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Abstract: In this study, almost contact Finsler structures on vector bundle are defined and the condition of normality
in terms of the Nijenhuis torsion Ny of almost contact Finsler structure is obtained. It is shown that for a K-contact
structure on Finsler manifold Vx¢& = —%¢X and the flag curvature for plane sections containing £ are equal to %. By
using the Sasakian Finsler structure, the curvatures of a Finsler connection V on V are obtained. We prove that a locally
symmetric Finsler manifold with K-contact Finsler structure has a constant curvature %. Also, the Ricci curvature on
Finsler manifold with K-contact Finsler structure is given. As a result, Sasakian structures in Riemann geometry and
Finsler condition are generalized.

As a conclusion we can state that Riemannian Sasakian structures are compared to Sasakian Finsler structures

and it is proven that they are adaptable.

Key words: Finsler connection, vector bundle, almost contact manifold, Sasakian manifold, nonlinear connection, Ricci
tensor

1. Introduction
Let V(M) ={V, m, M} be a vector bundle of total space V with a (n+m)-dimensional C*° manifold and
with a base space M that is an n-dimensional C°°-manifold. The projection map 7 : V — M, u € V —
7 (u) =z € M, where u = (z,y), and y € R™ = 7! (z) the fibre of V (M) over z.

A non-linear connection N on the total space V of V (M) is a differentiable distribution
N:V-T,V),ueVw~N,eT, (V) such that

T, (V)= N, ®V? where V' ={X € T, (V) : m, (X) = 0}. (1.1)

N, the horizontal distribution and V" is the vertical distribution. Thus for all X € T, (V) can be
separated by its components
X = X" + XV where X ¢ N,, XV e V2. (1.2)

Let z*, i=1,2,...,n and y®, a=1,2,...,m be the coordinates of z and y such that (gci,y“) are the

coordinates of ue V. The local base of N, is

58 . )
50 = 5 i (@) oy (1.3)
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and that of V,? is where N{(x,y) are the coefficients of N. Their dual bases are (dz’, dy®)
where

§y* = dy® + Nf (z,y) dx'. (1.4)

Let X = X'(z,y) <2 + X%(x,9) 2%, ¥X € T, (V). Then

ozt oya’

- o - .
XV = X%z,y)=——, X°=X"+N'X". (1.5)

, )
H __ %
X7 =X"(x,y) oy

oai’
Let w be a I-form w = @;(z,y)dz’ + w,(z,y)dy®. Then
H

wl = @idat, & = w; — N (z, y)wa; WY = wedy® (1.6)

which gives
WwH(XV) =0,w" (X)) =0 where w = w +w". (1.7)

The Finsler tensor field of type ( g 7; ) on V has the following local form [4]:

i J J o) o)
_ L1yeeeylpyAlyeeesQr ay ar b1 bs
T =T, (x’y)—(gxil ® .8 ®dz™ @ ...®dz"" ® oy ®..Q 7 ®oy"r ®@..@ 0y, (1.8)

Definition 1.1 A Finsler connection on V is a linear connection V = FI' on V with the property that the
horizontal linear space N, , u € V' of the distribution N is parallel with respect to V and the vertical spaces
V.Y, w eV are also parallel relative to V [3].

A linear connection V on V is a Finsler connection on V if and only if
H\V vH
(VXY ) =0, (VXY ) =0,VX, Y e T, (V). (1.9)
A linear connection V on V is a Finsler connection on V if and only if [4]
Vi = (VXY 4 (vxY") vX, Y e T, (V), (1.10a)
Vyw = (Vxw!)" 4+ (Vxw¥) Vo e T (V) and X € T, (V). (1.10D)
Remark 1.1 Let V on V is a Finsler connection on V. We get immediately that [6]

YeVI=VXeT,(V):;VxY eVY, YEN, =VX €T, (V):VxY € N,. (1.11)

For a Finsler connection V on V, there is an associated pair of operators; h- and v-covariant derivation
in the algebra of Finsler tensor fields. For each X € T, (V), set

VY =VxuY,VEf = X" (f),VY €T, (V),Vf € F(V). (1.12)
Ifw e T (V), we define

(VEw) (V)= X" (w(Y)) —w (VRY) , VWY €T, (V). (1.13)
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So, we may extend the action of the operator V4 to any Finsler tensor field by asking these questions:
does V4 preserve the type of Finsler tensor fields, is it R-linear, does it satisfy the Leibniz rule with respect
to tensor product and does it commute with all contractions? We keep the notation Vg for this operator on
the algebra of Finsler tensor fields. We call it the operator of h-covariant derivation.

In a similar way, for every vector field X € Ty, (V) set
VY =V YV, VX=XV (f),WWeT,(V),Yfe F(V). (1.14)
If we T (V), we define
(Viw) (V) =X" (w(Y)) —w (VYY) ,VY €T, (V). (1.15)

We extend the action of V¥ to any Finsler tensor field in a similar way, as for V. We obtain an

operator on the algebra of Finsler tensor fields on V; this will be denoted also by VY% and will be called the

operator of v-covariant derivation [1].

Definition 1.2 Let w € T, (V) be a differential g-form on V, V is a linear connection on V and T is the

torsion tensor of V. Then its exterior differential dw is also defined as [4]:

q+1 i ~
(d) (X1, s Xg1) = % (<) (Vixw) (Xl, o X, ...,Xq+1) VX, €T, (V)

— oy (DM (T (X5, X)) X1, ooy Xy ooy X, ...,Xq+1) .

1<i<j<q+1

(1.16)

Proposition 1.1 If w € T;* (V) is a I-form and V is a Finsler connection on V, then its exterior differential

is given by [3]
(dw) (X7, V) = (VHw) (YH) — (Viiw) (XT) +w (T (X7, YH)),
(dw) (XV,YH) = (VXw) (YT) = (Viw) (XV) +w (T (XV,YH)), (1.17)
(dw) (XY, YY) = (VXw) (YY) = (VYw) (XV) +w (T (XV,YY)) VX, Y € T, (V).

~—
—~

In the canonical coordinates (wi,y“) , there exists a well determined set of differentiable functions on V.

Fijk (z,y), F4 (2,y);Cl, (z,y); C2 (2, y) such that

J

H 6 _ ] ) H o _ el
Vs o7 —F;k (w,y) Szl Vs Ema = Iy (x»y) I
7 s ; s oV o P
vag dxd Cja (LL', y) Szt vaz Ayb Cbc (LL', y) dya

where Fy (z,y), F (x,y) are called coefficients of h-connections VY and Cg,. (x,y), Cl, (z,y) are called

coefficients of v-connectionsV"V .

The torsion tensor field T of a Finsler-connection is characterised by five Finsler tensor fields:
[T (x* oy I (x ) [r v ) ray)] (xvv )
Proposition 1.2 If the Finsler connection on V is without torsion then we have [3]

T (X" y") =07 (X", YV)=0,T(XV,YV)=0,VX,Y €T, (V).
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2. Almost contact Finsler structure on vector bundle

Let ¢ be an almost contact structure on V given by the tensor field of type ( ! } ) with the properties

1

Cpo=—L+nfot! +9V 0V

Lo =008 =0

T (ET) 40V (€Y) =1

(o XH)=0,n" (¢ X7)=0,9" (¢ XV) =0,n" (¢ XV) =0,

(2.1)

N R

where 7 is 1-form and £ is vector field [2].

Proposition 2.1 If ¢ is an almost contact Finsler structure on V, there exists a unique decomposition of ¢

in the Finsler tensor fields,

Pt @
¢>=¢1+¢>2+¢3+¢4=<¢3 ¢4> (2.2)
where
¢! (@ X) = ¢ (", XT), ¢ (@, X) = ¢ (", X"), 2
¢ (w,X) = ¢ (wV,XH) 0t (w, X) = ¢(wV,XV) VX eT,(V),YweTr (V).
We can write
¢ (X)) = ¢! (XT) = ¢ (XT), ¢ (XV) = ¢* (XV) =" (XV). (2.4)

Let G be the Finsler metric structure on V which is symmetric, positive definite and non-degenerate on

V. The metric-structure G on V is decomposed as:

G=G"+qav (2.5)

0
where G s of type( 5

0 ), symmetric, positive definite and non-degenerate on N, and GV is of type

0 0
( 0 92 ) , symmetric, positive definite and non-degenerate on VU i.e. for X, Y € T, (V)

GX,Y)=G"(X,Y)+GY (X,Y) (2.6)
where GH (X,Y) =G (XH,YH) GV (X)Y) =G (XV,YV) ..
Now, if the Finsler metric structure G on V satisfies
GH (¢X,9Y) =GH (X,Y) —nH (XH) nl (YH), (2.7)
QY (9X,¢Y) = G¥ (X,Y) =" (X¥) 0" (YY),

which is equivalent to

Gt (ng) :77H (X) 7GV (ng) :77V (X),

GH (¢X7 ¢Y) = _GH (¢2X7 Y) 7GV (¢X7 ¢Y) = _GV (¢2X7 Y) 5 (28)
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then (¢, n, &, G) is called almost contact metrical Finsler structure on V [5]. Now, we define

QX Y)=G(X,¢Y), Q(x",v") =G" (X,¢Y), (X", Y"V) =GY (X, ¢Y) (2.9)
and call it the fundamental 2-form.
Proposition 2.2 The fundamental 2-form, defined above, satisfies [5]

Q(¢XH oY) = Q (X7, YH) (XY, 0Y") =Q(XV, YY), )10
QXHYH) = (VP XH), (X", YY) = QY. X")VX,Y € T, (V). (2.10)

Proposition 2.3 Let V be a Finsler connection on V and € be the fundamental 2-form which satisfies
QX,Y)=dn(X,Y) i.e

) () 4 (T (X7, 7))
QXY ¥) = (Vi) (V¥) ~ (Vi) (X¥) 4 (T (XV,YH)) e.11)
QXY ¥Y) = (V) (¥V) - (Fn) (X¥) 4+ (T (XV. V).

Then, the almost contact metrical Finsler structure is called almost Sasakian Finsler structure and the

Finsler connection V satisfying (2.11) is called almost Sasakian Finsler connection on V [5].

Theorem 2.1 Let Q) be the fundamental 2-form and almost Sasakian Finsler connection V on V is torsion
free. Then [5]

Q (XY ) = (Vi) (V) = (Vi) (X7

)
)

QXY YH) = (Vin) (YH) - (v#n) (xv), (2.12)
QXY YY) = (Vi) (YY) = (Vin) (XV) VX, Y € T,, (V).
Proof From Proposition 1.2 and equations in (2.11), we have (2.12). O

Definition 2.1 An almost Sasakian Finsler structure on V is said to be a Sasakian Finsler structure if the

1-form n is a killing vector field, i.e.

(Vi) (V) + () (X7) = 0, () (1) + (V) (XV) =0, .19
(Vin) (YY) + (V¥n) (XV) = 0VX,Y € T, (V). :
The Finsler connection NV on V is torsion free, which is called Sasakian Finsler connection [5].

Theorem 2.2 Let V be the torsion free Finsler connection together with a Sasakian Finsler structure on V
and € is to be the fundamental 2-form; then

QX7 Y1) =2(Vin) (Y7) = =2 (Vi) (X7),
Q (X, YV) = 2(iy) (V) = —2 (V¥n) (X1, (214)
QXY YY) =2(Vin) (YY) = —2(Vin) (XV) VX, Y € T, (V)

323



YALINIZ and CALISKAN/Turk J Math

Proof From (2.12) and (2.13) we have (2.14) [5]. O

Example 2.1 Let V(M) = {V,m, M} be a vector bundle with the total space V = R is a 10-dimensional
C > -manifold and the base space M = R® is a 5-dimensional C > -manifold. Let ' ,1 < i < 5 and
y*, 1 < a <5 be the coordinates of w = (z,y) € V, that is u = (wl,x2,x3,x4,x5,y1,y2,y3,y4,y5) eV.
The local base of N, 1is (6%1, 6%2, 6%3, 6%4, 6%5) and the local base of V' is (aiylv Bigﬂ’ aiyg, aiyu ain) such that

T, (V)= N, @® VY. Then

XH = X155 + X250 + X355 + X5 + X5 5y,

XV :Xlaiyl +X2aiy2 +X38%3 +X48—§4 +X5aiy5 > X7 e N, XV eV,

Let n be a I-form, n = midx’ + G0y then nf = nida' + nodx? + nadx® + nadz* + nsdz® and
nY = inoy" + 720y? + 7136y> + 1u0y* + 7156y° where n=n" +1¥ and n? (XV) = 0, ¥ (X*) = 0.
We put nfl = % (dw5 —23dx! — x4dx2) and nV = % (§y5 — 3oyt — y4§y2).
The structure vector field & is given by & = 3 (6%5 + ain) and & is decomposed as £ = 36%5 and
_ 9.8
& =355

The tensor field ¢ of type (1,1) and ¢V of type (1,1) by a matriz form is given by

[0 1 0 0 0] [0 1 0 0 0]

-1 0 0 00 -1 0 0 00

o = 0 0 0 1 0|,¢"=] 0 0 0 1 0
0 0 -1 0 0 0 0 -1 00

_—x4 22 0 0 0 | _—y4 v 0 0 0 |

We can see that n™ (¢7) =1, ¢ (¢7) =0, 0V (¢V) =1, ¢V (¢V) =0, 9 (¢V) =0, n¥ (¢¥) =0,
(¢H)2XH = _—XH 4 pH (XH) et (¢V)2XV =XV 49V (Xv)fv and hence (¢, &, 1) is almost contact

Finsler structure on R0

3. Integrability tensor field of the almost contact Finsler structure
The integrability tensor field of the almost contact Finsler structure on V is given by [4] N (X,Y) = [¢X, ¢Y]—
H[dX, Y] — o [X,0Y]+ ? [ X, Y] +dn (X, V)7 +dnV (X, Y)EV VX, Y €T, (V).

We define four tensors N(1), N2 NG) and N | respectively by VX7 YH ¢H ¢ N, and VXV, YV ¢V €

vy
NO (X YH) = Ny (X, v H) +dn™ (X7, vH) e, (3.1a)
N® (xH yH) = (LEn™) (YvH) — (L") (X)), (3.1b)
NGO (XT) = (L) (X, NO (xX) = (L) (X™), (3.20)
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NO(XV, YY) =Ny (XV, YY) +dn¥ (XV, Y)Y, (3.2b)

NO (XY, 7) = (L) (V) = (L") (X7), (3.20)

N (XV) = (L) (XV), N (X¥) = (1 n¥) (XV), (3.3)

NO (XY Y") = Ny (XY, YH) +dn¥ (XY, YH) eV +an™ (XY, v7) e, (3.3b)

N (XY, ¥) = (Len™) (V1) + (Ln”) (V) — (En™) (XV) = (£lhn) (XY), @30)
NO(XV) = (1£6) (XV), N (XV) = (19") (X7), (3.34)

NO (v ) = (LY 9) (v), N (v1) = (LL o) (V7). (3.3¢)

It is clear that the almost contact Finsler structure (¢, &, n) is normal if and only if these four tensors vanish.

Lemma 3.1 IfNW =0, then N® = NG = N® = 0.
Proof IfN() =0, then for X, YH# ¢H ¢ N, , from (3.1.a) we have

[6", X] + o [, 0X 7] — ¢ (" (X)) €7 = 0. (3.4)
Applying n*! to (3.4), we see that
N (X = (L) (XT) = € (5 (X)) = o €7, X7) <.
From this equation, we also have
e ox ] = 0. (3.5)
On the other hand, applying ¢ to (3.4), we get
NGO (XH) = (L ¢) X7 = ¢ [XH 7] — [px 7 ¢H] =0. (3.6)
Finally, from N(") = 0, by using (3.6), we derive

0=—[pXH YH] - [XH ¢V H]| + ¢ [ XH YH]| — ¢ [pXH, ¢V ]

—oY T (T (XH)Y M)+ (VI (g (XH)) €M) + X T (! (YH)) €M, (3.7)

)

Applyingnto (3.7), we get N@ (XH YH) = 0. Similarly, VXV, YV, &V e vy, if NO (XV, YY) =0
then N (XV,YV) =0, N® (XV) =0,N® (XV) =0.
IEND (XY, YH) =0, from (3.3.a) we obtain

NW (XY, eM) = [¢", XV] = ¢ [oXV, "] =" (Y (XV)) ¢V =0. (3.8)
Applying 7" and n* to (3.8), we get (3.9):
174 [fH,XV:I — gH (nV (XV)) 777H [fH,XV:I =0. (39)
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Using (3.9) in (3.3.¢), we obtain
N (XY) = (Lgn") (X7) =€ (0" (XY)) = 0¥ [¢7, X"] =0.
Applying ¢ to (3.8), we get
NO(XV) = (L)X = [€7,6XV] + o[X",¢"] =0,
On the other hand, replacing X by £ in (3.3.a), we obtain
Y V] - [¢V, oY "] +&V (" (YT)) " =0. (3.10)
Applying 1 and 1V to (3.10), we get
[V, YT =&V (0" (Y™)), ¥ [V, Y] =0. (3.11)
Using (3.11) in (3.3.d), we obtain
N (H) = (L") (V) =" (0™ (1)) =0 [V, v"] = 0.
Applying ¢ to (3.10) and by using (3.11), we obtain
N® (VH) = (L{ o) (V1) = [€7, oY ] + o Y, €] =0.
By using (3.11), from (3.3.a), we calculate

0=Ny (6XV, YH) +dn" (¢XV,YH) eV +dnH (9XV,YH) M
— [YH,¢XV] + [¢YH,XV] +¢ [XV7YH] _ ¢ [¢XV,¢YH] _ ¢YH (77V (XV)) gV + ¢XV (77H (YH)) gH.

(3.12)
Applying 7" to (3.12), from (3.3.b), we obtain
0= N® (XV?YH) — XV (77H (YH)) _gYH (77V (XV)) A [(ZSXV?YH] g [(ZSYH?XV]
+77V [¢YH,XV] _77H [¢XV,YH] .
O
Proposition 3.1 The almost contact Finsler structure on V is normal if and only if
Ny +dn? @ +dn¥ @ ¢V =0. (3.13)

Let (¢, n, &, G) be almost metrical Finsler structure on V with contact metric. If the structure vector
field & is a Killing vector field with respect to G, the contact structure on V is called a K-contact Finsler structure
and V' is called a K-contact Finsler manifold.

Lemma 3.2 Let (¢, n, & G) be a contact metrical Finsler structure on V. Then N® and NW vanish.
Moreover, N®) vanishes if and only if & is a Killing vector field with respect to G.
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Proof We have
dn™ (pX T, oY) = Q (¢ X, Y ) = G (o X1, 9?2V ) = -G (X7, ¢*YH) = G (X", 9V T) = dpt (X", Y )
from which dn” (¢XH",YH) +dn" (XH, ¢YH) = 0.This is equivalent to N (X YH) =0.

On the other hand, we have 0 = G(XH,(be) = dnf (XH,fH) = XHpH (fH) — ¢HpH (XH) —
nH [XH,fH] .Thus we obtain ¢Hnf (XH) —nH ([fH,XH]) = 0. Therefore, we have L?nH = 0 hence
NW (xH) =o0.

We mention that (LfG‘) (XH,fH) = (77H (XH)) —nf [fH,XH] = (Lan) XH = 0. Simply, it is

clear that LfdnH = 0 and consequently, (L?dnH) (XH, YH) = (L?Q) (XH, YH) = (0 from which

0=¢lG (XT gy T) — G ([€, X1, ¥T) — G (X, ¢ [, VH])
= (1) (X", ov ") + G (XM, (L) YH) = (LEG) (XM, 6Y™) + G (XH,N® (YH)).

Thus ¢ is a Killing vector field if and only if N(3) (YH) = 0. Similarly, we consider that N® (XV, YV) =
0 and N® (XV) = 0. Moreover, N (XV) =0 if and only if ¢V is a Killing vector field with respect to GV .

O
Lemma 3.3 For an almost contact metric Finsler structure (¢, n, &, G) on V, we have
2G (Vx9)Y, Z) = dQ (X, Y, ¢Z) — dQU(X,Y, Z) + G (N (Y, Z) , ¢ X) (3.14)
+N@ (Y, Z2)5(X) + dn (6Y, X) 0 (Z) — dn (62, X) n (V). '
Proof The Finsler connection V with respect to G is given by
2GH (VEYH, z1) = XHGH (YH, z1) + YHGH (XM, zH) — ZH G (X7, vH) 4 G ([ XH Yy H], z7)
+GH ([ZH, XH] ,YH) - GH ([YyH, ZzH] , X,

(3.15)
2GV (VRYV,2V)=XVGY (YV,Z2V)+YVGY (XV,2V) - ZVG (XV,YV) + GV ([XV,YV],ZV)
+GV ([2V,XV], YY) =GV ([YV,2V],XV)

(3.16)

267 (VY H, 1) = XVGH (v, 27) + 67 (XY v 27) w6 ([ xV)T v ) )
26V (VEYY,2Y) = X6V (vV, 2V) + ¢V ([x7v V)", 2Y) + 6V (27, x7] v V) (3.18)
Furthermore, we have
dQ (XH, Y H, ZH) = XHQ (YH, ZH) + YHQ (27, XH) + ZHQ (XH, YyH) (3.19)
—Q([XH,YH], zH) —q([z", X)), vyH) - ([vyH, z1], x1), '
(XY, YV, zV)=xVayV,zV)+vVa(zV,XV)+ zVa(xV, YY) (3.20)

—Q([xV,vV],zV)-([zV,xV],YV)-Q([yV,z"],XV),
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aQ (xV,y", z%) = xVa (v, z7) —o([xV.v"1" 27) —a([z", xV]" ¥¥), @21
aQ (xV,vY, z") = 270 (xV,yV) — ([27,xV]" vV) —a ([vV, 27" x¥), (3.22)
aQ (X7, vV, z%) = vVe (27, x7) —o ([x",yV]" 27) —a([v¥, 27" x"),  (3.23)

) - (
)-o(
) - (
xT vV, 2) —e([2V, x7) YY), (32
) ( : (3.25)
) —Q ([YH, Al ,XH) . (3.26)
By using (2.9), from (3.15) we get

2GH (Vi) YH ZH) = oY HG (XH Z2H) — ZHQ (XH Y H) + GH ([XH, Y H] , ZH)
+Q ([27, X7, YH) - GH ([T, ZH] | XT) + YHQ (X", ZH) — pZH G (X7, YH)
+Q ([XH,YH],Z25) G ([pz", XH] ,YH) - GH ([YH,¢z1] , XH).

Also from (3.19), we calculate

dQ (XH gYH ¢zH) = XHQ (YH, Z27) + oY HG (27, XH) — ¢V 7 (n7 (27) nf (X))
—0Z1G (X1 YH) + 92 (" (XT) 0" (V) + G (X1, 9V 1], 27)

_77H [XH,¢YH] 77H (ZH) +G ([¢ZH,XH] ,YH) _77H [¢ZH,XH] 77H (YH) (327)
—Q ([¢YH,¢ZH] ,XH) .
Also from (3.1.a) by using (2.9), we obtain
G (N (YH ZzH) oxT) = - ([YH,27], XH) + Q([¢Y ", ¢Z"] , X1T) - G ([pYH, Z27] , X ) 598
+77H [¢YH,ZH]HH(XH)—G([YH,¢ZH],XH)+77H [YH,¢ZH]HH(XH). ( ’ )
From (3.1.b), we have
N®@) (yH7 ZH) nH (XH) = ¢V H (nH (YH)) nt (XH) —¢zH (nH (YH)) nt (XH) (3.29)

_77H [¢YH,ZH] 77H (XH) _77H [YH,¢ZH] 77H (XH)

By using (3.27), (3.28) and (3.29), we have the equation.
Similarly by using (3.2.a), (3.2.b), (2.9), (3.16) and (3.20), we get

2G (Vo) YV, ZV) =dQ (XV,9Y",¢2ZV) —dQ (XV,YV,ZV)+ G (ND (YV,2V),¢X")
+N(2) (YV, ZV) 77V (XV) + ng (¢YV,XV) 77V (ZV) _ ng (¢ZV,XV) 77V (YV) .

By using (2.9), (3.1.a), (3.1.b), (3.17) and (3.21), we calculate
dQ (XV, YT ¢zH) —Q (XY, YH, ZH) 4 dn (oY, XV)ntl (ZH) — dn (27, XV) nH (V)

_GH ([XV,¢YH]H,ZH) el ([quH,XV]H ,YH) 40 ([XV,YH]H,ZH) +Q ([ZH,XV]H,YH)
=26 (Vo) YH, ZH) .
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By using (2.9) and (3.18), (3.24), (3.2.a) and (3.2.b), we obtain
dQ(XH,9YV, ¢2ZV) —dQ (X7, YV, ZV)+ GV (NW (YV,Z2V), ¢XH)
+N(2) (YV, ZV) 77V (XH) + ng (¢YV,XH) 77V (ZV) _ ng (¢ZV,XH) 77V (YV)
+dnH ((by\/?XH) H (ZV) — dnf ((bZV?XH) nH (YV)
= G ([x#,0v"]",2V) =¥ (2V) 0" [X70vV]" + G ([02Y,x1)" vY)
=¥ (V) [ezv, XY o (xH V) zv) e (27, 51 v )
v [(byV?XH]VT]V (ZV) v [(ZSZV?XH]VT]V (YV)
=2GV ((VEg) YV, Z").

Lemma 3.4 For a contact metric Finsler structure (¢, 1, &, G) of V with Q = dn and N® = 0, we
9et2G (Vx9) Y, Z) = G (N (Y, Z),¢X)+dn (oY, X)n(Z)—dn($Z,X)n(Y). Especially we have V¢¢ = 0.
Proof The first equation is trivial by the assumption. We prove that V¢¢ = 0.

From N®) =0 we have dn® (XH,fH) =0 and dn" (Xv,fv) = (0. Thus the first equation implies that
Vf(b:O and VE/QS:O. O

Proposition 3.2 Let (¢, n, £, G) be a contact metrical Finsler structure on V. Then (¢, n, &, G) is a K-

contact Finsler structure if and only if N®) vanishes.

Proposition 3.3 Let (¢, 1, &, G) be contact metrical Finsler structure on V. Then (¢, n, &, G) is a K-contact

structure if and only if
Vx& = —%quH,ngV = —%quV. (3.30)
Proof If the structure vector field ¢ is a Killing vector field with respect to G, then we have
LAG" =0,LYGY =o. (3.31)
vXH YH ¢H e N, and VXV, YV €V € V) from (3.31), we can get
G (VR YT = -G (X", Vi), q (Ve YY) = -G (XV,Vvye"). (3.32)
Replacing Y by ¢ and ZH by Y in (3.15), we have

2G (VHEM i) = XHptl (YH) 4+ HG (XH yH) - yHpt (XT)

3.33
G ([XH, €] v H) =yt (1X,7]") - 6 (e, v ], xH). (333)
Replacing Y by ¢ | XH by YH and ZH by X in (3.15), we can get
2G (Ve XH) = YHpH (XH) 4 MG (XH, Y H) — XHpH (V)
(3.34)

+G ([ €], XY+ (1X,Y]7) = 6 ([¢7, XM, v ).
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Using (3.33) and (3.34), we get G (VEEH , YH) — G (XH,VHH) = dpf! (XH YH).
Since ¢ is a Killing vector field with respect to G | using (3.32), we obtain

dn™ (XH YH) = 2G (VT YT) = G (XH, gYH) = —G (¢X™,YT) and Ve = —1oXH.

Similarly for XV, YV, ¢V € V2, from (3.16) and (3.32), we get V¢V = —20XV. ]

Example 3.1 Let V(M) ={V, m, M} be a vector bundle with the total space V = RS is a 6-dimensional
C > -manifold and the base space M = R3 is a 3-dimensional C *-manifold. Let z',1 < i < 3 and
y*, 1 < a <3 be the coordinates of u= (x,y) € V that is u= (wl,xz,xs,yl,y2,y3) ev.

The local base of N, 1is (6%1, 6%2, 6%3) and that of V) is (aigﬂ’ Bigﬂ’ aiyg).

LetX = X'5% + X52VX € T, (V). Then XM = X155 4+ X250, + X35, XV = X120 + X2 2, +

Xsaiyg where XH € N, and XV € V.. Similarly Y can be written as

) ) ) S R
Y=y — 4 V24 V3 —— VvV =V V2 V3 .
dxl * dx2 * o3’ oyt * Oy? * Oy

Let i be a 1-form, n = n;dx’ +7,0y* then n™ = nidx' +nedx® +nzdx® and 0V = 710y + H26y? + 730>
where 1 = 01 + 1" and n (XV) =0 and 0V (XH) = 0. We put nf = %(dws—x2dx1) and nY =
%(éy?’ —y2§y1). Then the structure vector field £ is given by & = 2 (6%3 + aiyg) and & s decomposed as

et = 26%3 and £V = 28%3. The tensor field ¢ of type (1,1) and ¢V of type (1,1) by a matriz form is given
by

0 1 0 0 1 0
pP=1 -1 0 0],¢"=| -1 0 0
0 z2 0 0 ¥ 0

The Riemann metric tensor field G = GH + GV is given by

GH = = (do' @ da" + da® @ da® + 0" @) = i ((1+ @)?) (") + (d2?)” + (da?)” — 2° (da?) (da*) )

=

Gv = % (9 @yt + 8y @ 8y + 1" @nY) = % ((1+ @) ) + (05%) + (09%)° — 26 (09") (00*) ) -

Thus we give a metric tensor field G by a matriz form

1 1+ («2)® 0 —a? 1 1+ (12)° 0

af = Qv =<
1 1o |, 1 0 1 0
—z? 0 1 —y? 0 1

We analyze that ¥ (€1) = 1, 0¥ (€V) = 1, 6% (64) =0, o (&) =0, ¢V (€V) =0, " (¢") = 0,
(¢H)2XH = _—XH pH (XH) &7 and (¢V)2XV =—XV4q¥ (XV) €V, hence (¢, £, n) is an almost contact

Finsler structure on RS.
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On the other hand, we formulize that

H(wvHy _ L/, 3 2,1 1 0 2 0 3 0\ _ 1,05 19

(x7) = L (ar :cd:c)(XM +X§2+X5w3>_2(X X'a?) (3.35)
1+ (w2)2 0 —z? 0 —222

GH (XH ¢y =1[ x1 X2 X3 ] 0 1 o0 0 =[xt x2 x*]| 0
—a? 0 1 2 2

— 1(—2xa? 4 2X%) = § (X% - X'a?)

(3.36)
From (3.35) and (3.36) we get n™ (X)) = GH (XH, &) . Similarly, we have

ViyVy_ Lys3  ac 1 9 co 0 O N _Lrgs G190\ v_ AV yV ¢V
(X)—§(§y —yéy)(Xal—i-Xay +X6y>_§(X —Xy)n =GY (x",¢"),

¢H (XH) — (X2,—X1,X2.’L'2) 7¢H (YH) — (}/27_}/17}/21,2)7

oV (XV) _ (X2, —Xl,X2y2) oV (YV) _ (}727 —}71,172y2) :

aH (¢HXH ¢HyH) _ i (X yl +X2Y2) av ((ZSVXV?QSVYJ/) _ i (X1?1?+X2}}2) :
GH (xH yH) = {( (14 (@) - v%?) X+ X224+ X0 (VP - v'a?) },
GV (xV, YY) = {( (1+ )—?3y2) X4 X024 X0 (V-7 ),

H (XH) 77H (YH) — Z [XSYS +X1Y1 (.%'2)2 _lesw2 —X3Y1x2:| 7
v (XV) 77V (yV) — i [Xsys +X1}71 (y2)2 —X1?3y2 _ X3?1y2:| .

Thus, we get G (¢XH, oY) = GH (XH, YH) ™ (XH) " (YH), GV (6XV,9Y") =GV (XV,Y")~

(XV) nv (YV) and hence (¢, &, n, G) is an almost contact Finsler metric structure.

@) 0 =[]
G (XM, py") = i[ X' X2 X3 ] 0 1 0 Y| =4 (X'y? - XY,
—z? 0 1 Y22

Also, we know that dn™ = % (dwl A dw2) . By using this equality, we obtain
dnf (XH,YH) = GH (XH,(;SYH) . Similarly we get

. 1+ (%) 0 =2 v? ,
av (Xv7¢YV) =7 [ Xl X2 X3 ] 0 1 0 vy | = : (X1?2 _X2}}1)
—y? 0 1 Y22
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By using dn" = % (5y1 /\5y2), we derived dn¥ (XV,YV) = GV (XV,(;SYV). As a result we come up
with the following equation:
dp™ (XT,Y") =G" (X7 ov™) = (X, YT) dn¥ (XY, YY) =GV (XV,9Y")=Q(XV,YV). (3.37)

Then the almost contact metrical Finsler structure ( ¢, £, n, G ) is called almost Sasakian Finsler struc-

ture.
Because of n A (dn) # 0, (¢, & n, G) is a contact metrical Finsler structure. The vector fields

X, = 2(5%2-1-8%2), Xy = 2(6%1 +x26%3+8%1+y28%3) and & = 2(6%3—1—8%3) form a ¢-basis for the

contact metrical Finsler structure, where these are decomposed as

5 O\ v (0 5 A
X 2(52))( 2(62>’X2‘2<61+ 6w3>X2‘2<6y1+yay3>’

H_of 0\ v_of 9
=2 (5) < =2 (5):

On the other hand, we can see thatNg +dn®§& =0, that is Nf—i—dnH@fH =0 and Nq‘f—i—dn‘/@fv =0.

Hence the contact metrical Finsler structure is normal.

4. The curvature of a Finsler connection

The curvature of a Finsler connection V is given by:
R(X,)Y)Z =VxVyZ —VyVxZ -V ixy1Z,¥X,Y,Zc T, (V). (4.1)

As V preserves by parallelism the horizontal and the vertical distributions, from (4.1) we have that the

operator R (X,Y) carries horizontal vector fields into horizontal vector fields and vertical vector fields into

verticals. Consequently,
RX,Y)Z=RE (X, V) Z" + RV (X,Y)ZV VX,Y,Z € T, (V). (4.2)

Noting that the operator R(X,Y) is skew-symmetric with respect to X and Y, a theorem follows [1]:

Theorem 4.1 The curvature of a Finsler connection ¥V on the tangent space T, (V) is completely determined
by the following siz Finsler tensor fields:
R (XH,YH) ZH =vivizH _vivizH — V[XH7yH]ZH,

(XH,YH) zV =vivlizv —vivizv — V[XH7yH]ZV,
R(XV,YH) zH :V}QV?ZH—V?VY(ZH—V[XVyH]ZH, (4.3)
R(XV,YH)zZV =V\VizV —VviIvV\ZY - Vixv ymZV, '
R (XV, YV) ZH =vivyzi —vyvizi — V[Xv7yv]ZH,
R (XV,YV) zV =vyvyzvV —vyvizV — V[Xv7yv]ZV.

Then the curvature tensor of a Finsler connection V has only three different components with respect to

the Berwald basis. These are given by:
o 6 ) - ) a 9 ) ) g 0 ) - )
R(——) —=R},.,—R|—,— | —=P(o—R|=—,— ) — =5}, . .—. (44
((595’6’ 5953) dzh hik§gi’ <6yk ’ 5953) dzh ik §gi? <6yk ’ 6w3> dzh hik 5 (44)
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These three components are the first, third and fifth Finsler tensors from (4.3). The other three Finsler

tensors from (4.3) have the same local componentsR;, ko P} ks ond Si k-

) 0 - 0 o 0 .0 o 0 0 - 0
(595’“’ 595]) oyh hik §yi’ <6yk ’ 595]) oyh hik &yi’ <6yk ’ 6w3> oyh h gk gy (45)

(4.5)
So, a Finsler connection VI' = (N]Zf, ij, C;k) has only three local componentsR;, ko P} ko Si ik [1].

For a Finsler connection V, consider the torsion T, defined as usual
TX,Y)=VxY -VyX - [X,Y],VX,) Y €T, (V). (4.6)

Breaking T down into horizontal and vertical parts gives the torsion of a Finsler connection, V on Ty, (V')

is completely determined by the following Finsler tensor fields [1]:

TH (XM, yH) = VEYH - EXH [ X" yH)" TV (XH yH) = - [xH yH] VY,
TH (XH,yV) = —VYXH — [XH7Yv]H TV (XH YY) = VHYY — [XH YV] VY, (4.7)
TV (XV, YY) = VYV - vixV - [xV,YV]".

Let V be the torsion free Finsler connection, then we get
[(xH yH)\" —vHyH _vHxH [xH yH|V —q, [xH yV]"
[XH,YV] V=viyV, [XV,YV] V=viYyV -vyxV.

H VyvH
= -VVX
] vy X (4.8)

Theorem 4.2 In order for a (n+m)-dimensional Finsler manifold V to be K-contact, it is necessary and
sufficient that the following two conditions are satisfied:
1. 'V admits a unit Killing vector field & ;

2. The flag curvature for plane sections containing & are equal to % at every point of V.

Proof Let V be a K-contact manifold. From (4.3) and (3.30), we have

XH ¢H

— %GH (XH,XH) — %,GV (R (XV?gv) §V7XV)

GH (R (X", g) e, xH) = GH (VEVHEH - VEVieh - v ]gH,XH)

where X is a unit vector field orthogonal to ¢ and XV is a unit vector field orthogonal to ¢V . Hence

G(R(X,§)¢ X)

GH (R (X, &) e X))+ GV (RV (X,6) ¢V, XY)
= i(GH (XM, XH) + GV (XV,XV)) = LG (X, X) = 1.
Thus we obtain K (X,¢) = % =1
Conversely, we suppose that M satisfies the conditions (1.1) and (1.2). Since ¢ is a Killing vector field,

we have

dn (X7, Y7) = (GM(VRET, YT) — GT (Ve X)) = —2G (Ve XT) =G (X7, Y "),
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dn(XV,YV) =G (XV,¢Y").

Consequently, (¢, 1, &, G) is a K-contact Finsler structure on V.

Let (¢, n, &, G) be a contact metrical Finsler structure on V. If the metric structure of V is normal,

then V is mentioned to have a Sasakian Finsler structure and V is called a Sasakian Finsler manifold. O

Theorem 4.3 An almost contact metrical Finsler structure (¢, n, &, G) on V is a Sasakian Finsler structure
if and only if

(Vo) Y* = L [GM (X, Y™) € - " (v) x7]. (19

(Vo) YV = % GV (XV,YV)e" =9V (YY) XV]. (4.10)
Proof If the structure is normal, we have Q = dn and N = N®@ = 0. Thus, by using (3.14),
(3.18) and (3.19), we get 2G7 ((VEo) YH &) = —dQ (XH YH ¢H) + dn (ovH, X)) = GH (VH XH) —
nl (XH) nl (YH) . Thus we have(Vg(b) YH = % [GH (XH,YH) eH (YH) XH] .
Similarly, from Lemma 3.3, we have

2GV ((v})fg(b) YV?gV) — GV (YV,XV) _ 77\/ (XV) 77\/ (YV) .

Thus we get (Vo) YV =1 [GY (XV, YY)V —9V (YY) XV].
Conversely, we suppose that the structure satisfies (4.9) and (4.10). Putting Y = ¢ in (4.9) we have
—pVEH = % (77H (XH) e — XH), and putting YV = ¢V in (4.10), we can get

—pVieV = %(nv (XV) 134 —XV), and hence, applying ¢ to this, we obtain VE&H = —%(bXH and
Vyey = —%QSYV. Since ¢ is skew-symmetric, we prove that ¢ and ¢V is a Killing vector field. Moreover,
we obtain
dn (X7, v") = % (VEn) YT — (Vi) XT) =G (X", oY) = (X7, V"),
1

dn (XV,YV) = 5 (V¥n) YV = (Vyn) XV) =G (XY, 9Y") =Q(XV,Y").

Thus the structure is a contact metric Sasakian structure.
If (¢, n, & G) is a Sasakian Finsler structure on V, from (4.9) and (4.10) we obtain

R(X", YY) ¢ = — (" (Y") X" —p" (X")YT), (4.11)

=

R(XV.YV)¢V = —(nV (YV) XV —pV (XV)YY). (4.12)

=

That is, we have

R(X,)Y){=RI (X, V)" + RV (X, V)¢V =R(XH YH) e + R(XV,YV) €Y

= L[pH (YH)XH 4V (YY) XY~ (XT) YT~V (XV)YV]. (4.13)
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Theorem 4.4 Let V be a (n+m)-dimensional Finsler manifold admitting o unit Killing vector field §. Then

Vis a Sasakian Finsler manifold if and only if

R(X,§)Y = ﬁ [GT (XY e =@V (X, V)€ 0" (V) X Y (YY) XV].

Proof

RI(X, Y = VRVEYH - VEVEYH =V (Y1 = =5 (Vi) V!
= LG (XY () X,

RV (X, )YV = —% (Vko) YV = —i [G(XV, YY) =¥ (YY) XV].

From these equations mentioned above, we have the equation.
Let (.¢, n, &, G) be a Sasakian Finsler structure on V. From (4.9) and (4.10), we realize that

R(XH YH)¢pzH = ¢R (X", YH) ZH + L{G (¢x", Z2")YH — G (YH, Z7) px 1
+G (XH,ZH) ¢YH _ G(¢YH,ZH) XH},

R(XV,YV) ¢ZV = ¢R (XV,YV) zZV+ i {G (QSXV,ZV) YV -G (YV,ZV) XV
+G (XV,ZV) ¢YV -G (¢YV,ZV) XV} ,

R(Xx",Y")¢z" = ¢R (X", Y") ZV,

R(X",YV)¢z" = ¢R(X" YY) 2V — i {G(YV,zV)ex" — G (oY, 2V) X"},
R(XV,Y")¢zV = ¢R(XV,Y")ZV + i {G(oxV,2V) YT + G (XY, 2") oY},
R(XV.YV)pz" = ¢R(XV,YV) Z",

R(XV.Y")¢z" = ¢R(XV,YT) 21 - i {G (Y7, z") oxV -G (Y7, 2") XV},
R(X" YV)ez" = ¢R(X",YV) Z" + i {G(ex",2") YV +G (X, 27) ¢y},

R(X,Y)¢Z= R(X,Y)¢Z" + R(X,Y)pZ".

From (4.15), (4.16), (4.17), (4.18), (4.19), we also have the following equations:

R(X" YY"y zH = —¢R (X" Y")pz" + L {G (Y",Zz") X" — G (X", z")yH
—G (oY, Z7) oXH + G (o X7, ZM) 9V},

R(XV.YV)ZV = —¢R(XV,YV) 92V +3{G(YV,2V) XV -G (XV,z")YV
G (oYY, Z2V) oXV + G (¢XV,2V) oYV},

R(X" Y™ zV = —gpR (X", Y") 02",

R(X",YV)ZV = —¢pR (X", YV) ¢Z" + i {(vV,z2") X" -G (oY, 2") oX"},

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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R(XV,Y")zV = —¢R(XV,Y") 9z" — i {G(XV,Z2V) YT +G (oXV,27) oY}, (4.28)

R(XV,YV)Zz" = —¢R (X", Y"V) ¢z", (4.29)

R(XV,Y")z" = —¢R(XV,Y") 2" + i {G¢(Y",z") X" -G (¢y",Z2") px"}, (4.30)
1

R(X"T yV)Z" = —gR (X", YY) 92" — J{¢ X", 2N YV + G (oX", Z2") 9YV }, (4.31)

G (R (qSXH,qSYH) qSZH,qSWH) =G (R (XH,YH) ZH,WH)
o () g (27) G (X1 W) = (X) " (W) G (44 27) (432
(V) (W) G (X727 o () (27)G (7,00}
G (R (qSXV,qSYV) qSZV,qSWV) =G (R (XV,YV) ZV,WV)
+31{=n" (YV) 9V (Z2V)G (XV , WY) =V (XV) V¥ (WV)G (YV,Z") (4.33)
0" (YY) 0" (WY) G (XY, 2Y) +07 (XV) 0" (27) G (YV, W)}
A plane section in N, is called a horizontal ¢-section if there exists a unit vector X in N, orthogonal
to ¢ such that {XH,(;SXH} and a plane section in V! is called a wertical ¢-section if there exists a unit

vector XV in V.’ orthogonal to £V such that {X V.oX V}. Then the horizontal flag curvature
K (X" ¢ox") = G" (R (X", pXT) o X", X1 (4.34)

is called a horizontal ¢-sectional curvature, which will be denoted by K (X H ) . Vertical

flag curvature
K(XV,0XV)= GV (R(XV,9X") X", X") (4.35)

is called a wertical ¢ -sectional curvature, which will be denoted by KV (XV) . On a Sasakian Finsler manifold

the ¢-sectional curvature is K (X) = K% (XH) + KV (XV) . O

Proposition 4.1 Let (¢, n, & G ) be a K-contact Finsler structure on V. If V is locally symmetric, then V

is a Sasakian Finsler manifold with constant curvature i.

Proof For XH YH zH ¢H ¢ N, from (4.9), (4.10), (4.11) and (4.12), we get
1
(VZR) (X", v7.¢") = 2{G (270, x")vH -G (2%, v") X7} - r(x7, Y1) 2. (4.36)
Since V is locally symmetric, that is, VZ R = 0, from (4.36) we obtain
1
H yH\ o H _ * H v H\ yH _ H yH\ vH
R(X Y )Z —4{G(Z Y )X G(Z ,X)Y }
Thus for any orthonormal pair {X H yH }, we get,
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Similarly for XV, YV, ZV ¢V € V¥ we get

vV yvy v L V vV vV o_ V vV vV
R(X Y )Z = 4{G(Z Y )X G(Z , X )Y },
and for any orthonormal pair {XV, YV}, we obtain K (XV, YV) = G (R (XV, YV) YV,XV) = %.

. GH(R(x" Yy )y xH)+aV (R(XV YV )YV xV
For any orthonormal pair {X,Y}, we get K (X,Y) = GH()((H(,XH)GH)(YH,YH2+GV((X‘(/,XV)G‘Z(YV,YV)) =1

which shows us that the sectional curvature of V is % . The horizontal Ricci tensor SH of a (4n+2)-dimensional

Sasakian Finsler manifold V is given by

SH(xH yH) = Y G(R(XH,EF)EF YT) + G (R (XM, ¢M) ¢l yH)
= Y2 G (R(BI,XT) YT BI) + G (R (", X") YT M),

where {E{{, Eil . EH. fH} is a local orthonormal frame of N, .

The wvertical Ricci tensor of a (4n+2)-dimensional Sasakian Finsler manifold V is given by

SV (XY, YY) = S G(R(XV,EV)EY, YY)+ G (R(XV, V)€V, YY)
= Y G(R(EY,XV)YV,EY)+G(R(§V.XV)YV,¢Y)

where {EY,EY,...,EY, ¢V} is a local orthonormal frame of V. Thus the Ricci tensor S of a (4n+2)-

dimensional Sasakian Finsler manifold V is given by
S(X,Y)=ST(X,Y)+S58V(X,)Y)=S(XH,vH)+5(XV,YV)
= Y2 G(R(XH, EFYEF, YH) + G (R (X7, ¢7) el yH) (4.37)
+30 G (R(XV,EY)EY YY) + G (R(XY,€) €7, YY),

Proposition 4.2 A contact metric structure ( ¢, n, & G ) on a Finsler manifold of dimension (4n+2) is
K-contact if and only if S (fH,fH) = %,S(fv,fv) = 3.
Proof From (4.37) and (4.14), we have

2n 12n 12n
H HY _ H (H\ ¢H pH\ _ H H H (pHY\  H (2H
S(f € )—;G(R(Ei»§ )f »Ei)—zizzlG(Ei»Ei)_Zizzln (Ei)n (Ez)

Since Eff and ¢# orthogonal, we can take (EZH) = 0, thus we haveS (fH,fH) = 3.

2n 2n

2n 1 1
S(€V.¢e") = ;G(R(EY@V)@V,EY) = 12 GEVLE) - > 0" ()" (E)).

i=1 =1

I3
O

Since E}Y and ¢Y orthogonal, we can take n" (EZV) = 0, thus we haveS (fv,fv) = 3
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Lemma 4.1 The Ricci tensor S of a (4n+2)-dimensional Sasakian Finsler manifold satisfies the following

equations:

50,6 = 8 (X7.€) 45 (XV,6) = T (X7) + 2 (X7) = J (" (X*) 0¥ (X)) = Ju (),

S (6X,6Y) = S(6X™,0Y") +5 (xV,0¥") = Z0 (X") " (Y1) = Zn¥ (x¥) 0¥ (¥V).

5. Conclusion
For the Sasakian Finsler structure ( ¢, n, £, G ) on V, the following relations hold:

¢.0= Ly +n" @+ 0", o =0, 66" =0, n" (") +n" (€)= 1,
n" (oX) =0,1" (6X™) = 0,9" (¢XV) = 0,n" (¢X") =0,
G (pX,¢Y) = G (X,Y) =™ (XT)n" (Y1), GV (X, 0Y) =GV (X,Y) =" (X") 0" (V")
G (X, &) =n" (X"),GV(X,&)=n" (XV) , Ny +dn" @ " +dn¥ @¢" =0,
QX" YT =G (X,0Y) =dn (X", Y"),Q(XV, YY) =GV (X,¢Y) =dn(XV,YV),

1 1
Ve'o=0,V{p=0,Vxe" = —5oX" Vi = 50XV,

(VRo) YT = g [G" (X7 Y T) et = (V) XH], (Vo) YV

aQv (Xv7yv) &V gV (YV) XV] ?R(XH7yH) ZH

G (ZH,YH) X" -G (ZH,XH) YH} (V is locally symmetric), R¥ (XH,YH) et
n (YH) XH _pH (XH) YH) RV (Xv7yv) ¢v

" (YV) XV gV (XV) YV) RH (XH7§H) yH

e (XH?YH) ¢H (YH) XH] 7S(ngH) —

N N I L [ ST T
e N et el

n

RV (XxV, &)YV = i -G (X YY) 0" (YY) XV] S (67.67) = 3

1 1
K(XV?YV) _ G(R (XV?YV) YV?XV) _ Z7K(XH7yH) _ G(R (XH?YH) YH?XH) -3
S(X,6) = S (X7 M) +5(xV,eY) = g(nH (XH) + 9V (XV)) = gn(X).

vXV. YV, ¢V e V) and VX H yH ¢H ¢ N,, where a linear connection V on V denotes Finsler connection,
. 1 1 . . - . .
¢ is the tensor field of type ( 11 ) on V, n is a 1-form, S is the Ricci tensor, R is the Riemann curvature

tensor, G is the Finsler metric structure on V, K is the flag curvature on V. Next, let us set the equation below
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2di} (X,Y) = X (((Y)) - Y (7(X)) —7[X,Y],vX = X ¢ N,,Y =Y € N,,Vij = g1 € N’. If we get
o=, fj=nH e=¢" = G, the standard Sasakian structure of the base space M2"*! is (q~5, £, 7,7).

Then we have the following equations:
N; + 247 @ € =0,V & = —¢X,Lzg = o,vg({s =0,
(Vx6)Y =3 (X, V)E= () X, R(X.E) Y =7 () X 3 (X, V)¢,

0)Y
(R(X.6)6X) =1,8(68) =2m R V) E=7 (V) X —7(X) Y,

Es}!

K(X,)Y)=g(R(X,Y)Y,X) =1 (sectional curvature for orthonormal pair {X,Y}).
The structure ( ¢, nf, ¢H G H) on N, is Sasakian Finsler if and only if the base manifold M2?"+ !

with the structure (q~5, é , 71, §) has positive constant curvature 1 in which case M*"* ! is Sasakian manifold

and N, is Sasakian Finsler manifold.
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