1
\end{array}\right], G^{V}=\frac{1}{4}\left[\begin{array}{ccc}
1+\left(y^{2}\right)^{2} & 0 & -y^{2} \\
0 & 1 & 0 \\
-y^{2} & 0 & 1
\end{array}\right]
$$

We analyze that $\eta^{H}\left(\xi^{H}\right)=1, \eta^{V}\left(\xi^{V}\right)=1, \phi^{H}\left(\xi^{H}\right)=0, \eta^{H}\left(\xi^{V}\right)=0, \phi^{V}\left(\xi^{V}\right)=0, \eta^{V}\left(\xi^{H}\right)=0$, $\left(\phi^{H}\right)^{2} X^{H}=-X^{H}+\eta^{H}\left(X^{H}\right) \xi^{H}$ and $\left(\phi^{V}\right)^{2} X^{V}=-X^{V}+\eta^{V}\left(X^{V}\right) \xi^{V}$, hence $(\phi, \xi, \eta)$ is an almost contact Finsler structure on $R^{6}$.

On the other hand, we formulize that

$$
\begin{gather*}
\eta^{H}\left(X^{H}\right)=G^{H}\left(X^{H}, \xi^{H}\right), \eta^{V}\left(X^{V}\right)=G^{V}\left(X^{V}, \xi^{V}\right) \\
G^{H}\left(\phi X^{H}, \phi Y^{H}\right)=G^{H}\left(X^{H}, Y^{H}\right)-\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right), G^{V}\left(\phi X^{V}, \phi Y^{V}\right)=G^{V}\left(X^{V}, Y^{V}\right)-\eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right) \\
\eta^{H}\left(X^{H}\right)=\frac{1}{2}\left(d x^{3}-x^{2} d x^{1}\right)\left(X^{1} \frac{\delta}{\delta x^{1}}+X^{2} \frac{\delta}{\delta x^{2}}+X^{3} \frac{\delta}{\delta x^{3}}\right)=\frac{1}{2}\left(X^{3}-X^{1} x^{2}\right)  \tag{3.35}\\
G^{H}\left(X^{H}, \xi^{H}\right)=\frac{1}{4}\left[\begin{array}{lll}
X^{1} & X^{2} & X^{3}
\end{array}\right]\left[\begin{array}{ccc}
1+\left(x^{2}\right)^{2} & 0 & -x^{2} \\
0 & 1 & 0 \\
-x^{2} & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{lll}
X^{1} & X^{2} & X^{3}
\end{array}\right]\left[\begin{array}{c}
-2 x^{2} \\
0 \\
2
\end{array}\right] \\
=\frac{1}{4}\left(-2 X^{1} x^{2}+2 X^{3}\right)=\frac{1}{2}\left(X^{3}-X^{1} x^{2}\right) . \tag{3.36}
\end{gather*}
$$

From (3.35) and (3.36) we get $\eta^{H}\left(X^{H}\right)=G^{H}\left(X^{H}, \xi^{H}\right)$. Similarly, we have

$$
\begin{gathered}
\eta^{V}\left(X^{V}\right)=\frac{1}{2}\left(\delta y^{3}-y^{2} \delta y^{1}\right)\left(\tilde{X}^{1} \frac{\partial}{\partial y^{1}}+\tilde{X}^{2} \frac{\partial}{\partial y^{2}}+\tilde{X}^{3} \frac{\partial}{\partial y^{3}}\right)=\frac{1}{2}\left(\tilde{X}^{3}-\tilde{X}^{1} y^{2}\right) \eta^{V}=G^{V}\left(X^{V}, \xi^{V}\right) \\
\phi^{H}\left(X^{H}\right)=\left(X^{2},-X^{1}, X^{2} x^{2}\right), \phi^{H}\left(Y^{H}\right)=\left(Y^{2},-Y^{1}, Y^{2} x^{2}\right) \\
\phi^{V}\left(X^{V}\right)=\left(\tilde{X}^{2},-\tilde{X}^{1}, \tilde{X}^{2} y^{2}\right), \phi^{V}\left(Y^{V}\right)=\left(\tilde{Y}^{2},-\tilde{Y}^{1}, \tilde{Y}^{2} y^{2}\right) \\
G^{H}\left(\phi^{H} X^{H}, \phi^{H} Y^{H}\right)=\frac{1}{4}\left(X^{1} Y^{1}+X^{2} Y^{2}\right), G^{V}\left(\phi^{V} X^{V}, \phi^{V} Y^{V}\right)=\frac{1}{4}\left(\tilde{X}^{1} \tilde{Y}^{1},+\tilde{X}^{2} \tilde{Y}^{2}\right) \\
G^{H}\left(X^{H}, Y^{H}\right)=\frac{1}{4}\left\{\left(Y^{1}\left(1+\left(x^{2}\right)^{2}\right)-Y^{3} x^{2}\right) X^{1}+X^{2} Y^{2}+X^{3}\left(Y^{3}-Y^{1} x^{2}\right)\right\} \\
G^{V}\left(X^{V}, Y^{V}\right)=\frac{1}{4}\left\{\left(\tilde{Y}^{1}\left(1+\left(y^{2}\right)^{2}\right)-\tilde{Y}^{3} y^{2}\right) \tilde{X}^{1}+\tilde{X}^{2} \tilde{Y}^{2}+\tilde{X}^{3}\left(\tilde{Y}^{3}-\tilde{Y}^{1} y^{2}\right)\right\} \\
\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right)=\frac{1}{4}\left[X^{3} Y^{3}+X^{1} Y^{1}\left(x^{2}\right)^{2}-X^{1} Y^{3} x^{2}-X^{3} Y^{1} x^{2}\right] \\
\eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right)=\frac{1}{4}\left[\tilde{X}^{3} \tilde{Y}^{3}+\tilde{X}^{1} \tilde{Y}^{1}\left(y^{2}\right)^{2}-\tilde{X}^{1} \tilde{Y}^{3} y^{2}-\tilde{X}^{3} \tilde{Y}^{1} y^{2}\right]
\end{gathered}
$$

Thus, we get $G^{H}\left(\phi X^{H}, \phi Y^{H}\right)=G^{H}\left(X^{H}, Y^{H}\right)-\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right), G^{V}\left(\phi X^{V}, \phi Y^{V}\right)=G^{V}\left(X^{V}, Y^{V}\right)-$ $\eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right)$ and hence $(\phi, \xi, \eta, G)$ is an almost contact Finsler metric structure.

$$
G^{H}\left(X^{H}, \phi Y^{H}\right)=\frac{1}{4}\left[\begin{array}{lll}
X^{1} & X^{2} & X^{3}
\end{array}\right]\left[\begin{array}{ccc}
1+\left(x^{2}\right)^{2} & 0 & -x^{2} \\
0 & 1 & 0 \\
-x^{2} & 0 & 1
\end{array}\right]\left[\begin{array}{c}
Y^{2} \\
-Y^{1} \\
Y^{2} x^{2}
\end{array}\right]=\frac{1}{4}\left(X^{1} Y^{2}-X^{2} Y^{1}\right)
$$

Also, we know that $d \eta^{H}=\frac{1}{2}\left(d x^{1} \wedge d x^{2}\right)$. By using this equality, we obtain $d \eta^{H}\left(X^{H}, Y^{H}\right)=G^{H}\left(X^{H}, \phi Y^{H}\right)$. Similarly we get

$$
G^{V}\left(X^{V}, \phi Y^{V}\right)=\frac{1}{4}\left[\begin{array}{lll}
\tilde{X}^{1} & \tilde{X}^{2} & \tilde{X}^{3}
\end{array}\right]\left[\begin{array}{ccc}
1+\left(y^{2}\right)^{2} & 0 & -y^{2} \\
0 & 1 & 0 \\
-y^{2} & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\tilde{Y}^{2} \\
-\tilde{Y}^{1} \\
\tilde{Y}^{2} y^{2}
\end{array}\right]=\frac{1}{4}\left(\tilde{X}^{1} \tilde{Y}^{2}-\tilde{X}^{2} \tilde{Y}^{1}\right)
$$

By using d $d \eta^{V}=\frac{1}{2}\left(\delta y^{1} \wedge \delta y^{2}\right)$, we derived $d \eta^{V}\left(X^{V}, Y^{V}\right)=G^{V}\left(X^{V}, \phi Y^{V}\right)$. As a result we come up with the following equation:

$$
\begin{equation*}
d \eta^{H}\left(X^{H}, Y^{H}\right)=G^{H}\left(X^{H}, \phi Y^{H}\right)=\Omega\left(X^{H}, Y^{H}\right), d \eta^{V}\left(X^{V}, Y^{V}\right)=G^{V}\left(X^{V}, \phi Y^{V}\right)=\Omega\left(X^{V}, Y^{V}\right) \tag{3.37}
\end{equation*}
$$

Then the almost contact metrical Finsler structure $(\phi, \xi, \eta, G)$ is called almost Sasakian Finsler structure.

Because of $\eta \wedge(d \eta) \neq 0,(\phi, \xi, \eta, G)$ is a contact metrical Finsler structure. The vector fields $X_{1}=2\left(\frac{\delta}{\delta x^{2}}+\frac{\partial}{\partial y^{2}}\right), X_{2}=2\left(\frac{\delta}{\delta x^{1}}+x^{2} \frac{\delta}{\delta x^{3}}+\frac{\partial}{\partial y^{1}}+y^{2} \frac{\partial}{\partial y^{3}}\right)$ and $\xi=2\left(\frac{\delta}{\delta x^{3}}+\frac{\partial}{\partial y^{3}}\right)$ form a $\phi$-basis for the contact metrical Finsler structure, where these are decomposed as

$$
\begin{gathered}
X_{1}^{H}=2\left(\frac{\delta}{\delta x^{2}}\right), X_{1}^{V}=2\left(\frac{\partial}{\partial y^{2}}\right), X_{2}^{H}=2\left(\frac{\delta}{\delta x^{1}}+x^{2} \frac{\delta}{\delta x^{3}}\right), X_{2}^{V}=2\left(\frac{\partial}{\partial y^{1}}+y^{2} \frac{\partial}{\partial y^{3}}\right) \\
\xi^{H}=2\left(\frac{\delta}{\delta x^{3}}\right), \xi^{V}=2\left(\frac{\partial}{\partial y^{3}}\right)
\end{gathered}
$$

On the other hand, we can see that $N_{\phi}+d \eta \otimes \xi=0$, that is $N_{\phi}^{H}+d \eta^{H} \otimes \xi^{H}=0$ and $N_{\phi}^{V}+d \eta^{V} \otimes \xi^{V}=0$. Hence the contact metrical Finsler structure is normal.

## 4. The curvature of a Finsler connection

The curvature of a Finsler connection $\nabla$ is given by:

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \forall X, Y, Z \in T_{u}(V) \tag{4.1}
\end{equation*}
$$

As $\nabla$ preserves by parallelism the horizontal and the vertical distributions, from (4.1) we have that the operator $R(X, Y)$ carries horizontal vector fields into horizontal vector fields and vertical vector fields into verticals. Consequently,

$$
\begin{equation*}
R(X, Y) Z=R^{H}(X, Y) Z^{H}+R^{V}(X, Y) Z^{V}, \forall X, Y, Z \in T_{u}(V) \tag{4.2}
\end{equation*}
$$

Noting that the operator $R(X, Y)$ is skew-symmetric with respect to $X$ and $Y$, a theorem follows [1]:
Theorem 4.1 The curvature of a Finsler connection $\nabla$ on the tangent space $T_{u}(V)$ is completely determined by the following six Finsler tensor fields:

$$
\begin{align*}
& R\left(X^{H}, Y^{H}\right) Z^{H}=\nabla_{X}^{H} \nabla_{Y}^{H} Z^{H}-\nabla_{Y}^{H} \nabla_{X}^{H} Z^{H}-\nabla_{\left[X^{H}, Y^{H}\right]} Z^{H}, \\
& R\left(X^{H}, Y^{H}\right) Z^{V}=\nabla_{X}^{H} \nabla_{Y}^{H} Z^{V}-\nabla_{Y}^{H} \nabla_{X}^{H} Z^{V}-\nabla_{\left[X^{H}, Y^{H}\right]} Z^{V}, \\
& R\left(X^{V}, Y^{H}\right) Z^{H}=\nabla_{X}^{V} \nabla_{Y}^{H} Z^{H}-\nabla_{Y}^{H} \nabla_{X}^{V} Z^{H}-\nabla_{\left[X^{V}, Y^{H}\right]} Z^{H}, \\
& R\left(X^{V}, Y^{H}\right) Z^{V}=\nabla_{X}^{V} \nabla_{Y}^{H} Z^{V}-\nabla_{Y}^{H} \nabla_{X}^{V} Z^{V}-\nabla_{\left[X^{V}, Y^{H}\right]} Z^{V},  \tag{4.3}\\
& R\left(X^{V}, Y^{V}\right) Z^{H}=\nabla_{X}^{V} \nabla_{Y}^{V} Z^{H}-\nabla_{Y}^{V} \nabla_{X}^{V} Z^{H}-\nabla_{\left[X^{V}, Y^{V}\right]} Z^{H}, \\
& R\left(X^{V}, Y^{V}\right) Z^{V}=\nabla_{X}^{V} \nabla_{Y}^{V} Z^{V}-\nabla_{Y}^{V} \nabla_{X}^{V} Z^{V}-\nabla_{\left[X^{V}, Y^{V}\right]} Z^{V} .
\end{align*}
$$

Then the curvature tensor of a Finsler connection $\nabla$ has only three different components with respect to the Berwald basis. These are given by:

$$
\begin{equation*}
R\left(\frac{\delta}{\delta x^{k}}, \frac{\delta}{\delta x^{j}}\right) \frac{\delta}{\delta x^{h}}=R_{h j k}^{i} \frac{\delta}{\delta x^{i}}, R\left(\frac{\partial}{\partial y^{k}}, \frac{\delta}{\delta x^{j}}\right) \frac{\delta}{\delta x^{h}}=P_{h j k}^{i} \frac{\delta}{\delta x^{i}}, R\left(\frac{\partial}{\partial y^{k}}, \frac{\partial}{\partial x^{j}}\right) \frac{\delta}{\delta x^{h}}=S_{h j k}^{i} \frac{\delta}{\delta x^{i}} . \tag{4.4}
\end{equation*}
$$

These three components are the first, third and fifth Finsler tensors from (4.3). The other three Finsler tensors from (4.3) have the same local components $R_{h j k}^{i}, P_{h j k}^{i}$, and $S_{h j k}^{i}$.

$$
\begin{equation*}
\left(\frac{\delta}{\delta x^{k}}, \frac{\delta}{\delta x^{j}}\right) \frac{\partial}{\partial y^{h}}=R_{h j k}^{i} \frac{\partial}{\partial y^{i}}, R\left(\frac{\partial}{\partial y^{k}}, \frac{\delta}{\delta x^{j}}\right) \frac{\partial}{\partial y^{h}}=P_{h j k}^{i} \frac{\partial}{\partial y^{i}}, R\left(\frac{\partial}{\partial y^{k}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial y^{h}}=S_{h j k}^{i} \frac{\partial}{\partial y^{i}} . \tag{4.5}
\end{equation*}
$$

So, a Finsler connection $\nabla \Gamma=\left(N_{j}^{i}, F_{j k}^{i}, C_{j k}^{i}\right)$ has only three local components $R_{h j k}^{i}, P_{h j k}^{i}, S_{h j k}^{i}[1]$.
For a Finsler connection $\nabla$, consider the torsion $T$, defined as usual

$$
\begin{equation*}
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y], \forall X, Y \in T_{u}(V) \tag{4.6}
\end{equation*}
$$

Breaking $T$ down into horizontal and vertical parts gives the torsion of a Finsler connection, $\nabla$ on $T_{u}(V)$ is completely determined by the following Finsler tensor fields [1]:

$$
\begin{align*}
& T^{H}\left(X^{H}, Y^{H}\right)=\nabla_{X}^{H} Y^{H}-\nabla_{Y}^{H} X^{H}-\left[X^{H}, Y^{H}\right]^{H}, T^{V}\left(X^{H}, Y^{H}\right)=-\left[X^{H}, Y^{H}\right] V \\
& T^{H}\left(X^{H}, Y^{V}\right)=-\nabla_{Y}^{V} X^{H}-\left[X^{H}, Y^{V}\right]^{H}, T^{V}\left(X^{H}, Y^{V}\right)=\nabla_{X}^{H} Y^{V}-\left[X^{H}, Y^{V}\right]^{V}  \tag{4.7}\\
& T^{V}\left(X^{V}, Y^{V}\right)=\nabla_{X}^{V} Y^{V}-\nabla_{Y}^{V} X^{V}-\left[X^{V}, Y^{V}\right]^{V} .
\end{align*}
$$

Let $\nabla$ be the torsion free Finsler connection, then we get

$$
\begin{align*}
& {\left[X^{H}, Y^{H}\right]^{H}=\nabla_{X}^{H} Y^{H}-\nabla_{Y}^{H} X^{H},\left[X^{H}, Y^{H}\right] V=0,\left[X^{H}, Y^{V}\right]^{H}=-\nabla_{Y}^{V} X^{H},}  \tag{4.8}\\
& {\left[X^{H}, Y^{V}\right]^{V}=\nabla_{X}^{H} Y^{V}, \quad\left[X^{V}, Y^{V}\right] V=\nabla_{X}^{V} Y^{V}-\nabla_{Y}^{V} X^{V} .}
\end{align*}
$$

Theorem 4.2 In order for a $(n+m)$-dimensional Finsler manifold $V$ to be $K$-contact, it is necessary and sufficient that the following two conditions are satisfied:

1. V admits a unit Killing vector field $\xi$;
2. The flag curvature for plane sections containing $\xi$ are equal to $\frac{1}{4}$ at every point of $V$.

Proof Let $V$ be a $K$-contact manifold. From (4.3) and (3.30), we have

$$
\begin{aligned}
G^{H}\left(R\left(X^{H}, \xi^{H}\right) \xi^{H}, X^{H}\right) & =G^{H}\left(\nabla_{X}^{H} \nabla_{\xi}^{H} \xi^{H}-\nabla_{\xi}^{H} \nabla_{X}^{H} \xi^{H}-\nabla_{\left[X^{H}, \xi^{H]}\right.}^{H} \xi^{H}, X^{H}\right) \\
& =\frac{1}{4} G^{H}\left(X^{H}, X^{H}\right)=\frac{1}{4}, G^{V}\left(R\left(X^{V}, \xi^{V}\right) \xi^{V}, X^{V}\right) \\
& =G^{V}\left(\nabla_{X}^{V} \nabla_{\xi}^{V} \xi^{V}-\nabla_{\xi}^{V} \nabla_{X}^{V} \xi^{V}-\nabla_{[X, \xi]}^{V} \xi^{V}, X^{V}\right)=\frac{1}{4} G^{V}\left(X^{V}, X^{V}\right)=\frac{1}{4},
\end{aligned}
$$

where $X^{H}$ is a unit vector field orthogonal to $\xi^{H}$ and $X^{V}$ is a unit vector field orthogonal to $\xi^{V}$. Hence

$$
\begin{aligned}
G(R(X, \xi) \xi, X) & =G^{H}\left(R^{H}(X, \xi) \xi^{H}, X^{H}\right)+G^{V}\left(R^{V}(X, \xi) \xi^{V}, X^{V}\right) \\
& =\frac{1}{4}\left(G^{H}\left(X^{H}, X^{H}\right)+G^{V}\left(X^{V}, X^{V}\right)\right)=\frac{1}{4} G(X, X)=\frac{1}{4}
\end{aligned}
$$

Thus we obtain $K(X, \xi)=\frac{G(R(X, \xi) \xi, X)}{G(X, X)}=\frac{1}{4}$.
Conversely, we suppose that $M$ satisfies the conditions (1.1) and (1.2). Since $\xi$ is a Killing vector field, we have

$$
d \eta\left(X^{H}, Y^{H}\right)=\left(G^{H}\left(\nabla_{X}^{H} \xi^{H}, Y^{H}\right)-G^{H}\left(\nabla_{Y}^{H} \xi^{H}, X^{H}\right)\right)=-2 G\left(\nabla_{Y}^{H} \xi^{H}, X^{H}\right)=G\left(X^{H}, \phi Y^{H}\right)
$$

$$
d \eta\left(X^{V}, Y^{V}\right)=G\left(X^{V}, \phi Y^{V}\right)
$$

Consequently, $(\phi, \eta, \xi, G)$ is a $K$-contact Finsler structure on $V$.
Let $(\phi, \eta, \xi, G)$ be a contact metrical Finsler structure on $V$. If the metric structure of $V$ is normal, then $V$ is mentioned to have a Sasakian Finsler structure and $V$ is called a Sasakian Finsler manifold.

Theorem 4.3 An almost contact metrical Finsler structure $(\phi, \eta, \xi, G)$ on $V$ is a Sasakian Finsler structure if and only if

$$
\begin{align*}
\left(\nabla_{X}^{H} \phi\right) Y^{H} & =\frac{1}{2}\left[G^{H}\left(X^{H}, Y^{H}\right) \xi^{H}-\eta^{H}\left(Y^{H}\right) X^{H}\right]  \tag{4.9}\\
\left(\nabla_{X}^{V} \phi\right) Y^{V} & =\frac{1}{2}\left[G^{V}\left(X^{V}, Y^{V}\right) \xi^{V}-\eta^{V}\left(Y^{V}\right) X^{V}\right] . \tag{4.10}
\end{align*}
$$

Proof If the structure is normal, we have $\Omega=d \eta$ and $N^{(1)}=N^{(2)}=0$. Thus, by using (3.14), (3.18) and (3.19), we get $2 G^{H}\left(\left(\nabla_{X}^{H} \phi\right) Y^{H}, \xi^{H}\right)=-d \Omega\left(X^{H}, Y^{H}, \xi^{H}\right)+d \eta\left(\phi Y^{H}, X^{H}\right)=G^{H}\left(Y^{H}, X^{H}\right)-$ $\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right)$. Thus we have $\left(\nabla_{X}^{H} \phi\right) Y^{H}=\frac{1}{2}\left[G^{H}\left(X^{H}, Y^{H}\right) \xi^{H}-\eta^{H}\left(Y^{H}\right) X^{H}\right]$.

Similarly, from Lemma 3.3, we have

$$
2 G^{V}\left(\left(\nabla_{X}^{V} \phi\right) Y^{V}, \xi^{V}\right)=G^{V}\left(Y^{V}, X^{V}\right)-\eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right)
$$

Thus we get $\left(\nabla_{X}^{V} \phi\right) Y^{V}=\frac{1}{2}\left[G^{V}\left(X^{V}, Y^{V}\right) \xi^{V}-\eta^{V}\left(Y^{V}\right) X^{V}\right]$.
Conversely, we suppose that the structure satisfies (4.9) and (4.10). Putting $Y^{H}=\xi^{H}$ in (4.9) we have $-\phi \nabla_{X}^{H} \xi^{H}=\frac{1}{2}\left(\eta^{H}\left(X^{H}\right) \xi^{H}-X^{H}\right)$, and putting $Y^{V}=\xi^{V}$ in (4.10), we can get
$-\phi \nabla_{X}^{V} \xi^{V}=\frac{1}{2}\left(\eta^{V}\left(X^{V}\right) \xi^{V}-X^{V}\right)$, and hence, applying $\phi$ to this, we obtain $\nabla_{X}^{H} \xi^{H}=-\frac{1}{2} \phi X^{H}$ and $\nabla_{Y}^{V} \xi^{V}=-\frac{1}{2} \phi Y^{V}$. Since $\xi$ is skew-symmetric, we prove that $\xi^{H}$ and $\xi^{V}$ is a Killing vector field. Moreover, we obtain

$$
\begin{aligned}
d \eta\left(X^{H}, Y^{H}\right) & =\frac{1}{2}\left(\left(\nabla_{X}^{H} \eta\right) Y^{H}-\left(\nabla_{Y}^{H} \eta\right) X^{H}\right)=G\left(X^{H}, \phi Y^{H}\right)=\Omega\left(X^{H}, Y^{H}\right) \\
d \eta\left(X^{V}, Y^{V}\right) & =\frac{1}{2}\left(\left(\nabla_{X}^{V} \eta\right) Y^{V}-\left(\nabla_{Y}^{V} \eta\right) X^{V}\right)=G\left(X^{V}, \phi Y^{V}\right)=\Omega\left(X^{V}, Y^{V}\right)
\end{aligned}
$$

Thus the structure is a contact metric Sasakian structure.
If $(\phi, \eta, \xi, G)$ is a Sasakian Finsler structure on $V$, from (4.9) and (4.10) we obtain

$$
\begin{align*}
& R\left(X^{H}, Y^{H}\right) \xi^{H}=\frac{1}{4}\left(\eta^{H}\left(Y^{H}\right) X^{H}-\eta^{H}\left(X^{H}\right) Y^{H}\right)  \tag{4.11}\\
& R\left(X^{V}, Y^{V}\right) \xi^{V}=\frac{1}{4}\left(\eta^{V}\left(Y^{V}\right) X^{V}-\eta^{V}\left(X^{V}\right) Y^{V}\right) \tag{4.12}
\end{align*}
$$

That is, we have

$$
\begin{align*}
& R(X, Y) \xi=R^{H}(X, Y) \xi^{H}+R^{V}(X, Y) \xi^{V}=R\left(X^{H}, Y^{H}\right) \xi^{H}+R\left(X^{V}, Y^{V}\right) \xi^{V} \\
& =\frac{1}{4}\left[\eta^{H}\left(Y^{H}\right) X^{H}+\eta^{V}\left(Y^{V}\right) X^{V}-\eta^{H}\left(X^{H}\right) Y^{H}-\eta^{V}\left(X^{V}\right) Y^{V}\right] . \tag{4.13}
\end{align*}
$$

Theorem 4.4 Let $V$ be a ( $n+m$ )-dimensional Finsler manifold admitting a unit Killing vector field $\xi$. Then $V$ is a Sasakian Finsler manifold if and only if

$$
\begin{equation*}
R(X, \xi) Y=\frac{1}{4}\left[-G^{H}(X, Y) \xi^{H}-G^{V}(X, Y) \xi^{V}+\eta^{H}\left(Y^{H}\right) X^{H}+\eta^{V}\left(Y^{V}\right) X^{V}\right] \tag{4.14}
\end{equation*}
$$

## Proof

$$
\begin{aligned}
& R^{H}(X, \xi) Y^{H}=\nabla_{X}^{H} \nabla_{\xi}^{H} Y^{H}-\nabla_{\xi}^{H} \nabla_{X}^{H} Y^{H}-\nabla_{[X, \xi]}^{H} Y^{H}=-\frac{1}{2}\left(\nabla_{X}^{H} \phi\right) Y^{H} \\
& =\frac{1}{4}\left[-G\left(X^{H}, Y^{H}\right) \xi^{H}+\eta^{H}\left(Y^{H}\right) X^{H}\right] \\
& R^{V}(X, \xi) Y^{V}=-\frac{1}{2}\left(\nabla_{X}^{V} \phi\right) Y^{V}=-\frac{1}{4}\left[G\left(X^{V}, Y^{V}\right) \xi^{V}-\eta^{V}\left(Y^{V}\right) X^{V}\right]
\end{aligned}
$$

From these equations mentioned above, we have the equation.
Let $(. \phi, \eta, \xi, G)$ be a Sasakian Finsler structure on $V$. From (4.9) and (4.10), we realize that

$$
\begin{align*}
& R\left(X^{H}, Y^{H}\right) \phi Z^{H}=\phi R\left(X^{H}, Y^{H}\right) Z^{H}+\frac{1}{4}\left\{G\left(\phi X^{H}, Z^{H}\right) Y^{H}-G\left(Y^{H}, Z^{H}\right) \phi X^{H}\right.  \tag{4.15}\\
& \left.+G\left(X^{H}, Z^{H}\right) \phi Y^{H}-G\left(\phi Y^{H}, Z^{H}\right) X^{H}\right\} \\
& R\left(X^{V}, Y^{V}\right) \phi Z^{V}=\phi R\left(X^{V}, Y^{V}\right) Z^{V}+\frac{1}{4}\left\{G\left(\phi X^{V}, Z^{V}\right) Y^{V}-G\left(Y^{V}, Z^{V}\right) \phi X^{V}\right. \\
& \left.+G\left(X^{V}, Z^{V}\right) \phi Y^{V}-G\left(\phi Y^{V}, Z^{V}\right) X^{V}\right\}  \tag{4.16}\\
& \qquad R\left(X^{H}, Y^{H}\right) \phi Z^{V}=\phi R\left(X^{H}, Y^{H}\right) Z^{V}  \tag{4.17}\\
& R\left(X^{H}, Y^{V}\right) \phi Z^{V}=\phi R\left(X^{H}, Y^{V}\right) Z^{V}-\frac{1}{4}\left\{G\left(Y^{V}, Z^{V}\right) \phi X^{H}-G\left(\phi Y^{V}, Z^{V}\right) X^{H}\right\},  \tag{4.18}\\
& R\left(X^{V}, Y^{H}\right) \phi Z^{V}=\phi R\left(X^{V}, Y^{H}\right) Z^{V}+\frac{1}{4}\left\{G\left(\phi X^{V}, Z^{V}\right) Y^{H}+G\left(X^{V}, Z^{V}\right) \phi Y^{H}\right\},  \tag{4.19}\\
&  \tag{4.20}\\
& \quad R\left(X^{V}, Y^{V}\right) \phi Z^{H}=\phi R\left(X^{V}, Y^{V}\right) Z^{H},  \tag{4.21}\\
& R\left(X^{V}, Y^{H}\right) \phi Z^{H}=\phi R\left(X^{V}, Y^{H}\right) Z^{H}-\frac{1}{4}\left\{G\left(Y^{H}, Z^{H}\right) \phi X^{V}-G\left(\phi Y^{H}, Z^{H}\right) X^{V}\right\},  \tag{4.22}\\
& R\left(X^{H}, Y^{V}\right) \phi Z^{H}=\phi R\left(X^{H}, Y^{V}\right) Z^{H}+\frac{1}{4}\left\{G\left(\phi X^{H}, Z^{H}\right) Y^{V}+G\left(X^{H}, Z^{H}\right) \phi Y^{V}\right\},  \tag{4.23}\\
& \\
& R(X, Y) \phi Z=R(X, Y) \phi Z^{H}+R(X, Y) \phi Z^{V} .
\end{align*}
$$

From (4.15), (4.16), (4.17), (4.18), (4.19), we also have the following equations:

$$
\begin{align*}
& R\left(X^{H}, Y^{H}\right) Z^{H}=-\phi R\left(X^{H}, Y^{H}\right) \phi Z^{H}+\frac{1}{4}\left\{G\left(Y^{H}, Z^{H}\right) X^{H}-G\left(X^{H}, Z^{H}\right) Y^{H}\right. \\
& \left.-G\left(\phi Y^{H}, Z^{H}\right) \phi X^{H}+G\left(\phi X^{H}, Z^{H}\right) \phi Y^{H}\right\}  \tag{4.24}\\
& R\left(X^{V}, Y^{V}\right) Z^{V}=-\phi R\left(X^{V}, Y^{V}\right) \phi Z^{V}+\frac{1}{4}\left\{G\left(Y^{V}, Z^{V}\right) X^{V}-G\left(X^{V}, Z^{V}\right) Y^{V}\right.  \tag{4.25}\\
& \left.-G\left(\phi Y^{V}, Z^{V}\right) \phi X^{V}+G\left(\phi X^{V}, Z^{V}\right) \phi Y^{V}\right\} \\
& R\left(X^{H}, Y^{H}\right) Z^{V}=-\phi R\left(X^{H}, Y^{H}\right) \phi Z^{V}  \tag{4.26}\\
& R\left(X^{H}, Y^{V}\right) Z^{V}=-\phi R\left(X^{H}, Y^{V}\right) \phi Z^{V}+\frac{1}{4}\left\{G\left(Y^{V}, Z^{V}\right) X^{H}-G\left(\phi Y^{V}, Z^{V}\right) \phi X^{H}\right\} \tag{4.27}
\end{align*}
$$

$$
\begin{gather*}
R\left(X^{V}, Y^{H}\right) Z^{V}=-\phi R\left(X^{V}, Y^{H}\right) \phi Z^{V}-\frac{1}{4}\left\{G\left(X^{V}, Z^{V}\right) Y^{H}+G\left(\phi X^{V}, Z^{V}\right) \phi Y^{H}\right\},  \tag{4.28}\\
R\left(X^{V}, Y^{V}\right) Z^{H}=-\phi R\left(X^{V}, Y^{V}\right) \phi Z^{H},  \tag{4.29}\\
R\left(X^{V}, Y^{H}\right) Z^{H}=-\phi R\left(X^{V}, Y^{H}\right) \phi Z^{H}+\frac{1}{4}\left\{G\left(Y^{H}, Z^{H}\right) X^{H}-G\left(\phi Y^{H}, Z^{H}\right) \phi X^{H}\right\},  \tag{4.30}\\
R\left(X^{H}, Y^{V}\right) Z^{H}=-\phi R\left(X^{H}, Y^{V}\right) \phi Z^{H}-\frac{1}{4}\left\{G\left(X^{H}, Z^{H}\right) Y^{V}+G\left(\phi X^{H}, Z^{H}\right) \phi Y^{V}\right\},  \tag{4.3}\\
G\left(R\left(\phi X^{H}, \phi Y^{H}\right) \phi Z^{H}, \phi W^{H}\right)=G\left(R\left(X^{H}, Y^{H}\right) Z^{H}, W^{H}\right) \\
+\frac{1}{4}\left\{-\eta^{H}\left(Y^{H}\right) \eta^{H}\left(Z^{H}\right) G\left(X^{H}, W^{H}\right)-\eta^{H}\left(X^{H}\right) \eta^{H}\left(W^{H}\right) G\left(Y^{H}, Z^{H}\right)\right.  \tag{4.32}\\
\left.+\eta^{H}\left(Y^{H}\right) \eta^{H}\left(W^{H}\right) G\left(X^{H}, Z^{H}\right)+\eta^{H}\left(X^{H}\right) \eta^{H}\left(Z^{H}\right) G\left(Y^{H}, W^{H}\right)\right\}, \\
G\left(R\left(\phi X^{V}, \phi Y^{V}\right) \phi Z^{V}, \phi W^{V}\right)=G\left(R\left(X^{V}, Y^{V}\right) Z^{V}, W^{V}\right) \\
+\frac{1}{4}\left\{-\eta^{V}\left(Y^{V}\right) \eta^{V}\left(Z^{V}\right) G\left(X^{V}, W^{V}\right)-\eta^{V}\left(X^{V}\right) \eta^{V}\left(W^{V}\right) G\left(Y^{V}, Z^{V}\right)\right.  \tag{4.3}\\
\left.+\eta^{V}\left(Y^{V}\right) \eta^{V}\left(W^{V}\right) G\left(X^{V}, Z^{V}\right)+\eta^{V}\left(X^{V}\right) \eta^{V}\left(Z^{V}\right) G\left(Y^{V}, W^{V}\right)\right\} .
\end{gather*}
$$

A plane section in $N_{u}$ is called a horizontal $\phi$-section if there exists a unit vector $X^{H}$ in $N_{u}$ orthogonal to $\xi^{H}$ such that $\left\{X^{H}, \phi X^{H}\right\}$ and a plane section in $V_{u}^{v}$ is called a vertical $\phi$-section if there exists a unit vector $X^{V}$ in $V_{u}^{v}$ orthogonal to $\xi^{V}$ such that $\left\{X^{V}, \phi X^{V}\right\}$. Then the horizontal flag curvature

$$
\begin{equation*}
K\left(X^{H}, \phi X^{H}\right)=G^{H}\left(R\left(X^{H}, \phi X^{H}\right) \phi X^{H}, X^{H}\right) \tag{4.34}
\end{equation*}
$$

is called a horizontal $\phi$-sectional curvature, which will be denoted by $K^{H}\left(X^{H}\right)$. Vertical flag curvature

$$
\begin{equation*}
K\left(X^{V}, \phi X^{V}\right)=G^{V}\left(R\left(X^{V}, \phi X^{V}\right) \phi X^{V}, X^{V}\right) \tag{4.35}
\end{equation*}
$$

is called a vertical $\phi$-sectional curvature, which will be denoted by $K^{V}\left(X^{V}\right)$. On a Sasakian Finsler manifold the $\phi$-sectional curvature is $K(X)=K^{H}\left(X^{H}\right)+K^{V}\left(X^{V}\right)$.

Proposition 4.1 Let $(\phi, \eta, \xi, G)$ be a $K$-contact Finsler structure on $V$. If $V$ is locally symmetric, then $V$ is a Sasakian Finsler manifold with constant curvature $\frac{1}{4}$.
Proof For $X^{H}, Y^{H}, Z^{H}, \xi^{H} \in N_{u}$ from (4.9), (4.10), (4.11) and (4.12), we get

$$
\begin{equation*}
\left(\nabla_{Z}^{H} R\right)\left(X^{H}, Y^{H}, \xi^{H}\right)=\frac{1}{4}\left\{G\left(Z^{H}, X^{H}\right) Y^{H}-G\left(Z^{H}, Y^{H}\right) X^{H}\right\}-R\left(X^{H}, Y^{H}\right) Z^{H} . \tag{4.36}
\end{equation*}
$$

Since $V$ is locally symmetric, that is, $\nabla{ }_{Z}^{H} R=0$, from (4.36) we obtain

$$
R\left(X^{H}, Y^{H}\right) Z^{H}=\frac{1}{4}\left\{G\left(Z^{H}, Y^{H}\right) X^{H}-G\left(Z^{H}, X^{H}\right) Y^{H}\right\} .
$$

Thus for any orthonormal pair $\left\{X^{H}, Y^{H}\right\}$, we get

$$
K\left(X^{H}, Y^{H}\right)=G\left(R\left(X^{H}, Y^{H}\right) Y^{H}, X^{H}\right)=\frac{1}{4} .
$$

Similarly for $X^{V}, Y^{V}, Z^{V}, \xi^{V} \in V_{u}^{v}$, we get

$$
R\left(X^{V}, Y^{V}\right) Z^{V}=\frac{1}{4}\left\{G\left(Z^{V}, Y^{V}\right) X^{V}-G\left(Z^{V}, X^{V}\right) Y^{V}\right\}
$$

and for any orthonormal pair $\left\{X^{V}, Y^{V}\right\}$, we obtain $K\left(X^{V}, Y^{V}\right)=G\left(R\left(X^{V}, Y^{V}\right) Y^{V}, X^{V}\right)=\frac{1}{4}$.
For any orthonormal pair $\{X, Y\}$, we get $K(X, Y)=\frac{G^{H}\left(R\left(X^{H}, Y^{H}\right) Y^{H}, X^{H}\right)+G^{V}\left(R\left(X^{V}, Y^{V}\right) Y^{V}, X^{V}\right)}{G^{H}\left(X^{H}, X^{H}\right) G^{H}\left(Y^{H}, Y^{H}\right)+G^{V}\left(X^{V}, X^{V}\right) G^{V}\left(Y^{V}, Y^{V}\right)}=\frac{1}{4}$ which shows us that the sectional curvature of $V$ is $\frac{1}{4}$. The horizontal Ricci tensor $S^{H}$ of a (4n+2)-dimensional Sasakian Finsler manifold $V$ is given by

$$
\begin{aligned}
& S^{H}\left(X^{H}, Y^{H}\right)=\sum_{i=1}^{2 n} G\left(R\left(X^{H}, E_{i}^{H}\right) E_{i}^{H}, Y^{H}\right)+G\left(R\left(X^{H}, \xi^{H}\right) \xi^{H}, Y^{H}\right) \\
& \quad=\sum_{i=1}^{2 n} G\left(R\left(E_{i}^{H}, X^{H}\right) Y^{H}, E_{i}^{H}\right)+G\left(R\left(\xi^{H}, X^{H}\right) Y^{H}, \xi^{H}\right)
\end{aligned}
$$

where $\left\{E_{1}^{H}, E_{2}^{H}, \ldots, E_{2 n}^{H}, \xi^{H}\right\}$ is a local orthonormal frame of $N_{u}$.
The vertical Ricci tensor of a ( $4 n+2$ )-dimensional Sasakian Finsler manifold $V$ is given by

$$
\begin{aligned}
& S^{V}\left(X^{V}, Y^{V}\right)=\sum_{i=1}^{2 n} G\left(R\left(X^{V}, E_{i}^{V}\right) E_{i}^{V}, Y^{V}\right)+G\left(R\left(X^{V}, \xi^{V}\right) \xi^{V}, Y^{V}\right) \\
& \quad=\sum_{i=1}^{2 n} G\left(R\left(E_{i}^{V}, X^{V}\right) Y^{V}, E_{i}^{V}\right)+G\left(R\left(\xi^{V}, X^{V}\right) Y^{V}, \xi^{V}\right)
\end{aligned}
$$

where $\left\{E_{1}^{V}, E_{2}^{V}, \ldots, E_{2 n}^{V}, \xi^{V}\right\}$ is a local orthonormal frame of $V_{u}^{v}$. Thus the Ricci tensor $S$ of a (4n+2)dimensional Sasakian Finsler manifold $V$ is given by

$$
\begin{align*}
& S(X, Y)=S^{H}(X, Y)+S^{V}(X, Y)=S\left(X^{H}, Y^{H}\right)+S\left(X^{V}, Y^{V}\right) \\
& =\sum_{i=1}^{2 n} G\left(R\left(X^{H}, E_{i}^{H}\right) E_{i}^{H}, Y^{H}\right)+G\left(R\left(X^{H}, \xi^{H}\right) \xi^{H}, Y^{H}\right)  \tag{4.37}\\
& +\sum_{i=1}^{2 n} G\left(R\left(X^{V}, E_{i}^{V}\right) E_{i}^{V}, Y^{V}\right)+G\left(R\left(X^{V}, \xi^{V}\right) \xi^{V}, Y^{V}\right)
\end{align*}
$$

Proposition 4.2 A contact metric structure ( $\phi, \eta, \xi, G$ ) on a Finsler manifold of dimension (4n+2) is K-contact if and only if $S\left(\xi^{H}, \xi^{H}\right)=\frac{n}{2}, S\left(\xi^{V}, \xi^{V}\right)=\frac{n}{2}$.
Proof From (4.37) and (4.14), we have

$$
S\left(\xi^{H}, \xi^{H}\right)=\sum_{i=1}^{2 n} G\left(R\left(E_{i}^{H}, \xi^{H}\right) \xi^{H}, E_{i}^{H}\right)=\frac{1}{4} \sum_{i=1}^{2 n} G\left(E_{i}^{H}, E_{i}^{H}\right)-\frac{1}{4} \sum_{i=1}^{2 n} \eta^{H}\left(E_{i}^{H}\right) \eta^{H}\left(E_{i}^{H}\right)
$$

Since $E_{i}^{H}$ and $\xi^{H}$ orthogonal, we can take $\eta^{H}\left(E_{i}^{H}\right)=0$, thus we have $S\left(\xi^{H}, \xi^{H}\right)=\frac{n}{2}$.

$$
S\left(\xi^{V}, \xi^{V}\right)=\sum_{i=1}^{2 n} G\left(R\left(E_{i}^{V}, \xi^{V}\right) \xi^{V}, E_{i}^{V}\right)=\frac{1}{4} \sum_{i=1}^{2 n} G\left(E_{i}^{V}, E_{i}^{V}\right)-\frac{1}{4} \sum_{i=1}^{2 n} \eta^{V}\left(E_{i}^{V}\right) \eta^{V}\left(E_{i}^{V}\right)
$$

Since $E_{i}^{V}$ and $\xi^{V}$ orthogonal, we can take $\eta^{V}\left(E_{i}^{V}\right)=0$, thus we have $S\left(\xi^{V}, \xi^{V}\right)=\frac{n}{2}$.

Lemma 4.1 The Ricci tensor $S$ of a (4n+2)-dimensional Sasakian Finsler manifold satisfies the following equations:

$$
\begin{gathered}
S(X, \xi)=S\left(X^{H}, \xi^{H}\right)+S\left(X^{V}, \xi^{V}\right)=\frac{n}{2} \eta^{H}\left(X^{H}\right)+\frac{n}{2} \eta^{V}\left(X^{V}\right)=\frac{n}{2}\left(\eta^{H}\left(X^{H}\right)+\eta^{V}\left(X^{V}\right)\right)=\frac{n}{2} \eta(X), \\
S(\phi X, \phi Y)=S\left(\phi X^{H}, \phi Y^{H}\right)+S\left(\phi X^{V}, \phi Y^{V}\right)-\frac{n}{2} \eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right)-\frac{n}{2} \eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right) .
\end{gathered}
$$

## 5. Conclusion

For the Sasakian Finsler structure ( $\phi, \eta, \xi, G$ ) on $V$, the following relations hold:

$$
\begin{gathered}
\phi . \phi=-\mathrm{I}_{n}+\eta^{H} \otimes \xi^{H}+\eta^{V} \otimes \xi^{V}, \phi \xi^{H}=0, \phi \xi^{V}=0, \eta^{H}\left(\xi^{H}\right)+\eta^{V}\left(\xi^{V}\right)=1, \\
\eta^{H}\left(\phi X^{H}\right)=0, \eta^{V}\left(\phi X^{H}\right)=0, \eta^{H}\left(\phi X^{V}\right)=0, \eta^{V}\left(\phi X^{V}\right)=0, \\
G^{H}(\phi X, \phi Y)=G^{H}(X, Y)-\eta^{H}\left(X^{H}\right) \eta^{H}\left(Y^{H}\right), G^{V}(\phi X, \phi Y)=G^{V}(X, Y)-\eta^{V}\left(X^{V}\right) \eta^{V}\left(Y^{V}\right), \\
G^{H}(X, \xi)=\eta^{H}\left(X^{H}\right), G^{V}(X, \xi)=\eta^{V}\left(X^{V}\right), N_{\phi}+d \eta^{H} \otimes \xi^{H}+d \eta^{V} \otimes \xi^{V}=0, \\
\Omega\left(X^{H}, Y^{H}\right)=G^{H}(X, \phi Y)=d \eta\left(X^{H}, Y^{H}\right), \Omega\left(X^{V}, Y^{V}\right)=G^{V}(X, \phi Y)=d \eta\left(X^{V}, Y^{V}\right), \\
\nabla_{\xi}^{H} \phi=0, \nabla_{\xi}^{V} \phi=0, \nabla_{X}^{H} \xi^{H}=-\frac{1}{2} \phi X^{H}, \nabla_{X}^{V} \xi^{V}=-\frac{1}{2} \phi X^{V}, \\
\left(\nabla_{X}^{H} \phi\right) Y^{H}=\frac{1}{2}\left[G^{H}\left(X^{H}, Y^{H}\right) \xi^{H}-\eta^{H}\left(Y^{H}\right) X^{H}\right],\left(\nabla_{X}^{V} \phi\right) Y^{V} \\
=\frac{1}{2}\left[G^{V}\left(X^{V}, Y^{V}\right) \xi^{V}-\eta^{V}\left(Y^{V}\right) X^{V}\right], R\left(X^{H}, Y^{H}\right) Z^{H} \\
=\frac{1}{4}\left\{G\left(Z^{H}, Y^{H}\right) X^{H}-G\left(Z^{H}, X^{H}\right) Y^{H}\right\}(V \text { is locally symmetric }), R^{H}\left(X^{H}, Y^{H}\right) \xi^{H} \\
=\frac{1}{4}\left(\eta^{H}\left(Y^{H}\right) X^{H}-\eta^{H}\left(X^{H}\right) Y^{H}\right), R^{V}\left(X^{V}, Y^{V}\right) \xi^{V} \\
=\frac{1}{4}\left(\eta^{V}\left(Y^{V}\right) X^{V}-\eta^{V}\left(X^{V}\right) Y^{V}\right), R^{H}\left(X^{H}, \xi^{H}\right) Y^{H} \\
=\frac{1}{4}\left[-G\left(X^{H}, Y^{H}\right) \xi^{H}+\eta^{H}\left(Y^{H}\right) X^{H}\right], S\left(\xi^{H}, \xi^{H}\right)=\frac{n}{2}, \\
R^{V}\left(X^{V}, \xi^{V}\right) Y^{V}=\frac{1}{4}\left[-G\left(X^{V}, Y^{V}\right) \xi^{V}+\eta^{V}\left(Y^{V}\right) X^{V}\right], S\left(\xi^{V}, \xi^{V}\right)=\frac{n}{2}, \\
K\left(X^{V}, Y^{V}\right)=G\left(R\left(X^{V}, Y^{V}\right) Y^{V}, X^{V}\right)=\frac{1}{4}, K\left(X^{H}, Y^{H}\right)=G\left(R\left(X^{H}, Y^{H}\right) Y^{H}, X^{H}\right)=\frac{1}{4}, \\
S(X, \xi)=S\left(X^{H}, \xi^{H}\right)+S\left(X^{V}, \xi^{V}\right)=\frac{n}{2}\left(\eta^{H}\left(X^{H}\right)+\eta^{V}\left(X^{V}\right)\right)=\frac{n}{2} \eta(X) .
\end{gathered}
$$

$\forall X^{V}, Y^{V}, \xi^{V} \in V_{u}^{v}$ and $\forall X^{H}, Y^{H}, \xi^{H} \in N_{u}$, where a linear connection $\nabla$ on $V$ denotes Finsler connection, $\phi$ is the tensor field of type $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ on $V, \eta$ is a 1 -form, $S$ is the Ricci tensor, $R$ is the Riemann curvature tensor, $G$ is the Finsler metric structure on $V, K$ is the flag curvature on $V$. Next, let us set the equation below
$2 d \tilde{\eta}(X, Y)=X(\tilde{\eta}(Y))-Y(\tilde{\eta}(X))-\tilde{\eta}[X, Y], \forall X=X^{H} \in N_{u}, Y=Y^{H} \in N_{u}, \forall \tilde{\eta}=\eta^{H} \in N_{u}^{*}$. If we get $\tilde{\phi}=\phi^{H}, \tilde{\eta}=\eta^{H}, \tilde{\xi}=\xi^{H}, \tilde{g}=G^{H}$, the standard Sasakian structure of the base space $M^{2 n+1}$ is $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$. Then we have the following equations:

$$
\begin{gathered}
N_{\tilde{\phi}}+2 d \tilde{\eta} \otimes \tilde{\xi}=0, \nabla_{X} \tilde{\xi}=-\phi X, L_{\tilde{\xi}} \tilde{g}=0, \nabla_{\tilde{\xi}} \tilde{\phi}=0 \\
\left(\nabla_{X} \tilde{\phi}\right) Y=\tilde{g}(X, Y) \tilde{\xi}-\tilde{\eta}(Y) X, R(X, \tilde{\xi}) Y=\tilde{\eta}(Y) X-\tilde{g}(X, Y) \tilde{\xi} \\
\tilde{g}(R(X, \tilde{\xi}) \tilde{\xi}, X)=1, S(\tilde{\xi}, \tilde{\xi})=2 n, R(X, Y) \tilde{\xi}=\tilde{\eta}(Y) X-\tilde{\eta}(X) Y,
\end{gathered}
$$

$K(X, Y)=\tilde{g}(R(X, Y) Y, X)=1$ (sectional curvature for orthonormal pair $\{\mathrm{X}, \mathrm{Y}\})$.
The structure $\left(\phi^{H}, \eta^{H}, \xi^{H}, G^{H}\right)$ on $N_{u}$ is Sasakian Finsler if and only if the base manifold $M^{2 n+1}$ with the structure $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ has positive constant curvature 1 in which case $M^{2 n+1}$ is Sasakian manifold and $N_{u}$ is Sasakian Finsler manifold.

## References

[1] Antonelli, P. L.: Handbook of Finsler Geometry, Volume 1, Kluver Academic Publishers, ISBN-10:1402015550, (2003).
[2] Atanasiv, G. H., Sinha, B. B., Singh, S. K.: On Finsler spaces.3, Proc. Nat. Semi., 29-36, (1984).
[3] Miron, R.: On Finsler spaces, Proc. Nat. Semi. 2-Brasov, 147-188, (1982).
[4] Sinha, B. B., Yadav, R. K.: On almost contact Finsler structures on vector bundle, Indian J. Pure Appl. Math, 19(1), 27-35, (1988).
[5] Sinha, B. B., Yadav, R. K.: Almost contact semi symmetric metric Finsler connections on vector bundle, Indian J. Pure Appl. Math., 22(1), 29-39, (1991).
[6] Szilasi, J., Vincze, C.: A new look at Finsler connections and special Finsler manifolds, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 16, 33-63, (2000).


[^0]:    *Correspondence: caliskan.nesrin@hotmail.com
    2010 AMS Mathematics Subject Classification: 53D15, 53C05, 53C15, 53C60.

