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Abstract: Let K be a commutative ring with unity, R be a prime K -algebra with characteristic not 2, U be the right

Utumi quotient ring of R , C the extended centroid of R , I a nonzero right ideal of R and a a fixed element of R . Let

g be a generalized derivation of R and f(X1, . . . , Xn) a multilinear polynomial over K .

If ag(f(x1, . . . , xn))f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ I , then one of the following holds:

(1) aI = ag(I) = 0;

(2) g(x) = bx + [c, x] for all x ∈ R , where b, c ∈ U . In this case either [c, I ]I = 0 = abI or aI = 0 = a(b + c)I ;

(3) [f(X1, . . . , Xn), Xn+1]Xn+2 is an identity for I .

Key words: Prime ring, derivation, generalized derivation, right Utumi quotient ring, differential identity, generalized

polynomial identity

1. Introduction

Throughout this paper unless specially stated, K will denote a commutative ring with unit, R is always a
prime K -algebra with center Z(R) and extended centroid C , U is its right Utumi quotient ring. For x, y ∈ R ,

the commutator of x and y is denoted by [x, y] and defined by [x, y] = xy − yx .

By a derivation of R , we mean an additive mapping d from R into itself satisfying the rule d(xy) =

d(x)y +xd(y) for all x, y ∈ R . The study of derivations of prime rings was initiated by E. C. Posner [25]. Later

many generalizations of Posner’s results have been obtained by a number of authors in the literature (see, [5],

[6], [17], [19], [18]).

An additive mapping g : R → R is called a generalized derivation of R if there exists a derivation d of
R such that g(xy) = g(x)y +xd(y) for all x, y ∈ R . The notion of generalized derivation was introduced by M.

Brešar [4] and the algebraic study of these mappings was initiated by B. Hvala [15]. Obviously any derivation
is a generalized derivation. Moreover, other basic examples of generalized derivations are the mappings of the
form g(x) = ax + xb , for some a, b ∈ R . Many authors have studied generalized derivations in the context of

prime and semiprime rings (see, [1], [11], [15], [21], [22]). Here we will consider some related problems concerning
annihilators of generalized derivations in prime rings.
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In [3], M. Brešar proved that if R is a semiprime ring with a nonzero derivation d and a ∈ R is such

that ad(x)m = 0 for all x ∈ R , where m is a fixed positive integer, then ad(R) = 0 when R is (m−1)! -torsion
free.

In [8], C. M. Chang and T. K. Lee proved the following theorem: Let R be a prime ring, I a nonzero

right ideal of R , d a nonzero derivation of R and a ∈ R be such that ad([x, y])m ∈ Z(R) (d([x, y])ma ∈ Z(R)

resp.) for all x, y ∈ I . If [I, I]I �= 0 and dimCRC > 4, then either ad(I) = 0 (a = 0 resp.) or d is the inner
derivation induced by some q ∈ U such that qI = 0.

In [7], C. M. Chang generalized the above results by proving that if R is a prime ring with extended

centroid C , I is a nonzero right ideal of R , d is a nonzero derivation of R , f(X1 , . . . , Xn) is a multilinear

polynomial over C , a ∈ R and m ≥ 1 is a fixed integer such that ad(f(x1, . . . , xn))m = 0 for all x1, . . . , xn ∈ I ,

then either aI = 0 = d(I)I or [f(X1, . . . , Xn), Xn+1]Xn+2 is an identity for I .

Recently in [12], V. De Filippis investigated the annihilators of power values of generalized derivations

on multilinear polynomials and extended Chang’s result in [7].

In our recent paper [13], we proved the following theorem. Let K be a commutative ring with unity, R

be a prime K -algebra, U its right Utumi quotient ring, C the extended centroid of R , and I a nonzero right
ideal of R . Let g be a nonzero generalized derivation of R and f(X1 , . . . , Xn) a multilinear polynomial over
K . If

g(f(x1 , . . . , xn))f(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ I , then either f(X1 , . . . , Xn)Xn+1 is an identity for I or g(x) = ax + [b, x] , for suitable
a, b ∈ U and one of the following holds:

(1) aI = 0 and [f(X1, . . . , Xn), Xn+1]Xn+2 is an identity for I ;

(2) aI = 0 and (b − β)I = 0 for a suitable β ∈ C .

In this paper we will continue the investigation by studying the properties of a subset S of R related to
its left annihilator AnnR(S) = {x ∈ R | xS = (0)} . More precisely we will study the case when

S = {g(f(x1, . . . , xn))f(x1, . . . , xn) | x1, . . . , xn ∈ R} ,

where g is a generalized derivation on R , f(X1 , . . . , Xn) is a multilinear polynomial in n non-commuting
variables over K . We prove the following theorem.

Main Theorem. Let K be a commutative ring with unity, R be a prime K -algebra with characteristic not
2, U be its right Utumi quotient ring, C the extended centroid of R , and I a nonzero right ideal of R . Let g

be a nonzero generalized derivation of R , a ∈ R and f(X1 , . . . , Xn) a multilinear polynomial over K . If

ag(f(x1 , . . . , xn))f(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ I , then one of the following holds:

(1) aI = 0 = ag(I) ;

(2) g(x) = bx + [c, x] for all x ∈ R , where b, c ∈ U . In this case, either [c, I]I = (0) = abI or aI = 0 =

a(b + c)I ;

(3) [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I .
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2. Preliminaries
In all that follows, unless stated otherwise, R will be a prime K -algebra and f(X1 , . . . , Xn) a multilinear

polynomial over K . For any ring S , Z(S) will denote its center.

The related object we need to mention is the right Utumi quotient ring U of R (sometimes, as in [2], U

is called the maximal right ring of quotients). The definitions, the axiomatic formulations and the properties

of this quotient ring U can be found in [2].

In any case, when R is a prime ring, all we will need to know about U is that

1. R ⊆ U ;

2. U is a prime ring with identity;

3. The center of U , denoted by C , is a field which is called the extended centroid of R .

We will also frequently make use of the theory of generalized polynomial identities and differential
identities (see [2], [16], [20], [24]). In particular, we need to recall the following facts.

Fact 1. Denote by T = U ∗C C{X} the free product over C of the C -algebra U and the free C -algebra

C{X} , with X a countable set consisting of non-commuting indeterminates x1, . . . , xn, . . . . The elements
of T are called generalized polynomials with coefficients in U . Recall that if B is a basis of U over C ,
then any element of T can be written in the form g =

∑
i αimi , where αi ∈ C and mi are B -monomials,

that is mi = q0y1 . . . ynqn , with qi ∈ B and yi ∈ {x1, . . . , xn, . . .} . In [9] it is shown that a generalized

polynomial g =
∑

i αimi is the zero element of T if and only if each αi is zero. As a consequence, if a1, a2 ∈ U

are linearly independent over C and a1g1(x1, . . . , xn) + a2g2(x1, . . . , xn) = 0 ∈ T , where g1(x1, . . . , xn) =∑n
i=1 xihi(x1, . . . , xn) and g2(x1, . . . , xn) =

∑n
i=1 xiki(x1, . . . , xn) for hi(x1, . . . , xn), ki(x1, . . . , xn) ∈ T , then

both g1(x1, . . . , xn) and g2(x1, . . . , xn) are the zero element of T .

Fact 2. If R is prime and I is a non-zero right ideal of R , then I, IR and IU satisfy the same generalized
polynomial identities with coefficients in U [9].

Fact 3. If R is prime and I is a non-zero right ideal of R , then I, IR and IU satisfy the same differential
polynomial identities with coefficients in U [20].

Fact 4. In [21], T. K. Lee extended the definition of a generalized derivation as follows. By a generalized

derivation he means an additive mapping g : I → U such that g(xy) = g(x)y + xd(y) for all x, y ∈ I , where I

is a dense right ideal of R and d is a derivation from I into U . He also proved that every generalized derivation
g on a dense right ideal of a semiprime ring R can be uniquely extended to a generalized derivation of U and
assumes the form g(x) = ax+d(x) for all x ∈ U , for some a ∈ U and a derivation d on U (Theorem 4 in [21]).

Fact 5. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1

in [2]). Moreover, since R is a prime ring, we may assume K ⊆ C and so for any α ∈ K one has d(α.1) ∈ C .

Fact 6. We will use the following notation:

f(x1, . . . , xn) = αx1 . . . xn +
∑

1 �=σ∈Sn

ασxσ(1) . . . xσ(n)

for some α, ασ ∈ K and moreover we denote by fd(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by

replacing each coefficient ασ with d(ασ.1). Thus we write d(f(x1, . . . , xn)) = fd(x1, . . . , xn)+∑n
i=1 f(x1, . . . , d(xi), . . . , xn) for all x1, . . . , xn ∈ R.
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Fact 7. We will also write multilinear polynomial f(x1, . . . , xn) as follows:

f(x1 , . . . , xn) =
n∑

i=1

ti(x1, . . . , xi−1, xi+1, . . . , xn)xi

where ti are multilinear polynomials in n − 1 variables, and xi never appears in any monomials in ti .

Fact 8. We will need the following fact in the proof of Lemma 1: Let R be a prime ring, a, b ∈ R and
f(X1 , . . . , Xn) be a multilinear polynomial over C , which is not vanishing on R . Suppose (af(x1, . . . , xn) +

f(x1 , . . . , xn)b)f(x1 , . . . , xn) = 0 for all x1, . . . , xn ∈ R . Then either a = −b ∈ C or f(X1 , . . . , Xn) is central

valued on R and a + b = 0 (Lemma 1 in [13]).

3. Results
We need the following lemmas.

Lemma 1 Let R = M2(F ) where F is a field, f(X1, . . . , Xn) a multilinear polynomial over F , a, b, c ∈ R be
fixed elements, and I a nonzero right ideal of R . If

a(bf(x1, . . . , xn) + f(x1, . . . , xn)c)f(x1 , . . . , xn) = 0

for all x1, . . . , xn ∈ I , then one of the following holds:

(i) a = 0 ,

(ii) c ∈ F and a(b + c) = 0 unless F ∼= GF (2) ,

(iii) [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I .

Proof Assume first that I �= R . Since every proper right ideal of R is minimal, we conclude that [I, I]I = 0.

Then clearly [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I , and we are done. Therefore, we may assume
that I = R . If now a = 0, then there is nothing to prove. We assume throughout that a �= 0. Moreover, if
f(X1 , . . . , Xn) is central valued on R , then (iii) holds. So we also assume that f(X1, . . . , Xn) is not central

valued on R . Let eij denote the matrix unit with 1 in the (i, j )-th position, and zero elsewhere. Note that

Ra(bf(x1, . . . , xn) + f(x1 , . . . , xn)c)f(x1 , . . . , xn) = 0

for all x1, . . . , xn ∈ R . Since R is von Neumann regular, there exists an idempotent e ∈ R such that Ra = Re .
Hence we may assume that a is an idempotent. Now if a is invertible then a = 1, and thus b = −c ∈ F by Fact
8, and we are done. Hence we may consider the case when Ra = Re is a proper left ideal of R . Since any two

proper left ideals J and L of R are conjugate, there exists an invertible element u ∈ R such that J = uLu−1 .

Then Re11 = uRau−1 = Ruau−1 , and so replacing a by uau−1 we may assume further that a = e11 .

Now for any nonzero α ∈ F , there exist elements r1, . . . , rn ∈ R such that f(r1, . . . , rn) = αe12 by [23].

Let c =
∑2

i,j=1 cijeij . By our assumption we once get that

0 = a(bf(r1, . . . , rn) + f(r1, . . . , rn)c)f(r1 , . . . , rn)

= e11(bαe12 + αe12c)αe12

= α2c21e12.
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Hence c21 = 0. We proceed to show that c is central unless F ∼= GF (2). We have seen that c has the form(
c11 c12

0 c22

)
. We note that f(R) = {f(r1, . . . , rn) : r1, . . . , rn ∈ R} is invariant under all F -automorphisms

of R . Let β ∈ F and define ϕ(x) = (1 − βe21)x(1 + βe21) for all x ∈ R , an automorphism of R . Then

ϕ(f(r1, . . . , rn)) = (1 − βe21)f(r1 , . . . , rn)(1 + βe21)

= (1 − βe21)αe12(1 + βe21)

= α(e12 + βe11 − βe22 − β2e21) ∈ f(R).

Now by our assumption

0 = αe11

(
b(e12 + βe11 − βe22 − β2e21)

+ (e12 + βe11 − βe22 − β2e21)c
)
(e12 + βe11 − βe22 − β2e21),

and so

(e12 + βe11)c(e12 + βe11 − βe22 − β2e21) = 0,

since α �= 0. By direct calculation, we see that

β(c11 − c22 − βc12)(e11 + βe12) = 0

for all β ∈ F . If β �= 0, then we have

c11 − c22 − βc12 = 0.

In particular, for β = 1, one has c11− c22− c12 = 0. Comparing these last two equations, we get (β−1)c12 = 0

for all β ∈ F − {0} . Then c12 = 0 and c11 = c22 , and so c ∈ F unless F ∼= GF (2). Therefore

a(b + c)f(x1 , . . . , xn)2 = 0

for all x1, . . . , xn ∈ R . By Lemma 2 in [10], a(b + c) = 0 since f is not an identity for R . This completes the
proof. �

Lemma 2 Let R = Mm(F ) , where m ≥ 3 and F is a field of characteristic not 2 , I = eR = (e11 + · · ·+ell)R ,

f(X1 , . . . , Xn) be a multilinear polynomial over F , and a, b, c ∈ R be fixed elements. If

a(bf(x1, . . . , xn) + f(x1, . . . , xn)c)f(x1 , . . . , xn) = 0

for all x1, . . . , xn ∈ I , then one of the following holds:

(i) aI = 0 and either abI = 0 or f(X1 , . . . , Xn)Xn+1 is an identity for I ,

(ii) [c, I]I = 0 and either a(b + c)I = 0 or f(X1 , . . . , Xn)Xn+1 is an identity for I ,

(iii) [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I .
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Proof If aI = 0, then abf(x1, . . . , xn)2 = 0 for all x1, . . . , xn ∈ I . Then by [10], either abI = 0 or

f(X1 , . . . , Xn)Xn+1 is an identity for I . On the other hand, if [c, I]I = 0 then a(b + c)f(x1, . . . , xn)2 = 0

for all x1, . . . , xn ∈ I . Hence we deduce again by [10] that either a(b + c)I = 0 or f(X1 , . . . , Xn)Xn+1 is an

identity for I . Therefore we may assume throughout that aI �= 0 and [c, I]I �= 0. Notice that if f(X1 , . . . , Xn)

is central valued on eRe , then [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I and thus we are done. So we

may also assume that f(X1 , . . . , Xn) is not central valued on eRe . Set A = {f(x1, . . . , xn) | x1, . . . , xn ∈ I} .

In the present case, for any s ≤ l and s �= t , there exist r1, . . . , rn ∈ I such that f(r1, . . . , rn) = est ∈ A by

Lemma 3 in [7]. By our assumption

0 = a(best + estc)est

= ctsaest.

Assume that ci0j0 �= 0 for some j0 ≤ l and j0 �= i0 . Then since ci0j0aej0i0 = 0 we see that aej0i0 = 0 which in

turn implies that aej0j0 = 0. Take another j ≤ l with j �= i0 . If ci0j �= 0, we get aejj = 0 as above. Consider

now the case ci0j = 0. By Lemma 3 in [7], ej0i0 + eji0 ∈ A and by hypothesis we have

0 = a(b(ej0i0 + eji0) + (ej0i0 + eji0)c)(ej0i0 + eji0)

= ci0j0a(ej0i0 + eji0).

Since ci0j0 �= 0 and aej0i0 = 0, we deduce that aeji0 = 0, whence aejj = aeji0ei0j = 0. Thus we have shown
that aejj = 0 for all j ≤ l and j �= i0 . We note that if i0 > l , then aejj = 0 for all j ≤ l and so aI = 0, a

contradiction. Thus we may assume that i0 ≤ l . If cki0 �= 0 for some k �= i0 , then we conclude as above that
aei0i0 = 0. But we then arrive at the contradiction aI = 0. So we may assume that cki0 = 0 for all k �= i0 .

Consider the following of R ,

ϕ(x) = (1 + ei0j0)x(1 − ei0j0)

ψ(x) = (1 − ei0j0)x(1 + ei0j0),

and notice that ϕ(I), ψ(I) ⊆ I . Therefore I satisfies the following two generalized identities:

ϕ(a)
(
ϕ(b)f(X1 , . . . , Xn) + f(X1 , . . . , Xn)ϕ(c)

)
f(X1 , . . . , Xn),

ψ(a)
(
ψ(b)f(X1 , . . . , Xn) + f(X1, . . . , Xn)ψ(c)

)
f(X1 , . . . , Xn).

By calculation ϕ(c)i0j0 = ci0j0 −ci0i0 +cj0j0 and ψ(c)i0j0 = ci0j0 +ci0i0 −cj0j0 since cj0i0 = 0. If now ϕ(c)i0j0 =

ψ(c)i0j0 , then we see that ci0i0 − cj0j0 = 0 since char(F ) �= 2. Therefore, ϕ(c)i0j0 = ψ(c)i0j0 = ci0j0 �= 0. On

the other hand, if ϕ(c)i0j0 �= ψ(c)i0j0 , then either ϕ(c)i0j0 �= 0 or ψ(c)i0j0 �= 0. By our previous arguments

either ϕ(a)ejj = 0 for all j ≤ l and j �= i0 or ψ(a)ejj = 0 for all j ≤ l and j �= i0 . If ϕ(a)ejj = 0 for all

j ≤ l and j �= i0 , then in particular ϕ(a)ej0j0 = 0. So by calculation we see that (a + aj0i0)ei0j0 = 0 whence

(a + aj0i0)ei0i0 = 0. Now since

0 = ei0j0(a + aj0i0)ei0i0

= aj0i0ei0i0
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we see that aei0i0 = 0. But then we again arrive at the contradiction aI = 0. So we must have ψ(a)ejj = 0
for all j ≤ l and j �= i0 . As above this leads to the contradiction aI = 0.

From now on we may assume that cij = 0 for all j ≤ l and j �= i . Define now τ (x) = (1 + eij)x(1− eij)

for i, j ≤ l and i �= j . Since τ (I) ⊆ I , we see that

τ (a)
(
τ (b)f(x1 , . . . , xn) + f(x1, . . . , xn)τ (c)

)
f(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ I . The (i, j)-entry of τ (c) is τ (c)ij = cjj − cii . If now τ (c)ij �= 0 for some i, j ≤ l and

i �= j , then we can proceed as before and show that τ (a)I = 0. But then τ (aI) = τ (a)I = 0 which then leads

to the contradiction aI = 0. Hence τ (c)ij = 0 for all i, j ≤ l and i �= j . Hence cii = cjj = λ for all i, j ≤ l

and i �= j . Then (c − λ)I = 0, that is [c, I]I = 0 which is again a contradiction. This proves the lemma. �

Lemma 3 Let R be a prime ring, a, b, c ∈ R and f(X1 , . . . , Xn) a nonzero multilinear polynomial over C and
I a nonzero right ideal of R such that

a(bf(x1, . . . , xn) + f(x1, . . . , xn)c)f(x1 , . . . , xn) = 0

for all x1, . . . , xn ∈ I . If R does not satisfy any nontrivial generalized polynomial identity, then one of the
following holds:

(i) aI = 0 = abI ;

(ii) [c, I]I = 0 = a(b + c)I .

Proof If aI = 0, then we have abf(x1, . . . , xn)2 = 0 for all x1, . . . , xn ∈ I . Then by [10], we have either

abI = 0 or f(x1, . . . , xn)xn+1 = 0 for all x1, . . . , xn+1 ∈ I . If u ∈ I is nonzero and abI �= 0, then since R does

not satisfy any nontrivial generalized polynomial identity (GPI for short)

f(uX1 , . . . , uXn)uXn+1

is the zero element in T . But then we must have u = 0, a contradiction. Therefore when aI = 0 we also

have abI = 0, and we are done. On the other hand, if [c, I]I = 0, then a(b + c)f(x1 , . . . , xn)2 = 0 for all

x1, . . . , xn ∈ I . This yields a(b + c)I = 0 as above, and we are done again. So we may assume that aI �= 0 and

[c, I]I �= 0. Since R does not satisfy any non-trivial GPI by the hypothesis,

a(bf(uX1, ..., uXn) + f(uX1, ..., uXn)c)f(uX1 , ..., uXn)

is the zero element in T , that is

a(bf(uX1 , ..., uXn) + f(uX1 , ..., uXn)c)f(uX1 , ..., uXn) = 0 ∈ T (3.1)

for all u ∈ I .
Suppose that there exists u ∈ I such that abu and au are linearly independent over C . By Fact 1 and

(3.1)

abf(uX1, . . . , uXn)2 = 0 ∈ T,
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which implies that abu = 0 since R does not satisfy any nontrivial GPI, a contradiction. Thus we have abu and
au are C -dependent for all u ∈ I . We claim that there exists λ ∈ C , independent of u , such that abu = λau .
If av = 0 for some v ∈ I , then since a(u + v) and ab(u + v) are C -dependent, we once see that au and
abu + abv are C -dependent. Now we have

αau + βabu = 0 (3.2)

for some α, β ∈ C , not both zero, and
γau + μ(abu + abv) = 0 (3.3)

for some γ, μ ∈ C , not both zero. Comparing (3.2) and (3.3), we get

(βγ − αμ)au + μβabv = 0.

If μβ �= 0 then one gets au and abv are C -dependent. If μβ = 0, then either γ �= 0 or α �= 0. Thus au = 0
by (3.2) and (3.3), and again au and abv are C -dependent. Now if abv �= 0, then au ∈ Cabv , and thus aI is a
commutative right ideal of R , which is a contradiction since aI �= 0. Hence we have abv = 0 whenever av = 0.
Let u, v ∈ I be any elements. If a(u + v) = 0 then we have seen above that ab(u + v) = 0. So we assume that

a(u + v) �= 0. Then ab(u + v) = λu+va(u + v), and so

λuau + λvav = λu+vau + λu+vav.

Notice that the above relation holds even if au = 0 (or av = 0). Hence we get

(λu − λu+v)au + (λv − λu+v)av = 0.

Now if λu − λu+v = 0 = λv − λu+v , then we are done. For otherwise, we conclude that au and av are
C -dependent. Therefore, in any case we see that aI is a commutative right ideal of R , a contradiction. Hence
we have shown that there exists λ ∈ C such that abu = λau for all u ∈ I , that is a(b − λ)I = 0. Now for any
u ∈ I , we have

af(uX1 , . . . , uXn)(c + λ)f(uX1 , . . . , uXn) = 0 ∈ T

implying that either au = 0 or (c + λ)u = 0 for all u ∈ I . Now as an additive group, I is the union of two

subgroups {u ∈ I | au = 0} and {u ∈ I | (c + λ)u = 0} . Since a group cannot be the union of two proper

subgroups, we see that either aI = 0 or (c + λ)I = 0. But we are assuming aI �= 0, and so we must have

(c + λ)I = 0. Thence we see that [c, I]I = 0. This contradiction finishes the proof. �

Lemma 4 Let R be a prime ring of characteristic not 2, a, b, c ∈ R , f(X1 , . . . , Xn) a multilinear polynomial
over C and I a nonzero right ideal of R such that

a(bf(x1, . . . , xn) + f(x1, . . . , xn)c)f(x1 , . . . , xn) = 0 (3.4)

for all x1, . . . , xn ∈ I . Then one of the following holds:

(i) aI = 0 and either abI = 0 or f(X1 , . . . , Xn)Xn+1 is an identity for I ;

(ii) [c, I]I = 0 and either a(b + c)I = 0 or f(X1 , . . . , Xn)Xn+1 is an identity for I ;

(iii) [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I .

238
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Proof If R is not a GPI-ring, then we are done by Lemma 3. Thus suppose that R is a GPI-ring. Since U

and R satisfy the same generalized polynomial identities, U is also a GPI-ring. Then by [24], U is a primitive

ring with a non-zero socle H . Note that (3.4) also holds for all x1, . . . , xn ∈ IU . Hence replacing R and I by
U and IU , respectively, we may assume that R is a primitive ring with a nonzero socle H , IC = I and C is
just the center of R . Note that

a(bf(x1, . . . , xn) + f(x1, . . . , xn)c)f(x1 , . . . , xn) = 0

for all x1, . . . , xn ∈ J = IH by [9]. Thus by replacing R by H and I with J = IH , we may assume without
loss of generality that R is a simple ring and is equal to its own socle and I = IR . Now if a = 0, there is
nothing to prove. Therefore Ia �= 0, and by replacing a by some 0 �= ua ∈ I we may assume further that
a ∈ I . Suppose that the conclusions of the lemma do not hold. Hence there exist a0, c1, c2, b1, . . . , bn+2 ∈ I

such that

• aa0 �= 0 and

• [c, c1]c2 �= 0 and

• [f(b1, . . . , bn), bn+1]bn+2 �= 0.

Let F be the algebraic closure of C or C itself according to the cases either C is infinite or finite. Note that
I ⊗C F is a completely irreducible right H ⊗C F -module which satisfies the GPI

a(bf(X1 , . . . , Xn) + f(X1 , . . . , Xn)c)f(X1 , . . . , Xn) = 0.

Thus there exists an idempotent e ∈ I ⊗C F such that a0, c1, c2, b1, . . . , bn+2 ∈ e(H ⊗C F ). By Litoff’s theorem

(see [14]) there exists h2 = h ∈ H ⊗C F such that

e, eb, be, ec, ce, a, a0, c1, c2, b1, . . . , bn+2 ∈ h(H ⊗C F )h

and, moreover, h(H ⊗C F )h ∼= Mk(F ) for some k ≥ 2.

Now for all x1, . . . , xn ∈ eh(H ⊗C F )h ⊆ (I ⊗C F ) ∩ h(H ⊗C F )h , we have

0 = ha
(
bef(x1, . . . , xn) + ef(x1 , . . . , xn)c

)
ef(x1 , . . . , xn)

= (hah)
(
(hbh)f(x1, . . . , xn) + f(x1, . . . , xn)(hch)

)
f(x1, . . . , xn).

By Lemmas 1 and 2, one of the following holds:

• haheh(H ⊗C F )h = 0, which leads to the contradiction 0 �= aa0 = (hah)eha0h = 0;

• [hch, eh(H ⊗C F )h]eh(H ⊗C F )h = 0, by which we arrive at the contradiction

0 �= [c, c1]c2 = [hch, ehc1h]ehc2h = 0;

• [f(eh(H ⊗C F )h), eh(H ⊗C F )h]eh(H ⊗C F )h = 0 which, too, yields the contradiction

0 �= [f(b1, . . . , bn), bn+1]bn+2 = [f(ehb1h, . . . , ehbnh), ehbn+1h]ehbn+2h = 0.
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�

We are now in a position to prove our main theorem.

The Proof of Main Theorem. If f(X1 , . . . , Xn)Xn+1 is an identity for I , then (3) holds and we are done.

So we may assume that f(X1 , . . . , Xn)Xn+1 is not an identity for I and proceed to show that (1)–(3) hold.
Now by Fact 4, every generalized derivation g on a dense right ideal of R can be uniquely extended to U and
assumes the form g(x) = bx + d(x), for some b ∈ U and a derivation d on U . Then

a
(
bf(x1, . . . , xn) + d(f(x1, . . . , xn))

)
f(x1 , . . . , xn) = 0

for all x1, . . . , xn ∈ I . Therefore, for any u ∈ I , U satisfies the following differential identity

a
(
bf(uX1 , . . . , uXn) + d(f(uX1 , . . . , uXn))

)
f(uX1 , . . . , uXn).

If d = 0, then abf(x1, . . . , xn)2 = 0 for all x1, . . . , xn ∈ I . Then by [8], we have abI = 0 and this case is

contained in conclusion (2). Hence we may assume that d �= 0. Then I satisfies

a(bf(X1 , . . . , Xn) + fd(X1, . . . , Xn) +
n∑

i=1

f(X1 , . . . , d(Xi), . . . , Xn))f(X1 , . . . , Xn).

In the light of Kharchenko’s theory [16], we divide the proof into two cases.

Case 1. If d is an inner derivation induced by an element c ∈ U −C , that is d(x) = [c, x] for all x ∈ U ,

then g(x) = bx + d(x) = (b + c)x − xc and I satisfies

a((b + c)f(X1 , . . . , Xn) − f(X1 , . . . , Xn)c)f(X1 , . . . , Xn).

Then by Lemma 4 we have that one of the following conclusions occur:

(a) aI = 0 = a(b + c)I ;

(b) [c, I]I = 0 = abI ;

(c) [f(X1 , . . . , Xn), Xn+1]Xn+2 is an identity for I .

In this case we have either the conclusion (2) or (3).

Case 2. Let now d be an outer derivation of U . Now I and IU satisfy the same differential identities
in view of Fact 3, and hence

a(bf(X1 , . . . , Xn) + d(f(X1 , . . . , Xn)))f(X1 , . . . , Xn)

is an identity for IU , that is, for any u ∈ I ,

a(bf(uX1, . . . , uXn) + d(f(uX1 , . . . , uXn)))f(uX1 , . . . , uXn)

is an identity for U . Then U satisfies the following identity

a
(
bf(uX1 , . . . , uXn) + fd(uX1, . . . , uXn)

+
n∑

i=1

f(uX1 , . . . , d(u)Xi + ud(Xi), . . . , uXn)
)
f(uX1 , . . . , uXn).
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Since d is an outer derivation, by Kharchenko’s results in [16], U satisfies the identity

a
(
bf(uX1 , . . . , uXn) + fd(uX1, . . . , uXn) (3.5)

+
n∑

i=1

f(uX1, . . . , d(u)Xi + uYi, . . . , uXn)
)
f(uX1, . . . , uXn).

It is clear that U satisfies the blended component

af(uX1, . . . , uYi, . . . , uXn)f(uX1 , . . . , uXi, . . . , uXn).

In particular, U satisfies af(uX1 , . . . , uXi, . . . , uXn)2 . This means either aI = 0 or f(uX1, . . . , uXn)uXn+1

is a nontrivial generalized identity for U . We suppose first that aI = 0 and prove also in this case that U is a
GPI-ring. In order to this, as in Fact 7, we write the multilinear polynomial f(X1 , . . . , Xn) as

f(X1 , . . . , Xn) =
n∑

i=1

Xiti(X1, . . . , Xi−1, Xi+1, . . . , Xn),

where ti(X1, . . . , Xi−1, Xi+1, . . . , Xn) are multilinear polynomials in n − 1 variables, and Xi never appears in
any monomials in ti . Then since au = 0, U satisfies

a
(
b

n∑
i=1

uXiti(uX1, . . . , uXi−1, uXi+1, . . . , uXn)

+
n∑

i=1

d(u)Xiti(uX1, . . . , uXi−1, uXi+1, . . . , uXn)
)
f(uX1 , . . . , uXn),

that is, U satisfies

a(bu + d(u))
n∑

i=1

Xiti(uX1, . . . , uXi−1, uXi+1, . . . , uXn)f(uX1 , . . . , uXn).

In other words,

ag(u)
n∑

i=1

Xiti(uX1, . . . , uXi−1, uXi+1, . . . , uXn)f(uX1 , . . . , uXn)

is an identity for U . Since this holds for all u ∈ I , we have either ag(I) = 0 (and in this case, we are done) or

there exists u ∈ I such that ag(u) �= 0. If the latter holds, then the above identity is a nontrivial generalized
polynomial identity for U . In light of this fact, we may always assume that U is a GPI-ring. Finally, we want
to show that either conclusion (1) or conclusion (3) holds. By contradiction, in all that follows we suppose

that there exists v ∈ I such that either av �= 0 or ag(v) �= 0, if not conclusion (1) of the Theorem holds.

Since f(X1 , . . . , Xn)Xn+1 is not an identity for I by our assumption, there exist u1, . . . , un+1 ∈ I such that

f(u1 , . . . , un)un+1 �= 0. Now since U is a GPI-ring, U is a primitive ring with socle H = Soc(U) �= 0 by [24].

We note that (3.5) holds for all x1, . . . , xn ∈ IH , and so replacing I with IH we may also assume that I ⊆ H .

By the regularity of H , there exists an idempotent e ∈ I = IH such that eH = vH +
∑n+1

i=1 uiH and v = ev ,
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ui = eui for all i = 1, . . . , n + 1. By (3.5), we have

a
(
bf(ex1 , . . . , exn) + fd(ex1, . . . , exn)

+
n∑

i=1

f(ex1 , . . . , d(e)xi + ed(xi), . . . , exn)
)
f(ex1 , . . . , exn) = 0

for all x1, . . . , xn ∈ H , and also for all x1, . . . , xn ∈ U . As above, since d is an outer derivation, we get

a
(
bf(ex1 , . . . , exn) + fd(ex1, . . . , exn)

+
n∑

i=1

f(ex1 , . . . , d(e)xi + eyi, . . . , exn)
)
f(ex1 , . . . , exn) = 0.

Hence U satisfies the blended component

af(eX1 , . . . , eYi, . . . , eXn)f(eX1 , . . . , eXi, . . . , eXn).

In particular, U satisfies af(eX1 , . . . , eXn)2 . Then either ae = 0 or eU satisfies the identity f(X1 , . . . , Xn)Xn+1 .

In case ae = 0, we get the contradiction 0 = aev = av �= 0. For the latter case, we have 0 = f(eu1, . . . , eun)eun+1

= f(u1, . . . , un)un+1 �= 0. These contradictions prove that either aI = 0 = ag(I) or f(X1 , . . . , Xn)Xn+1 is an
identity for I . �
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