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Abstract: This paper is a continuous work of [14], where the notions of (p, λ)-Koszul algebra and (p, λ)-Koszul module

were first introduced. More precisely, some new criteria for a positively graded algebra to be (p, λ)-Koszul are provided.

We also generalize (p, λ)-Koszul objects to the nongraded case and define the so-called quasi-(p, λ)-Koszul objects.

Further, the relationships between (quasi-) (p, λ)-Koszul modules and minimal Horseshoe Lemma are established.
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It is well known that the noncommutative graded algebras play an important role in algebra, topology,
and mathematical physics. Probably the most interesting class of such algebras is the class of Koszul algebras
(see [2], [15] and [16]), which give a nice connection of algebraic objects (dual algebra) and homological objects

(Yoneda algebras). In the last decade, several extensions of this theory to some more general classes of algebras
have been developed. More precisely, motivated by the Artin-Schelter regular algebras of global dimension
three (see [1]), Berger introduced nonquadratic Koszul algebra (see [3]) in 2001 (many people prefer the name

“d -Koszul algebra” to “nonquadratic Koszul algebra” (see [7], [10])), where d ≥ 2 is an integer. In order to find
periodic resolutions for the trivial extension algebras of path algebras of Dynkin quivers in bipartite orientation,
the notion of almost Koszul algebra was introduced in 2002 (see [4]). In order to study the conditions such that
the Ext-algebras of graded algebras are finitely generated, Green and Marcos introduced the notion of δ -Koszul
algebra in 2005 (see [6]); Green and Snashall introduced the notion of (D, A, B)-stacked monomial algebra in

2006 (see [9]). In order to unify the notions of Koszul and d -Koszul algebras, the so-called piecewise-Koszul

algebra was introduced in 2007 (see [13]); in order to generalize the notion of piecewise-Koszul algebra further,

Zhao and the author of the present paper introduced (p, λ)-Koszul algebra (see [14]) in 2009. In order to
breakthrough the “pure” restrict on the projective resolution, Cassidy and Shelton introduced the notion of
K2 -algebra in 2008 (see [5]); Si and Lu introduced the notion of bi-Koszul algebra in 2009 (see [12]) and so on.

This paper continues the work of [14]. More precisely, the following list the main contents and results
of each section. In Section 2, first we recall some notations and definitions. Then we mainly discuss some

properties of the category of (p, λ)-Koszul modules, denoted by Kp
λ(A). In particular, we have the following

theorem.

Theorem 0.1 Let A be a standard graded algebra and Kp
λ(A) the category of (p, λ)-Koszul modules.
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1. Let ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0 be an exact sequence of finitely generated graded
modules. Then

(a) If K and N are in Kp
λ(A) , then M ∈ Kp

λ(A) ,

(b) If K and M are in Kp
λ(A) , then M/K ∼= N ∈ Kp

λ(A) ,

(c) If M and N are in Kp
λ(A) , then K ∈ Kp

λ(A) if and only if JΩi(K) = Ωi(K) ∩ JΩi(M) for all

i ≥ 0 , if and only if the minimal Horseshoe Lemma is true with respect to ξ .

2. Let M ∈ Kp
λ(A) and |λ| denote the smallest positive period of the periodic function λ. Then

(a) All the (kp|λ|)th syzygies of M , Ωkp|λ|(M)[−δp
λ(kp|λ|)] ∈ Kp

λ(A) ;

(b) All the (kp|λ| − 1)th syzygies of JM , Ωkp|λ|−1(JM)[−δp
λ(kp|λ|)] ∈ Kp

λ(A) .

In Section 3, we give some new characterizations for (p, λ)-Koszul algebras and obtain this theorem:

Theorem 0.2 Let A = kΓ/I be a standard graded algebra and

· · · −−−−→ Pn
dn−−−−→ · · · −−−−→ P1

d1−−−−→ P0
d0−−−−→ A0 −−−−→ 0

be a minimal graded projective resolution of the trivial A-module A0 . Then the following statements are
equivalent:

1. A is a (p, λ)-Koszul algebra;

2. A is a (p, λ)-Koszul module over Ae ;

3. all the multiplications: μ : Ext1A(A0, A0) ⊗ Extn−1
A (A0, A0) → Extn

A(A0, A0) (1 ≤ n ≤ p − 1) , μ :

Extp
A(A0, A0) ⊗ Extn−p

A (A0, A0) + Ext1A(A0, A0) ⊗ Extn−1
A (A0, A0) → Extn

A(A0, A0) (p + 1 ≤ n ≤
2p − 1) , · · · , μ : Ext1A(A0, A0) ⊗ Extn−1

A (A0, A0) + Extp
A(A0, A0) ⊗ Extn−p

A (A0, A0) + Ext2p
A (A0, A0) ⊗

Extn−2p
A (A0, A0)+ · · ·+Ext|λ|pA (A0, A0)⊗Extn−|λ|p

A (A0, A0) → Extn
A(A0, A0) (n ≥ |λ|p+1) are surjective,

and Extkp
A (A0, A0) = Extkp

A (A0, A0)−δp
λ(kp), k = 1, 2, · · · , |λ| ;

4. all the comultiplications: 	 : TorAn (A0, A0) → TorA
1 (A0, A0) ⊗ TorA

n−1(A0, A0) (1 ≤ n ≤ p − 1) ,

	 : TorA
n (A0, A0) → TorA1 (A0, A0) ⊗ TorA

n−1(A0, A0) + TorA
p (A0, A0) ⊗ TorA

n−p(A0, A0) (p ≤ n ≤ 2p − 1) ,

· · · , 	 : TorA
n (A0, A0) → TorA1 (A0, A0) ⊗ TorA

n−1(A0, A0) + TorAp (A0, A0) ⊗ TorA
n−p(A0, A0) + · · · +

TorA
|λ|p(A0, A0)⊗TorA

n−|λ|p(A0, A0)(n ≥ |λ|p + 1) are injective, and TorAkp(A0, A0) = TorA
kp(A0, A0)δp

λ(kp),

k = 1, 2, · · · , |λ| ;

5. if A is a standard graded algebra with pure resolution and M a (p, λ)-Koszul module, then the Ext module⊕
i≥0 Exti

A(M, A0) is generated by Ext0A(M, A0) as a graded
⊕

i≥0 Exti
A(A0, A0)-module if and only if

A is a (p, λ)-Koszul algebra.

In Section 4, we investigate H -Galois graded extension of (p, λ)-Koszul algebras and mainly prove this
theorem:
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Theorem 0.3 Let H be a finite dimensional semisimple and cosemisimple Hopf algebra, A =
⊕

n≥0 An be

a graded right H -module algebra such that Ai is finite dimensional for all i ≥ 0 , and let B = AcoH , the
coinvariant subalgebra of A . Suppose that A/B is an H -Galois graded extension. Then B is a (p, λ)-Koszul

algebra if and only if A is a (p, λ)-Koszul algebra.

In 2008, Wang and Li gave some sufficient conditions for the Horseshoe Lemma to be true in the minimal
case in [17]. In particular, the authors remark that “Though we have found some sufficient conditions for
the minimal Horseshoe Lemma to be true, an interesting but difficult question is how to find some necessary
conditions” ([17], Page 384). Theorem 2.8 is the main result of [17]:

• Let 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0 be an exact sequence of nice modules with JK =
K ∩ JM . Then the minimal Horseshoe Lemma holds with respect to such an exact sequence.

In order to generalize and perfect the above theorem, we introduce the notions of quasi-(p, λ)-Koszul

algebras and quasi-(p, λ)-Koszul modules in Section 5. Moreover, we mainly establish the relationships between

quasi-(p, λ)-Koszul modules and minimal Horseshoe Lemma and prove

Theorem 0.4 Let R be an augmented Noetherian semiperfect algebra and

ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0

be an exact sequence of quasi-(p, λ)-Koszul modules. Then JK = K∩JM if and only if the minimal Horseshoe
Lemma holds with respect to ξ .

1. Some basic properties of (p, λ)-Koszul modules

Throughout, Z denotes the set of integers, N = {0, 1, 2, · · · , n, · · · } the set of natural numbers and

N
∗ = {1, 2, · · · , n, · · · } the set of positive integers and k will denote an arbitrary ground field; the standard

graded algebras are a class of positively graded k-algebras A =
⊕

i≥0 Ai satisfying the following properties: (i)

A0 = k × k × · · · × k , a finite product of k ; (ii) A is generated in degrees 0 and 1; that is, Ai · Aj = Ai+j for

all 0 ≤ i, j < ∞ and (iii) dimk Ai < ∞ for all i ≥ 0. It is easy to see that the graded Jacobson radical of such

a graded algebra A is
⊕

i≥1 Ai , which will be denoted by J .

Let Gr(A) denote the category of graded A-modules, and gr(A), its full subcategory of finitely generated

modules. The morphisms in these categories are the A-module maps of degree zero. We denote Grs(A) and

grs(A) the full subcategory of Gr(A) and gr(A) whose objects are generated in degree s respectively. An

object in Grs(A) or grs(A) is called a graded pure A-module.

In order to recall the notions of (p, λ)-Koszul algebra and (p, λ)-Koszul module, let us introduce some
set functions:

• Let λ : N
∗ → N

∗ be a periodic function such that (a) λ(1) ≥ 1, and (b) λ is strictly increasing in the

interval [1, |λ|] , where |λ| denotes the smallest positive period of λ .

• Let δp
λ : N → N be another set function such that (a) δp

λ(0) = 0, δp
λ(p) = d , where d = λ(1) + p − 1

and p ≥ 2 are fixed integers; (b) δp
λ(pn + i) − δp

λ(pn + i − 1) = 1 for all 1 ≤ i ≤ p − 1; and (c)

δp
λ(pn) − δp

λ(pn − 1) = λ(n) for all n ≥ 1.
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Definition 1.1 Let A be a graded algebra and M ∈ gr(A) . We call M a (p, λ)-Koszul module if it has a
minimal graded projective resolution

Q : · · · −−−−→ Qn
dn−−−−→ · · · −−−−→ Q1

d1−−−−→ Q0
d0−−−−→ M −−−−→ 0

such that each Qn is generated in degree δp
λ(n) . Let Kp

λ(A) denote the category of (p, λ)-Koszul modules.

In particular, a graded algebra A =
⊕

i≥0 Ai is called a (p, λ)-Koszul algebra if the trivial A-module

A0 ∈ Kp
λ(A) .

Now we will prove Theorem 0.1, which is done by several lemmas.

Lemma 1.2 Let ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0 be an exact sequence in gr(A) . Then the
following statements are equivalent:

1. K ∈ grs(A) provided that M, N ∈ grs(A) , where s ∈ Z ;

2. JK = K ∩ JM ;

3. We have the following commutative diagram with exact rows and columns

0 0 0

0 Ω1(K) Ω1(M) Ω1(N) 0

0 P0 L0 Q0 0

0 K M N 0

0 0 0

Figure 1

such that P0 −−−−→ K −−−−→ 0, L0 −−−−→ M −−−−→ 0, and Q0 −−−−→ N −−−−→ 0 are graded
projective covers.

Proof (1) ⇒ (2) It suffices to prove JK ⊇ K ∩ JM since JK ⊆ K ∩ JM is obvious. Let K =
⊕

i≥s Ki such

that Ki+s = AiKs . Let x ∈ K ∩ JM be any homogeneous element of degree j . Then of course j ≥ s + 1.
Thus x ∈ Ks+1 = A1Ks ⊆ JK .

(2) ⇒ (3) Obviously, we obtain the exact sequence

0 −−−−→ K/JK −−−−→ M/JM −−−−→ N/JN −−−−→ 0

since JK = K∩JM . Note that for any finitely generated graded A-module M , A⊗A0 M/JM −→ M −→ 0 is a
graded projective cover and the graded cover of a finitely generated graded module is unique up to isomorphisms.
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Therefore, we can assume that P0 := A ⊗A0 K/JK, L0 := A ⊗A0 M/JM and Q0 := A ⊗A0 N/JN. We have
the exact sequence

0 −−−−→ P0 −−−−→ L0 −−−−→ Q0 −−−−→ 0

since A0 is semisimple. That is, we have the commutative diagram

0 0 0

Ω1(K) Ω1(M) Ω1(N)

0 P0 L0 Q0 0

0 K M N 0

0 0 0,

such that the columns, the middle and the bottom rows are exact. Now, by the “3 × 3” Lemma, we get the
exact sequence 0 −−−−→ Ω1(K) −−−−→ Ω1(M) −−−−→ Ω1(N) −−−−→ 0, which implies the desired diagram

(3) ⇒ (1) Suppose that we have Figure 1, then we have L0 = P0⊕Q0 since the middle row of Figure 1, P0 ,
L0 and Q0 , are the graded projective covers of K , M and N , respectively. Note that if P −−−−→ K −−−−→ 0
is a graded projective cover, then K and P are generated in the same degrees. Thus, by the assumption, L0

and Q0 are generated in degree s , which implies that P0 is generated in degree s . Thus K ∈ grs(A), as
desired. �

Corollary 1.3 Let ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0 be an exact sequence in gr(A) . Then

JΩi(K) = Ωi(K) ∩ JΩi(M) for all i ≥ 0 if and only if for any given commutative diagram

P* Q *

0 K M N 0,

0 0,

Figure 2

where P∗ and Q∗ are minimal projective resolutions of K and N , respectively. Then we can complete Figure 2
into
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0 P* L* Q* 0

0 K M N 0,

0 0 0,

where L∗ −−−−→ M −−−−→ 0 is also a minimal projective resolution and for all n ≥ 0 , Ln
∼= Pn ⊕Qn . That

is, the minimal Horseshoe Lemma holds with respect to such ξ .

Proof By (2) ⇔ (3) of Lemma 1.2 again and again, we can obtain a lot of commutative diagrams similar to
Figure 1, then putting these diagrams together, we complete the proof. �

Corollary 1.4 Let ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0 be an exact sequence in gr(A) . Then

1. If K and N are in Kp
λ(A) , then M ∈ Kp

λ(A) ,

2. If K and M are in Kp
λ(A) , then M/K ∼= N ∈ Kp

λ(A) ,

3. If M and N are in Kp
λ(A) , then K ∈ Kp

λ(A) if and only if JΩi(K) = Ωi(K) ∩ JΩi(M) for all i ≥ 0 , if

and only if the minimal Horseshoe Lemma is true with respect to ξ .

Proof (1) By assumption, K , M and N are generated in the same single degree. By (1) ⇔ (3) of Lemma 1.2,

we get Figure 1, which implies that Ω1(K), Ω1(M) and Ω1(N) are generated in the same single degree since

K and N are in Kp
λ(A). Repeating the above argument, we have Ωi(K), Ωi(M) and Ωi(N) are generated

in the same single degree for all i ≥ 0. Note that K, N ∈ Kp
λ(A), thus M has a minimal graded projective

resolution
Q : · · · −−−−→ Qn −−−−→ · · · −−−−→ Q1 −−−−→ Q0 −−−−→ M −−−−→ 0

such that each Qn is generated in degree δp
λ(n). That is, M ∈ Kp

λ(A).

(2) Note that for any exact sequence 0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0 in gr(A), it is trivial

that Z ∈ grs(A) provided Y ∈ grs(A). Now the rest of the proof is similar to that of (1) and we omit it.

(3) It is immediate from Lemma 1.2 and Corollary 1.3. �

Proposition 1.5 Let A be a (p, λ)-Koszul algebra, M ∈ Kp
λ(A) and |λ| denote the smallest positive period of

the periodic function λ. Then

1. All the (kp|λ|)th syzygies of M , Ωkp|λ|(M)[−δp
λ(kp|λ|)] ∈ Kp

λ(A) ;

2. All the (kp|λ| − 1)th syzygies of JM , Ωkp|λ|−1(JM)[−δp
λ(kp|λ|)] ∈ Kp

λ(A) .

Proof (1) Let Q : · · · −−−−→ Qn −−−−→ · · · −−−−→ Q1 −−−−→ Q0 −−−−→ M −−−−→ 0 be a minimal

graded projective resolution. Then for all n ≥ 0, Qn is generated in degree δp
λ(n) since M is a (p, λ)-Koszul

module. Therefore, Ωkp|λ|(M)[−δp
λ(kp|λ|)] possesses a minimal graded projective resolution

· · · −−−−→ Qkp|λ|+1(M)[−δp
λ(kp|λ|)] −−−−→ Qkp|λ|(M)[−δp

λ(kp|λ|)] −−−−→ Ωkp|λ|(M)[−δp
λ(kp|λ|)] −−−−→ 0.
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For simplicity, setting Qkp|λ|+i(M)[−δp
λ(kp|λ|)] := Pi for all i ≥ 0. Then the above resolution becomes

· · · −−−−→ P1 −−−−→ P0 −−−−→ Ωkp|λ|(M)[−δ
p
λ(kp|λ|)] −−−−→ 0,

where each Pn is generated in degree δp
λ(kp|λ|+n)−δp

λ(kp|λ|) = δp
λ(n), which implies that Ωkp|λ|(M)[−δp

λ(kp|λ|)]
(k ∈ N) is a (p, λ)-Koszul module.

For (2), we have the exact sequence

0 −−−−→ Ω1(M) −−−−→ Ω1(M/JM) −−−−→ JM −−−−→ 0

such that each term is generated in degree δp
λ(1), since the natural exact sequence

0 −−−−→ JM −−−−→ M −−−−→ M/JM −−−−→ 0.

Thus, we have the following commutative diagram with exact rows and columns:

0 0 0

0 Ω2(M) Ω2(M/JM ) Ω1(JM) 0

0 Q1 Q1 ⊕ L0 L0 0

0 Ω1(M) Ω1(M/JM ) JM 0,

0 0 0,

where the vertical columns are projective covers.
Repeate the above procedures; we get the following exact sequences for all k ≥ 0:

0 −−−−→ Ωkp|λ|(M) −−−−→ Ωkp|λ|(M/JM) −−−−→ Ωkp|λ|−1(JM) −−−−→ 0,

which implies the following exact sequences for all k ≥ 0:

0 −−−−→ Ωkp|λ|(M)[−δp
λ(kp|λ|)] −−−−→ Ωkp|λ|(M/JM)[−δp

λ(kp|λ|)] −−−−→ Ωkp|λ|−1(JM)[−δp
λ(kp|λ|)] −−−−→ 0.

By (1), we have Ωkp|λ|(M)[−δp
λ(kp|λ|)] and Ωkp|λ|(M/JM)[−δp

λ(kp|λ|)] are (p, λ)-Koszul modules since M and

M/JM are (p, λ)-Koszul modules. Then Ωkp|λ|−1(JM)[−δp
λ(kp|λ|)] is a (p, λ)-Koszul module by Corollary

1.4. �

Now by Corollary 1.4 and Proposition 1.5, we have proved Theorem 0.1.

2. Some new characterizations of (p, λ)-Koszul algebras

In this section, we will give some new characterizations of (p, λ)-Koszul algebras.

We begin with the following well-known graded version of Gabriel’s Theorem.
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Lemma 2.1 Let A be a standard graded algebra. Then there exists a finite quiver Γ = (Γ0, Γ1) and a graded

ideal I in kΓ with I ⊂ ∑
n≥2(kΓ)n such that A ∼= kΓ/I as graded algebras, where Γ0 denotes the set of vertices

of the quiver Γ and Γ1 denotes the set of arrows of the quiver Γ .

Lemma 2.2 Let A be a standard graded algebra and Ae := A ⊗k Aop its enveloping algebra. Let r be the
graded Jacobson radical of Ae and f : P → Q be a homomorphism of finitely generated Ae -projective modules.
Then Imf ⊆ rQ if and only if for each simple A-module S , we have Im(f ⊗A 1S) ⊆ J(Q ⊗A S) .

Proof (⇐) For the sake of convenience, we may suppose that Q = Av⊗kwA is an indecomposable Ae -module,
where v, w ∈ Γ0 and we use the notations of Lemma 2.1. Assume f is an epimorphism, so

P
f−−−−→ Av ⊗k wA −−−−→ 0

is a splittable epimorphism, which implies the exact sequence

P ⊗A M
f⊗A1M−−−−−→ Av ⊗k wA ⊗A M −−−−→ 0

of A-modules for any A-module M . In particular, if we choose M = Aw/Jw := S , a simple A-module, then
we get the epimorphism

P ⊗A S
f⊗A1S−−−−−→ Av ⊗k wA ⊗A S ∼= Av −−−−→ 0.

Now by the hypothesis Im(f ⊗A 1S) ⊆ J(Q ⊗A S), we have that Imf ⊆ rQ .

(⇒) Suppose that we have the condition Imf ⊆ rQ . Similarly, we may assume that Q = Av ⊗k wA is

an indecomposable Ae -module. Note that for each simple A-module S �= Aw/Jw , we have Q⊗A S = 0. Thus

it suffices to prove the case of S = Aw/Jw . Consider the commutative diagram

P

α

f
Q

β

P ⊗A S
f⊗A1S

Q⊗A S,

where α and β are the splittable A-epimorphisms given by the split exact sequences in the category of finitely
generated A-modules. More precisely, taking β for example, β is determined by the following split exact
sequence

0 −−−−→ Av ⊗k wJ −−−−→ Av ⊗k wA
β−−−−→ Av −−−−→ 0.

Not that β−1(v) = v⊗w +Av ⊗wJ , thus each element in the preimage of v is an Ae -generator for the module

Q = Av ⊗k wA . If f ⊗A 1S is an epimorphism, then βf is an epimorphism and β−1(v) ∩ Imf �= 0, which
implies that Imf contains an Ae -generator of the cyclic module Q , so f is an epimorphism. Therefore, we
have Im(f ⊗A 1S) ⊆ J(Q ⊗A S), as desired. �

Proposition 2.3 Let A be a standard graded algebra and Ae its enveloping algebra. Then A is a (p, λ)-Koszul

algebra if and only if A is a (p, λ)-Koszul module over Ae .
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Proof If P = Av ⊗k wA is an indecomposable Ae -projective module and M an A-module, then P ⊗A M =

(Av)dim wM as an A-module since Av⊗k wA⊗A M ∼= Av⊗k wM . In particular, if M = S a simple A-module,
then as A-modules we have P ⊗A S ∼= Av if wS �= 0 and P ⊗A S = 0 otherwise. Let

P∗ : · · · −−−−→ Pn −−−−→ · · · −−−−→ P1 −−−−→ P0 −−−−→ A −−−−→ 0

be a graded projective Ae -resolution of A . Then by Lemma 2.2, P∗ is minimal if and only if P∗ ⊗A A0 :

· · · −−−−→ Pn ⊗A A0 −−−−→ · · · −−−−→ P1 ⊗A A0 −−−−→ P0 ⊗A A0 −−−−→ A ⊗A A0
∼= A0 −−−−→ 0

is a minimal graded projective resolution of A0 . Further, for all i ≥ 0, Pi is generated in degree s as a graded
Ae -module if and only if Pi ⊗A A0 is generated in degree s as a graded A-module. Now we finish the proof. �

Let A be a standard graded algebra. Then A0 , the trivial A-module, possesses a canonical graded
projective resolution:

· · · −−−−→ Barn(A)
∂′

n−−−−→ · · · −−−−→ Bar1(A)
∂′
1−−−−→ Bar0(A)

∂′
0−−−−→ A0 −−−−→ 0,

where for all n ≥ 0, Barn(A) := A ⊗A0 J⊗n and the differential ∂′
n : A ⊗A0 J⊗n −→ A ⊗A0 J⊗n−1 is defined

by

∂′
n(a0 ⊗ a1 ⊗ · · · ⊗ an) :=

n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an, (a0 ∈ A, a1, · · · , an ∈ J).

Note that with A0 ⊗A Barn(A) = A0 ⊗A A ⊗A0 J⊗n ∼= Jn for all n ≥ 0, we get the complex

· · · −−−−→ J⊗n ∂n−−−−→ · · · −−−−→ J⊗2 ∂2−−−−→ J⊗1 ∂1−−−−→ J0 −−−−→ 0

with

∂n(a1 ⊗ a2 ⊗ · · · ⊗ an) :=
n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an, (a1, · · · , an ∈ J).

Now it is trivial that
TorA

n (A0, A0) = ker ∂n/Im∂n+1 .

Proposition 2.4 Using the above notations. T (A) :=
⊕

n≥0 TorAn (A0, A0) is a bigraded coalgebra with the

comultiplication 	 =
∑

n,i 	n,i , where 	n,i is induced by 	n,i : J⊗n → J⊗i⊗J⊗n−i via 	n,i(a1⊗· · ·⊗an) =

(a1 ⊗ · · · ⊗ ai) ⊗ (ai+1 ⊗ · · · ⊗ an) .

Proof It is easy to check that 	 =
∑

n,i 	n,i provides a comultiplicative structure for the complex J⊗• and

preserves kernels and images. Thus (J⊗•, ∂,	) is a differential graded coalgebra and T (A) a graded coalgebra.

Note that now A is a standard graded algebra, which implies that T (A) a bigraded coalgebra. �

The cobar complex is the cochain complex Cob•(A) defined by Cobn(A) := HomA(J⊗n, A0) for all

n ≥ 0, where the differential ∂∗
n+1 : Cobn(A) → Cobn+1(A) is the pullback of ∂ . Clearly, for all n ≥ 0, we

have
Extn

A(A0, A0) = ker ∂∗
n+1/Im∂∗

n.
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Proposition 2.5 Using the above notations. E(A) :=
⊕

n≥0 Extn
A(A0, A0) is a bigraded algebra with the

multiplication μ̃ =
∑

i,n μ̃i,n−i , where μ̃i,n−i is induced by μi,n−i : Cobi(A) ⊗ Cobn−i(A) → Cobn(A) via

μi,n−i(f ⊗ g)(a1 ⊗ a2) := f(a1) ⊗ g(a2) .

Proof It is easy to check that μ =
∑

n,i μi,n−i provides a multiplicative structure for the complex Cob•(A)

and preserves kernels and images. Thus (Cob•(A), ∂∗, μ) is a differential graded algebra and E(A) a graded

algebra. Note that now A is a standard graded algebra, which implies that E(A) a bigraded algebra. �

We usually call T (A) the Yoneda coalgebra of A , and E(A) the Yoneda algebra of A .

Proposition 2.6 The map μn,i : Cobn−i(A) ⊗ Cobi(A) → Cobn(A) and 	n,i : J⊗n → J⊗n−i ⊗ J⊗i are dual

to one another.

Proof Let f1 ⊗ · · · ⊗ fi ∈ Cobi(A), g1 ⊗ · · · ⊗ gn−i ∈ Cobn−i(A) and a1 ⊗ · · · ⊗ an ∈ J⊗n . Then

	∗((f1 ⊗ · · · ⊗ fi) ⊗ (g1 ⊗ · · · ⊗ gn−i))(a1 ⊗ · · · ⊗ an)

= ((f1 ⊗ · · · ⊗ fi) ⊗ (g1 ⊗ · · · ⊗ gn−i))	(a1 ⊗ · · · ⊗ an)

= (f1 ⊗ · · · ⊗ fi)(a1 ⊗ · · · ⊗ ai)(g1 ⊗ · · · ⊗ gn−i)(ai+1 ⊗ · · · ⊗ an)

= μ((f1 ⊗ · · · ⊗ fi) ⊗ (g1 ⊗ · · · ⊗ gn−i))(a1 ⊗ · · · ⊗ an).

Therefore, we are done. �

Lemma 2.7 [14] Let A be a graded algebra. Then A is a (p, λ)-Koszul algebra if and only if E(A) is

minimally generated in the ext-degrees 1, p, 2p, · · · , |λ|p , and Exti
A(A0, A0) = Exti

A(A0, A0)−δp
λ(i) for all

i = p, 2p, · · · , |λ|p .

Proposition 2.8 Let A be a standard graded algebra. Then the following statements are equivalent:

1. A is a (p, λ)-Koszul algebra;

2. all the multiplications: μ : Ext1A(A0, A0) ⊗ Extn−1
A (A0, A0) → Extn

A(A0, A0) (1 ≤ n ≤ p − 1) , μ :

Extp
A(A0, A0) ⊗ Extn−p

A (A0, A0) + Ext1A(A0, A0) ⊗ Extn−1
A (A0, A0) → Extn

A(A0, A0) (p + 1 ≤ n ≤
2p − 1) , · · · , μ : Ext1A(A0, A0) ⊗ Extn−1

A (A0, A0) + Extp
A(A0, A0) ⊗ Extn−p

A (A0, A0) + Ext2p
A (A0, A0) ⊗

Extn−2p
A (A0, A0)+ · · ·+Ext|λ|pA (A0, A0)⊗Extn−|λ|p

A (A0, A0) → Extn
A(A0, A0) (n ≥ |λ|p+1) are surjective,

and Extkp
A (A0, A0) = Extkp

A (A0, A0)−δp
λ(kp), k = 1, 2, · · · , |λ| ;

3. all the comultiplications: 	 : TorAn (A0, A0) → TorA
1 (A0, A0) ⊗ TorA

n−1(A0, A0) (1 ≤ n ≤ p − 1) ,

	 : TorA
n (A0, A0) → TorA1 (A0, A0) ⊗ TorA

n−1(A0, A0) + TorA
p (A0, A0) ⊗ TorA

n−p(A0, A0) (p ≤ n ≤ 2p − 1) ,

· · · , 	 : TorA
n (A0, A0) → TorA1 (A0, A0) ⊗ TorA

n−1(A0, A0) + TorAp (A0, A0) ⊗ TorA
n−p(A0, A0) + · · · +

TorA
|λ|p(A0, A0)⊗TorA

n−|λ|p(A0, A0)(n ≥ |λ|p + 1) are injective, and TorAkp(A0, A0) = TorA
kp(A0, A0)δp

λ(kp),

k = 1, 2, · · · , |λ| .
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Proof By Lemma 2.7, we have that A is a (p, λ)-Koszul algebra if and only if E(A) is minimally generated

in the ext-degrees 1, p, 2p, · · · , |λ|p , and Exti
A(A0, A0) = Exti

A(A0, A0)−δp
λ(i) for all i = p, 2p, · · · , |λ|p .

Therefore, (1) ⇔ (2) is immediate by induction on n and Proposition 2.6. By Proposition 2.6, we have μ and

	 are dual to each other, which establishes the equivalence of conditions (2) and (3). �

Proposition 2.9 Let A be a standard graded algebra with a pure resolution and M a (p, λ)-Koszul module.

Then the Ext module
⊕

i≥0 Exti
A(M, A0) is generated by Ext0A(M, A0) as a graded E(A)-module if and only if

A is a (p, λ)-Koszul algebra.

Proof Let P∗ and Q∗ be the minimal graded projective resolutions of A0 and M , respectively. By hypothesis,

for all n ≥ 0, Qn is generated in degree δp
λ(n).

(⇒) By hypothesis, we have Extn
A(M, A0) = Extn

A(A0, A0) ·Ext0A(M, A0) for all n ≥ 1. Note that A is a

positively graded algebra with a pure resolution, which implies that Extn
A(A0, A0) = Extn

A(A0, A0)−s for some

natural number s . Now observing that Extn
A(M, A0) = Extn

A(M, A0)−δp
λ(n) since M is a (p, λ)-Koszul module.

Thus Extn
A(A0, A0) = Extn

A(A0, A0)−δp
λ(n) for all n ≥ 0, which implies that A is a (p, λ)-Koszul algebra.

(⇐) Suppose that A is a (p, λ)-Koszul algebra. Then as a trivial A-module, A0 admits a minimal
graded projective resolution

· · · −−−−→ Pn −−−−→ · · · −−−−→ P1 −−−−→ P0 −−−−→ A0 −−−−→ 0

such that each projective module Pn is generated in degree δd
p(n) for all n ≥ 0. Note that M is a (p, λ)-Koszul

module with respect to δp
λ . Thus M has a minimal graded projective resolution

· · · −−−−→ Qn −−−−→ · · · −−−−→ Q1 −−−−→ Q0 −−−−→ M −−−−→ 0

such that each projective module Qn is generated in degree δd
p (n) for all n ≥ 0. Then by [4, Proposition 3.5],

we have Exti
A(M, A0) = Exti

A(A0, A0) · Ext0A(M, A0) for all i ≥ 0. That is,
⊕

i≥0 Exti
A(M, A0) is generated

by Ext0A(M, A0). �

Now Theorem 0.2 is immediate from Propositions 2.3, 2.8 and 2.9.

3. H -Galois graded extension of (p, λ)-Koszul algebras

In this section, we will investigate the H -Galois graded extension of (p, λ)-Koszul algebras and Theorem 0.3 is
our main result.

Lemma 3.1 ([14]) Let A be a positively graded algebra and Ext∗A(A0, A0) be its Yoneda algebra. Then A is a

(p, λ)-Koszul algebra if and only if Exti
A(A0, A0) = Exti

A(A0, A0)−δp
λ
(i) for all i ≥ 0 .

Lemma 3.2 ([11]) Let H be a finite dimensional semisimple and cosemisimple Hopf algebra and A/B be

an H -Galois graded extension. If A =
⊕

i≥0 Ai is a positively graded algebra, then A0/B0 is an H -Galois

extension.

254



LU/Turk J Math

Lemma 3.3 ([11]) Let H be a finite dimensional semisimple and cosemisimple Hopf algebra, A =
⊕

n≥0 An

be a graded right H -module algebra and B = AcoH , the coinvariant subalgebra of A . Suppose that A/B is an
H -Galois graded extension. Then we have an isomorphism of bigraded algebras

Ext∗B(A0, A0) ∼= Ext∗A(A0, A0)#H,

where the bigradeding of Ext∗A(A0, A0)#H is induced from that of Ext∗A(A0, A0) .

Now we are ready to prove Theorem 0.3.

Proof By the assumption, B0 is a finite dimensional semisimple algebra. By Lemma 3.2, A0/B0 is an H -Galois

extension since A/B is an H -Galois graded extension. Now note that A0#H and B0 , A0 and (A0#H)#H∗

are both Morita equivalent, and H is a finite dimensional semisimple and cosemisimple Hopf algebra, we have
that B0 is semisimple if and only if A0 is semisimple. Further, as a right B0 -module, A0 = B0 ⊕ S for some
finite dimensional B0 -module S .

(⇒) By assumption, B is a (p, λ)-Koszul algebra, by Lemma 3.1, which is equivalent to that Exti
B(B0 , B0) =

Exti
B(B0, B0)−δp

λ(i) for all i ≥ 0. Note that S is a direct summand of a finite sum of B0 , which implies that

Exti
B(B0, S) = Exti

B(B0, S)−δp
λ(i), Exti

B(S, B0) = Exti
B(S, B0)−δp

λ(i) and Exti
B(S, S) = Exti

B(S, S)−δp
λ(i) for all

i ≥ 0. Also observe that we have the isomorphism

Exti
B(A0, A0) = Exti

B(B0 , B0) ⊕ Exti
B(B0, S) ⊕ Exti

B(S, B0) ⊕ Exti
B(S, S)

for all i ≥ 0, which implies that Exti
B(A0, A0) = Exti

B(A0, A0)−δp
λ(i) for all i ≥ 0. By Lemma 3.3, we have

Exti
A(A0, A0)#H = (Exti

A(A0, A0)#H)−δp
λ(i)

for all i ≥ 0. By the definition of the bigrading of Exti
A(A0, A0)#H , we obtain that Exti

A(A0, A0) =

Exti
A(A0, A0)−δp

λ(i) for all i ≥ 0. By Lemma 3.1, we get that A is a (p, λ)-Koszul algebra.

(⇐) Suppose that A is a (p, λ)-Koszul algebra, by Lemma 3.1, which is equivalent to

Exti
A(A0, A0) = Exti

A(A0, A0)−δp
λ(i)

for all i ≥ 0. By Lemma 3.3, we have Exti
B(A0, A0) = Exti

B(A0, A0)−δp
λ(i) for all i ≥ 0. Note that A0 = B0⊕S

and S is a direct summand of a finite sum of B0 , which imply that

Exti
B(A0, A0) = Exti

B(B0 , B0) ⊕ Exti
B(B0, S) ⊕ Exti

B(S, B0) ⊕ Exti
B(S, S)

for all i ≥ 0, which of course implies that Exti
B(B0, B0) = Exti

B(B0 , B0)−δp
λ
(i) for all i ≥ 0. By Lemma 3.1,

we get that B is a (p, λ)-Koszul algebra. �

Remark 3.1 Example 2.14 of [11] can explain the above theorem clearly since Koszul algebras are a special

class of (p, λ)-Koszul algebras in the sense of p = d ≥ 2 and λ(n) = 1 for all n ∈ N .
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4. Quasi-(p, λ)-Koszul algebras and modules

The main aim of this section is to give the definitions of quasi-(p, λ)-Koszul algebras and modules and to give an

application of quasi-(p, λ)-Koszul modules: Another necessary and sufficient condition for minimal Horseshoe

Lemma to be true is given in the category of quasi-(p, λ)-Koszul modules.

The definitions of quasi-(p, λ)-Koszul algebras and modules are motivated by the following result:

Lemma 4.1 Let A = kΓ/I be a standard graded algebra and

· · · −−−−→ Pn
dn−−−−→ · · · −−−−→ P1

d1−−−−→ P0
d0−−−−→ A0 −−−−→ 0

a minimal graded projective resolution of the trivial A-module A0 . Then the following statements are equivalent:

1. A is a (p, λ)-Koszul algebra;

2. ker dn ⊆ Jδp
λ(n+1)−δp

λ(n)Pn and J ker fn = ker fn ∩ Jδp
λ(n+1)−δp

λ(n)+1Pn for all n ≥ 0 ;

3. for any fixed n ≥ 1 and 1 ≤ i ≤ n , Pi =
⊕

l≥1 Aeil [−δp
λ(i)] , the component of di(eil) in some Aei−1m is

in Aδp
λ(i)−δp

λ(i−1) , ker dn ⊆ Jδp
λ(n+1)−δp

λ(n)Pn and J ker fn = ker fn ∩ Jδp
λ(n+1)−δp

λ(n)+1Pn .

Proof It is similar to the proof of Proposition 3.1 of [8] and we omit the details here. �

Similarly, we can get the corollary.

Corollary 4.2 Let A be a standard graded algebra and M ∈ gr0(A) . Suppose that

· · · −−−−→ Pn
dn−−−−→ · · · −−−−→ P1

d1−−−−→ P0
d0−−−−→ M −−−−→ 0

is a minimal graded projective resolution of M . Then M is a (p, λ)-Koszul module if and only if for all n ≥ 0 ,

we have ker dn ⊆ Jδp
λ(n+1)−δp

λ(n)Pn and J ker fn = ker fn ∩ Jδp
λ(n+1)−δp

λ(n)+1Pn .

Now we can give the definitions of quasi-(p, λ)-Koszul algebras and quasi-(p, λ)-Koszul modules.

Definition 4.3 Let R be a Noetherian semiperfect algebra with Jacobson radical J and M be a finitely
generated R -module. Let

· · · −−−−→ Pn
fn−−−−→ · · · −−−−→ P1

f1−−−−→ P0
f0−−−−→ M −−−−→ 0

be a minimal projective resolution of M . Then M will be called a quasi-(p, λ)-Koszul module if we have the
following two conditions:

1. For i ≡ pn + j (mod p|λ|), (n ∈ [0 , |λ| − 1 ], j = 0 , 1 , · · · , p − 2 ) , we have ker fi ⊆ JPi and

J ker fi = J2Pi ∩ ker fi ;

2. For i ≡ pn − 1 (mod p|λ|), (n ∈ [1 , |λ|]), we have ker fi ⊆ Jλ(n)Pi and J ker fi = Jλ(n)+1Pi ∩ ker fi .

In particular, we call R a quasi-(p, λ)-Koszul algebra if R/J is a quasi-(p, λ)-Koszul module.
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It is easy to see that quasi-Koszul algebras and modules (see [8]) are special quasi-(p, λ)-Koszul algebras
and modules.

The following is the main result of this section.

Theorem 4.4 Let R be an augmented Noetherian semiperfect algebra and

ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0

be an exact sequence of quasi-(p, λ)-Koszul modules. Then JK = K∩JM if and only if the minimal Horseshoe
Lemma is true with respect to ξ .

Proof (⇒) Suppose that ξ : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0 is an exact sequence of quasi-

(p, λ)-Koszul modules such that JK = K ∩ JM . Then by Lemma 1.2, we have the diagram Figure 1, which
easily implies the following commutative diagram with exact rows and columns

0 0 0

0 Ω1(K) Ω1(M) Ω1(N) 0

0 JP0 JL0 JQ0 0

0 JK JM JN 0.

0 0 0

Figure 3

Now apply the additive right exact functor R/J ⊗R − to Figure 3, we get the commutative diagram

0 0 0

R/J ⊗R Ω1(K)
ε

R/J ⊗R Ω1(M) R/J ⊗R Ω1(N) 0

0 R/J ⊗R JP0 R/J ⊗R JL0 R/J ⊗R JQ0 0

R/J ⊗R JK R/J ⊗R JM R/J ⊗R JN 0,

0 0 0

which implies that ε is a monomorphism and hence JΩ1(K) = Ω1(K)∩JΩ1(M). Now by the same procedures,

we can get JΩi(K) = Ωi(K) ∩ JΩi(M) for all i = 2, 3, · · · , p− 1. For the case of p , replace Figure 3 by
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0 0 0

0 Ωp(K) Ωp(M) Ωp(N) 0

0 Jλ (1)Pp− 1 Jλ (1)Lp− 1 Jλ (1)Qp− 1 0,
Figure 4

then apply the additive right exact functor R/J⊗R− to Figure 4, similarly, we get JΩp(K) = Ωp(K)∩JΩp(M).

Now repeating the above argument, we have JΩi(K) = Ωi(K) ∩ JΩi(M) for all i ≥ 0. Now by Corollary 1.3,
we finish the proof of the necessity.

(⇐) Suppose that the minimal Horseshoe Lemma holds with respect to ξ , then in particular we have
Figure 1. Now by Lemma 1.2, we have JK = K ∩ JM , which completes the proof of the sufficiency. �
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