Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $340-347$
(c) TÜBİTAK
doi:10.3906/mat-1102-23

Contact 3-structure QR-warped product submanifold in Sasakian space form

Esmaiel ABEDI*, Ghorbanali HAGHIGHATDOOST, Muhammad ILMAKCHI, Zahra NAZARI

Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz 53751 71379, Iran
Received: 12.02.2011 • Accepted: 08.10.2011 • Published Online: 19.03.2013 • Printed: 22.04 .2013

Abstract

In the present paper we obtain sharp estimates for the squared norm of the second fundamental form in terms of the mapping function for contact 3 -structure CR-warped products isometrically immersed in Sasakian space form.

Key words: Warped product, contact QR-warped product, Sasakian space form

1. Introduction

Let \tilde{M} be a hermitian manifold and denoted by J the almost complex structure on \tilde{M}. Yano and Ishihara (see [13]) considered a submanifold M whose tangent bundle $T M$ splits into a complex subbundle D and a totally real subbundle D^{\perp}. Later, such a submanifold was called a CR-submanifold [4], [3]. Blair and Chen [4] proved that a CR-submanifold of a locally conformal Kaäler manifold is a Cauchy-Riemann manifold in the sense of Greenfield.

Recently, Chen [5] introduced the notion of a CR-warped product submanifold in a Kaäler manifold. He established a sharp relationship between the mapping function f of a warped product CR-submanifold $M_{1} \times{ }_{f} M_{2}$ of a Kaäler manifold \tilde{M} and the squared norm of the second fundamental form $\|h\|$ [5].

In 1971, Kenmotsu [7] introduced a class of almost contact metric manifolds, called Kenmotsu manifold, which is not Sasakian. Kenmotsu manifolds have been studied by several authors such as Pitiş [12], Özgür [10] and Özgür and De [11].

Let $\bar{M}^{\frac{(n+p)}{4}}$ be a quaternionic Kaäler manifold with real dimension of $n+p$. Let M be an n -dimensional QR-submanifold of QR dimension $(p-3)$ isometrically immersed in a quaternionic Kaäler manifold $\bar{M} \frac{(n+p)}{4}$. Denoting by $\left\{F_{1}, F_{2}, F_{3}\right\}$ the quaternionic Kaäler structure of $\bar{M}^{\frac{(n+p)}{4}}$, it follows by definition [8] that there exists a $(p-3)$-dimensional subbundle ν of the normal bundle $T M^{\perp}$

$$
\begin{array}{r}
F_{1} \nu_{x} \subset \nu_{x}, \quad F_{2} \nu_{x} \subset \nu_{x}, \quad F_{3} \nu_{x} \subset \nu_{x} \\
F_{1} \nu_{x}^{\perp} \subset T_{x} M, \quad F_{2} \nu_{x}^{\perp} \subset T_{x} M, \quad F_{3} \nu_{x}^{\perp} \subset T_{x} M \tag{1.2}
\end{array}
$$

for each $x \in M$, where ν^{\perp} denotes the complementary orthogonal subbundle to ν in $T M^{\perp}$. Thus these are naturally distinguished unit normal vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ of M such that $\nu_{x}^{\perp}=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ for each

[^0]
ABEDI et al./Turk J Math

$x \in M$, and the vector fields U_{1}, U_{2}, U_{3} defined by

$$
\begin{equation*}
U_{1}=-F_{1} \xi_{1}, \quad U_{2}=-F_{2} \xi_{2}, \quad U_{3}=-F_{3} \xi_{3} \tag{1.3}
\end{equation*}
$$

are tangent to M. On the other hand, each tangent space $T_{x} M$ is decomposed as

$$
\begin{equation*}
T_{x} M=D_{x} \oplus D_{x}^{\perp} \tag{1.4}
\end{equation*}
$$

where D_{x} is the maximal quaternionic invariant subspace of $T_{x} M$ defined by

$$
\begin{equation*}
D_{x}=T_{x} M \cap F_{1} T_{x} M \cap F_{2} T_{x} M \cap F_{3} T_{x} M \tag{1.5}
\end{equation*}
$$

and D_{x}^{\perp} its orthogonal complement in $T_{x} M$. In this case, as shown in [2], $D_{x}^{\perp}=\operatorname{span}\left\{U_{1}, U_{2}, U_{3}\right\}$ and so $D: x \mapsto D_{x}$ defines an $(n-3)$-dimensional distribution on M. But D cannot be a quaternionic CR-distribution in the sense of [1]. Further, it is clear that

$$
\begin{equation*}
F_{1} T_{x} M, F_{2} T_{x} M, F_{3} T_{x} M \subset T_{x} M \oplus \operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\} \tag{1.6}
\end{equation*}
$$

and, consequently, for any tangent vector X to M, we have following decomposition in tangential and normal components

$$
\begin{equation*}
F_{i} X=\varphi_{i} X+\eta_{i}(X) \xi_{i} \tag{1.7}
\end{equation*}
$$

In the present paper, we study contact 3-structure QR-warped product submanifolds in Sasakian space forms.
We prove estimates of the squared norm of the second fundamental form in terms of the mapping function. Equality cases are investigated.

2. Preliminaries

A $(4 m+3)$-dimensional Riemannian manifold \tilde{M} is said to have an almost contact 3 -structure [9] if it admits three contact structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right), i=1,2,3$, satisfying:

$$
\begin{gathered}
\varphi_{k}=\varphi_{i} \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \varphi_{i}+\eta_{i} \otimes \xi_{j} \\
\xi_{k}=\varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i}, \quad \eta_{k}=\eta_{i} \circ \varphi_{j}=-\eta_{j} \circ \varphi_{i} .
\end{gathered}
$$

Kuo [9] proved that given an almost contact 3 -structure, there exists a Riemannian metric compatible with each of them, and hence we can speak of an almost contact metric 3 -structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, \tilde{g}\right), i=1,2,3$.

The almost contact metric structure of $(\varphi, \xi, \eta, \tilde{g})$ on \tilde{M} is called Sasakian structure if

$$
\begin{gathered}
\tilde{\nabla}_{X} \xi=-\varphi(X) \\
\left(\tilde{\nabla}_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X
\end{gathered}
$$

If the three structures $\left(\varphi_{i}, \xi_{i}, \eta_{i}, \tilde{g}\right)$ are contact metric structures, we say that \tilde{M} has a contact metric 3 -structure. If the three structures are Sasakian, we say that \tilde{M} has a 3 -Sasakian structure, and \tilde{M} is a 3-Sasakian manifold.

ABEDI et al./Turk J Math

We have the following theorem of Kashiwada [6]
Theorem. Every contact metric 3 -structure is 3-Sasakian.
A plane section π in $T_{p} \tilde{M}$ is called a φ - $\operatorname{section~if~} \varphi_{i}(\pi) \subseteq \pi$ for some $i=1,2,3$. The sectional curvature of a φ-section is called φ-holomorphic sectional curvature. A Sasakian manifold with constant φ-holomorphic sectional curvature c is called a Sasakian space form and is denoted by $\tilde{M}(c)$.

The curvature tensor \tilde{R} of a Sasakian space form is given by

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \frac{c+3}{4}\{\tilde{g}(Y, Z) X-\tilde{g}(X, Z) Y\} \\
+ & \frac{c-1}{4} \sum_{i=1}^{3}\left\{\left[\eta_{i}(X) Y-\eta_{i}(Y) X\right] \eta_{i}(Z)\right. \\
& +\left[\tilde{g}(X, Z) \eta_{i}(Y)-\tilde{g}(Y, Z) \eta_{i}(X)\right] \xi_{i} \\
& \left.-\tilde{g}\left(Y, \varphi_{i} Z\right) \varphi_{i} X+\tilde{g}\left(X, \varphi_{i} Z\right) \varphi_{i} Y+2 \tilde{g}\left(X, \varphi_{i} Y\right) \varphi_{i} Z\right\} \tag{2.1}
\end{align*}
$$

Let \tilde{M} be a Sasakian manifold and M an n-dimensional submanifold tangent to $\left\{\xi_{i}\right\}$. For any vector field X tangent to M, we put

$$
\begin{equation*}
\varphi_{i} X=P_{i} X+F_{i} X \tag{2.2}
\end{equation*}
$$

where $P_{i} X$ (resp. $F_{i} X$) denotes the tangent (resp. normal) component of $\varphi_{i} X$. Then P_{i} is an endomorphism of the bundle $T M$ and F_{i} is a normal bundle valued 1-forms on $T M$.

The Gauss equation is given by

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W) \\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)) \tag{2.3}
\end{align*}
$$

for any vectors X, Y, Z, W tangent to M.
Defining the covariant derivative of h by

$$
(\nabla h)(X, Y, Z)=\nabla_{X}^{\frac{1}{X}} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

the Codazzi equation is

$$
\begin{equation*}
(R(X, Y) Z)^{\perp}=(\nabla h)(X, Y, Z)-(\nabla h)(Y, X, Z) \tag{2.4}
\end{equation*}
$$

Let $p \in M$ and $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{4 m+3}\right\}$ be an orthonormal basis of the tangent space $T_{p} \tilde{M}$, such that e_{1}, \ldots, e_{n} are tangent to M at p. We denote by H the mean curvature vector, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{1}^{n} h\left(e_{i}, e_{i}\right) \tag{2.5}
\end{equation*}
$$

As is known, M is said to be minimal if H vanishes identically.

ABEDI et al./Turk J Math

Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, \quad r \in\{n+1, \ldots, 4 m+3\} \tag{2.6}
\end{equation*}
$$

as the coefficients of the second fundamental form h with respect to $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{4 m+3}\right\}$, and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) . \tag{2.7}
\end{equation*}
$$

By analogy with submanifold in a Kaäler manifold, different classes of submanifolds in a Sasakian manifold were considered.

A submanifold M tangent to $\left\{\xi_{i}\right\}$ is called an invariant (resp. anti-invariant) submanifold if $\varphi_{i}\left(T_{p} M\right) \subset$ $T_{p} M, \quad \forall p \in M\left(\right.$ resp. $\left.\varphi_{i}\left(T_{p} M\right) \subset T_{p}^{\perp} M, \quad \forall p \in M\right)$.

A submanifold M tangent to $\left\{\xi_{i}\right\}$ is called a contact QR-submanifold if there exists a pair of orthogonal differentiable distributions D and D^{\perp} on M, such that:
(1) $T M=D \oplus D^{\perp} \oplus\left\{\xi_{i}\right\}$, where $\left\{\xi_{i}\right\}$ is the 3 -dimensional distribution spanned by $\left\{\xi_{i}\right\}$
(2) D is invariant by φ_{i}, i.e. , $\varphi_{i}\left(D_{p}\right) \subset D_{p}, \quad \forall p \in M$;
(3) D^{\perp} is anti-invariant by φ_{i}, i.e. , $\varphi_{i}\left(D_{p}^{\perp}\right) \subset T_{p}^{\perp} M, \quad \forall p \in M$.

In particular, if $D^{\perp}=\{0\}$ (resp. $D=\{0\}$), M is an invariant (resp. anti-invariant) submanifold.

3. 3-Contact QR-warped product submanifolds

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and let $f: M_{1} \rightarrow(0, \infty)$ be differentiable function.
The warped product $M=M_{1} \times{ }_{f} M_{2}$ is the product manifold $M_{1} \times M_{2}$ endowed with the metric

$$
\begin{equation*}
g=g_{1}+f^{2} g_{2} \tag{3.1}
\end{equation*}
$$

More precisely, if $\pi_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\pi_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ are natural projections, the metric g is defined by

$$
\begin{equation*}
g=\pi_{1}^{*} g_{1}+\left(f o \pi_{1}\right)^{2} \pi_{2}^{*} g_{2} \tag{3.2}
\end{equation*}
$$

The function f is called warping function. If $f \equiv 1$, then we have a Riemannian product manifold. If neither f is constant, then we have a non-trivial warped product.

We recall that on a warped product one has

$$
\begin{equation*}
\nabla_{X} Z=X(\ln f) Z \tag{3.3}
\end{equation*}
$$

for any vector field X tangent to M_{1} and Z tangent to M_{2}, where ∇ is the Riemannian connection of the Riemannian metric g.

If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plan section spanned by X and Z is given by

$$
K(X \wedge Z)=g\left(\nabla_{Z}^{1} \nabla_{X}^{1} X-\nabla_{X}^{1} \nabla_{Z}^{1} X, Z\right)=\frac{1}{f}\left\{\left(\nabla_{X}^{1} X\right) f-X^{2} f\right\}
$$

ABEDI et al./Turk J Math

where ∇^{1}, ∇^{2} are the Riemannian connections of the Riemannian metrics g_{1} and g_{2} respectively.
A warped product submanifold $M=M_{1} \times_{f} M_{2}$ of a Sasakian manifold \tilde{M}, with M_{1} a $(4 \alpha+$ 3)-dimensional invariant submanifold tangent to $\left\{\xi_{i}\right\}$ and M_{2} a β-dimensional anti-invariant submanifold of \tilde{M}, is called the contact $Q R$-warped product submanifold.

We state the following estimate of the squared norm of the second fundamental form for contact QRwarped product in Sasakian space forms.

Theorem 3.1 Let \tilde{M} be a $(4 m+3)$-dimensional Sasakian manifold and $M=M_{1} \times{ }_{f} M_{2}$ an n-dimensional contact $Q R$-warped product submanifold, such that M_{1} is a $(4 \alpha+3)$-dimensional invariant submanifold tangent to $\left\{\xi_{i}\right\}$ and M_{2} is a β-dimensional anti-invariant submanifold of $\tilde{M}(c)$. Then:
(i) The squared norm of the second fundamental form of M satisfies

$$
\begin{equation*}
\|h\|^{2} \geq 2 \beta\|\nabla(\ln f)\|^{2}+6 \tag{3.4}
\end{equation*}
$$

where $\nabla(\ln f)$ is the gradient of $\ln f$.
(ii) If the equality sign of (3.4) holds identically, then M_{1} is a totally geodesic submanifold and M_{2} is a totally umbilical submanifold of \tilde{M}. Moreover, M is a minimal submanifold of \tilde{M}.

Proof Let $M=M_{1} \times{ }_{f} M_{2}$ be a QR-warped product submanifold of a Sasakian manifold \tilde{M}, such that M_{1} is an invariant submanifold tangent to $\left\{\xi_{i}\right\}$ and M_{2} is an anti-invariant submanifold of \tilde{M}.

For any unit vector fields X tangent to M_{1} and orthogonal to $\left\{\xi_{i}\right\}$ and Z, W tangent to M_{2}, we have

$$
\begin{align*}
g\left(h\left(\varphi_{i} X, Z\right), \varphi_{i} Z\right) & =g\left(\tilde{\nabla}_{Z} \varphi_{i} X, \varphi_{i} Z\right)=g\left(\varphi_{i} \tilde{\nabla}_{Z} X, \varphi_{i} Z\right) \tag{3.5}\\
& =g\left(\tilde{\nabla}_{Z} X, Z\right)=g\left(\nabla_{Z} X, Z\right)=X \ln f
\end{align*}
$$

Also, we have

$$
\begin{equation*}
g\left(h\left(\varphi_{i} X, Z\right), \varphi_{i} W\right)=(X \ln f) g(Z, W) \tag{3.6}
\end{equation*}
$$

and we have

$$
\begin{align*}
g\left(h(X, Z), \varphi_{i} Z\right) & =g\left(\tilde{\nabla}_{Z} X-\nabla_{Z} X, \varphi_{i} Z\right) \\
& =g\left(\tilde{\nabla}_{Z} X, \varphi_{i} Z\right)=-g\left(\varphi_{i} \tilde{\nabla}_{Z} X, Z\right) \\
& =-g\left(\tilde{\nabla}_{Z}\left(\varphi_{i} X\right)-\left(\tilde{\nabla}_{Z} \varphi_{i}\right) X, Z\right) \\
& =-g\left(\tilde{\nabla}_{Z}\left(\varphi_{i} X\right), Z\right)=-g\left(\nabla_{Z}\left(\varphi_{i} X\right), Z\right) \\
& =-g\left(\varphi_{i} X(\ln f) Z, Z\right)=-\varphi_{i} X(\ln f) \tag{3.7}
\end{align*}
$$

for $i=1,2,3$. On the other hand, since the ambient manifold \tilde{M} is a Sasakian manifold, it is easily seen that

$$
\begin{equation*}
h\left(\xi_{i}, Z\right)=-\varphi_{i} Z, \quad i=1,2,3 \tag{3.8}
\end{equation*}
$$

Obviously, (3.8) implies $\xi_{i} \ln f=0$.

Let $\left\{e_{i}, \varphi_{k} e_{i}, f_{j}, \xi_{k} \mid i=1, \ldots, \alpha, j=1, \ldots, \beta, k=1,2,3\right\}$ be a local orthonormal frame on M such that $e_{i}, \xi_{k}, i=1, \ldots, \alpha, k=1,2,3$ are tangent to M_{1} and f_{1}, \ldots, f_{β} are tangent to M_{2}. Therefore, by (3.6), (3.7) and (3.8), we have

$$
\begin{aligned}
\|\nabla \ln f\|^{2}= & \sum_{i=1}^{\alpha}\left(e_{i} \ln f\right)^{2}+\sum_{i=1}^{\alpha}\left(\varphi_{1} e_{i} \ln f\right)^{2}+\sum_{i=1}^{\alpha}\left(\varphi_{2} e_{i} \ln f\right)^{2}+\sum_{i=1}^{\alpha}\left(\varphi_{3} e_{i} \ln f\right)^{2} \\
= & \frac{1}{3 \beta} \sum_{i=1}^{\alpha} \sum_{j=1}^{\beta}\left\{\left\|h\left(\varphi_{1} e_{i}, f_{j}\right)\right\|^{2}+\left\|h\left(\varphi_{2} e_{i}, f_{j}\right)\right\|^{2}+\left\|h\left(\varphi_{3} e_{i}, f_{j}\right)\right\|^{2}\right\} \\
& +\frac{3}{\beta} \sum_{i=1}^{\alpha} \sum_{j=1}^{\beta}\left\|h\left(e_{i}, f_{j}\right)\right\|^{2} \\
= & \frac{1}{3 \beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}+\frac{8}{3 \beta}\left\|h\left(e_{i}, f_{j}\right)\right\|^{2} \\
= & \frac{1}{3 \beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}+\frac{8}{9}\|\nabla \ln f\|^{2}-\frac{8}{9} \sum_{i=1}^{\alpha}\left(e_{i} \ln f\right)^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{1}{9}\|\nabla \ln f\|^{2}=\frac{1}{3 \beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}-\frac{8}{9} \sum_{i=1}^{\alpha}\left(e_{i} \ln f\right)^{2} \tag{3.9}
\end{equation*}
$$

From the property of φ-invariant D, and permutations of $\varphi_{1} e_{i}, \varphi_{2} e_{i}, \varphi_{3} e_{i}$, we obtain the following three analogous relations:

$$
\begin{align*}
& \frac{1}{9}\|\nabla \ln f\|^{2}=\frac{1}{3 \beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}-\frac{8}{9} \sum_{i=1}^{\alpha}\left(\varphi_{1} e_{i} \ln f\right)^{2} \tag{3.10}\\
& \frac{1}{9}\|\nabla \ln f\|^{2}=\frac{1}{3 \beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}-\frac{8}{9} \sum_{i=1}^{\alpha}\left(\varphi_{2} e_{i} \ln f\right)^{2} \tag{3.11}\\
& \frac{1}{9}\|\nabla \ln f\|^{2}=\frac{1}{3 \beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}-\frac{8}{9} \sum_{i=1}^{\alpha}\left(\varphi_{3} e_{i} \ln f\right)^{2} \tag{3.12}
\end{align*}
$$

Summing the above relations, we have

$$
\|\nabla \ln f\|^{2}=\frac{1}{\beta}\left\|h\left(D, D^{\perp}\right)\right\|^{2}
$$

On the other hand, since $h\left(\xi_{i}, \xi_{i}\right)=0$ for $i=1,2,3$, then

$$
\begin{aligned}
\|h\|^{2}= & \|h(D, D)\|^{2}+2\left\|h\left(D, D^{\perp}\right)\right\|^{2}+\left\|h\left(D^{\perp}, D^{\perp}\right)\right\|^{2} \\
& +\sum_{i \neq j}\left\|h\left(\xi_{i}, \xi_{j}\right)\right\|^{2} \geq 2\left\|h\left(D, D^{\perp}\right)\right\|^{2}+6
\end{aligned}
$$

therefore the inequality (3.4) is immediately obtained.

ABEDI et al./Turk J Math

Denote by $h^{\prime \prime}$ the second fundamental form of M_{2} in M. Then, we get

$$
g\left(h^{\prime \prime}(Z, W), X\right)=g\left(\nabla_{Z} W, X\right)=-(X \ln f) g(Z, W)
$$

or equivalently

$$
\begin{equation*}
h^{\prime \prime}(Z, W)=-g(Z, W) \nabla(\ln f) \tag{3.13}
\end{equation*}
$$

If the equality sign of (3.4) identically holds, then we obtain

$$
\begin{equation*}
h(D, D)=0, \quad h\left(D^{\perp}, D^{\perp}\right)=0, \quad h\left(D, D^{\perp}\right) \subset \varphi_{i} D^{\perp} . \tag{3.14}
\end{equation*}
$$

The first condition (3.14) implies that M_{1} is totally geodesic in M. On the other hand, one has

$$
\begin{equation*}
\tilde{g}\left(h\left(X, \varphi_{i} Y\right), \varphi_{i} Z\right)=\tilde{g}\left(\tilde{\nabla}_{X} \varphi_{i} Y, \varphi_{i} Z\right)=\tilde{g}\left(\nabla_{X} Y, Z\right)=0, \tag{3.15}
\end{equation*}
$$

where X, Y are tangent to M_{1} and Z is tangent to M_{2}. Thus M_{1} is totally geodesic in \tilde{M}.
The second condition in (3.14) and (3.13) imply that M_{2} is totally umbilical submanifold in \tilde{M}.
Moreover, by (3.14), it follows that M is a minimal submanifold of \tilde{M}.
In particular, if the ambient space is a Sasakian space form, one has the following corollary.
Corollary 3.2 Let $\tilde{M}(c)$ be a $(4 m+3)$ - dimensional Sasakian space form of constant φ-holomorphic sectional curvature c and $M=M_{1} \times M_{2}$ an n-dimensional non-trivial contact $Q R$-warped product submanifold, satisfying

$$
\begin{equation*}
\|h\|^{2}=2 \beta\|\nabla(\ln f)\|^{2}+6 . \tag{3.16}
\end{equation*}
$$

Then, we have
(a) M_{1} is a totally geodesic invariant submanifold of $\tilde{M}(c)$. Hence M_{1} is a Sasakian space form of constant φ-holomorphic sectional curvature c.
(b) M_{2} is a totally umbilical anti-invariant submanifold of $\tilde{M}(c)$. Hence M_{1} is a real space form of sectional curvature $\varepsilon \geq(c+3) / 4$.
Proof Statement (a) follows from Theorem 3.1.
Also, we know that M_{2} is a totally umbilical submanifold of $\tilde{M}(c)$. The Gauss equation implies that M_{2} is a real space form of sectional curvature $\varepsilon \geq(c+3) / 4$.
Moreover, by (3.3), we see that $\varepsilon=(c+3) / 4$ if and only if the warping function f is constant.

References

[1] Barros, A., Chen, B. Y., Urbano, F.: Quaternion CR-submanifolds of a Quaternion Manifold, Kodai Math. J. 4, 399-418, (1981).
[2] Bejancu, A.: Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, (1986).

ABEDI et al./Turk J Math

[3] Bejancu, A.: CR-submanifolds of Kaäler Manifold I, Proc. Amer. Math. Soc. 69, no.1, 135-142, (1978).
[4] Blair, D. E., Chen, B. Y.: On CR-submanifolds of Hermitian Manifolds, Israel J. Math. 34, 353-363, (1979).
[5] Chen, B. Y.: Geometry of Warped Product CR-submanifolds of Kaäler Manifolds, Monatsh. Math. 133, 177-195, (2001).
[6] Kashiwada, T.: On a Contact 3-Structure, Math. Z. 238, 829-832, (2001).
[7] Kenmotsu, K.: A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J. 24, 93-103, (1972).
[8] Kwon, J. H., Pak, J. S.: QR-submanifolds of $(p-1)$ QR-dimension in a Quaternionic Projective Space $Q P^{\frac{(n+p)}{4}}$, Acta Math. Hungar. 86, 89-116, (2000).
[9] Kuo, Y. Y., On Almost Contact 3-Structure, Tôhoku Math. J., 22, 325-332, (1970).
[10] Özgür, C.: I On Weakly Symmetric Kenmotsu Manifolds, Differ. Geom. Dyn. Syst. 8, 204-206, (2006).
[11] Özgür, C., De, U. C.: On the Quasi-Conformal Curvature Tensor of a Kenmotsu Manifold, Mathematica Pannonica. 17(2), 221-228, (2006).
[12] Pitiş, G.: A Remark on Kenmotsu Manifolds, Bull. Univ. Braşov, Ser. C. 30, 31-32, (1988).
[13] Yano, K., Kon, M.: Structure on Manifold, World Scientific, Singapore, (1984).

[^0]: *Correspondence: esabedi@azaruniv.edu
 2010 AMS Mathematics Subject Classification: 53C25, 53C40.

