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Abstract: Let H be a Hopf algebra over a field k and A/B a right H -Galois extension. Then in this note a spectral

sequence for Ext will be constructed which yields the estimate for global dimension of A in terms of the corresponding

data for H and B . As an application, we obtain the Maschke-type theorems for crossed products and twisted smash

products. Finally, the relationship of finitistic dimensions between A and B will be given, if H is semisimple.
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1. Introduction and preliminaries

The definition of Hopf-Galois extension has its roots in the Chase-Harrison-Rosenberg approach to Galois theory
for groups acting on commutative rings (see [4]). In 1969 Chase and Sweedler extended these ideas to coaction of

a Hopf algebra H acting on a commutative k -algebra, for k a commutative ring (see [5]); the general definition

appears in [7] in 1981. Hopf-Galois extensions also generalize strongly graded algebras (here H is a group

algebra) and certain inseparable field extensions (here the Hopf algebra is the restricted enveloping algebra of

a restricted Lie algebra), twisted group rings R ∗ G of a group G acting on a ring R and so on.

Let H be a Hopf algebra over a field k and A a right H -comodule algebra, i.e., A is a k -algebra together
with an H -comodule structure ρA : A → A ⊗H (with notation a �→ a0 ⊗ a1 ) such that ρA is an algebra map.

Let B be the subalgebra of the H -coinvariant elements, B := AcoH := {a ∈ A| ρA(a) = a ⊗ 1} . Then the

extension A/B is right H -Galois if the map β : A⊗B A → A⊗H , given by a⊗B b �→ (a⊗ 1)ρ(b), is bijective.

The aim of this paper is to study the relationship of homological dimensions of Hopf-Galois extensions.

Let A/B be a right H -Galois extension for a Hopf algebra H . If H is finite dimensional, or A is
projective as a left B -module, then in Section 2 we prove that the left global dimension of A is less than or
equal to the sum of the left global dimension of the subalgebra B and the right global dimension of the Hopf
algebra H regarded as an algebra. The result is a consequence of a certain spectral sequence (see Theorem

2.5), which generalizes the main result in [8].

In Section 3, we prove that the left finitistic dimension (which is defined to be the supremum of the

projective dimensions of all finitely generated left modules which have finite projective dimension) of A is less
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than or equal to that of B , if H is a semisimple Hopf algebra.

Throughout this paper, k denotes a fixed field, and we will always work over k . The tensor product
⊗ = ⊗k and Hom is always assumed to be over k . For an algebra A , denote by A-Mod and Mod-A the
categories of left A-modules and of right A-modules, respectively, and denote by A-mod by the categories of
finitely generated left A-modules. Let lgl.dim A and rgl.dim A denote the left global dimension and the right
global dimension of A , respectively. For a left A-module M , let proj.dimM denote the projective dimension
of M . The reader is referred to [9] and [12] as general references about Hopf algebras. If C is a coalgebra, we

use the Sweedler-type notation for the comultiplication: Δ(c) = c1 ⊗ c2 , for all c ∈ C .

By [11], if A/B is right H -Galois, then for any h ∈ H there are ri(h), li(h) ∈ A, i ∈ I, I being a finite
set such that, for a ∈ A and b ∈ B , one has:

β(Σ ri(h) ⊗B li(h)) = 1 ⊗ h, (1.1)

Σ bri(h) ⊗B li(h) = Σ ri(h) ⊗B li(h)b, (1.2)

Σ a0ri(a1) ⊗B li(a1) = 1 ⊗B a, (1.3)

Σ ri(h)li(h) = ε(h)l, (1.4)

Σ ri(h) ⊗B li(h)0 ⊗ li(h)1 = Σ ri(h1) ⊗B li(h1) ⊗ h2. (1.5)

Also by [11], the canonical map β : A ⊗B A → A ⊗ H, β(a ⊗B b) = ab0 ⊗ b1 , is a morphism of modules
in A-Mod and in Mod-A , where

(1) A ⊗B A and A ⊗ H are left A-modules with structures

a(x ⊗B y) := ax ⊗B y, a(x ⊗ h) := ax ⊗ h; (1.6)

(2) A ⊗B A and A ⊗ H are right A-modules with structures

(x ⊗B y)a := x ⊗B ya, (x ⊗ h)a := xa0 ⊗ ha1, (1.7)

for a, x, y ∈ A and h ∈ H .

2. The spectral sequence for Hopf-Galois extensions

Let A/B be a right H -Galois extension for a Hopf algebra H . In this section, we construct a Grothendieck
spectral sequence for certain Ext groups to estimate the global dimensions of Hopf-Galois extensions.

Lemma 2.1 Let V and W be left A-modules. For all φ ∈ HomB(V, W ) and h ∈ H define φh : V → W by

(φh)(v) = Σri(h)φ(li(h)v), v ∈ V . Then HomB(V, W ) is a right H -module, and there is a canonical k -linear
isomorphism

HomH(k, HomB(V, W )) ∼= HomA(V, W ),

where k is the trivial right H -module (i.e., H acts via the counit).

Proof By [11, Corollary 3.5], HomB(V, W ) is a right H -module via above definition and HomA(V, W ) =

HomB(V, W )H (:= {φ ∈ HomB(V, W ) | φh = φε(h), for allh ∈ H}). And there is a natural isomorphism:

HomH(k, HomB(V, W )) ∼= HomB(V, W )H . So we get the isomorphism. �
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Lemma 2.2 Let W be a left A-module. Then

HomB(A, W ) ∼= Hom(H, W )

as right H -modules, where H acts on the right-hand side by (ψh)(l) = ψ(hl) for ψ ∈ Hom(H, W ) and h, l ∈ H .

Proof The restriction functor B(−) can be written as BA ⊗A (−). Therefore

HomB(BA, BW ) ∼= HomB(BA, BA ⊗A W ) ∼= HomA(A ⊗B A, W )

β∗
∼= HomA(A ⊗ H, W ) ∼= Hom(H, W ).

So we get the isomorphism. �

Let A/B be a right H -Galois extension. Consider the following two functors

A ⊗B − : B-Mod → A-Mod, M �→ A ⊗B M,

B(−) : A-Mod → B-Mod, M �→ M,

where B(−) is the restriction functor. Let (F, G) be an adjoint pair of functors of abelian categories. If G is
exact, then F preserves projective objects; if F is exact, then G preserves injective objects.

Lemma 2.3 Let A/B be a right H -Galois extension for a finite dimensional Hopf algebra H . Then (A ⊗B

−, B(−)) and (B(−), A ⊗B −) are both adjoint pairs.

Proof By adjoint isomorphism theorem, (A⊗B −, B(−)) is an adjoint pair. By [6, Theorem 5], (B(−), A⊗B−)
is also an adjoint pair. �

Lemma 2.4 Let A/B be a right H -Galois extension for a Hopf algebra H . Let V, V ′ and W, W ′ be left

A-modules. If f : V → V ′ and g : W → W ′ are A-module maps, then g∗ ◦ f∗ : HomB(V ′, W ) → HomB(V, W ′)
is an H -module map. Furthermore, if H is a finite dimensional Hopf algebra or A is projective as a left
B -module, then Ext∗B(V, W ) is a right H -module.

Proof The first part can be checked straightforwardly. Let V and W be left A-modules and let

P• : · · · fn+1−→ Pn
fn−→ · · · f2−→ P1

f1−→ P0
f0−→ 0

be a projective resolution of V , so Hn(P•) = 0 for n 	= 0 and H0(P•) ∼= V . Since H is a finite dimensional

Hopf algebra, by [9, Theorem 8.3.3] or [7, 1.7], A is a finitely generated projective right B -module. This implies

that A ⊗B − is exact. And together with the fact that (B(−), A⊗B −) is an adjoint pair, one can obtain that

B(−) preserves projective objects. So the restriction of P• to B -Mod is a projective resolution of BV and we

have Ext∗B(V, W ) = H∗(HomB(P•, W )). By Lemma 2.1 and the first part of this lemma, the components of

the complex HomB(P•, W ) are right H -modules and the differential (f∗
n)n is H -linear. Thus the cohomology

H∗(HomB(P•, W )) is a right H -module and hence so is Ext∗B(V, W ). �

Now we obtain the main result of this section as follows.
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Theorem 2.5 Let A/B be a right H -Galois extension for a Hopf algebra H . Let V and W be left A-modules.
If H is finite dimensional or A is projective as a left B -module, then there is a third quadrant cohomological
spectral sequence

Ep, q
2 = ExtpH(k, ExtqB(V, W ))=⇒

p
ExtnA(V, W ).

Proof By Lemma 2.4, Ext∗H(k, Ext∗B(V, W )) makes sense. This spectral sequence can be obtained as

applications of the Grothendieck spectral sequence (cf. [10], Chapter 10). The proof is similar to that of

the proposition in [8]. For the integrity of the paper, we write out the proof. Let W be a left A-module. Define
functors

G : A-Mod → Mod-H, G(V ) = HomB(V, W )

and
F : Mod-H → Mod-k, F (X) = HomH(k, X).

By Lemma 2.1, FG is equivalent with the functor HomA(−, W ) and so the right derived functors Rn(FG) are

equivalent with Extn
A(−, W ). It is easy to prove that F and G satisfy the conditions of Theorem 10.49 in [10],

hence the required spectral sequence exists. �

The above theorem directly implies the following estimate for the projective dimension of modules.

Corollary 2.6 Let A/B be a right H -Galois extension for a Hopf algebra H . Let V be a left A-module. If

H is finite dimensional or A is projective as a left B -module, then proj.dimAV ≤ proj.dimH(k)+proj.dimBV .
Consequently, lgl.dimA ≤ rgl.dimH + lgl.dimB . In particular, if B and H are both semisimple, then so is A .

Next we recall some notations on crossed products (see [2]). A Hopf algebra H is said to measure an

algebra A if there is a k -linear map H ⊗A → A given by h⊗ a �→ h · a such that h · (ab) = (h1 · a)(h2 · b) and

h · 1 = ε(h)1 , for all a, b ∈ A and h ∈ H . A map σ in Hom(H ⊗ H, A) is said to be convolution invertible

if there exists a map τ in Hom(H ⊗ H, A) such that (σ ∗ τ )(h ⊗ g) = σ(h1, g1)τ (h2, g2) = ε(h)ε(g)1A and

(τ ∗ σ)(h ⊗ g) = τ (h1, g1)σ(h2, g2) = ε(h)ε(g)1A , for all h, g ∈ H .

Let H be a Hopf algebra and A an algebra. Assume that H measures A and σ is a convolution invertible
map in Hom(H ⊗ H, A). The crossed product A#σH of A with H is the set A ⊗ H as a vector space, with
multiplication

(a#σh)(b#σk) = a(h1 · b)σ(h2, k1)#σh3k2

for h, k ∈ H, a, b ∈ A . Here we write a#σh for the tensor product a⊗h . Then A#σH is an associative algebra
with identity element 1#σ1 if and only if the following two conditions are satisfied:

(1) A is a twisted H -module; that is, 1 · a = a, ∀ a ∈ A , and

h · (k · a) = σ(h1, k1)(h2k2 · a)σ−1(h3, k3),

for all h, k ∈ H, a ∈ A .

(2) σ is a cocycle; that is, σ(h, 1) = σ(1, h) = ε(h)1, ∀h ∈ H , and

(h1 · σ(k1, m1))σ(h2, k2m2) = σ(h1, k1)σ(h2k2, m),

for all h, k, m ∈ H .

Note that if σ is trivial, that is, σ(h, k) = ε(h)ε(k)1, for h, k ∈ H , then (1) of above simply says that

A is an H -module, and (2) of above is trivial. Thus A is a left H -module algebra. Moreover, the definition
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of multiplication as defined above reduces to the multiplication in a smash product, and so A#σH = A#H is
just the smash product (see Definition 4.1.3 of [9]).

Let A#σH be a crossed product. Then A#σH/A is a right H -Galois extension (in fact, A#σH/A is

exactly a right H -Galois extension and has the normal basis property) (see [3, Theorem 1.18]). Also, A#σH

is projective (in fact, free) as a left A-module, so by Corollary 2.6 we get the Maschke-type theorem for crossed
products as follows.

Corollary 2.7 Let A#σH be a crossed product. Then lgl.dimA#σH ≤ rgl.dimH + lgl.dimA . In particular, if
A and H are both semisimple (of gl.dim 0), then so is A#σH .

We now give a new example of Hopf-Galois extension and get the Maschke-type theorem for this example
which generalizes the main result in [13].

Let H be a Hopf algebra, and let A be an H -bimodule algebra (i.e., A is an H -bimodule, a left H -module

algebra and a right H -module algebra) with the left H -module action → and the right H -module action ← .
So we can form the twisted smash product A ∗ H with the multiplication on A ⊗ H as

(a ∗ h)(b ∗ g) = a(h1 → b ← S(h3)) ∗ h2g

for all a, b ∈ A, h, g ∈ H . Then A ∗ H is an algebra with the unit 1 ∗ 1 (see [14]). The twisted smash product

contains the usual smash product and the Drinfeld double (see [9, Chapter 10]), so it plays an important role
in quantum group theory. We can check easily that A ∗ H is a right H -comodule algebra with the comodule

structure a ∗ h �→ a ∗ h1 ⊗ h2 and (A ∗ H)coH = A ∗ 1 ∼= A .

Proposition 2.8 Let A ∗ H be a twisted smash product. Then A ∗ H/A is a right H -Galois extension.

Proof To see that A ∗ H/A is a right H -Galois extension, we recall the Galois map

β : A ∗ H ⊗A A ∗ H → A ∗ H ⊗ H,

(a ∗ h) ⊗A (b ∗ g) �→ (a ∗ h ⊗ 1)(b ∗ g1 ⊗ g2)

= (a ∗ h)(b ∗ g1) ⊗ g2,

and we construct an inverse map α for β defined by

α : A ∗ H ⊗ H → A ∗ H ⊗A A ∗ H,

a ∗ h ⊗ g �→ (a ∗ h)(1 ∗ S(g1)) ⊗A (1 ∗ g2).

We only need prove that α is the inverse of β . For all a, b ∈ A, h, g ∈ H we compute

βα[(a ∗ h) ⊗ g] = β[(a ∗ h)(1 ∗ S(g1)) ⊗A (1 ∗ g2)]

= (a ∗ h)(1 ∗ S(g1))(1 ∗ g2) ⊗ g3

= (a ∗ h)(1 ∗ 1) ⊗ g = (a ∗ h) ⊗ g,

214



LIU and GUO/Turk J Math

and

αβ[(a ∗ h) ⊗A (b ∗ g)] = α[(a ∗ h)(b ∗ g1) ⊗ g2]

= (a ∗ h)(b ∗ g1)(1 ∗ S(g2)) ⊗A (1 ∗ g3)

= (a ∗ h)[b(g1 → 1 ← S(g3)) ∗ g2S(g4)] ⊗A (1 ∗ g5)

= (a ∗ h)(b ∗ 1) ⊗A (1 ∗ g)

= (a ∗ h) ⊗A (b ∗ 1)(1 ∗ g)

= (a ∗ h) ⊗A (b ∗ g).

Thus A ∗ H/A is a right H -Galois. �

In what follows, we obtain a Maschke-type theorem for the twisted smash product generalizing Theorem
5.3 of [13] in which the authors need additional condition.

Corollary 2.9 Let A∗H be a twisted smash product. Then lgl.dimA∗H ≤ rgl.dimH + lgl.dimA . In particular,
if A and H are both semisimple, then so is A ∗H .

3. Finitistic dimension of Hopf-Galois extensions

Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . In this section, we consider
relationships between the finitistic dimensions of A and B .

Recall from [1] that the finitistic dimension of an algebra A is defined to be

fin.dim(A) = sup{proj.dim(M)|M ∈ A-mod and proj.dim(M) < ∞}.

H. Bass in [1] conjectured that fin.dim(A) < ∞ for any finite dimensional algebra A . This conjecture is still
open.

Lemma 3.1 Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . Then for any A-module
M , M is an A-direct summand of A ⊗B M .

Proof First define f : A ⊗B M → M by a ⊗B m �→ am for a ∈ A and m ∈ M . Obviously, f is an
A-epimorphism.

Since H is semisimple, there exists a right integral t (i.e., th = ε(h)t , for all h ∈ H ) satisfying ε(t) = 1

(see [9, Theorem 2.2.1]). Define g : M → A ⊗B M via g(m) = Σri(t) ⊗B li(t)m for m ∈ M . Next, we show

that g is A-linear. It suffices to show that Σri(t) ⊗B li(t)a = Σari(t) ⊗B li(t), ∀ a ∈ A . In fact, for a ∈ A , we
have

β(Σri(t) ⊗B li(t)a)
(1.7)
= β(Σri(t) ⊗B li(t))a

(1.1)
= (1 ⊗ t)a

(1.7)
= a0 ⊗ ta1

= a0 ⊗ tε(a1) = a ⊗ t

(1.6)
= a(1 ⊗ t)

(1.1)
= aβ(Σri(t) ⊗B li(t))

(1.6)
= β(Σari(t) ⊗B li(t)).
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Since β is bijective, we get Σri(t) ⊗B li(t)a = Σari(t) ⊗B li(t), ∀ a ∈ A .

Finally, for any m ∈ M ,

fg(m) = f(Σri(t) ⊗B li(t)m) = Σri(t)li(t)m
(1.4)
= ε(t)m = m.

Thus M is an A-direct summand of A ⊗B M . �

Lemma 3.2 Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . Then for each A-

module M , proj.dim (AM) = proj.dim (BM) .

Proof Any semisimple Hopf algebra H is finite dimensional, since any semisimple Hopf algebra is separable
(Let k be a field. An associative k -algebra A is said to be separable if for every field extension E/k the

algebra A ⊗k E is semisimple), and a separable algebra over a field is finite dimensional (see [9, Corollary

2.2.2]). Combining the proof of Lemma 2.4, we obtain that any projective resolution of M as an A-module is

also a projective resolution of M as a B -module. It implies that proj.dim (BM) ≤ proj.dim (AM).

Conversely, since (A ⊗B −, B(−)) is an adjoint pair and B(−) is exact, we have A ⊗B P is a projective

A-module for each projective B -module P . We may assume that proj.dim (BM) = n < ∞ , and let P be a
projective resolution of M as a B -module of length n . Then A⊗B P is a projective resolution of A ⊗B M as
an A-module. The exactness of this sequence is determined by the projectiveness of A as a right B -module. It
implies proj.dim (A(A⊗B M)) ≤ proj.dim (BM). Also by Lemma 3.1, M is an A-direct summand of A⊗B M ,

it follows that proj.dim (AM) ≤ proj.dim (A(A ⊗B M)). Thus proj.dim (AM) ≤ proj.dim (BM). The proof
is completed. �

Following from lemma 3.2, we immediately obtain the main result of this section as follows.

Theorem 3.3 Let A/B be a right H -Galois extension for a semisimple Hopf algebra H . Then fin.dim(A) ≤
fin.dim(B) .

We now apply the above theorem to crossed products and twisted smash products.

Corollary 3.4 Let H be a semisimple Hopf algebra as well as its dual H∗ , and A#σH be a crossed product.
Then fin.dim(A#σH) = fin.dim(A) .

Proof First, A#σH/A is a right H -Galois extension and H is semisimple, by Theorem 3.3 we have

fin.dim(A#σH) ≤ fin.dim(A).

Note that A#σH is a left H∗ -module algebra via ϕ · (a#σh) = a#σ(ϕ ⇀ h) =< ϕ, h2 > a#σh1 , for

a#σh ∈ A#σH and f ∈ H∗ . Thus A#σH and H∗ form a smash product algebra (A#σH)#H∗ . It is well

known that the smash product is a special case of crossed products. So (A#σH)#H∗/A#σH is also a right

H∗ -Galois extension. Combining the semisimplicity of H∗ , we have fin.dim((A#σH)#H∗) ≤ fin.dim(A#σH).

By [3, Theorem 2.2], (A#σH)#H∗ ∼= Mn(A), where n = dimH , so it is Morita equivalent to A . It follows

that fin.dim(A) = fin.dim((A#σH)#H∗). Then

fin.dim(A) = fin.dim((A#σH)#H∗) ≤ fin.dim(A#σH) ≤ fin.dim(A).

Therefore fin.dim(A#σH) = fin.dim(A). �
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Corollary 3.5 Let H be a semisimple Hopf algebra, and A ∗H be a twisted smash product. Then fin.dim(A ∗
H) ≤ fin.dim(A) .
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