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Abstract: In the present paper we obtain sharp estimates for the squared norm of the second fundamental form in terms

of the mapping function for contact 3-structure CR-warped products isometrically immersed in Sasakian space form.
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1. Introduction

Let M̃ be a hermitian manifold and denoted by J the almost complex structure on M̃ . Yano and Ishihara (see

[13]) considered a submanifold M whose tangent bundle TM splits into a complex subbundle D and a totally

real subbundle D⊥ . Later, such a submanifold was called a CR-submanifold [4],[3]. Blair and Chen [4] proved
that a CR-submanifold of a locally conformal Kaäler manifold is a Cauchy-Riemann manifold in the sense of
Greenfield.

Recently, Chen [5] introduced the notion of a CR-warped product submanifold in a Kaäler manifold. He
established a sharp relationship between the mapping function f of a warped product CR-submanifold M1×f M2

of a Kaäler manifold M̃ and the squared norm of the second fundamental form ‖h‖ [5].

In 1971, Kenmotsu [7] introduced a class of almost contact metric manifolds, called Kenmotsu manifold,

which is not Sasakian. Kenmotsu manifolds have been studied by several authors such as Pitiş [12], Özgür [10]

and Özgür and De [11].

Let M̄
(n+p)

4 be a quaternionic Kaäler manifold with real dimension of n + p . Let M be an n-dimensional

QR-submanifold of QR dimension (p − 3) isometrically immersed in a quaternionic Kaäler manifold M̄
(n+p)

4 .

Denoting by {F1, F2, F3} the quaternionic Kaäler structure of M̄
(n+p)

4 , it follows by definition [8] that there

exists a (p − 3)-dimensional subbundle ν of the normal bundle TM⊥

F1νx ⊂ νx, F2νx ⊂ νx, F3νx ⊂ νx, (1.1)

F1ν
⊥
x ⊂ TxM, F2ν

⊥
x ⊂ TxM, F3ν

⊥
x ⊂ TxM, (1.2)

for each x ∈ M , where ν⊥ denotes the complementary orthogonal subbundle to ν in TM⊥ . Thus these are

naturally distinguished unit normal vector fields {ξ1, ξ2, ξ3} of M such that ν⊥
x = span{ξ1, ξ2, ξ3} for each
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x ∈ M , and the vector fields U1, U2, U3 defined by

U1 = −F1ξ1, U2 = −F2ξ2, U3 = −F3ξ3 (1.3)

are tangent to M . On the other hand, each tangent space TxM is decomposed as

TxM = Dx ⊕ D⊥
x (1.4)

where Dx is the maximal quaternionic invariant subspace of TxM defined by

Dx = TxM ∩ F1TxM ∩ F2TxM ∩ F3TxM (1.5)

and D⊥
x its orthogonal complement in TxM . In this case, as shown in [2], D⊥

x = span{U1, U2, U3} and so

D : x �→ Dx defines an (n−3)-dimensional distribution on M . But D cannot be a quaternionic CR-distribution

in the sense of [1]. Further, it is clear that

F1TxM, F2TxM, F3TxM ⊂ TxM ⊕ span{ξ1, ξ2, ξ3} (1.6)

and, consequently, for any tangent vector X to M , we have following decomposition in tangential and normal
components

FiX = ϕiX + ηi(X)ξi (1.7)

In the present paper, we study contact 3-structure QR-warped product submanifolds in Sasakian space forms.
We prove estimates of the squared norm of the second fundamental form in terms of the mapping function.

Equality cases are investigated.

2. Preliminaries

A (4m + 3)-dimensional Riemannian manifold M̃ is said to have an almost contact 3-structure [9] if it admits

three contact structure (ϕi, ξi, ηi), i = 1, 2, 3, satisfying:

ϕk = ϕiϕj − ηj ⊗ ξi = −ϕjϕi + ηi ⊗ ξj

ξk = ϕiξj = −ϕjξi , ηk = ηi ◦ ϕj = −ηj ◦ ϕi.

Kuo [9] proved that given an almost contact 3-structure, there exists a Riemannian metric compatible

with each of them, and hence we can speak of an almost contact metric 3-structure (ϕi, ξi, ηi, g̃), i = 1, 2, 3.

The almost contact metric structure of (ϕ, ξ, η, g̃) on M̃ is called Sasakian structure if

∇̃Xξ = −ϕ(X)

(∇̃Xϕ)Y = g(X, Y )ξ − η(Y )X.

If the three structures (ϕi, ξi, ηi, g̃) are contact metric structures, we say that M̃ has a contact metric

3-structure. If the three structures are Sasakian, we say that M̃ has a 3-Sasakian structure, and M̃ is a
3-Sasakian manifold.
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We have the following theorem of Kashiwada [6]

Theorem. Every contact metric 3-structure is 3-Sasakian.

A plane section π in TpM̃ is called a ϕ−section if ϕi(π) ⊆ π for some i = 1, 2, 3. The sectional curvature

of a ϕ-section is called ϕ-holomorphic sectional curvature. A Sasakian manifold with constant ϕ-holomorphic

sectional curvature c is called a Sasakian space form and is denoted by M̃(c).

The curvature tensor R̃ of a Sasakian space form is given by

R̃(X, Y )Z =
c + 3

4
{g̃(Y, Z)X − g̃(X, Z)Y }

+
c − 1

4

3∑

i=1

{[ηi(X)Y − ηi(Y )X]ηi(Z)

+[g̃(X, Z)ηi(Y ) − g̃(Y, Z)ηi(X)]ξi

−g̃(Y, ϕiZ)ϕiX + g̃(X, ϕiZ)ϕiY + 2g̃(X, ϕiY )ϕiZ}. (2.1)

Let M̃ be a Sasakian manifold and M an n-dimensional submanifold tangent to {ξi} . For any vector field X

tangent to M , we put

ϕiX = PiX + FiX (2.2)

where PiX (resp. FiX ) denotes the tangent (resp. normal) component of ϕiX . Then Pi is an endomorphism
of the bundle TM and Fi is a normal bundle valued 1−forms on TM .

The Gauss equation is given by

R̃(X, Y, Z, W ) = R(X, Y, Z, W )

+g(h(X, W ), h(Y, Z)) − g(h(X, Z), h(Y, W )) (2.3)

for any vectors X, Y, Z, W tangent to M .

Defining the covariant derivative of h by

(∇h)(X, Y, Z) = ∇⊥
Xh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ)

the Codazzi equation is

(R(X, Y )Z)⊥ = (∇h)(X, Y, Z) − (∇h)(Y, X, Z). (2.4)

Let p ∈ M and {e1, . . . , en, en+1, . . . , e4m+3} be an orthonormal basis of the tangent space TpM̃ , such that

e1, . . . , en are tangent to M at p . We denote by H the mean curvature vector, that is

H(p) =
1
n

n∑

1

h(ei, ei) (2.5)

As is known, M is said to be minimal if H vanishes identically.
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Also, we set

hr
ij = g(h(ei, ej), er), i, j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 4m + 3} (2.6)

as the coefficients of the second fundamental form h with respect to {e1, . . . , en, en+1, . . . , e4m+3} , and

‖ h ‖2=
n∑

i,j=1

g(h(ei, ej), h(ei, ej)). (2.7)

By analogy with submanifold in a Kaäler manifold, different classes of submanifolds in a Sasakian manifold
were considered.

A submanifold M tangent to {ξi} is called an invariant (resp. anti-invariant) submanifold if ϕi(TpM) ⊂
TpM, ∀p ∈ M (resp. ϕi(TpM) ⊂ T⊥

p M, ∀p ∈ M ).

A submanifold M tangent to {ξi} is called a contact QR-submanifold if there exists a pair of orthogonal

differentiable distributions D and D⊥ on M , such that:

(1) TM = D ⊕ D⊥ ⊕ {ξi} , where {ξi} is the 3−dimensional distribution spanned by {ξi}
(2) D is invariant by ϕi , i.e. , ϕi(Dp) ⊂ Dp, ∀p ∈ M ;

(3) D⊥ is anti-invariant by ϕi , i.e. , ϕi(D⊥
p ) ⊂ T⊥

p M, ∀p ∈ M .

In particular, if D⊥ = {0} (resp. D = {0}), M is an invariant (resp. anti-invariant) submanifold.

3. 3-Contact QR-warped product submanifolds

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and let f : M1 → (0,∞) be differentiable function.

The warped product M = M1 ×f M2 is the product manifold M1 × M2 endowed with the metric

g = g1 + f2g2 (3.1)

More precisely, if π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2 are natural projections, the metric g is defined
by

g = π∗
1g1 + (foπ1)2π∗

2g2 (3.2)

The function f is called warping function. If f ≡ 1, then we have a Riemannian product manifold. If neither
f is constant, then we have a non-trivial warped product.

We recall that on a warped product one has

∇XZ = X(ln f)Z (3.3)

for any vector field X tangent to M1 and Z tangent to M2 , where ∇ is the Riemannian connection of the
Riemannian metric g .

If X and Z are unit vector fields, it follows that the sectional curvature K(X ∧ Z) of the plan section
spanned by X and Z is given by

K(X ∧ Z) = g(∇1
Z∇1

XX −∇1
X∇1

ZX, Z) =
1
f
{(∇1

XX)f − X2f},
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where ∇1,∇2 are the Riemannian connections of the Riemannian metrics g1 and g2 respectively.

A warped product submanifold M = M1 ×f M2 of a Sasakian manifold M̃ , with M1 a (4α +

3)−dimensional invariant submanifold tangent to {ξi} and M2 a β -dimensional anti-invariant submanifold

of M̃ , is called the contact QR-warped product submanifold.

We state the following estimate of the squared norm of the second fundamental form for contact QR-
warped product in Sasakian space forms.

Theorem 3.1 Let M̃ be a (4m + 3)-dimensional Sasakian manifold and M = M1 ×f M2 an n-dimensional

contact QR-warped product submanifold, such that M1 is a (4α+3)-dimensional invariant submanifold tangent

to {ξi} and M2 is a β -dimensional anti-invariant submanifold of M̃(c) . Then:

(i) The squared norm of the second fundamental form of M satisfies

‖ h ‖2≥ 2β ‖ ∇(lnf) ‖2 +6 (3.4)

where ∇(lnf) is the gradient of ln f .

(ii) If the equality sign of (3.4) holds identically, then M1 is a totally geodesic submanifold and M2 is a totally

umbilical submanifold of M̃ . Moreover, M is a minimal submanifold of M̃ .

Proof Let M = M1 ×f M2 be a QR-warped product submanifold of a Sasakian manifold M̃ , such that M1

is an invariant submanifold tangent to {ξi} and M2 is an anti-invariant submanifold of M̃ .

For any unit vector fields X tangent to M1 and orthogonal to {ξi} and Z, W tangent to M2 , we have

g(h(ϕiX, Z), ϕiZ) = g(∇̃ZϕiX, ϕiZ) = g(ϕi∇̃ZX, ϕiZ) (3.5)

= g(∇̃ZX, Z) = g(∇ZX, Z) = X ln f.

Also, we have

g(h(ϕiX, Z), ϕiW ) = (X lnf)g(Z, W ) (3.6)

and we have

g(h(X, Z), ϕiZ) = g(∇̃ZX −∇ZX, ϕiZ)

= g(∇̃ZX, ϕiZ) = −g(ϕi∇̃ZX, Z)

= −g(∇̃Z(ϕiX) − (∇̃Zϕi)X, Z)

= −g(∇̃Z(ϕiX), Z) = −g(∇Z(ϕiX), Z)

= −g(ϕiX(lnf)Z, Z) = −ϕiX(ln f) (3.7)

for i = 1, 2, 3. On the other hand, since the ambient manifold M̃ is a Sasakian manifold, it is easily seen that

h(ξi, Z) = −ϕiZ , i = 1, 2, 3 (3.8)

Obviously, (3.8) implies ξi lnf = 0.
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Let {ei, ϕkei, fj , ξk | i = 1, . . . , α, j = 1, . . . , β, k = 1, 2, 3} be a local orthonormal frame on M such

that ei, ξk, i = 1, . . . , α, k = 1, 2, 3 are tangent to M1 and f1, ..., fβ are tangent to M2 . Therefore, by (3.6),

(3.7) and (3.8), we have

‖ ∇ lnf ‖2 =
α∑

i=1

(ei lnf)2 +
α∑

i=1

(ϕ1ei lnf)2 +
α∑

i=1

(ϕ2ei ln f)2 +
α∑

i=1

(ϕ3ei ln f)2

=
1
3β

α∑

i=1

β∑

j=1

{‖ h(ϕ1ei, fj) ‖2 + ‖ h(ϕ2ei, fj) ‖2 + ‖ h(ϕ3ei, fj) ‖2}

+
3
β

α∑

i=1

β∑

j=1

‖ h(ei, fj) ‖2

=
1
3β

‖ h(D, D⊥) ‖2 +
8
3β

‖ h(ei, fj) ‖2

=
1
3β

‖ h(D, D⊥) ‖2 +
8
9
‖ ∇ lnf ‖2 −8

9

α∑

i=1

(ei ln f)2.

Therefore,

1
9
‖ ∇ lnf ‖2=

1
3β

‖ h(D, D⊥) ‖2 −8
9

α∑

i=1

(ei ln f)2. (3.9)

From the property of ϕ− invariant D , and permutations of ϕ1ei, ϕ2ei, ϕ3ei , we obtain the following three
analogous relations:

1
9
‖ ∇ lnf ‖2=

1
3β

‖ h(D, D⊥) ‖2 −8
9

α∑

i=1

(ϕ1ei lnf)2 (3.10)

1
9
‖ ∇ lnf ‖2=

1
3β

‖ h(D, D⊥) ‖2 −8
9

α∑

i=1

(ϕ2ei lnf)2 (3.11)

1
9
‖ ∇ lnf ‖2=

1
3β

‖ h(D, D⊥) ‖2 −8
9

α∑

i=1

(ϕ3ei lnf)2 (3.12)

Summing the above relations, we have

‖ ∇ lnf ‖2=
1
β

‖ h(D, D⊥) ‖2 .

On the other hand, since h(ξi, ξi) = 0 for i = 1, 2, 3, then

‖h‖2 = ‖h(D, D)‖2 + 2‖h(D, D⊥)‖2 + ‖h(D⊥, D⊥)‖2

+
∑

i �=j

‖h(ξi, ξj)‖2 ≥ 2‖h(D, D⊥)‖2 + 6,

therefore the inequality (3.4) is immediately obtained.
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Denote by h′′ the second fundamental form of M2 in M . Then, we get

g(h′′(Z, W ), X) = g(∇ZW, X) = −(X lnf)g(Z, W )

or equivalently

h′′(Z, W ) = −g(Z, W )∇(lnf) (3.13)

If the equality sign of (3.4) identically holds, then we obtain

h(D, D) = 0, h(D⊥, D⊥) = 0, h(D, D⊥) ⊂ ϕiD
⊥. (3.14)

The first condition (3.14) implies that M1 is totally geodesic in M . On the other hand, one has

g̃(h(X, ϕiY ), ϕiZ) = g̃(∇̃XϕiY, ϕiZ) = g̃(∇XY, Z) = 0, (3.15)

where X, Y are tangent to M1 and Z is tangent to M2 . Thus M1 is totally geodesic in M̃ .

The second condition in (3.14) and (3.13) imply that M2 is totally umbilical submanifold in M̃ .

Moreover, by (3.14), it follows that M is a minimal submanifold of M̃ . �

In particular, if the ambient space is a Sasakian space form, one has the following corollary.

Corollary 3.2 Let M̃(c) be a (4m+3)−dimensional Sasakian space form of constant ϕ−holomorphic sectional
curvature c and M = M1 ×f M2 an n−dimensional non-trivial contact QR-warped product submanifold,
satisfying

‖ h ‖2= 2β ‖ ∇(ln f) ‖2 +6. (3.16)

Then, we have

(a) M1 is a totally geodesic invariant submanifold of M̃(c) . Hence M1 is a Sasakian space form of
constant ϕ−holomorphic sectional curvature c .

(b) M2 is a totally umbilical anti-invariant submanifold of M̃(c) . Hence M1 is a real space form of

sectional curvature ε ≥ (c + 3)/4 .

Proof Statement (a) follows from Theorem 3.1.

Also, we know that M2 is a totally umbilical submanifold of M̃(c). The Gauss equation implies that

M2 is a real space form of sectional curvature ε ≥ (c + 3)/4.

Moreover, by (3.3),we see that ε = (c + 3)/4 if and only if the warping function f is constant. �
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