Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $231-243$
(c) TÜBİTAK
doi:10.3906/mat-1106-46

Generalized derivations of prime rings on multilinear polynomials with annihilator conditions

Nurcan ARGAÇ*, Çağrı DEMİR
Corresponding author, Department of Mathematics, Ege University, Faculty of Science, 35100, Bornova, İzmir, Turkey

Received: 24.06.2011

- Accepted: 24.01.2012
- Published Online: 19.03.2013
- Printed: 22.04 .2013

Abstract

Let K be a commutative ring with unity, R be a prime K-algebra with characteristic not $2, U$ be the right Utumi quotient ring of R, C the extended centroid of R, I a nonzero right ideal of R and a a fixed element of R. Let g be a generalized derivation of R and $f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over K.

If $\operatorname{ag}\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in I$, then one of the following holds: (1) $a I=a g(I)=0$; (2) $g(x)=b x+[c, x]$ for all $x \in R$, where $b, c \in U$. In this case either $[c, I] I=0=a b I$ or $a I=0=a(b+c) I$; (3) $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

Key words: Prime ring, derivation, generalized derivation, right Utumi quotient ring, differential identity, generalized polynomial identity

1. Introduction

Throughout this paper unless specially stated, K will denote a commutative ring with unit, R is always a prime K-algebra with center $Z(R)$ and extended centroid C, U is its right Utumi quotient ring. For $x, y \in R$, the commutator of x and y is denoted by $[x, y]$ and defined by $[x, y]=x y-y x$.

By a derivation of R, we mean an additive mapping d from R into itself satisfying the rule $d(x y)=$ $d(x) y+x d(y)$ for all $x, y \in R$. The study of derivations of prime rings was initiated by E. C. Posner [25]. Later many generalizations of Posner's results have been obtained by a number of authors in the literature (see, [5], [6], [17], [19], [18]).

An additive mapping $g: R \rightarrow R$ is called a generalized derivation of R if there exists a derivation d of R such that $g(x y)=g(x) y+x d(y)$ for all $x, y \in R$. The notion of generalized derivation was introduced by M. Brešar [4] and the algebraic study of these mappings was initiated by B. Hvala [15]. Obviously any derivation is a generalized derivation. Moreover, other basic examples of generalized derivations are the mappings of the form $g(x)=a x+x b$, for some $a, b \in R$. Many authors have studied generalized derivations in the context of prime and semiprime rings (see, [1], [11], [15], [21], [22]). Here we will consider some related problems concerning annihilators of generalized derivations in prime rings.

[^0]
ARGAÇ and DEMİR/Turk J Math

In [3], M. Brešar proved that if R is a semiprime ring with a nonzero derivation d and $a \in R$ is such that $a d(x)^{m}=0$ for all $x \in R$, where m is a fixed positive integer, then $\operatorname{ad}(R)=0$ when R is $(m-1)$!-torsion free.

In [8], C. M. Chang and T. K. Lee proved the following theorem: Let R be a prime ring, I a nonzero right ideal of R, d a nonzero derivation of R and $a \in R$ be such that $a d([x, y])^{m} \in Z(R)\left(d([x, y])^{m} a \in Z(R)\right.$ resp.) for all $x, y \in I$. If $[I, I] I \neq 0$ and $\operatorname{dim}_{C} R C>4$, then either $a d(I)=0(a=0$ resp.) or d is the inner derivation induced by some $q \in U$ such that $q I=0$.

In [7], C. M. Chang generalized the above results by proving that if R is a prime ring with extended centroid C, I is a nonzero right ideal of R, d is a nonzero derivation of $R, f\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear polynomial over $C, a \in R$ and $m \geq 1$ is a fixed integer such that $a d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}=0$ for all $x_{1}, \ldots, x_{n} \in I$, then either $a I=0=d(I) I$ or $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

Recently in [12], V. De Filippis investigated the annihilators of power values of generalized derivations on multilinear polynomials and extended Chang's result in [7].

In our recent paper [13], we proved the following theorem. Let K be a commutative ring with unity, R be a prime K-algebra, U its right Utumi quotient ring, C the extended centroid of R, and I a nonzero right ideal of R. Let g be a nonzero generalized derivation of R and $f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over K. If

$$
g\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$, then either $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I or $g(x)=a x+[b, x]$, for suitable $a, b \in U$ and one of the following holds:
(1) $a I=0$ and $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I;
(2) $a I=0$ and $(b-\beta) I=0$ for a suitable $\beta \in C$.

In this paper we will continue the investigation by studying the properties of a subset S of R related to its left annihilator $\operatorname{Ann}_{R}(S)=\{x \in R \mid x S=(0)\}$. More precisely we will study the case when

$$
S=\left\{g\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in R\right\}
$$

where g is a generalized derivation on $R, f\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear polynomial in n non-commuting variables over K. We prove the following theorem.

Main Theorem. Let K be a commutative ring with unity, R be a prime K-algebra with characteristic not 2, U be its right Utumi quotient ring, C the extended centroid of R, and I a nonzero right ideal of R. Let g be a nonzero generalized derivation of $R, a \in R$ and $f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over K. If

$$
\operatorname{ag}\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$, then one of the following holds:
(1) $a I=0=a g(I)$;
(2) $g(x)=b x+[c, x]$ for all $x \in R$, where $b, c \in U$. In this case, either $[c, I] I=(0)=a b I$ or $a I=0=$ $a(b+c) I$;
(3) $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

2. Preliminaries

In all that follows, unless stated otherwise, R will be a prime K-algebra and $f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over K. For any ring $S, Z(S)$ will denote its center.

The related object we need to mention is the right Utumi quotient ring U of R (sometimes, as in [2], U is called the maximal right ring of quotients). The definitions, the axiomatic formulations and the properties of this quotient ring U can be found in [2].

In any case, when R is a prime ring, all we will need to know about U is that

1. $R \subseteq U$;
2. U is a prime ring with identity;
3. The center of U, denoted by C, is a field which is called the extended centroid of R.

We will also frequently make use of the theory of generalized polynomial identities and differential identities (see [2], [16], [20], [24]). In particular, we need to recall the following facts.

Fact 1. Denote by $T=U *_{C} C\{X\}$ the free product over C of the C-algebra U and the free C-algebra $C\{X\}$, with X a countable set consisting of non-commuting indeterminates $x_{1}, \ldots, x_{n}, \ldots$. The elements of T are called generalized polynomials with coefficients in U. Recall that if B is a basis of U over C, then any element of T can be written in the form $g=\sum_{i} \alpha_{i} m_{i}$, where $\alpha_{i} \in C$ and m_{i} are B-monomials, that is $m_{i}=q_{0} y_{1} \ldots y_{n} q_{n}$, with $q_{i} \in B$ and $y_{i} \in\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$. In [9] it is shown that a generalized polynomial $g=\sum_{i} \alpha_{i} m_{i}$ is the zero element of T if and only if each α_{i} is zero. As a consequence, if $a_{1}, a_{2} \in U$ are linearly independent over C and $a_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)+a_{2} g_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \in T$, where $g_{1}\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{i=1}^{n} x_{i} h_{i}\left(x_{1}, \ldots, x_{n}\right)$ and $g_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} k_{i}\left(x_{1}, \ldots, x_{n}\right)$ for $h_{i}\left(x_{1}, \ldots, x_{n}\right), k_{i}\left(x_{1}, \ldots, x_{n}\right) \in T$, then both $g_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $g_{2}\left(x_{1}, \ldots, x_{n}\right)$ are the zero element of T.

Fact 2. If R is prime and I is a non-zero right ideal of R, then $I, I R$ and $I U$ satisfy the same generalized polynomial identities with coefficients in U [9].

Fact 3. If R is prime and I is a non-zero right ideal of R, then $I, I R$ and $I U$ satisfy the same differential polynomial identities with coefficients in U [20].

Fact 4. In [21], T. K. Lee extended the definition of a generalized derivation as follows. By a generalized derivation he means an additive mapping $g: I \rightarrow U$ such that $g(x y)=g(x) y+x d(y)$ for all $x, y \in I$, where I is a dense right ideal of R and d is a derivation from I into U. He also proved that every generalized derivation g on a dense right ideal of a semiprime ring R can be uniquely extended to a generalized derivation of U and assumes the form $g(x)=a x+d(x)$ for all $x \in U$, for some $a \in U$ and a derivation d on U (Theorem 4 in [21]).

Fact 5. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 in [2]). Moreover, since R is a prime ring, we may assume $K \subseteq C$ and so for any $\alpha \in K$ one has $d(\alpha .1) \in C$.

Fact 6. We will use the following notation:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\alpha x_{1} \ldots x_{n}+\sum_{1 \neq \sigma \in S_{n}} \alpha_{\sigma} x_{\sigma(1)} \ldots x_{\sigma(n)}
$$

for some $\alpha, \alpha_{\sigma} \in K$ and moreover we denote by $f^{d}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by replacing each coefficient α_{σ} with $d\left(\alpha_{\sigma} .1\right)$. Thus we write $d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f^{d}\left(x_{1}, \ldots, x_{n}\right)+$ $\sum_{i=1}^{n} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in R$.

ARGAÇ and DEMİR/Turk J Math

Fact 7. We will also write multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ as follows:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} t_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}
$$

where t_{i} are multilinear polynomials in $n-1$ variables, and x_{i} never appears in any monomials in t_{i}.
Fact 8. We will need the following fact in the proof of Lemma 1 : Let R be a prime ring, $a, b \in R$ and $f\left(X_{1}, \ldots, X_{n}\right)$ be a multilinear polynomial over C, which is not vanishing on R. Suppose $\left(a f\left(x_{1}, \ldots, x_{n}\right)+\right.$ $\left.f\left(x_{1}, \ldots, x_{n}\right) b\right) f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$. Then either $a=-b \in C$ or $f\left(X_{1}, \ldots, X_{n}\right)$ is central valued on R and $a+b=0$ (Lemma 1 in [13]).

3. Results

We need the following lemmas.

Lemma 1 Let $R=M_{2}(F)$ where F is a field, $f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over $F, a, b, c \in R$ be fixed elements, and I a nonzero right ideal of R. If

$$
a\left(b f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$, then one of the following holds:
(i) $a=0$,
(ii) $c \in F$ and $a(b+c)=0$ unless $F \cong G F(2)$,
(iii) $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

Proof Assume first that $I \neq R$. Since every proper right ideal of R is minimal, we conclude that $[I, I] I=0$. Then clearly $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I, and we are done. Therefore, we may assume that $I=R$. If now $a=0$, then there is nothing to prove. We assume throughout that $a \neq 0$. Moreover, if $f\left(X_{1}, \ldots, X_{n}\right)$ is central valued on R, then (iii) holds. So we also assume that $f\left(X_{1}, \ldots, X_{n}\right)$ is not central valued on R. Let $e_{i j}$ denote the matrix unit with 1 in the (i, j)-th position, and zero elsewhere. Note that

$$
\operatorname{Ra}\left(b f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in R$. Since R is von Neumann regular, there exists an idempotent $e \in R$ such that $R a=R e$. Hence we may assume that a is an idempotent. Now if a is invertible then $a=1$, and thus $b=-c \in F$ by Fact 8, and we are done. Hence we may consider the case when $R a=R e$ is a proper left ideal of R. Since any two proper left ideals J and L of R are conjugate, there exists an invertible element $u \in R$ such that $J=u L u^{-1}$. Then $R e_{11}=u R a u^{-1}=R u a u^{-1}$, and so replacing a by $u a u^{-1}$ we may assume further that $a=e_{11}$.

Now for any nonzero $\alpha \in F$, there exist elements $r_{1}, \ldots, r_{n} \in R$ such that $f\left(r_{1}, \ldots, r_{n}\right)=\alpha e_{12}$ by [23]. Let $c=\sum_{i, j=1}^{2} c_{i j} e_{i j}$. By our assumption we once get that

$$
\begin{aligned}
0 & =a\left(b f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) c\right) f\left(r_{1}, \ldots, r_{n}\right) \\
& =e_{11}\left(b \alpha e_{12}+\alpha e_{12} c\right) \alpha e_{12} \\
& =\alpha^{2} c_{21} e_{12} .
\end{aligned}
$$

Hence $c_{21}=0$. We proceed to show that c is central unless $F \cong G F(2)$. We have seen that c has the form $\left(\begin{array}{cc}c_{11} & c_{12} \\ 0 & c_{22}\end{array}\right)$. We note that $f(R)=\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{1}, \ldots, r_{n} \in R\right\}$ is invariant under all F-automorphisms of R. Let $\beta \in F$ and define $\varphi(x)=\left(1-\beta e_{21}\right) x\left(1+\beta e_{21}\right)$ for all $x \in R$, an automorphism of R. Then

$$
\begin{aligned}
\varphi\left(f\left(r_{1}, \ldots, r_{n}\right)\right) & =\left(1-\beta e_{21}\right) f\left(r_{1}, \ldots, r_{n}\right)\left(1+\beta e_{21}\right) \\
& =\left(1-\beta e_{21}\right) \alpha e_{12}\left(1+\beta e_{21}\right) \\
& =\alpha\left(e_{12}+\beta e_{11}-\beta e_{22}-\beta^{2} e_{21}\right) \in f(R) .
\end{aligned}
$$

Now by our assumption

$$
\begin{aligned}
0=\alpha e_{11}\left(b \left(e_{12}+\beta e_{11}\right.\right. & \left.-\beta e_{22}-\beta^{2} e_{21}\right) \\
& \left.+\left(e_{12}+\beta e_{11}-\beta e_{22}-\beta^{2} e_{21}\right) c\right)\left(e_{12}+\beta e_{11}-\beta e_{22}-\beta^{2} e_{21}\right)
\end{aligned}
$$

and so

$$
\left(e_{12}+\beta e_{11}\right) c\left(e_{12}+\beta e_{11}-\beta e_{22}-\beta^{2} e_{21}\right)=0
$$

since $\alpha \neq 0$. By direct calculation, we see that

$$
\beta\left(c_{11}-c_{22}-\beta c_{12}\right)\left(e_{11}+\beta e_{12}\right)=0
$$

for all $\beta \in F$. If $\beta \neq 0$, then we have

$$
c_{11}-c_{22}-\beta c_{12}=0
$$

In particular, for $\beta=1$, one has $c_{11}-c_{22}-c_{12}=0$. Comparing these last two equations, we get $(\beta-1) c_{12}=0$ for all $\beta \in F-\{0\}$. Then $c_{12}=0$ and $c_{11}=c_{22}$, and so $c \in F$ unless $F \cong G F(2)$. Therefore

$$
a(b+c) f\left(x_{1}, \ldots, x_{n}\right)^{2}=0
$$

for all $x_{1}, \ldots, x_{n} \in R$. By Lemma 2 in [10], $a(b+c)=0$ since f is not an identity for R. This completes the proof.

Lemma 2 Let $R=M_{m}(F)$, where $m \geq 3$ and F is a field of characteristic not $2, I=e R=\left(e_{11}+\cdots+e_{l l}\right) R$, $f\left(X_{1}, \ldots, X_{n}\right)$ be a multilinear polynomial over F, and $a, b, c \in R$ be fixed elements. If

$$
a\left(b f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$, then one of the following holds:
(i) $a I=0$ and either $a b I=0$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I,
(ii) $[c, I] I=0$ and either $a(b+c) I=0$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I,
(iii) $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

Proof If $a I=0$, then $a b f\left(x_{1}, \ldots, x_{n}\right)^{2}=0$ for all $x_{1}, \ldots, x_{n} \in I$. Then by [10], either $a b I=0$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I. On the other hand, if $[c, I] I=0$ then $a(b+c) f\left(x_{1}, \ldots, x_{n}\right)^{2}=0$ for all $x_{1}, \ldots, x_{n} \in I$. Hence we deduce again by [10] that either $a(b+c) I=0$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I. Therefore we may assume throughout that $a I \neq 0$ and $[c, I] I \neq 0$. Notice that if $f\left(X_{1}, \ldots, X_{n}\right)$ is central valued on $e R e$, then $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I and thus we are done. So we may also assume that $f\left(X_{1}, \ldots, X_{n}\right)$ is not central valued on $e R e$. Set $A=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in I\right\}$. In the present case, for any $s \leq l$ and $s \neq t$, there exist $r_{1}, \ldots, r_{n} \in I$ such that $f\left(r_{1}, \ldots, r_{n}\right)=e_{s t} \in A$ by Lemma 3 in [7]. By our assumption

$$
\begin{aligned}
0 & =a\left(b e_{s t}+e_{s t} c\right) e_{s t} \\
& =c_{t s} a e_{s t} .
\end{aligned}
$$

Assume that $c_{i_{0} j_{0}} \neq 0$ for some $j_{0} \leq l$ and $j_{0} \neq i_{0}$. Then since $c_{i_{0} j_{0}} a e_{j_{0} i_{0}}=0$ we see that $a e_{j_{0} i_{0}}=0$ which in turn implies that $a e_{j_{0} j_{0}}=0$. Take another $j \leq l$ with $j \neq i_{0}$. If $c_{i_{0} j} \neq 0$, we get $a e_{j j}=0$ as above. Consider now the case $c_{i_{0} j}=0$. By Lemma 3 in [7], $e_{j_{0} i_{0}}+e_{j i_{0}} \in A$ and by hypothesis we have

$$
\begin{aligned}
0 & =a\left(b\left(e_{j_{0} i_{0}}+e_{j i_{0}}\right)+\left(e_{j_{0} i_{0}}+e_{j i_{0}}\right) c\right)\left(e_{j_{0} i_{0}}+e_{j i_{0}}\right) \\
& =c_{i_{0} j_{0}} a\left(e_{j_{0} i_{0}}+e_{j i_{0}}\right)
\end{aligned}
$$

Since $c_{i_{0} j_{0}} \neq 0$ and $a e_{j_{0} i_{0}}=0$, we deduce that $a e_{j i_{0}}=0$, whence $a e_{j j}=a e_{j i_{0}} e_{i_{0} j}=0$. Thus we have shown that $a e_{j j}=0$ for all $j \leq l$ and $j \neq i_{0}$. We note that if $i_{0}>l$, then $a e_{j j}=0$ for all $j \leq l$ and so $a I=0$, a contradiction. Thus we may assume that $i_{0} \leq l$. If $c_{k i_{0}} \neq 0$ for some $k \neq i_{0}$, then we conclude as above that $a e_{i_{0} i_{0}}=0$. But we then arrive at the contradiction $a I=0$. So we may assume that $c_{k i_{0}}=0$ for all $k \neq i_{0}$.

Consider the following of R,

$$
\begin{aligned}
& \varphi(x)=\left(1+e_{i_{0} j_{0}}\right) x\left(1-e_{i_{0} j_{0}}\right) \\
& \psi(x)=\left(1-e_{i_{0} j_{0}}\right) x\left(1+e_{i_{0} j_{0}}\right)
\end{aligned}
$$

and notice that $\varphi(I), \psi(I) \subseteq I$. Therefore I satisfies the following two generalized identities:

$$
\begin{aligned}
& \varphi(a)\left(\varphi(b) f\left(X_{1}, \ldots, X_{n}\right)+f\left(X_{1}, \ldots, X_{n}\right) \varphi(c)\right) f\left(X_{1}, \ldots, X_{n}\right) \\
& \psi(a)\left(\psi(b) f\left(X_{1}, \ldots, X_{n}\right)+f\left(X_{1}, \ldots, X_{n}\right) \psi(c)\right) f\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

By calculation $\varphi(c)_{i_{0} j_{0}}=c_{i_{0} j_{0}}-c_{i_{0} i_{0}}+c_{j_{0} j_{0}}$ and $\psi(c)_{i_{0} j_{0}}=c_{i_{0} j_{0}}+c_{i_{0} i_{0}}-c_{j_{0} j_{0}}$ since $c_{j_{0} i_{0}}=0$. If now $\varphi(c)_{i_{0} j_{0}}=$ $\psi(c)_{i_{0} j_{0}}$, then we see that $c_{i_{0} i_{0}}-c_{j_{0} j_{0}}=0$ since $\operatorname{char}(F) \neq 2$. Therefore, $\varphi(c)_{i_{0} j_{0}}=\psi(c)_{i_{0} j_{0}}=c_{i_{0} j_{0}} \neq 0$. On the other hand, if $\varphi(c)_{i_{0} j_{0}} \neq \psi(c)_{i_{0} j_{0}}$, then either $\varphi(c)_{i_{0} j_{0}} \neq 0$ or $\psi(c)_{i_{0} j_{0}} \neq 0$. By our previous arguments either $\varphi(a) e_{j j}=0$ for all $j \leq l$ and $j \neq i_{0}$ or $\psi(a) e_{j j}=0$ for all $j \leq l$ and $j \neq i_{0}$. If $\varphi(a) e_{j j}=0$ for all $j \leq l$ and $j \neq i_{0}$, then in particular $\varphi(a) e_{j_{0} j_{0}}=0$. So by calculation we see that $\left(a+a_{j_{0} i_{0}}\right) e_{i_{0} j_{0}}=0$ whence $\left(a+a_{j_{0} i_{0}}\right) e_{i_{0} i_{0}}=0$. Now since

$$
\begin{aligned}
0 & =e_{i_{0} j_{0}}\left(a+a_{j_{0} i_{0}}\right) e_{i_{0} i_{0}} \\
& =a_{j_{0} i_{0}} e_{i_{0} i_{0}}
\end{aligned}
$$

we see that $a e_{i_{0} i_{0}}=0$. But then we again arrive at the contradiction $a I=0$. So we must have $\psi(a) e_{j j}=0$ for all $j \leq l$ and $j \neq i_{0}$. As above this leads to the contradiction $a I=0$.

From now on we may assume that $c_{i j}=0$ for all $j \leq l$ and $j \neq i$. Define now $\tau(x)=\left(1+e_{i j}\right) x\left(1-e_{i j}\right)$ for $i, j \leq l$ and $i \neq j$. Since $\tau(I) \subseteq I$, we see that

$$
\tau(a)\left(\tau(b) f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) \tau(c)\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$. The (i, j)-entry of $\tau(c)$ is $\tau(c)_{i j}=c_{j j}-c_{i i}$. If now $\tau(c)_{i j} \neq 0$ for some $i, j \leq l$ and $i \neq j$, then we can proceed as before and show that $\tau(a) I=0$. But then $\tau(a I)=\tau(a) I=0$ which then leads to the contradiction $a I=0$. Hence $\tau(c)_{i j}=0$ for all $i, j \leq l$ and $i \neq j$. Hence $c_{i i}=c_{j j}=\lambda$ for all $i, j \leq l$ and $i \neq j$. Then $(c-\lambda) I=0$, that is $[c, I] I=0$ which is again a contradiction. This proves the lemma.

Lemma 3 Let R be a prime ring, a, b, $c \in R$ and $f\left(X_{1}, \ldots, X_{n}\right)$ a nonzero multilinear polynomial over C and I a nonzero right ideal of R such that

$$
a\left(b f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$. If R does not satisfy any nontrivial generalized polynomial identity, then one of the following holds:
(i) $a I=0=a b I$;
(ii) $[c, I] I=0=a(b+c) I$.

Proof If $a I=0$, then we have $a b f\left(x_{1}, \ldots, x_{n}\right)^{2}=0$ for all $x_{1}, \ldots, x_{n} \in I$. Then by [10], we have either $a b I=0$ or $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}=0$ for all $x_{1}, \ldots, x_{n+1} \in I$. If $u \in I$ is nonzero and $a b I \neq 0$, then since R does not satisfy any nontrivial generalized polynomial identity (GPI for short)

$$
f\left(u X_{1}, \ldots, u X_{n}\right) u X_{n+1}
$$

is the zero element in T. But then we must have $u=0$, a contradiction. Therefore when $a I=0$ we also have $a b I=0$, and we are done. On the other hand, if $[c, I] I=0$, then $a(b+c) f\left(x_{1}, \ldots, x_{n}\right)^{2}=0$ for all $x_{1}, \ldots, x_{n} \in I$. This yields $a(b+c) I=0$ as above, and we are done again. So we may assume that $a I \neq 0$ and $[c, I] I \neq 0$. Since R does not satisfy any non-trivial GPI by the hypothesis,

$$
a\left(b f\left(u X_{1}, \ldots, u X_{n}\right)+f\left(u X_{1}, \ldots, u X_{n}\right) c\right) f\left(u X_{1}, \ldots, u X_{n}\right)
$$

is the zero element in T, that is

$$
\begin{equation*}
a\left(b f\left(u X_{1}, \ldots, u X_{n}\right)+f\left(u X_{1}, \ldots, u X_{n}\right) c\right) f\left(u X_{1}, \ldots, u X_{n}\right)=0 \in T \tag{3.1}
\end{equation*}
$$

for all $u \in I$.
Suppose that there exists $u \in I$ such that $a b u$ and $a u$ are linearly independent over C. By Fact 1 and (3.1)

$$
a b f\left(u X_{1}, \ldots, u X_{n}\right)^{2}=0 \in T
$$

which implies that $a b u=0$ since R does not satisfy any nontrivial GPI, a contradiction. Thus we have $a b u$ and $a u$ are C-dependent for all $u \in I$. We claim that there exists $\lambda \in C$, independent of u, such that $a b u=\lambda a u$. If $a v=0$ for some $v \in I$, then since $a(u+v)$ and $a b(u+v)$ are C-dependent, we once see that $a u$ and $a b u+a b v$ are C-dependent. Now we have

$$
\begin{equation*}
\alpha a u+\beta a b u=0 \tag{3.2}
\end{equation*}
$$

for some $\alpha, \beta \in C$, not both zero, and

$$
\begin{equation*}
\gamma a u+\mu(a b u+a b v)=0 \tag{3.3}
\end{equation*}
$$

for some $\gamma, \mu \in C$, not both zero. Comparing (3.2) and (3.3), we get

$$
(\beta \gamma-\alpha \mu) a u+\mu \beta a b v=0
$$

If $\mu \beta \neq 0$ then one gets $a u$ and $a b v$ are C-dependent. If $\mu \beta=0$, then either $\gamma \neq 0$ or $\alpha \neq 0$. Thus $a u=0$ by (3.2) and (3.3), and again $a u$ and $a b v$ are C-dependent. Now if $a b v \neq 0$, then $a u \in C a b v$, and thus $a I$ is a commutative right ideal of R, which is a contradiction since $a I \neq 0$. Hence we have $a b v=0$ whenever $a v=0$. Let $u, v \in I$ be any elements. If $a(u+v)=0$ then we have seen above that $a b(u+v)=0$. So we assume that $a(u+v) \neq 0$. Then $a b(u+v)=\lambda_{u+v} a(u+v)$, and so

$$
\lambda_{u} a u+\lambda_{v} a v=\lambda_{u+v} a u+\lambda_{u+v} a v
$$

Notice that the above relation holds even if $a u=0$ (or $a v=0$). Hence we get

$$
\left(\lambda_{u}-\lambda_{u+v}\right) a u+\left(\lambda_{v}-\lambda_{u+v}\right) a v=0
$$

Now if $\lambda_{u}-\lambda_{u+v}=0=\lambda_{v}-\lambda_{u+v}$, then we are done. For otherwise, we conclude that $a u$ and $a v$ are C-dependent. Therefore, in any case we see that $a I$ is a commutative right ideal of R, a contradiction. Hence we have shown that there exists $\lambda \in C$ such that $a b u=\lambda a u$ for all $u \in I$, that is $a(b-\lambda) I=0$. Now for any $u \in I$, we have

$$
a f\left(u X_{1}, \ldots, u X_{n}\right)(c+\lambda) f\left(u X_{1}, \ldots, u X_{n}\right)=0 \in T
$$

implying that either $a u=0$ or $(c+\lambda) u=0$ for all $u \in I$. Now as an additive group, I is the union of two subgroups $\{u \in I \mid a u=0\}$ and $\{u \in I \mid(c+\lambda) u=0\}$. Since a group cannot be the union of two proper subgroups, we see that either $a I=0$ or $(c+\lambda) I=0$. But we are assuming $a I \neq 0$, and so we must have $(c+\lambda) I=0$. Thence we see that $[c, I] I=0$. This contradiction finishes the proof.

Lemma 4 Let R be a prime ring of characteristic not 2, a, b, $c \in R, f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over C and I a nonzero right ideal of R such that

$$
\begin{equation*}
a\left(b f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right)=0 \tag{3.4}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in I$. Then one of the following holds:
(i) $a I=0$ and either $a b I=0$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I;
(ii) $[c, I] I=0$ and either $a(b+c) I=0$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I;
(iii) $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

ARGAÇ and DEMİR/Turk J Math

Proof If R is not a GPI-ring, then we are done by Lemma 3. Thus suppose that R is a GPI-ring. Since U and R satisfy the same generalized polynomial identities, U is also a GPI-ring. Then by [24], U is a primitive ring with a non-zero socle H. Note that (3.4) also holds for all $x_{1}, \ldots, x_{n} \in I U$. Hence replacing R and I by U and $I U$, respectively, we may assume that R is a primitive ring with a nonzero socle $H, I C=I$ and C is just the center of R. Note that

$$
a\left(b f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in J=I H$ by [9]. Thus by replacing R by H and I with $J=I H$, we may assume without loss of generality that R is a simple ring and is equal to its own socle and $I=I R$. Now if $a=0$, there is nothing to prove. Therefore $I a \neq 0$, and by replacing a by some $0 \neq u a \in I$ we may assume further that $a \in I$. Suppose that the conclusions of the lemma do not hold. Hence there exist $a_{0}, c_{1}, c_{2}, b_{1}, \ldots, b_{n+2} \in I$ such that

- $a a_{0} \neq 0$ and
- $\left[c, c_{1}\right] c_{2} \neq 0$ and
- $\left[f\left(b_{1}, \ldots, b_{n}\right), b_{n+1}\right] b_{n+2} \neq 0$.

Let F be the algebraic closure of C or C itself according to the cases either C is infinite or finite. Note that $I \otimes_{C} F$ is a completely irreducible right $H \otimes_{C} F$-module which satisfies the GPI

$$
a\left(b f\left(X_{1}, \ldots, X_{n}\right)+f\left(X_{1}, \ldots, X_{n}\right) c\right) f\left(X_{1}, \ldots, X_{n}\right)=0
$$

Thus there exists an idempotent $e \in I \otimes_{C} F$ such that $a_{0}, c_{1}, c_{2}, b_{1}, \ldots, b_{n+2} \in e\left(H \otimes_{C} F\right)$. By Litoff's theorem (see [14]) there exists $h^{2}=h \in H \otimes_{C} F$ such that

$$
e, e b, b e, e c, c e, a, a_{0}, c_{1}, c_{2}, b_{1}, \ldots, b_{n+2} \in h\left(H \otimes_{C} F\right) h
$$

and, moreover, $h\left(H \otimes_{C} F\right) h \cong M_{k}(F)$ for some $k \geq 2$.
Now for all $x_{1}, \ldots, x_{n} \in e h\left(H \otimes_{C} F\right) h \subseteq\left(I \otimes_{C} F\right) \cap h\left(H \otimes_{C} F\right) h$, we have

$$
\begin{aligned}
0 & =h a\left(\operatorname{bef}\left(x_{1}, \ldots, x_{n}\right)+e f\left(x_{1}, \ldots, x_{n}\right) c\right) e f\left(x_{1}, \ldots, x_{n}\right) \\
& =(h a h)\left((h b h) f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right)(h c h)\right) f\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

By Lemmas 1 and 2, one of the following holds:

- haheh $\left(H \otimes_{C} F\right) h=0$, which leads to the contradiction $0 \neq a a_{0}=(h a h) e h a_{0} h=0$;
- [hch, eh $\left.\left(H \otimes_{C} F\right) h\right] e h\left(H \otimes_{C} F\right) h=0$, by which we arrive at the contradiction $0 \neq\left[c, c_{1}\right] c_{2}=\left[h c h, e h c_{1} h\right] e h c_{2} h=0 ;$
- $\left[f\left(e h\left(H \otimes_{C} F\right) h\right), e h\left(H \otimes_{C} F\right) h\right] e h\left(H \otimes_{C} F\right) h=0$ which, too, yields the contradiction

$$
0 \neq\left[f\left(b_{1}, \ldots, b_{n}\right), b_{n+1}\right] b_{n+2}=\left[f\left(e h b_{1} h, \ldots, e h b_{n} h\right), e h b_{n+1} h\right] e h b_{n+2} h=0 .
$$

We are now in a position to prove our main theorem.
The Proof of Main Theorem. If $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I, then (3) holds and we are done. So we may assume that $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is not an identity for I and proceed to show that (1)-(3) hold. Now by Fact 4, every generalized derivation g on a dense right ideal of R can be uniquely extended to U and assumes the form $g(x)=b x+d(x)$, for some $b \in U$ and a derivation d on U. Then

$$
a\left(b f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right) f\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in I$. Therefore, for any $u \in I, U$ satisfies the following differential identity

$$
a\left(b f\left(u X_{1}, \ldots, u X_{n}\right)+d\left(f\left(u X_{1}, \ldots, u X_{n}\right)\right)\right) f\left(u X_{1}, \ldots, u X_{n}\right)
$$

If $d=0$, then $a b f\left(x_{1}, \ldots, x_{n}\right)^{2}=0$ for all $x_{1}, \ldots, x_{n} \in I$. Then by [8], we have $a b I=0$ and this case is contained in conclusion (2). Hence we may assume that $d \neq 0$. Then I satisfies

$$
a\left(b f\left(X_{1}, \ldots, X_{n}\right)+f^{d}\left(X_{1}, \ldots, X_{n}\right)+\sum_{i=1}^{n} f\left(X_{1}, \ldots, d\left(X_{i}\right), \ldots, X_{n}\right)\right) f\left(X_{1}, \ldots, X_{n}\right)
$$

In the light of Kharchenko's theory [16], we divide the proof into two cases.
Case 1. If d is an inner derivation induced by an element $c \in U-C$, that is $d(x)=[c, x]$ for all $x \in U$, then $g(x)=b x+d(x)=(b+c) x-x c$ and I satisfies

$$
a\left((b+c) f\left(X_{1}, \ldots, X_{n}\right)-f\left(X_{1}, \ldots, X_{n}\right) c\right) f\left(X_{1}, \ldots, X_{n}\right)
$$

Then by Lemma 4 we have that one of the following conclusions occur:
(a) $a I=0=a(b+c) I$;
(b) $[c, I] I=0=a b I$;
(c) $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right] X_{n+2}$ is an identity for I.

In this case we have either the conclusion (2) or (3).
Case 2. Let now d be an outer derivation of U. Now I and $I U$ satisfy the same differential identities in view of Fact 3, and hence

$$
a\left(b f\left(X_{1}, \ldots, X_{n}\right)+d\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right) f\left(X_{1}, \ldots, X_{n}\right)
$$

is an identity for $I U$, that is, for any $u \in I$,

$$
a\left(b f\left(u X_{1}, \ldots, u X_{n}\right)+d\left(f\left(u X_{1}, \ldots, u X_{n}\right)\right)\right) f\left(u X_{1}, \ldots, u X_{n}\right)
$$

is an identity for U. Then U satisfies the following identity

$$
\begin{aligned}
a\left(b f\left(u X_{1}, \ldots, u X_{n}\right)\right. & +f^{d}\left(u X_{1}, \ldots, u X_{n}\right) \\
& \left.+\sum_{i=1}^{n} f\left(u X_{1}, \ldots, d(u) X_{i}+u d\left(X_{i}\right), \ldots, u X_{n}\right)\right) f\left(u X_{1}, \ldots, u X_{n}\right) .
\end{aligned}
$$

Since d is an outer derivation, by Kharchenko's results in [16], U satisfies the identity

$$
\begin{align*}
a\left(b f\left(u X_{1}, \ldots, u X_{n}\right)\right. & +f^{d}\left(u X_{1}, \ldots, u X_{n}\right) \tag{3.5}\\
& \left.+\sum_{i=1}^{n} f\left(u X_{1}, \ldots, d(u) X_{i}+u Y_{i}, \ldots, u X_{n}\right)\right) f\left(u X_{1}, \ldots, u X_{n}\right)
\end{align*}
$$

It is clear that U satisfies the blended component

$$
a f\left(u X_{1}, \ldots, u Y_{i}, \ldots, u X_{n}\right) f\left(u X_{1}, \ldots, u X_{i}, \ldots, u X_{n}\right)
$$

In particular, U satisfies $a f\left(u X_{1}, \ldots, u X_{i}, \ldots, u X_{n}\right)^{2}$. This means either $a I=0$ or $f\left(u X_{1}, \ldots, u X_{n}\right) u X_{n+1}$ is a nontrivial generalized identity for U. We suppose first that $a I=0$ and prove also in this case that U is a GPI-ring. In order to this, as in Fact 7, we write the multilinear polynomial $f\left(X_{1}, \ldots, X_{n}\right)$ as

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i} t_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)
$$

where $t_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$ are multilinear polynomials in $n-1$ variables, and X_{i} never appears in any monomials in t_{i}. Then since $a u=0, U$ satisfies

$$
\begin{aligned}
& a\left(b \sum_{i=1}^{n} u X_{i} t_{i}\left(u X_{1}, \ldots, u X_{i-1}, u X_{i+1}, \ldots, u X_{n}\right)\right. \\
& \left.\quad+\sum_{i=1}^{n} d(u) X_{i} t_{i}\left(u X_{1}, \ldots, u X_{i-1}, u X_{i+1}, \ldots, u X_{n}\right)\right) f\left(u X_{1}, \ldots, u X_{n}\right)
\end{aligned}
$$

that is, U satisfies

$$
a(b u+d(u)) \sum_{i=1}^{n} X_{i} t_{i}\left(u X_{1}, \ldots, u X_{i-1}, u X_{i+1}, \ldots, u X_{n}\right) f\left(u X_{1}, \ldots, u X_{n}\right)
$$

In other words,

$$
a g(u) \sum_{i=1}^{n} X_{i} t_{i}\left(u X_{1}, \ldots, u X_{i-1}, u X_{i+1}, \ldots, u X_{n}\right) f\left(u X_{1}, \ldots, u X_{n}\right)
$$

is an identity for U. Since this holds for all $u \in I$, we have either $a g(I)=0$ (and in this case, we are done) or there exists $u \in I$ such that $a g(u) \neq 0$. If the latter holds, then the above identity is a nontrivial generalized polynomial identity for U. In light of this fact, we may always assume that U is a GPI-ring. Finally, we want to show that either conclusion (1) or conclusion (3) holds. By contradiction, in all that follows we suppose that there exists $v \in I$ such that either $a v \neq 0$ or $a g(v) \neq 0$, if not conclusion (1) of the Theorem holds. Since $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is not an identity for I by our assumption, there exist $u_{1}, \ldots, u_{n+1} \in I$ such that $f\left(u_{1}, \ldots, u_{n}\right) u_{n+1} \neq 0$. Now since U is a GPI-ring, U is a primitive ring with socle $H=\operatorname{Soc}(U) \neq 0$ by [24]. We note that (3.5) holds for all $x_{1}, \ldots, x_{n} \in I H$, and so replacing I with $I H$ we may also assume that $I \subseteq H$. By the regularity of H, there exists an idempotent $e \in I=I H$ such that $e H=v H+\sum_{i=1}^{n+1} u_{i} H$ and $v=e v$,

ARGAÇ and DEMİR/Turk J Math

$u_{i}=e u_{i}$ for all $i=1, \ldots, n+1$. By (3.5), we have

$$
\begin{aligned}
a\left(b f\left(e x_{1}, \ldots, e x_{n}\right)\right. & +f^{d}\left(e x_{1}, \ldots, e x_{n}\right) \\
& \left.+\sum_{i=1}^{n} f\left(e x_{1}, \ldots, d(e) x_{i}+e d\left(x_{i}\right), \ldots, e x_{n}\right)\right) f\left(e x_{1}, \ldots, e x_{n}\right)=0
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in H$, and also for all $x_{1}, \ldots, x_{n} \in U$. As above, since d is an outer derivation, we get

$$
\begin{aligned}
a\left(b f\left(e x_{1}, \ldots, e x_{n}\right)\right. & +f^{d}\left(e x_{1}, \ldots, e x_{n}\right) \\
& \left.+\sum_{i=1}^{n} f\left(e x_{1}, \ldots, d(e) x_{i}+e y_{i}, \ldots, e x_{n}\right)\right) f\left(e x_{1}, \ldots, e x_{n}\right)=0
\end{aligned}
$$

Hence U satisfies the blended component

$$
a f\left(e X_{1}, \ldots, e Y_{i}, \ldots, e X_{n}\right) f\left(e X_{1}, \ldots, e X_{i}, \ldots, e X_{n}\right)
$$

In particular, U satisfies $a f\left(e X_{1}, \ldots, e X_{n}\right)^{2}$. Then either $a e=0$ or $e U$ satisfies the identity $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$. In case $a e=0$, we get the contradiction $0=a e v=a v \neq 0$. For the latter case, we have $0=f\left(e u_{1}, \ldots, e u_{n}\right) e u_{n+1}$ $=f\left(u_{1}, \ldots, u_{n}\right) u_{n+1} \neq 0$. These contradictions prove that either $a I=0=a g(I)$ or $f\left(X_{1}, \ldots, X_{n}\right) X_{n+1}$ is an identity for I.

References

[1] Albaş, E., Argaç, N.: Generalized derivations of prime rings. Algebra Colloq. 11(3), 399-410 (2004).
[2] Beidar, K. I., Martindale W. S., Mikhalev, V.: Rings with generalized identities. Dekker, New York. Pure and Applied Math. (1996).
[3] Brešar, M.: A note on derivations. Math. J. Okayama Univ. 32, 83-88 (1990).
[4] Brešar, M.: On the distance of the composition of two derivations to the generalized derivations. Glasgow Math. J. 33(1), 89-93 (1991).
[5] Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156(2), 385-394 (1993).
[6] Brešar, M.: One-sided ideals and derivations of prime rings. Proc. Amer. Math. Soc. 122(4), 979-983 (1994).
[7] Chang, C. M.: Power central values of derivations on multilinear polynomials. Taiwanese J. Math. 7(2), 329-338 (2003).
[8] Chang, C. M., Lee, T. K.: Annihilators of power values of derivations in prime rings. Comm. Algebra 26(7), 2091-2113 (1998).
[9] Chuang, C. L.: GPI's having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103(3), 723-728 (1988).
[10] Chuang, C. L., Lee, T. K.: Rings with annihilator conditions on multilinear polynomials. Chinese J. Math. 24(2), 177-185 (1996).
[11] De Filippis, V.: Posner's second theorem and an annihilator condition with generalized derivations. Turk. J. Math. 32(2), 197-211 (2008).
[12] De Filippis, V.: Annihilators of power values of generalized derivations on multilinear polynomials. Bull. Aust. Math. Soc. 80(2), 217-232 (2009).
[13] Demir, Ç., Argaç, N.: Prime Rings with Generalized Derivations on Right Ideals. Algebra Colloq. 18(Spec. 1), 987-998 (2011).
[14] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14, 369-371 (1963).
[15] Hvala, B.: Generalized derivations in rings. Comm. Algebra 26(4), 1147-1166 (1998).
[16] Kharchenko, V. K.: Differential identities of prime rings. Algebra and Logic 17(2), 220-238 (1978).
[17] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pasific J. Math. 134(2), 275-297 (1988).
[18] Lanski, C.: An Engel condition with derivation. Proc. Amer. Math. Soc. 118(3), 731-734 (1993).
[19] Lanski, C.: An Engel condition with derivation for left ideals. Proc. Amer. Math. Soc. 125(2), 339-345 (1997).
[20] Lee, T. K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica. 20(1), 27-38 (1992).
[21] Lee, T. K.: Generalized derivations of left faithful rings. Comm. Algebra. 27(8), 4057-4073 (1999).
[22] Lee, T. K., Shiue, W. K.: Identities with generalized derivations. Comm. Algebra. 29(10), 4437-4450 (2001).
[23] Leron, U.: Nil and power central polynomials in rings. Trans. Amer. Math. Soc. 202, 97-103 (1975).
[24] Martindale III, W. S.: Prime rings satisfying a generalized polynomial identity. J. Algebra. 12, 576-584 (1969).
[25] Posner, E. C.: Derivations in prime rings. Proc. Amer. Math. Soc. 8, 1093-1100 (1957).

[^0]: *Correspondence: nurcan.argac@ege.edu.tr
 2010 AMS Mathematics Subject Classification: 16N60, 16W25, 16 U80.

