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Abstract: Let R be a commutative ring with nonzero identity and let M be an R-module with X = Spec(M). It is

introduced a scheme Ox on the prime spectrum of M and some of its properties have been investigated.
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1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule
N of an R-module M, (N :gp M) denotes the ideal {r € R | rM C N} and annihilator of M, denoted by
Anng(M), is the ideal (0 :g M). If there is no ambiguity we write (N : M) (resp. Ann(M)) instead of
(N :g M) (resp. Anng(M)). An R-module M is called faithful if Ann(M) = (0).

A submodule N of an R-module M is said to be prime if N # M and whenever rm € N (where r € R
and m € M) then r € (N : M) or m € N. If N is prime, then the ideal p = (N : M) is a prime ideal of R. In
these circumstances, N is said to be p-prime (see [2]). The set of all prime submodules of an R-module M is
called the prime spectrum of M and denoted by Spec(M). Similarly, the collection of all p-prime submodules of
R-module M for any p € Spec(R) is designated by Spec,,(M). We remark that Spec(0) = () and that Spec(M)
may be empty for some nonzero R-module module M. For example, the Z(p>) as a Z-module has no prime
submodule for any prime integer p (see [3] and [7]). Such a module is said to be primeless. An R-module M is
called primeful if either M = (0) or M # (0) and the natural map ¢ : Spec(M) — Spec(R/Ann(M)) defined
by ¢(P) = (P: M)/Ann(M) for every P € Spec(M), is surjective (see [6]). Let p be a prime ideal of R, and
N < M. By the saturation of N with respect to p, we mean the contraction of N, in M and designate it by
Sp(N) (see [3)).

Let M be an R-module. Throughout this paper X denotes the prime spectrum Spec(M) of M. Let
N be a submodule of M. Then V(N) is defined as, V(N) = {P € X | (P : M) 2 (N : M)} (see [4]).
Set Z(M) = {V(N): N < M}. Then the elements of the set Z(M) satisfy the axioms for closed sets in a
topological space X (see [4]). The resulting topology is called the Zariski topology relative to M.

We recall some preliminary results.
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Remark 1.1 (See [4, Theorem 6.1].) The following statements are equivalent:

1. X s Ty-space;

2. The natural map 1 : Spec(M) — Spec(R/Ann(M)) is injective;

3. If V(P)=V(Q), then P=Q for any P,Q € Spec(M);

4. |Spec,(M)| <1 for every p € Spec(R).
Remark 1.2 (See [4].) For any element r of a ring R, the set D, = Spec(R)\ V(rR) is open in Spec(R)
and the family F = {D,|r € R} forms a base for the Zariski topology on Spec(R). Each D, , in particular,

Dy = Spec(R) is known to be quasi-compact. For each r € R, we define X, = X —V(rM). Then every X, is
an open set of X, Xo =0, and X1 = X. By [4, Corollary 4.2], for any r,s € R, X,s = X, N X§.

2. Main results

In this section we use the notion of prime spectrum of a module to define a sheaf of rings. Let M be an
R-module. For every open subset U of X we define Supp(U) = {(P: M) | P e U}.

Definition 2.1 Let M be an R-module. For every open subset U of X we define Ox(U) to be a subring
of Hpesupp(U) Ry, the ring of functions s : U — HpESupp(U) R, , where s(P) € Ry, for each P € U and
p = (P : M) such that for each P € U, there is a neighborhood V of P, contained in U, and elements
a, f € R, such that for each Q €V, f & q:=(Q: M), and s(Q) =a/f in Ry.

It is clear that for an open set U of X, Ox(U) is closed under sum and product. Thus Ox(U) is a
commutative ring with identity (the identity element of Ox(U) is the function which sends all P € U to 1 in
R(p.ary). If V. C U are two open sets, the natural restriction map Ox (U) — Ox (V) is a homomorphism of

rings. It is then clear that Ox is a presheaf. Finally, it is clear from the local nature of the definition Ox is a
sheaf. Hence

Lemma 2.2 Let M be an R-module.
1. For each open subset U of X, Ox(U) is a subring of Hpesupp(U) R, .
2. Ox 1is a sheaf.

Next, we find the stalk of the sheaf.

Proposition 2.3 Let M be an R-module. Then for each P € X, the stalk Op of the sheaf Ox is isomorphic
to Ry, where p:= (P : M).

Proof Let P be a p-prime submodule of M and

mée Op = h_I)n Ox(U)
pPeU

Then there exists a neighborhood U of P and s € Ox(U) such that m is the germ of s at the point P. We
define a homomorphism ¢ : Op — R, by ¢(m) = s(P). This is a well-defined homomorphism. Let V' be
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another neighborhood of P and t € Ox (V) such that m is the germ of s at the point P. Then there exists
an open subset W C U NV such that P € W and s|w = t|w. Since P € W, s(P) =t(P). We claim that ¢
is an isomorphism.

Let € Ry. Then z = a/f where a € R and f € R\ p. Since f & p, P € X;. Now we define
s5(Q) =a/f in Ry, where q:=(Q : M), for all @ € X¢. Then s € O(Xy). If m is the equivalent class of s in
Op, then p(m) = z. Hence ¢ is surjective.

Now, let m € Op and ¢(m) = 0. Let U be an open neighborhood of P and m be the germ of s € Ox (U)
at P. There is an open neighborhood V C U of P and elements a, f € R such that s(Q) = a/f € Ry, where
q:=(Q: M), forall Qe V, f¢q. Thus VC X;. Then 0 = ¢(m) = s(P) =a/f in R,. So, there is h € R\p
such that ha = 0. For Q € X5, = Xy N X}, we have s(Q) = a/f € Rq. Since h & q, s(Q) = ¢ = %% =0.
Thus s|o(x,,) = 0. Therefore, s =0 in O(Xyp,). Consequently m = 0. This completes the proof. O

As a direct consequence of Proposition 2.3, we have
Corollary 2.4 If M is an R-module, then (Spec(M ), Ospec(ar)) 45 a locally ringed space.

Proposition 2.5 Let M and N be R-modules and ¢ : M — N be an epimorphism. Then ¢ induces a

morphism of locally ringed spaces

(f. ) : (Spec(N), Ospec(n)) — (Spec(M), Ospec(ar))-
Proof By [4, Proposition 3.9], the map f : Spec(N) — Spec(M) which is defined by P — ¢~1(P), is
continuous. Let U be an open subset of Spec(M) and s € Ogpec(ar)(U). Suppose P € f~*(U). Then
f(P) = ¢ 1(P) € U. Assume that W is an open neighborhood of ¢~!(P) with W C U with a,g € R, such
that for each Q € W, g € q:= (Q : M), and s(Q) = a/g in Ry. Since ¢~ *(P) € W, P € f~1(W). As we
mentioned, f is continuous, so f~!(W) is an open subset of Spec(N). We claim that for each Q' € f~1(W),
g € (Q : N). Suppose g € (Q' : N) for some Q' € f~*(W). Then ¢~ 1(Q') = f(Q') € W. Since ¢ an
epimorphism, (Q' : N) = (¢~ 5(Q') : M). So, g € (¢~1(Q’) : M). This is a contradiction. Therefore, we can
define
) : Ospec(a)(U) — OSpeC(N)(f_l(U))

by F(U)(s) = 50 f.
Assume that V C U and P € f~1(V). According to the commutativity of the diagram

F7H0) L= 5 Ry

T
vy L=

(to -1 (P) =tlv o f(P). (2.1)

we have

Consider the diagram

204



ABBASI and HASSANZADEH LELEKAMI/Turk J Math

FA(U) _
OSpeC(M) (U) — OSpcc(N)(f ! (U))

PUV\L

/
\Lpfl(U)fl(V)

\® .
OSpec(M)(V) E—— OSpec(N) (f ! (V)) (A)
Since
Py OOP) = Py to f)P)
= (toNlfon(P)
= tly o f(P) by equation 2.1
= puv(t)e f(P)
= A (V)puv (t)(P),
for each t € Ogpec(ar)(U), the diagram (A) is commutative, and it follows that
fji : OSpec(M) - f*OSpec(N)
is a morphism of sheaves. By Proposition 2.3, the map on stalks
fﬁ) : Ospec(m), 1(P) — Ospec(N),P
is clearly the map of local rings
Rgpyary — Ripany-
This implies that
(.04
(SpeC(N)» OSpec(N)) _— (SpeC(M)» OSpec(M))
is a morphism of locally ringed spaces. O

Proposition 2.6 Let ® : R — S be a ring homomorphism, N a S-module and M a primeful R-module such
that Spec(M) is a Tp-space and Anng(M) C Anng(N) (here, we consider N as an R-module by means of

® ). Then ® induces a morphism of locally ringed spaces

(h,h*)
(Spec(NV), Ospec(ny) —— (Spec(M ), Ospec(ar))-

Proof Since Anng(M) C Anng(N), ® induces the map © : R/Anng(M) — S/Anng(N). It is well known
that the maps f : Spec(S) — Spec(R) by p — @ 1(p) and d : Spec(S/Anng(N)) — Spec(R/Anng(M)) by
pr— ©71(p) and ¥y : Spec(N) — Spec(S/Anng(N)) with (P) = (P :s N)/Anng(N) for each P € Spec(N)
are continuous maps. Also ¢y : Spec(M) — Spec(R/Anng(M)) is homeomorphism by [4, Theorem 6.5].
Therefore the map

h: Spec(N) — Spec(M)

P Yyt dyn(P)
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is continuous. For each P € Spec(N), we get a local homomorphism
S p.sn): Ryp.sny — S(pisN)-

Let U be an open subset of Spec(M) and let ¢ € Ogpec(an)(U). Suppose that P € h='(U). Then h(P) € U
and there exists a neighborhood W of h(P) with W C U and elements r,g € R such that for each
QeW,g¢ (Q:r M), and t(Q) = - € R my. Hence g ¢ (h(P) :r M). By definition of h,

g

(h(P):r M)=®"'(P:s N). So, ®(g) & (P :s N). Thus ®p. n)(L) define a section on Ogpec(n) (R~ (W)).

9
Since

is commutative, we can define
hﬁ(U) : OSpec(M)(U) - h*OSpec(N)(U) = OSPGC(N) (h_l(U))

by h*(U)(t)(P) = ®(p:sn)(t(h(P))) for each t € Ospec(ar)(U) and P € h='(U). Assume that V C U and
Peh (V).

According to the commutative diagram

we have

(I)(P:SN)ﬂV ] h(P) = ((I)(P:SN)t ] h)lhfl(V)(P) (22)

Considering the diagram

() _
OSpec(M)(U) I OSpec(N)(h 1(U))

/
PUV\L lﬂhl(whl(v)
RE(V)

OSpec(M) (V) - OSPEC(N)(hil(V))’ (B)
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it is easy to see that

Prr @1 PFO)DP) = phoswyn-1(v)@pis iyt © h(P)
= (2(p:isnyt o h)n-1(v)(P)
= ®p.omtlv o h(P) by equation 2.2
= RK(V)(tv)(P)
= BE(V)puv (t)(P).

So, the diagram (B) is commutative, and it follows that
hﬁ : OSpec(M) — h*OSpec(N)

is a morphism of sheaves. By Proposition 2.3, the map on stalks

hﬁp : Ospec(M),h(P) — Ospec(N),P

is clearly
Ryp.sny — Sp:snNy-
This implies that

h,h*
(Spec(N), Ospec(n)) SGLN (Spec(M), Ospec(n))

is a morphism of locally ringed spaces. O

Example 2.7 Let Q be the set of all prime integers p, M = Hp p% and N = @p p% where p runs through 2.

By [6, p.136, Example 1], N is a faithful Z-module and M is a faithful primeful Z-module. It is also shown
that
Spec(M) = {S(0)(0)} U {pM|p € Q}.

Therefore by Remark 1.1, Spec(M) is a Ty -space. Hence by Proposition 2.6, there exists a morphism of locally

ringed spaces

Z Z
(Spec(@ ﬁ)’ Ospec(@p pZLZ)) - (SpeC(H ﬁ)’ Ospec(np pZLZ))-

p p

Proposition 2.8 Let M be a faithful and primeful R-module. For any element f € R, the ring Ox(Xy) is

isomorphic to the localized ring Ry .

Proof We define the map © : Ry — Ox(Xy) by

f%l—)(SZQI—) fim € Rig:m))-

Indeed © sends that f‘fn to the section s € Ox(Xy) which assigns to each @ the image of f% € Rig:my- Tt is

easy to see O is a well-defined homomorphism. We are going to show that © is an isomorphism.
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We first show that © is injective. If ©(fr) = @(f%), then for every P € Xy, & and f% have the
same image in Ry, where p = (P : M). Thus there exists h € R\ p such that hA(f™a — f*b) =0 in R. Let

I=(0:g f™a— f"b). Then h €I and h ¢ p,so I ¢ p. This happens for any P € X, so we conclude that
V(I) N Supp(Xs) =0
hence
Supp(Xs) € D(I) := Spec(R) \ V(I).
Since M is faithful primeful,
Dy = Supp(Xy) € D(I).

Therefore f € +/T and so f' € I for some positive integer 1. Now we have f'(f™a — f*b) = 0 which shows
that £ = f% in R,. Hence O is injective.

Let s € Ox(Xs). Then we can cover X; with open subset V;, on which s is represented by % , with

gi € (P : M) for all P €V;, in other words V; C X,,. By [4, Proposition 4.3], the open sets of the form X,
form a base for the topology. So, we may assume that V; = X}, for some h; € R. Since X3, C X,,, by [4,

Proposition 4.1], h; € 1/(g;). Thus A} € (g;) for some n € N. So, h" = cg; and
a; o ca; o ca;

gi Cgi B E

We see that s is represented by ,Z;—z'_, (bi = ca;, ki = h') on Xy, and (since Xp, = Xpr ) the Xj, cover Xj.
The open cover X = |J Xy, has a finite subcover by [4, Proposition 4.4]. Suppose, Xy C X, U---UX} . For

1<, <n, Z—i and Z—? both represent s on Xy, N Xy, . By Remark 1.2, Xy, N Xy, = X,k and by injectivity
of ©, we get b—z’_ = z—; in Ry, . Hence for some n;;,

(k)™ (k;bi — kiby) = 0.
Let m = max{n;;|1 <4,j <n}. Then
K7 () — K (k) = 0.

By replacing each k; by kz’-”"’l ,and b; by ki"b;, we still see that s is represented on X}, by 2—1’_ , and furthermore,

we have k;b; = k;b; for all ¢,7. Since Xy C Xy, U---U Xy, , by [4, Proposition 4.1], we have
Dy =9(Xy) € | Jv(Xk,) = | Dri
i=1

=1

where 1 is the natural map v : Spec(M) — Spec(R). So, there are ¢1,---,¢, in R and t € N, such that
ft=>3",ciki. Let a=3,c;b;. Then for each j we have

kja = Z Cibikj = Z Cikibj = bjft.

This implies that f% = % on X, . So @(%) = s everywhere, which shows that © is surjective. O
J
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Corollary 2.9 Let M be a faithful and primeful R-module. Then O(Spec(M)) is isomorphic to R.

We recall that a scheme X is locally Noetherian if it can be covered by open affine subsets Spec(A4;),

where each A; is a Noetherian ring. X is Noetherian if it is locally Noetherian and quasi-compact [1].

Theorem 2.10 Let M be a faithful and primeful R-module such that X is a Ty-space. Then (X,0x) is a
scheme. Moreover, if R is Noetherian, then (X, Ox) is a Noetherian scheme.
Proof Let g € R. Since the natural map v : Spec(M) — Spec(R) is continuous by [4, Proposition 3.1], the
map 9|x, : Xy — ¥(Xy) is also continuous. By assumption and Remark 1.1, ¥|x, is a bijection. Let E be a
closed subset of X,. Then E = X, NV(N) for some submodule N of M. Hence ¢(E) = (X, NV(N)) =
Y(Xg) N V(N : M) is a closed subset of 1)(Xg). Therefore, ¢|x, is a homeomorphism.

Suppose X = J,c; Xy, - Since M is faithful primeful and X is a Ty-space, for each i € I

X!]i = w(X(]z) = Supp(X!]i) = D(]z = SpeC(R!]i)'

Thus by Proposition 2.8, X, is an affine scheme and this implies that (X, Ox) is a scheme. For the last
statement, we note that since R is Noetherian, so is Ry, for each ¢ € I. Hence (X, Ox) is a locally Noetherian

scheme. By [4, Theorem 4.4], X is quasi-compact. Therefore, (X, Ox) is a Noetherian scheme. a
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