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Abstract: Let K be a commutative ring with unity, R be a prime K -algebra with characteristic not 2, U be the right
Utumi quotient ring of R, C' the extended centroid of R, I a nonzero right ideal of R and a a fixed element of R. Let
g be a generalized derivation of R and f(Xi,...,X,) a multilinear polynomial over K.

If ag(f(z1,...,2n))f(x1,...,2n) =0 for all z1,...,2n € I, then one of the following holds:
(1) al = ag(l) = 0;
(2) g(z) =bx +[c,z] for all z € R, where b,c € U. In this case either [¢,I]I =0=abl or al =0=a(b+¢)I;

3) [f(X1,...,Xn), Xnt1]Xnt2 is an identity for I.

Key words: Prime ring, derivation, generalized derivation, right Utumi quotient ring, differential identity, generalized

polynomial identity

1. Introduction

Throughout this paper unless specially stated, K will denote a commutative ring with unit, R is always a
prime K -algebra with center Z(R) and extended centroid C, U is its right Utumi quotient ring. For x,y € R,
the commutator of z and y is denoted by [z,y] and defined by [z,y] = 2y — yz.

By a derivation of R, we mean an additive mapping d from R into itself satisfying the rule d(xy) =
d(x)y+zd(y) for all z,y € R. The study of derivations of prime rings was initiated by E. C. Posner [25]. Later
many generalizations of Posner’s results have been obtained by a number of authors in the literature (see, [5],
6], [17], [19], [18)).

An additive mapping g : R — R is called a generalized derivation of R if there exists a derivation d of
R such that g(zy) = g(x)y+zd(y) for all 2,y € R. The notion of generalized derivation was introduced by M.
Bresar [4] and the algebraic study of these mappings was initiated by B. Hvala [15]. Obviously any derivation
is a generalized derivation. Moreover, other basic examples of generalized derivations are the mappings of the
form g(x) = ax + xb, for some a,b € R. Many authors have studied generalized derivations in the context of
prime and semiprime rings (see, [1], [11], [15], [21], [22]). Here we will consider some related problems concerning

annihilators of generalized derivations in prime rings.
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In [3], M. Bresar proved that if R is a semiprime ring with a nonzero derivation d and a € R is such
that ad(z)™ =0 for all x € R, where m is a fixed positive integer, then ad(R) = 0 when R is (m —1)!-torsion

free.
In [8], C. M. Chang and T. K. Lee proved the following theorem: Let R be a prime ring, I a nonzero

right ideal of R, d a nonzero derivation of R and a € R be such that ad([z,y])™ € Z(R) (d([z,y])"a € Z(R)
resp.) for all x,y € I. If [I,I]I # 0 and dimcRC > 4, then either ad(I) =0 (a =0 resp.) or d is the inner
derivation induced by some ¢ € U such that ¢ =0.

In [7], C. M. Chang generalized the above results by proving that if R is a prime ring with extended
centroid C, T is a nonzero right ideal of R, d is a nonzero derivation of R, f(Xi,...,X,) is a multilinear
polynomial over C', a € R and m > 1 is a fixed integer such that ad(f(x1,...,2,))™ =0 forall z1,...,2, €1,
then either al =0=d(I)I or [f(X1,...,Xs), Xnt1]Xnt2 is an identity for T.

Recently in [12], V. De Filippis investigated the annihilators of power values of generalized derivations
on multilinear polynomials and extended Chang’s result in [7].

In our recent paper [13], we proved the following theorem. Let K be a commutative ring with unity, R
be a prime K-algebra, U its right Utumi quotient ring, C' the extended centroid of R, and I a nonzero right
ideal of R. Let g be a nonzero generalized derivation of R and f(Xi,...,X,) a multilinear polynomial over

K. If
9(f(z1,...,zn))f(z1,...,20) =0

for all 21,...,z, € I, then either f(Xy,...,X,)X,41 is an identity for I or g(z) = ax + [b, z], for suitable
a,b € U and one of the following holds:

(1) el =0 and [f(X1,...,Xn), Xnt+1]Xn42 is an identity for I;
(2) al =0 and (b— B)I =0 for a suitable g € C.

In this paper we will continue the investigation by studying the properties of a subset S of R related to

its left annihilator Anng(S) = {z € R|2S = (0)}. More precisely we will study the case when

S={g(f(x1,...,x)) f(x1,. ., Zn) | 21,..., 2, € R},

where ¢ is a generalized derivation on R, f(Xi,...,X,) is a multilinear polynomial in n non-commuting

variables over K. We prove the following theorem.

Main Theorem. Let K be a commutative ring with unity, R be a prime K -algebra with characteristic not
2, U be its right Utumi quotient ring, C' the extended centroid of R, and I a monzero right ideal of R. Let g

be a nonzero generalized derivation of R, a € R and f(X1,...,Xn) a multilinear polynomial over K. If
ag(f(z1,...,zn))f(x1,...,2n) =0
for all x1,...,x, € I, then one of the following holds:
(1) al =0=ay(I);

(2) g(z) = bx + [c,z] for all x € R, where b,c € U. In this case, either [c,I|I = (0) = abl or al =0 =
a(b+ o)l ;

3) [f(X1,..., Xn), Xnt1]Xnyo is an identity for I.
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2. Preliminaries
In all that follows, unless stated otherwise, R will be a prime K -algebra and f(Xi,...,X,) a multilinear
polynomial over K. For any ring S, Z(S) will denote its center.

The related object we need to mention is the right Utumi quotient ring U of R (sometimes, as in [2], U
is called the maximal right ring of quotients). The definitions, the axiomatic formulations and the properties
of this quotient ring U can be found in [2].

In any case, when R is a prime ring, all we will need to know about U is that
1. RCU;
2. U is a prime ring with identity;
3. The center of U, denoted by C, is a field which is called the extended centroid of R.

We will also frequently make use of the theory of generalized polynomial identities and differential
identities (see [2], [16], [20], [24]). In particular, we need to recall the following facts.

Fact 1. Denote by T = U x¢c C{X} the free product over C' of the C-algebra U and the free C'-algebra
C{X}, with X a countable set consisting of non-commuting indeterminates z1,...,2p,... . The elements
of T are called generalized polynomials with coefficients in U. Recall that if B is a basis of U over C,
then any element of T can be written in the form g = Zi a;m;, where o; € C and m; are B-monomials,
that is m; = qoy1...Ynqn, with ¢; € B and y; € {z1,...,Zn,...}. In [9] it is shown that a generalized

polynomial g = . aym; is the zero element of T' if and only if each «; is zero. As a consequence, if a1, a; € U

are linearly independent over C' and aig1(21,...,%n) + a2g2(21,...,2,) = 0 € T, where ¢1(21,...,2,) =
Yo wihi(@y, .. xn) and go(@y, ... xn) = Doi g wiki(z1, ..., @) for hi(zy, ..., x), ki(@1, ..., 2,) € T, then
both gi(z1,...,2,) and go(z1,...,2,) are the zero element of T'.

Fact 2. If R is prime and [ is a non-zero right ideal of R, then I, IR and IU satisfy the same generalized
polynomial identities with coefficients in U [9)].

Fact 3. If R is prime and [ is a non-zero right ideal of R, then I, IR and IU satisfy the same differential
polynomial identities with coefficients in U [20].

Fact 4. In [21], T. K. Lee extended the definition of a generalized derivation as follows. By a generalized
derivation he means an additive mapping g : I — U such that g(ay) = g(x)y + xd(y) for all z,y € T, where T
is a dense right ideal of R and d is a derivation from I into U. He also proved that every generalized derivation
g on a dense right ideal of a semiprime ring R can be uniquely extended to a generalized derivation of U and
assumes the form g(z) = az +d(x) for all z € U, for some a € U and a derivation d on U (Theorem 4 in [21]).

Fact 5. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1
in [2]). Moreover, since R is a prime ring, we may assume K C C and so for any o € K one has d(a.1) € C.

Fact 6. We will use the following notation:

flxr, ..., xn) =axy... .28 + Z QoTo(1) - - To(n)
1#0€S,

for some «, a, € K and moreover we denote by f%(xy,...,x,) the polynomial obtained from f(z1,...,x,) by
replacing each coefficient a, with d(a,.1). Thus we write d(f(z1,...,7)) = f4(z1, ..., T0)+
S fx, .. d(w),. .., xy) forall zq,...,2, € R.
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Fact 7. We will also write multilinear polynomial f(z1,...,2,) as follows:

n

flx, ... ,xn) = Zti(gcl, ey Tim1, Tiddy - e s Tn) Ty
i=1
where t; are multilinear polynomials in n — 1 variables, and z; never appears in any monomials in ¢;.

Fact 8. We will need the following fact in the proof of Lemma 1: Let R be a prime ring, a,b € R and
f(X1,...,X,) be a multilinear polynomial over C, which is not vanishing on R. Suppose (af(z1,...,2n) +
flxr, ..., 20)b) f(z1,...,2,) =0 for all z1,...,2, € R. Then either a = —b € C or f(Xy,...,X,) is central
valued on R and a+ b =0 (Lemma 1 in [13]).

3. Results

We need the following lemmas.

Lemma 1 Let R= My(F) where F is a field, f(X1,...,X,) a multilinear polynomial over F, a,b,c € R be
fixed elements, and I a nonzero right ideal of R. If

abf(xy,...,zn) + flx1, .., zn)e) f(21,...,2) =0
for all x1,...,x, € I, then one of the following holds:
(1) a=0,
(41) ce F and a(b+c) =0 unless F = GF(2),

(342) [f(X1,..., Xn), Xnt1]Xnto is an identity for I.

Proof Assume first that I # R. Since every proper right ideal of R is minimal, we conclude that [I,I]I = 0.
Then clearly [f(X1,...,Xn), Xnt1]Xn+2 is an identity for I, and we are done. Therefore, we may assume
that I = R. If now a = 0, then there is nothing to prove. We assume throughout that a # 0. Moreover, if
f(X1,...,X,) is central valued on R, then (i) holds. So we also assume that f(Xi,...,X,) is not central

valued on R. Let e;; denote the matrix unit with 1 in the (4, j)-th position, and zero elsewhere. Note that

Ra(bf(z1, ..., xn) + f(z1,.. ., zn)e) f(21,. .. 2s) =0

for all z1,...,z, € R. Since R is von Neumann regular, there exists an idempotent e € R such that Ra = Re.
Hence we may assume that a is an idempotent. Now if a is invertible then ¢ = 1, and thus b = —c € F by Fact
8, and we are done. Hence we may consider the case when Ra = Re is a proper left ideal of R. Since any two

proper left ideals J and L of R are conjugate, there exists an invertible element u € R such that J = uLu"".

1

Then Rey; = uRau™' = Ruau~!, and so replacing a by uau™" we may assume further that a = ej;.

Now for any nonzero « € F', there exist elements r1,...,7, € R such that f(ry,...,r,) = aeis by [23].

Let ¢ = Z?jzl cijeij - By our assumption we once get that

0=abf(ri,...,rn)+ fri,...,m)e) f(r1, ...y m0)

= ell(baelz + aelgc)aelg

2
= Q' C21€12.
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Hence co; = 0. We proceed to show that c is central unless F = GF(2). We have seen that ¢ has the form

( C(l)l 212 ) . We note that f(R) = {f(r1,...,7mn) : r1,...,7n € R} is invariant under all F'-automorphisms
22
of R. Let 8 € F and define p(x) = (1 — Be21)x(1 + Bes;) for all 2 € R, an automorphism of R. Then

(P(f(Tlv .- ',Tn)) = (1 - Be2l)f(T17 .- "Tn)(l +5621)
= (1 — Bear)aer2(l + Bear)

= ale1z + Berr — Beas — (%ea1) € f(R).
Now by our assumption
0= aern (b(em + Be11 — Beza — B2ear)
+ (e12 + fBerr — Beaa — 52621)0) (e12 + Berr — Beaz — FPen),
and so
(e12 + Berr)c(erz + Berr — Beas — Fe21) =0,
since a # 0. By direct calculation, we see that
B(c11 — o2 — Berz)(e11 + Perz) =0
forall g€ F. If 8 #0, then we have
c11 — 22 — Peiz = 0.

In particular, for 5 =1, one has ¢11 — c22 — c12 = 0. Comparing these last two equations, we get (G —1)ci12 =0
for all € F —{0}. Then c12 =0 and c¢11 = ¢22, and so ¢ € F' unless F = GF(2). Therefore

alb+c)f(xy,...,x,)% =0

for all z1,...,z, € R. By Lemma 2 in [10], a(b+ ¢) = 0 since f is not an identity for R. This completes the
proof. O

Lemma 2 Let R= M,,(F), where m >3 and F is a field of characteristic not 2, I = eR = (e11+---+eu)R,
f(X1,...,X,) be a multilinear polynomial over F, and a,b,c € R be fized elements. If

abf(xy,...,zn)+ fl21,. ., zn)e) f(21,...,2) =0
for all x1,...,x, € I, then one of the following holds:
(2) al =0 and either abl =0 or f(Xi,...,Xn)Xnt1 is an identity for T,
(#) [¢,I]I =0 and either a(b+c)I =0 or f(X1,...,Xn)Xnt1 is an identity for T,

(342) [f(X1,..., Xn), Xnt1]Xnto is an identity for I.
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Proof If al = 0, then abf(x1,...,2,)? = 0 for all z1,...,2, € I. Then by [10], either abl = 0 or
f(X1,...,X,) X4t is an identity for I. On the other hand, if [c,I]] = 0 then a(b+ ¢)f(z1,...,2,)% = 0
for all x;,...,2, € I. Hence we deduce again by [10] that either a(b+ ¢)I =0 or f(X1,...,X,) X411 is an
identity for I. Therefore we may assume throughout that al # 0 and [¢, I]I # 0. Notice that if f(Xi,...,X,)
is central valued on eRe, then [f(X1,...,Xy), Xnt1]Xn42 is an identity for I and thus we are done. So we
may also assume that f(Xi,...,X,) is not central valued on eRe. Set A = {f(x1,...,2,) | 1,...,2, € I}.
In the present case, for any s <[ and s # ¢, there exist r1,...,7, € I such that f(r1,...,7,) = est € A by

Lemma 3 in [7]. By our assumption

0 = a(best + esec)est
= Cts0€st.
Assume that c¢;,;, # 0 for some jo <[ and jo # ig. Then since c¢;,;,ae;,i, = 0 we see that aej,;, = 0 which in
turn implies that aej,;, = 0. Take another j < with j #ig. If ¢;,; # 0, we get aej; =0 as above. Consider
now the case ¢;,; = 0. By Lemma 3 in [7], ej,i, + €ji, € A and by hypothesis we have
0 = a(b(ejoio + €jio) + (€joio T €5in)C) (€join + €jis)
= Cigjo®(€joio T €jin)-
Since c¢;,;, # 0 and aej i, = 0, we deduce that aej;, = 0, whence aej; = aej;,e;,; = 0. Thus we have shown
that ae;; = 0 for all j <1 and j # ip. We note that if iy > [, then ae;; =0 for all j <[ and so al =0, a
contradiction. Thus we may assume that ig <1[. If cx;, # 0 for some k # ig, then we conclude as above that

ae;,i, = 0. But we then arrive at the contradiction al = 0. So we may assume that cg;, =0 for all k # ig.

Consider the following of R,

(p(l') = (1 + eiojo)x(l - eiojo)
w(w) = (1 - eiojo)x(l + eiojo)?

and notice that ¢(I),¢¥(I) C I. Therefore I satisfies the following two generalized identities:

(p(a/)((p(b)f(X17' * -,Xn) +f(X17' * -,Xn)(p(C))f(Xl,- M '7Xn)7

(@) (VO (X1, Xn) + F(K, o, Xa) () F(Xas -, Xo).
By calculation ¢(¢)iqjo = Ciojo — Civio T Ciojo A ¥V(C)igjo = Cinjo + Ciio — Cjojo SIACE Ciie = 0. If now ¢(¢);yj, =
¥(€)iyjo , then we see that c; iy — ¢jyj, = 0 since char(F) # 2. Therefore, ¢(¢)iyio = ¥(C)igjo = Cigjo 7 0. On
the other hand, if ¢(¢)iyjo # Y(€)igjo» then either ()i, # 0 or ¥(c)iyj, # 0. By our previous arguments
either p(a)ej; = 0 for all j <1 and j # i9 or Y(a)ej; =0 for all j <1 and j # ip. If p(a)e;; = 0 for all
Jj <l and j # ip, then in particular p(a)ej,;, = 0. So by calculation we see that (a + ajyi,)€ij, = 0 whence
(@ + ajyig)€igic = 0. Now since

0= €iojo (a + ajoio)eioio

= QjyioCigio
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we see that ae;p;, = 0. But then we again arrive at the contradiction al = 0. So we must have ¥(a)ej; =0
for all j <[ and j # ig. As above this leads to the contradiction al = 0.

From now on we may assume that ¢;; =0 for all j <[ and j # i. Define now 7(z) = (14 ¢e;;)x(1 — e;j)
for 4,5 <l and i # j. Since 7(I) C I, we see that

7(a) (T(b)f(xl, cony@n) + f(21, . .,xn)T(c))f(xl, ceyXp) =0

for all z1,...,2, € I. The (i,j)-entry of 7(c) is 7(c)i; = ¢j; — cii- If now 7(c);; # 0 for some 4,5 <1 and
i # j, then we can proceed as before and show that 7(a)l = 0. But then 7(al) = 7(a)I = 0 which then leads
to the contradiction al = 0. Hence 7(c);; = 0 for all 4,5 <[ and i # j. Hence ¢;; = ¢;; = A for all 4,5 <1
and i # j. Then (¢ — A\)I =0, that is [¢, I]] = 0 which is again a contradiction. This proves the lemma. O

Lemma 3 Let R be a prime ring, a,b,c € R and f(X1,...,Xn) a nonzero multilinear polynomial over C and

I a nonzero right ideal of R such that

abf(xy,...,zn)+ fl21, .., zn)e) f(21,...,2) =0

for all x1,...,2, € I. If R does not satisfy any nontrivial generalized polynomial identity, then one of the

following holds:
(2) al =0=abl;

(i2) [e,[[I=0=a(b+ ).
Proof If al = 0, then we have abf(x1,...,1,)? = 0 for all z1,...,2, € I. Then by [10], we have either

abl =0 or f(x1,...,2n)@nt1 =0 forall z1,..., 2,41 € I. If u € I is nonzero and abl # 0, then since R does

not satisfy any nontrivial generalized polynomial identity (GPI for short)
f(qu, ey an)an+1

is the zero element in T'. But then we must have u = 0, a contradiction. Therefore when al = 0 we also
have abl = 0, and we are done. On the other hand, if [c,I]I = 0, then a(b + ¢)f(z1,...,2,)%> = 0 for all
Z1,...,&, € I. This yields a(b+c¢)I = 0 as above, and we are done again. So we may assume that al # 0 and

[e, I]T # 0. Since R does not satisfy any non-trivial GPI by the hypothesis,
a(bf(uXy,...,uXy) + fuXy,...,uXy)e) f(uXy, ..., uXy)
is the zero element in T', that is
abf(uXy, .., uXy,) + fuXy, .., uXp)e) f(uXy,...,uX,) =0T (3.1)

forall uel.
Suppose that there exists u € I such that abu and au are linearly independent over C'. By Fact 1 and

(3.1)
abf(uXi,...,uX,)?=0¢€T,
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which implies that abu = 0 since R does not satisfy any nontrivial GPI, a contradiction. Thus we have abu and
au are C-dependent for all u € I. We claim that there exists A € C, independent of u, such that abu = Aau.
If av = 0 for some v € I, then since a(u + v) and ab(u 4+ v) are C-dependent, we once see that au and
abu 4+ abv are C-dependent. Now we have

aau + Babu =0 (3.2)

for some «, 8 € C, not both zero, and
~yau + p(abu 4+ abv) = 0 (3.3)

for some v, € C, not both zero. Comparing (3.2) and (3.3), we get

(By — ap)au + pfabv = 0.

If uB # 0 then one gets au and abv are C-dependent. If u8 = 0, then either v # 0 or o # 0. Thus au =0
by (3.2) and (3.3), and again au and abv are C-dependent. Now if abv # 0, then au € Cabv, and thus al is a
commutative right ideal of R, which is a contradiction since al # 0. Hence we have abv = 0 whenever av = 0.
Let u,v € I be any elements. If a(u+ v) = 0 then we have seen above that ab(u + v) = 0. So we assume that
a(u+v) #0. Then ab(u + v) = Ayqya(u+ v), and so

A QU + Ayav = Ay4aU + AyppQu.
Notice that the above relation holds even if au =0 (or av = 0). Hence we get
(A — Augo)au + (Ay — Aygp)av = 0.

Now if Ay — Aygyo = 0 = Ay — A\yto, then we are done. For otherwise, we conclude that au and av are
C-dependent. Therefore, in any case we see that al is a commutative right ideal of R, a contradiction. Hence
we have shown that there exists A € C such that abu = Aau for all w € I, that is a(b — A\)I = 0. Now for any

u € I, we have
af(uXy, .., uX,)(c+ N f(uXy,...,uX,)=0€T

implying that either au = 0 or (¢ + A)u =0 for all u € I. Now as an additive group, I is the union of two
subgroups {u € T | au = 0} and {u € I | (¢ + N)u = 0}. Since a group cannot be the union of two proper
subgroups, we see that either al = 0 or (¢ + A)I = 0. But we are assuming al # 0, and so we must have
(¢+X)I =0. Thence we see that [c, I]T = 0. This contradiction finishes the proof. O

Lemma 4 Let R be a prime ring of characteristic not 2, a,b,c € R, f(X1,...,Xn) a multilinear polynomial

over C' and I a nonzero right ideal of R such that
abf(xy,...,zn)+ fl21, .. zn)e) f(21,...,2) =0 (3.4)
for all x1,...,2, € I. Then one of the following holds:
(2) al =0 and either abl =0 or f(Xi,...,Xn)Xnt1 is an identity for I;
(i) [, I]I =0 and either a(b+c)I =0 or f(X1,...,Xn)Xnt1 is an identity for I;

(342) [f(X1,..., Xn), Xnt1]Xnto is an identity for I.

238



ARGAC and DEMIR/Turk J Math

Proof If R is not a GPI-ring, then we are done by Lemma 3. Thus suppose that R is a GPI-ring. Since U
and R satisfy the same generalized polynomial identities, U is also a GPI-ring. Then by [24], U is a primitive
ring with a non-zero socle H. Note that (3.4) also holds for all z1,...,2, € IU. Hence replacing R and I by
U and IU, respectively, we may assume that R is a primitive ring with a nonzero socle H, IC' =1 and C' is
just the center of R. Note that

abf(xy,...,zn)+ fl21,. ., zn)e) f(21,...,2) =0

for all z1,...,2, € J =1H by [9]. Thus by replacing R by H and I with J = IH, we may assume without
loss of generality that R is a simple ring and is equal to its own socle and I = IR. Now if a = 0, there is
nothing to prove. Therefore Ia # 0, and by replacing a by some 0 # ua € I we may assume further that
a € I. Suppose that the conclusions of the lemma do not hold. Hence there exist ag,c1,c¢2,b1,...,0p42 € I
such that

e aap # 0 and
e [c,ci]ea £ 0 and

[ ] [f(bl, ey bn), bn+1]bn+2 7é 0

Let F' be the algebraic closure of C' or C' itself according to the cases either C' is infinite or finite. Note that
I ®¢ F is a completely irreducible right H ®¢ F-module which satisfies the GPI

a(bf(Xl, .. ,Xn) + f(Xl, .. .,Xn)c)f(Xl, .. ,Xn) =0.

Thus there exists an idempotent e € I ®¢ F' such that ag, ¢, c2,b1,...,bn12 € e(H ®c F). By Litoff’s theorem
(see [14]) there exists h? = h € H ®¢ F such that

e, eb, be, ec, ce, a, ag, c1, 2, b1, ..., bnta € h(H @¢c F)h

and, moreover, h(H ®¢c F)h = My (F) for some k > 2.
Now for all z1,...,2, € eh(H ®c F)h C (I ®c F) N h(H ®c F)h, we have

0= ha(bef(wl, ceo Xn) +ef(x, .. .,xn)c)ef(gcl, ey X))
- (hah)((hbh)f(:cl, ey @n) + f, . .,xn)(hch))f(gcl, ey Tn).
By Lemmas 1 and 2, one of the following holds:

e haheh(H ®¢ F)h = 0, which leads to the contradiction 0 # aag = (hah)ehagh = 0;

o [hch,eh(H ®¢ F)hleh(H ®c F)h =0, by which we arrive at the contradiction
0 # [¢, c1]e2 = [heh, eherhleheah = 0;

o [f(eh(H ®c F)h),eh(H @c F)hleh(H ®c F)h = 0 which, too, yields the contradiction

0% [f(br, -, bn)s bui1)bnsa = [f(ehbih, . .. ehbyh), ehbyy1h]ehb,oh = 0.
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We are now in a position to prove our main theorem.

The Proof of Main Theorem. If f(Xi,...,X,,)X, 1 is an identity for I, then (3) holds and we are done.
So we may assume that f(Xi,...,X,)X,41 is not an identity for I and proceed to show that (1)—(3) hold.
Now by Fact 4, every generalized derivation g on a dense right ideal of R can be uniquely extended to U and

assumes the form g(x) = bz + d(z), for some b € U and a derivation d on U. Then
a(bf(wl, cooy Zn) +Hd(f (21, .. .,xn)))f(gcl, cen ) =0
for all z1,...,x, € I. Therefore, for any u € I, U satisfies the following differential identity
a(bf(qu, X))+ d(f(uX, .. .,an)))f(qu, e uXn).

If d =0, then abf(z1,...,2,)?> = 0 for all x1,...,2, € I. Then by [8], we have abl = 0 and this case is

contained in conclusion (2). Hence we may assume that d # 0. Then I satisfies
a(bf (X1, Xo) + fU(X0, o X))+ ) f(XnL o d(XG), L X)) F(X -, X,
i=1

In the light of Kharchenko’s theory [16], we divide the proof into two cases.
Case 1. If d is an inner derivation induced by an element ¢ € U — C, that is d(z) = [¢, 2] for all z € U,
then g(z) = bx + d(x) = (b+ ¢)x — xc and T satisfies

a((b+c)f(X1,..., Xn) — fF(X1,.. ., Xn)o) f( X1, ..., Xn).
Then by Lemma 4 we have that one of the following conclusions occur:
(a) al =0=a(b+ o)I;
(b) [¢, ]I =0=abl;
(¢) [f(X1,...,Xn), Xnt1]Xn+2 is an identity for I.

In this case we have either the conclusion (2) or (3).
Case 2. Let now d be an outer derivation of U. Now I and IU satisfy the same differential identities

in view of Fact 3, and hence
abf(Xy, ..., Xn) +d(f(X1,..., X)) f( X1, ..., X5)
is an identity for IU, that is, for any u € I,
a(bf(uXy,...,uX,) +d(f(uXy,...,uXy)))f(uXy,. .., uX,)
is an identity for U. Then U satisfies the following identity

a(bf(qu, coouXn) 4+ fHuXy, . uX,)

+3 fuXn,. . dw)X; + ud(X,), . .,an))f(qu, e uXn).
i=1
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Since d is an outer derivation, by Kharchenko’s results in [16], U satisfies the identity

a(bf(qu,...,an)—i—fd(qu,...,an) (3.5)

n

+3 fuXy,. .. dw)X; +uYi, .. .,an))f(qu, e uXy).

i=1
It is clear that U satisfies the blended component
af(uXy, ..., uYs, .. uXy)f(uXy,. .. uX;, ..., uXy).

In particular, U satisfies af(uXi,...,uX;,...,uX,)?. This means either al = 0 or f(uXy,...,uX,)uX,11
is a nontrivial generalized identity for U. We suppose first that al = 0 and prove also in this case that U is a

GPI-ring. In order to this, as in Fact 7, we write the multilinear polynomial f(Xi,...,X,) as
FX0, 0 Xn) = Xiti(Xa, o, X, Xig, 0, Xn),
i=1

where t;(X1,...,X;-1, Xi41,. .., Xn) are multilinear polynomials in n — 1 variables, and X; never appears in

any monomials in ;. Then since au =0, U satisfies

a(quXiti(qu, .. .,uXi_l,uXi_H, .. ,an)
i=1

+ Z d(u)Xiti(qu, ceouXi,uXiq, .. ,an))f(qu, .. .,an),

i=1
that is, U satisfies

a(bu + d(u)) ZXiti(UXh ceyuXig, uXit, . .,an)f(qu, .. ,an)

=1

In other words,

ag(u) ZXiti(qu, coou X1, uXig, e, uXn) f(uX, . uXy)
i=1
is an identity for U. Since this holds for all u € I, we have either ag(I) = 0 (and in this case, we are done) or
there exists u € I such that ag(u) # 0. If the latter holds, then the above identity is a nontrivial generalized
polynomial identity for U. In light of this fact, we may always assume that U is a GPI-ring. Finally, we want
to show that either conclusion (1) or conclusion (3) holds. By contradiction, in all that follows we suppose
that there exists v € I such that either av # 0 or ag(v) # 0, if not conclusion (1) of the Theorem holds.
Since f(X1,...,Xn)Xn41 is not an identity for I by our assumption, there exist wuy,...,unp+1 € I such that
flut, ..., up)tns1 # 0. Now since U is a GPI-ring, U is a primitive ring with socle H = Soc(U) # 0 by [24].

We note that (3.5) holds for all z1,...,z, € IH, and so replacing I with IH we may also assume that I C H.

By the regularity of H, there exists an idempotent e € I = I'H such that eH = vH + Z?jll u; H and v = ev,
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u; =eu; forall i=1,...,n+ 1. By (3.5), we have

a(bf(ewl, exy) + flexn,. .. exy)

+ Zf(ewl, o d(e)x; + ed(xy), .. .,exn))f(exl, e €Ty) =0
i=1
for all z1,...,z, € H, and also for all z1,...,z, € U. As above, since d is an outer derivation, we get

a(bf(ewl, exy) + flex,. .., exy)

+ Zf(ewl, o d(e)x + ey, . .,exn))f(exl, .o exy) =0.
i=1
Hence U satisfies the blended component

af(eX1,...,eYq, ... eXp)f(eXy,...,eX;, ..., eXp).

In particular, U satisfies af(eXi,...,eX,)?. Then either ae = 0 or eU satisfies the identity f(X1,..., Xn)Xn11-

In case ae = 0, we get the contradiction 0 = aev = av # 0. For the latter case, we have 0 = f(euq,. .., eup)et,11

= f(u1,...,up)unt1 # 0. These contradictions prove that either al =0 = ag(I) or f(X1,...,X,)Xn41 is an

identity for I. O
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