

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2013) 37: 202 – 209 © TÜBİTAK doi:10.3906/mat-1010-417

Research Article

A scheme over prime spectrum of modules

Ahmad ABBASI^{1,*}, Dawood HASSANZADEH LELEKAMI²

¹Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P. O. Box 41335-1914, Rasht, Iran ²Department of Mathematics, Faculty of Sciences, University of Guilan, P. O. Box 41335-1914, Rasht, Iran

Received: 18.10.2010	٠	Accepted: 31.08.2011	٠	Published Online: 19.03.2013	٠	Printed: 22.04.2013
-----------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: Let R be a commutative ring with nonzero identity and let M be an R-module with X = Spec(M). It is introduced a scheme \mathcal{O}_X on the prime spectrum of M and some of its properties have been investigated.

Key words and phrases: Prime submodule, Zariski topology, primeful module, sheaf of rings, scheme

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule N of an R-module M, $(N :_R M)$ denotes the ideal $\{r \in R \mid rM \subseteq N\}$ and annihilator of M, denoted by $\operatorname{Ann}_R(M)$, is the ideal $(\mathbf{0} :_R M)$. If there is no ambiguity we write (N : M) (resp. $\operatorname{Ann}(M)$) instead of $(N :_R M)$ (resp. $\operatorname{Ann}_R(M)$). An R-module M is called faithful if $\operatorname{Ann}(M) = (0)$.

A submodule N of an R-module M is said to be prime if $N \neq M$ and whenever $rm \in N$ (where $r \in R$ and $m \in M$) then $r \in (N : M)$ or $m \in N$. If N is prime, then the ideal $\mathfrak{p} = (N : M)$ is a prime ideal of R. In these circumstances, N is said to be \mathfrak{p} -prime (see [2]). The set of all prime submodules of an R-module M is called the prime spectrum of M and denoted by $\operatorname{Spec}(M)$. Similarly, the collection of all \mathfrak{p} -prime submodules of R-module M for any $\mathfrak{p} \in \operatorname{Spec}(R)$ is designated by $\operatorname{Spec}_{\mathfrak{p}}(M)$. We remark that $\operatorname{Spec}(\mathfrak{0}) = \emptyset$ and that $\operatorname{Spec}(M)$ may be empty for some nonzero R-module module M. For example, the $\mathbb{Z}(p^{\infty})$ as a \mathbb{Z} -module has no prime submodule for any prime integer p (see [3] and [7]). Such a module is said to be primeless. An R-module M is called primeful if either $M = (\mathfrak{0})$ or $M \neq (\mathfrak{0})$ and the natural map $\psi : \operatorname{Spec}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$ defined by $\psi(P) = (P : M)/\operatorname{Ann}(M)$ for every $P \in \operatorname{Spec}(M)$, is surjective (see [6]). Let \mathfrak{p} be a prime ideal of R, and $N \leq M$. By the saturation of N with respect to \mathfrak{p} , we mean the contraction of $N_{\mathfrak{p}}$ in M and designate it by $S_{\mathfrak{p}}(N)$ (see [5]).

Let M be an R-module. Throughout this paper X denotes the prime spectrum Spec(M) of M. Let N be a submodule of M. Then V(N) is defined as, $V(N) = \{P \in X \mid (P : M) \supseteq (N : M)\}$ (see [4]). Set $Z(M) = \{V(N) : N \leq M\}$. Then the elements of the set Z(M) satisfy the axioms for closed sets in a topological space X (see [4]). The resulting topology is called the Zariski topology relative to M.

We recall some preliminary results.

^{*}Correspondence: aabbasi@guilan.ac.ir

 $^{2000\} AMS\ Mathematics\ Subject\ Classification:\ 13C99,\ 13A99.$

Remark 1.1 (See [4, Theorem 6.1].) The following statements are equivalent:

- 1. X is T_0 -space;
- 2. The natural map ψ : Spec $(M) \rightarrow$ Spec(R/Ann(M)) is injective;
- 3. If V(P) = V(Q), then P = Q for any $P, Q \in \text{Spec}(M)$;
- 4. $|\operatorname{Spec}_{\mathfrak{p}}(M)| \leq 1$ for every $\mathfrak{p} \in \operatorname{Spec}(R)$.

Remark 1.2 (See [4].) For any element r of a ring R, the set $D_r = \operatorname{Spec}(R) \setminus V(rR)$ is open in $\operatorname{Spec}(R)$ and the family $F = \{D_r | r \in R\}$ forms a base for the Zariski topology on $\operatorname{Spec}(R)$. Each D_r , in particular, $D_1 = \operatorname{Spec}(R)$ is known to be quasi-compact. For each $r \in R$, we define $X_r = X - V(rM)$. Then every X_r is an open set of X, $X_0 = \emptyset$, and $X_1 = X$. By [4, Corollary 4.2], for any $r, s \in R$, $X_{rs} = X_r \cap X_s$.

2. Main results

In this section we use the notion of prime spectrum of a module to define a sheaf of rings. Let M be an R-module. For every open subset U of X we define $\text{Supp}(U) = \{(P:M) \mid P \in U\}$.

Definition 2.1 Let M be an R-module. For every open subset U of X we define $\mathcal{O}_X(U)$ to be a subring of $\prod_{\mathfrak{p}\in \operatorname{Supp}(U)} R_\mathfrak{p}$, the ring of functions $s: U \to \coprod_{\mathfrak{p}\in \operatorname{Supp}(U)} R_\mathfrak{p}$, where $s(P) \in R_\mathfrak{p}$, for each $P \in U$ and $\mathfrak{p} = (P:M)$ such that for each $P \in U$, there is a neighborhood V of P, contained in U, and elements $a, f \in R$, such that for each $Q \in V$, $f \notin \mathfrak{q} := (Q:M)$, and s(Q) = a/f in $R_\mathfrak{q}$.

It is clear that for an open set U of X, $\mathcal{O}_X(U)$ is closed under sum and product. Thus $\mathcal{O}_X(U)$ is a commutative ring with identity (the identity element of $\mathcal{O}_X(U)$ is the function which sends all $P \in U$ to 1 in $R_{(P:M)}$). If $V \subseteq U$ are two open sets, the natural restriction map $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ is a homomorphism of rings. It is then clear that \mathcal{O}_X is a presheaf. Finally, it is clear from the local nature of the definition \mathcal{O}_X is a sheaf. Hence

Lemma 2.2 Let M be an R-module.

- 1. For each open subset U of X, $\mathcal{O}_X(U)$ is a subring of $\prod_{\mathfrak{p}\in \operatorname{Supp}(U)} R_{\mathfrak{p}}$.
- 2. \mathcal{O}_X is a sheaf.

Next, we find the stalk of the sheaf.

Proposition 2.3 Let M be an R-module. Then for each $P \in X$, the stalk \mathcal{O}_P of the sheaf \mathcal{O}_X is isomorphic to R_p , where $\mathfrak{p} := (P : M)$.

Proof Let P be a \mathfrak{p} -prime submodule of M and

$$m \in \mathcal{O}_P = \varinjlim_{P \in U} \mathcal{O}_X(U).$$

Then there exists a neighborhood U of P and $s \in \mathcal{O}_X(U)$ such that m is the germ of s at the point P. We define a homomorphism $\varphi : \mathcal{O}_P \to R_p$ by $\varphi(m) = s(P)$. This is a well-defined homomorphism. Let V be

another neighborhood of P and $t \in \mathcal{O}_X(V)$ such that m is the germ of s at the point P. Then there exists an open subset $W \subseteq U \cap V$ such that $P \in W$ and $s|_W = t|_W$. Since $P \in W$, s(P) = t(P). We claim that φ is an isomorphism.

Let $x \in R_{\mathfrak{p}}$. Then x = a/f where $a \in R$ and $f \in R \setminus \mathfrak{p}$. Since $f \notin \mathfrak{p}$, $P \in X_f$. Now we define s(Q) = a/f in $R_{\mathfrak{q}}$, where $\mathfrak{q} := (Q:M)$, for all $Q \in X_f$. Then $s \in \mathcal{O}(X_f)$. If m is the equivalent class of s in \mathcal{O}_P , then $\varphi(m) = x$. Hence φ is surjective.

Now, let $m \in \mathcal{O}_P$ and $\varphi(m) = 0$. Let U be an open neighborhood of P and m be the germ of $s \in \mathcal{O}_X(U)$ at P. There is an open neighborhood $V \subseteq U$ of P and elements $a, f \in R$ such that $s(Q) = a/f \in R_{\mathfrak{q}}$, where $\mathfrak{q} := (Q:M)$, for all $Q \in V$, $f \notin \mathfrak{q}$. Thus $V \subseteq X_f$. Then $0 = \varphi(m) = s(P) = a/f$ in $R_{\mathfrak{p}}$. So, there is $h \in R \setminus \mathfrak{p}$ such that ha = 0. For $Q \in X_{fh} = X_f \cap X_h$ we have $s(Q) = a/f \in R_{\mathfrak{q}}$. Since $h \notin \mathfrak{q}$, $s(Q) = \frac{a}{f} = \frac{h}{h} \frac{a}{f} = 0$. Thus $s|_{\mathcal{O}(X_{fh})} = 0$. Therefore, s = 0 in $\mathcal{O}(X_{fh})$. Consequently m = 0. This completes the proof. \Box

As a direct consequence of Proposition 2.3, we have

Corollary 2.4 If M is an R-module, then $(\text{Spec}(M), \mathcal{O}_{\text{Spec}(M)})$ is a locally ringed space.

Proposition 2.5 Let M and N be R-modules and $\phi : M \to N$ be an epimorphism. Then ϕ induces a morphism of locally ringed spaces

$$(f, f^{\sharp}) : (\operatorname{Spec}(N), \mathcal{O}_{\operatorname{Spec}(N)}) \to (\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec}(M)}).$$

Proof By [4, Proposition 3.9], the map $f : \operatorname{Spec}(N) \to \operatorname{Spec}(M)$ which is defined by $P \mapsto \phi^{-1}(P)$, is continuous. Let U be an open subset of $\operatorname{Spec}(M)$ and $s \in \mathcal{O}_{\operatorname{Spec}(M)}(U)$. Suppose $P \in f^{-1}(U)$. Then $f(P) = \phi^{-1}(P) \in U$. Assume that W is an open neighborhood of $\phi^{-1}(P)$ with $W \subseteq U$ with $a, g \in R$, such that for each $Q \in W$, $g \notin \mathfrak{q} := (Q : M)$, and s(Q) = a/g in $R_{\mathfrak{q}}$. Since $\phi^{-1}(P) \in W$, $P \in f^{-1}(W)$. As we mentioned, f is continuous, so $f^{-1}(W)$ is an open subset of $\operatorname{Spec}(N)$. We claim that for each $Q' \in f^{-1}(W)$, $g \notin (Q' : N)$. Suppose $g \in (Q' : N)$ for some $Q' \in f^{-1}(W)$. Then $\phi^{-1}(Q') = f(Q') \in W$. Since ϕ an epimorphism, $(Q' : N) = (\phi^{-1}(Q') : M)$. So, $g \in (\phi^{-1}(Q') : M)$. This is a contradiction. Therefore, we can define

$$f^{\sharp}(U): \mathcal{O}_{\operatorname{Spec}(M)}(U) \to \mathcal{O}_{\operatorname{Spec}(N)}(f^{-1}(U))$$

by $f^{\sharp}(U)(s) = s \circ f$.

Assume that $V \subseteq U$ and $P \in f^{-1}(V)$. According to the commutativity of the diagram

we have

$$(t \circ f)|_{f^{-1}(V)}(P) = t|_V \circ f(P).$$
 (2.1)

Consider the diagram

$$\begin{array}{cccc}
\mathcal{O}_{\mathrm{Spec}(M)}(U) & \stackrel{f^{\sharp}(U)}{\longrightarrow} \mathcal{O}_{\mathrm{Spec}(N)}(f^{-1}(U)) \\
 & \rho_{UV} & & & & & & \\
\mathcal{O}_{\mathrm{Spec}(M)}(V) & \stackrel{f^{\sharp}(V)}{\longrightarrow} \mathcal{O}_{\mathrm{Spec}(N)}(f^{-1}(V)).
\end{array}$$
(A)

Since

$$\begin{aligned} \rho'_{f^{-1}(U)f^{-1}(V)}f^{\sharp}(U)(t)(P) &= \rho'_{f^{-1}(U)f^{-1}(V)}(t \circ f)(P) \\ &= (t \circ f)|_{f^{-1}(V)}(P) \\ &= t|_{V} \circ f(P) \quad \text{by equation 2.1} \\ &= \rho_{UV}(t) \circ f(P) \\ &= f^{\sharp}(V)\rho_{UV}(t)(P), \end{aligned}$$

for each $t \in \mathcal{O}_{\text{Spec}(M)}(U)$, the diagram (A) is commutative, and it follows that

$$f^{\sharp}: \mathcal{O}_{\operatorname{Spec}(M)} \longrightarrow f_*\mathcal{O}_{\operatorname{Spec}(N)}$$

is a morphism of sheaves. By Proposition 2.3, the map on stalks

$$f_P^{\sharp}: \mathcal{O}_{\operatorname{Spec}(M), f(P)} \longrightarrow \mathcal{O}_{\operatorname{Spec}(N), P}$$

is clearly the map of local rings

$$R_{(f(P):M)} \longrightarrow R_{(P:N)}.$$

This implies that

$$(\operatorname{Spec}(N), \mathcal{O}_{\operatorname{Spec}(N)}) \xrightarrow{(f, f^{\sharp})} (\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec}(M)})$$

is a morphism of locally ringed spaces.

Proposition 2.6 Let $\Phi: R \to S$ be a ring homomorphism, N a S-module and M a primeful R-module such that $\operatorname{Spec}(M)$ is a T_0 -space and $\operatorname{Ann}_R(M) \subseteq \operatorname{Ann}_R(N)$ (here, we consider N as an R-module by means of Φ). Then Φ induces a morphism of locally ringed spaces

$$(\operatorname{Spec}(N), \mathcal{O}_{\operatorname{Spec}(N)}) \xrightarrow{(h, h^{\sharp})} (\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec}(M)})$$

Proof Since $\operatorname{Ann}_R(M) \subseteq \operatorname{Ann}_R(N)$, Φ induces the map $\Theta : R/\operatorname{Ann}_R(M) \to S/\operatorname{Ann}_S(N)$. It is well known that the maps $f : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ by $\mathfrak{p} \mapsto \Phi^{-1}(\mathfrak{p})$ and $d : \operatorname{Spec}(S/\operatorname{Ann}_S(N)) \to \operatorname{Spec}(R/\operatorname{Ann}_R(M))$ by $\overline{\mathfrak{p}} \mapsto \Theta^{-1}(\overline{\mathfrak{p}})$ and $\psi_N : \operatorname{Spec}(N) \to \operatorname{Spec}(S/\operatorname{Ann}_S(N))$ with $\psi(P) = (P :_S N)/\operatorname{Ann}_S(N)$ for each $P \in \operatorname{Spec}(N)$ are continuous maps. Also $\psi_M : \operatorname{Spec}(M) \to \operatorname{Spec}(R/\operatorname{Ann}_R(M))$ is homeomorphism by [4, Theorem 6.5]. Therefore the map

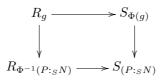
$$\begin{aligned} h: & \operatorname{Spec}(N) & \longrightarrow & \operatorname{Spec}(M) \\ P & & \mapsto \psi_M^{-1} \, d \, \psi_N(P) \end{aligned}$$

205

is continuous. For each $P \in \operatorname{Spec}(N)$, we get a local homomorphism

$$\Phi_{(P:_SN)}: R_{f(P:_SN)} \longrightarrow S_{(P:_SN)}.$$

Let U be an open subset of $\operatorname{Spec}(M)$ and let $t \in \mathcal{O}_{\operatorname{Spec}(M)}(U)$. Suppose that $P \in h^{-1}(U)$. Then $h(P) \in U$ and there exists a neighborhood W of h(P) with $W \subseteq U$ and elements $r, g \in R$ such that for each $Q \in W, g \notin (Q :_R M)$, and $t(Q) = \frac{r}{g} \in R_{(Q:_R M)}$. Hence $g \notin (h(P) :_R M)$. By definition of h, $(h(P):_R M) = \Phi^{-1}(P:_S N)$. So, $\Phi(g) \notin (P:_S N)$. Thus $\Phi_{(P:_S N)}(\frac{r}{g})$ define a section on $\mathcal{O}_{\operatorname{Spec}(N)}(h^{-1}(W))$. Since

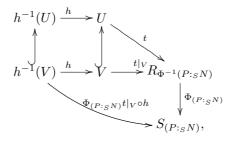


is commutative, we can define

$$h^{\sharp}(U): \mathcal{O}_{\operatorname{Spec}(M)}(U) \longrightarrow h_* \mathcal{O}_{\operatorname{Spec}(N)}(U) = \mathcal{O}_{\operatorname{Spec}(N)}(h^{-1}(U))$$

by $h^{\sharp}(U)(t)(P) = \Phi_{(P:_S N)}(t(h(P)))$ for each $t \in \mathcal{O}_{\operatorname{Spec}(M)}(U)$ and $P \in h^{-1}(U)$. Assume that $V \subseteq U$ and $P \in h^{-1}(V)$.

According to the commutative diagram



we have

$$\Phi_{(P:sN)}t|_V \circ h(P) = (\Phi_{(P:sN)}t \circ h)|_{h^{-1}(V)}(P).$$
(2.2)

Considering the diagram

$$\begin{array}{cccc}
\mathcal{O}_{\mathrm{Spec}(M)}(U) & \xrightarrow{h^{\sharp}(U)} \mathcal{O}_{\mathrm{Spec}(N)}(h^{-1}(U)) \\
& & & & & & \\
\rho_{UV} & & & & & & \\
\mathcal{O}_{\mathrm{Spec}(M)}(V) & \xrightarrow{h^{\sharp}(V)} \mathcal{O}_{\mathrm{Spec}(N)}(h^{-1}(V)), \\
\end{array} \tag{B}$$

it is easy to see that

$$\begin{aligned} \rho_{h^{-1}(U)h^{-1}(V)}^{\prime}h^{\sharp}(U)(t)(P) &= \rho_{h^{-1}(U)h^{-1}(V)}^{\prime}\Phi_{(P:_{S}N)}t \circ h(P) \\ &= (\Phi_{(P:_{S}N)}t \circ h)|_{h^{-1}(V)}(P) \\ &= \Phi_{(P:_{S}N)}t|_{V} \circ h(P) \qquad \text{by equation } 2.2 \\ &= h^{\sharp}(V)(t|_{V})(P) \\ &= h^{\sharp}(V)\rho_{UV}(t)(P). \end{aligned}$$

So, the diagram (B) is commutative, and it follows that

$$h^{\sharp}: \mathcal{O}_{\mathrm{Spec}(M)} \longrightarrow h_* \mathcal{O}_{\mathrm{Spec}(N)}$$

is a morphism of sheaves. By Proposition 2.3, the map on stalks

$$h_P^{\sharp}: \mathcal{O}_{\mathrm{Spec}(M), h(P)} \longrightarrow \mathcal{O}_{\mathrm{Spec}(N), P}$$

is clearly

$$R_{f(P:sN)} \longrightarrow S_{(P:sN)}$$

This implies that

$$(\operatorname{Spec}(N), \mathcal{O}_{\operatorname{Spec}(N)}) \xrightarrow{(h,h^{\sharp})} (\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec}(M)})$$

is a morphism of locally ringed spaces.

Example 2.7 Let Ω be the set of all prime integers p, $M = \prod_p \frac{\mathbb{Z}}{p\mathbb{Z}}$ and $N = \bigoplus_p \frac{\mathbb{Z}}{p\mathbb{Z}}$ where p runs through Ω . By [6, p.136, Example 1], N is a faithful \mathbb{Z} -module and M is a faithful primeful \mathbb{Z} -module. It is also shown that

$$\operatorname{Spec}(M) = \{S_{(0)}(\boldsymbol{0})\} \cup \{pM | p \in \Omega\}$$

Therefore by Remark 1.1, Spec(M) is a T_0 -space. Hence by Proposition 2.6, there exists a morphism of locally ringed spaces

$$(\operatorname{Spec}(\bigoplus_{p} \frac{\mathbb{Z}}{p\mathbb{Z}}), \mathcal{O}_{\operatorname{Spec}(\bigoplus_{p} \frac{\mathbb{Z}}{p\mathbb{Z}})}) \to (\operatorname{Spec}(\prod_{p} \frac{\mathbb{Z}}{p\mathbb{Z}}), \mathcal{O}_{\operatorname{Spec}(\prod_{p} \frac{\mathbb{Z}}{p\mathbb{Z}})}).$$

Proposition 2.8 Let M be a faithful and primeful R-module. For any element $f \in R$, the ring $\mathcal{O}_X(X_f)$ is isomorphic to the localized ring R_f .

Proof We define the map $\Theta : R_f \to \mathcal{O}_X(X_f)$ by

$$\frac{a}{f^m} \mapsto (s: Q \mapsto \frac{a}{f^m} \in R_{(Q:M)}).$$

Indeed Θ sends that $\frac{a}{f^m}$ to the section $s \in \mathcal{O}_X(X_f)$ which assigns to each Q the image of $\frac{a}{f^m} \in R_{(Q:M)}$. It is easy to see Θ is a well-defined homomorphism. We are going to show that Θ is an isomorphism.

207

We first show that Θ is injective. If $\Theta(\frac{a}{f^n}) = \Theta(\frac{b}{f^m})$, then for every $P \in X_f$, $\frac{a}{f^n}$ and $\frac{b}{f^m}$ have the same image in $R_{\mathfrak{p}}$, where $\mathfrak{p} = (P:M)$. Thus there exists $h \in R \setminus \mathfrak{p}$ such that $h(f^m a - f^n b) = 0$ in R. Let $I = (0:_R f^m a - f^n b)$. Then $h \in I$ and $h \notin \mathfrak{p}$, so $I \notin \mathfrak{p}$. This happens for any $P \in X_f$, so we conclude that

$$V(I) \cap \operatorname{Supp}(X_f) = \emptyset$$

hence

$$\operatorname{Supp}(X_f) \subseteq D(I) := \operatorname{Spec}(R) \setminus V(I).$$

Since M is faithful primeful,

$$D_f = \operatorname{Supp}(X_f) \subseteq D(I).$$

Therefore $f \in \sqrt{I}$ and so $f^l \in I$ for some positive integer l. Now we have $f^l(f^m a - f^n b) = 0$ which shows that $\frac{a}{f^n} = \frac{b}{f^m}$ in $R_{\mathfrak{p}}$. Hence Θ is injective.

Let $s \in \mathcal{O}_X(X_f)$. Then we can cover X_f with open subset V_i , on which s is represented by $\frac{a_i}{g_i}$, with $g_i \notin (P:M)$ for all $P \in V_i$, in other words $V_i \subseteq X_{g_i}$. By [4, Proposition 4.3], the open sets of the form X_h form a base for the topology. So, we may assume that $V_i = X_{h_i}$ for some $h_i \in R$. Since $X_{h_i} \subseteq X_{g_i}$, by [4, Proposition 4.1], $h_i \in \sqrt{(g_i)}$. Thus $h_i^n \in (g_i)$ for some $n \in \mathbb{N}$. So, $h_i^n = cg_i$ and

$$\frac{a_i}{g_i} = \frac{ca_i}{cg_i} = \frac{ca_i}{h_i^n}.$$

We see that s is represented by $\frac{b_i}{k_i}$, $(b_i = ca_i, k_i = h_i^n)$ on X_{k_i} and (since $X_{h_i} = X_{h_i^n}$) the X_{k_i} cover X_f . The open cover $X_f = \bigcup X_{k_i}$ has a finite subcover by [4, Proposition 4.4]. Suppose, $X_f \subseteq X_{k_1} \cup \cdots \cup X_{k_n}$. For $1 \leq i, j \leq n$, $\frac{b_i}{k_i}$ and $\frac{b_j}{k_j}$ both represent s on $X_{k_i} \cap X_{k_j}$. By Remark 1.2, $X_{k_i} \cap X_{k_j} = X_{k_i k_j}$ and by injectivity of Θ , we get $\frac{b_i}{k_i} = \frac{b_j}{k_j}$ in $R_{k_i k_j}$. Hence for some n_{ij} ,

$$(k_i k_j)^{n_{ij}} (k_j b_i - k_i b_j) = 0.$$

Let $m = \max\{n_{ij} | 1 \le i, j \le n\}$. Then

$$k_j^{m+1}(k_i^m b_i) - k_i^{m+1}(k_j^m b_j) = 0.$$

By replacing each k_i by k_i^{m+1} , and b_i by $k_i^m b_i$, we still see that s is represented on X_{k_i} by $\frac{b_i}{k_i}$, and furthermore, we have $k_j b_i = k_i b_j$ for all i, j. Since $X_f \subseteq X_{k_1} \cup \cdots \cup X_{k_n}$, by [4, Proposition 4.1], we have

$$D_f = \psi(X_f) \subseteq \bigcup_{i=1}^n \psi(X_{k_i}) = \bigcup_{i=1}^n D_{k_i},$$

where ψ is the natural map ψ : Spec $(M) \to$ Spec(R). So, there are c_1, \dots, c_n in R and $t \in \mathbb{N}$, such that $f^t = \sum_i c_i k_i$. Let $a = \sum_i c_i b_i$. Then for each j we have

$$k_j a = \sum_i c_i b_i k_j = \sum_i c_i k_i b_j = b_j f^t.$$

This implies that $\frac{a}{f^t} = \frac{b_j}{k_j}$ on X_{k_j} . So $\Theta(\frac{a}{f^t}) = s$ everywhere, which shows that Θ is surjective.

Corollary 2.9 Let M be a faithful and primeful R-module. Then $\mathcal{O}(\text{Spec}(M))$ is isomorphic to R.

We recall that a scheme X is locally Noetherian if it can be covered by open affine subsets $\text{Spec}(A_i)$, where each A_i is a Noetherian ring. X is Noetherian if it is locally Noetherian and quasi-compact [1].

Theorem 2.10 Let M be a faithful and primeful R-module such that X is a T_0 -space. Then (X, \mathcal{O}_X) is a scheme. Moreover, if R is Noetherian, then (X, \mathcal{O}_X) is a Noetherian scheme.

Proof Let $g \in R$. Since the natural map $\psi : \operatorname{Spec}(M) \to \operatorname{Spec}(R)$ is continuous by [4, Proposition 3.1], the map $\psi|_{X_g} : X_g \to \psi(X_g)$ is also continuous. By assumption and Remark 1.1, $\psi|_{X_g}$ is a bijection. Let E be a closed subset of X_g . Then $E = X_g \cap V(N)$ for some submodule N of M. Hence $\psi(E) = \psi(X_g \cap V(N)) = \psi(X_g) \cap V(N:M)$ is a closed subset of $\psi(X_g)$. Therefore, $\psi|_{X_g}$ is a homeomorphism.

Suppose $X = \bigcup_{i \in I} X_{g_i}$. Since M is faithful primeful and X is a T_0 -space, for each $i \in I$

$$X_{g_i} \cong \psi(X_{g_i}) = \operatorname{Supp}(X_{g_i}) = D_{g_i} \cong \operatorname{Spec}(R_{g_i}).$$

Thus by Proposition 2.8, X_{g_i} is an affine scheme and this implies that (X, \mathcal{O}_X) is a scheme. For the last statement, we note that since R is Noetherian, so is R_{g_i} for each $i \in I$. Hence (X, \mathcal{O}_X) is a locally Noetherian scheme. By [4, Theorem 4.4], X is quasi-compact. Therefore, (X, \mathcal{O}_X) is a Noetherian scheme. \Box

References

- [1] Hartshorne, R.: Algebraic geometry. Springer-Verlag. New York Inc 1977.
- [2] Lu, Chin-Pi: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33 (1), 61-69 (1984).
- [3] _____, Spectra of modules. Comm. Alg. 23 (10), 3741–3752 (1995).
- [4] _____, The Zariski topology on the prime spectrum of a module. Houston J. Math. 25 (3), 417–432 (1999).
- [5] _____, Saturations of submodules. Comm. Alg. **31** (6), 2655 2673 (2003).
- [6] _____, A module whose prime spectrum has the surjective natural map. Houston J. Math. 33 (1), 125–143 (2007).
- [7] McCasland, R.L., Moore, M.E., Smith, P.F.: On the spectrum of a module over a commutative ring. Comm. Alg. 25 (1), 79–103 (1997).